

AN INSTRUCTION PROFILING BASED FRAMEWORK TO PROMOTE

SOFTWARE PORTABILITY

by

Blake W. Ford, M.S.

A dissertation submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

with a Major in Computer Science
May 2022

Committee Members:

 Ziliang Zong, Chair

 Apan Qasem

 Jelena Tešić

 Heping Chen

COPYRIGHT

by

Blake W. Ford

2022

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgement. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Blake W. Ford, authorize duplication of this work,
in whole or in part, for educational or scholarly purposes only.

DEDICATION

The work is dedicated to our children, caught in the middle of Dad’s twenty-year

goal. May you be the first to accomplish something big and be the very best at even a tiny

thing.

v

ACKNOWLEDGEMENTS

 First and foremost, I would like to acknowledge my dissertation

committee. Each member has provided valuable insights and help to me during this

process. Also in need of recognition is our Program Director Dr. Anne Hee Hiong Ngu. A

special thanks is due to my advisor Dr. Ziliang Zong who picked up the project mid-

process and pushed me towards the finish. No person is an island, so I must also mention

my family. My partner and children have been incredibly supportive of me during this

process. This achievement is as much theirs as it is my own.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS .. x

ABSTRACT ... xi

 CHAPTER

I. INTRODUCTION .. 1

Methodology Overview ... 6

II. RELATED WORK ... 10

Portable Software ... 11
Static Analysis ... 12
Dynamic Analysis .. 13
Instruction Profiling ... 16
Instruction Prediction ... 17

III. NON-INSTRUSIVE SOFTWARE ENERGY ANAYLYSIS 19

An Unaddressed Problem .. 19
Interested Parties .. 20
Solutions .. 21

IV. INSTRUCTION PROFILING MODULE ... 26

Overview ... 27
Evaluation .. 30

vii

V. ESTIMATION MODULE .. 32

Overview .. 32
Evaluation .. 36

VI. ARCHITECURE CHALLENGES AND PROFIING EFFICIENTLY 42

The Unaddressed Problems .. 43

VII. INSTRUCTION PREDICTION MODULE .. 46

Overview .. 46
Evaluation .. 48

VIII. SAMPLED INSTRUCTION PROFILING .. 53

Overview .. 53
Evaluation .. 59

IX. BACKGROUND ... 62

Binary Translation ... 62
Commercial Architecture Changes .. 64
Edge Computing .. 66
System Profilers ... 67

X. FUTURE WORK AND DISCUSSION ... 71

XI. CONCLUSION ... 77

REFERENCES .. 81

viii

LIST OF TABLES

Table Page

1. Top Categorization of the Test Catalog ... 31

2. Energy Usage Comparison for the Test Catalog ... 37

3. Memory Usage Comparison for the Test Catalog ... 37

4. Coverage Comparison for the Test Catalog ... 39

5. N-gram Distributions For x86-64 PUSH-MOV .. 47

6. BLEU Scores for the Test Catalog ... 51

7. Top Sampled Categorization of the Test Catalog .. 60

8. Sampled Energy Usage Comparison for the Test Catalog ... 61

ix

LIST OF FIGURES

Figure Page

1. Overview Illustration of Proposed Framework ... 6

2. IDE Integration Screenshot .. 23

3. Single Stepped Instruction Profiling Workflow .. 26

4. Instruction Categorization of Game (Sirene) ... 28

5. Example of Source Optimizations That Provide Identical Binary Paths 29

6. An Example Micro Profile ... 32

7. Comparison of Predicted Instructions to Real Using the Fibonacci Test 49

8. An Illustrated Example of Call Stack Tracing ... 54

9. Placement of Compiled ret Instructions .. 58

10. A Simple 3-Stage Edge Computing System .. 66

x

LIST OF ABBREVIATIONS

Abbreviation Description

RISC Reduced Instruction Set Computer

ARM Advanced RISC Machines

ISA Instruction Set Architecture

NLP Natural Language Processing

BLEU Bilingual Evaluation Understudy

CPU Computer Processing Unit

RAPL Running Average Power Limit

API Application Programming Interface

RAM Random Access Memory

ELF Executable and Link Format

IDE Integrated Development Environment

ASIC Application Specific Integrated Circuit

AI Artificial Intelligence

ML Machine Learning

xi

ABSTRACT

In recent history, most software has been built for a single hardware class and

developers rarely needed to consider cross-platform development. With emerging

paradigms like Edge computing and the introduction of alternative mainstream

processing elements, we have reached a landmark for multi-platform development.

Moreover, the barriers to successfully introducing a new CPU architecture are also

falling, as demonstrated by RISC-V. This can only lead to greater fragmentation in the

ecosystem of development platforms and tools that advocate for software portability lag

far behind this trend. A notable example at present is the introduction of Apple silicon

and Apple’s substantial efforts to migrate software from previously supported Intel CPUs

to ARM. Unfortunately, in order to access the interesting features of a new platform,

developers will be required to rebuild or port their existing software. Porting software can

uncover unexpected behavior and produce uncertain results in code that was previously

considered stable. A dearth of development tools geared towards porting software means

addressing these problems requires significant work and it is difficult for developers to

predict the performance and energy consumption of software early on without testing it

on the target hardware. Privileged access to prototypes and limited options for simulation

before release further complicate the problem.

This dissertation proposes a cost-effective instruction profiling framework that

promotes portable software by allowing developers to estimate certain metrics inherent to

their software on other platforms without modifying their code and without direct access

xii

to hardware. Specifically, the framework includes three modules: (1) The instruction

profiling module analyzes existing code in an efficient way and produces evaluation

reports. (2) The estimation module leverages prerecorded metrics to calculate the

performance of this code on another platform. (3) The instruction prediction module uses

a machine learning approach to automatically generate cross-architecture code for other

possible targets. The framework can forecast various metrics including instruction

categorization, code coverage, and resource usage simultaneously. Data produced is

comparable to existing off-the-shelf benchmarks but available for multiple platforms after

a single profiling pass. Experiments herein confirm performance estimates are within

externally established tolerances and powerful enough to provide automated assistance to

developers considering a software port between disparate platforms.

1

I. INTRODUCTION

Toolchains and environments have long provided options that help developers to

optimize source code for higher performance or lower memory usage. For instance,

environments may suggest removing or updating code. Compilers like GCC and Clang

have macro-options which bundle together many smaller unique transformations into

more user-friendly levels of automatically applied optimization. Other forms, like link

time optimization, can be introduced even later in the build process. These options have

wide ranging effects on the generated assembly code. Though these enhancements target

speed improvements or memory savings broadly, they do little to describe how the code

might perform on a different platform. Unfortunately, very few cross-platform

forecasting tools are available to developers.

Without proper programmer assistance, problems may not be immediately

discoverable given that source code may translate to hardware in a variety of ways.

Optimizations or other compiler flags can radically change the source intent so long as

the resulting evaluation is the same. For example, dead code elimination allows a

compiler to completely remove sections of code it does not expect to be productive

during execution. Lacking the ability to make transformations discretely and

automatically through a compiler, another option is to provide commentary on a

developer’s code so that they could be empowered to make some of these changes

themselves. Of course, this information would be most useful to a developer at

development time and on their personal hardware. As few environments are setup for

cross-platform development, projects normally need to explicitly include additional

libraries, run an external program or engineer other code to compensate. Instead, the

2

common software engineering practice today does not account for software ports which

could force an expensive future redevelopment cycle. Investigating portability at the

beginning of a project and staying mindful of possible ports throughout the entire

software development cycle is more desired and cost-effective long term (Mooney,

2004).

One area where cross-platform development tools are handy is in the creation of

systems with Edge computing elements. Edge computing refers to the practice of

offloading computational effort from strained central areas to areas on a network where

existing utilization is low. There are increasing computational needs that make Edge

computing a promising alternative to the cloud. Edge computing is a novel and available

solution that can alleviate problems caused by distributed applications as data

propagation has become the limiting factor in the expansion of cloud computing. The

volume of data being produced in the field is growing at a rate far greater than

improvements in communication technology (Lin et al., 2019 and Shi et al., 2016).

Normal impacts from this kind of expansion range from increased financial costs to lower

quality of service. Devices on the Edge are typically less powerful, so software developed

with servers in mind may perform worse than expected in this environment. In addition,

emerging areas like Edge computing lack host options based on x86, the dominant server

CPU architecture. The demands of this segment favor custom processor designs and the

market is held by Instruction Set Architectures (ISA) that are historically modifiable

unlike x86. Customization requires a product be either licensable as with the ARM

architecture or fully open like RISC-V. This highlights another threat to mono-platform

development, large scale CPU architecture transitions.

3

Over the past few decades, x86 has undoubtedly become the dominant

architecture for software running on modern CPUs, thanks to the long-term support from

both Intel and AMD. This trend is shifting quickly with ARM emerging as a highly

competitive CPU architecture. Recently, Apple has made a significant investment in

ARM by designing its own ARM-based System-on-a-Chip (SoC) hardware. Announced

in late 2020, the M1 chip will be used to power all its primary products (e.g., MacBook,

iMac, and iPad) (Lardinois, 2020). Less than a year later, Microsoft also announced its

plan to further endorse the ARM architecture in Windows 10 and develop comparable

hardware (Bacchus, 2021). Considering the size of their combined software ecosystem, it

is inevitable that significant amounts of software will be fully ported to ARM or support

both x86 and ARM simultaneously.

Consider that each platform, regardless of CPU architecture, provides only limited

execution context transferability to another. The relationships between registers, memory

and other CPU associated hardware do not map directly between different platforms.

Therefore, there exists a set of non-uniform performance metrics for each device: power,

bandwidth, compute capability. For instance, servers may require more energy to operate

but could also perform CPU tasks faster than Edge devices. Given this diversity, it is

difficult for developers to predict the performance of their software. Most opt instead to

test explicitly on the target hardware.

Aside from the obvious ability to do empirical testing, extra performance data

may be reported from the underlying device itself. Some examples include platform

specific counter registers and variables exposed in the Filesystem Hierarchy Standard in

Linux. Integrated data sources provide a variety of metrics, so calculations can be made

4

considering a substantial number of detailed values from the hardware. Counters can

work well in the absence of physical metering as specific actions tracked by these

registers influence resource consumption (Treibig et al., 2010). However, performance

counters were not designed in a portable way and different problems can arise when

attempting to relate their values outside narrow specifications or cross-platform. As

counters track the dimensions of an entire platform, it may also be impossible to sort out

the demands of a single process on a multi-process host without some interference.

Extracting and comparing these data from multiple unique platforms requires a clear

duplication of work and several bespoke pieces of test equipment. The scarcity of device

hardware also plays a role in the ability to effectively port software when developers rely

on direct platform testing or inherent platform features.

In addition to hardware, it is also wise to consider language. With the diversity of

high-level programming languages, a good cross-platform profiling solution should not

be attached to a specific programming language. Developers use different programming

languages for different projects, and perhaps even a mix set of programming languages

within a single application. Providing an otherwise flexible profiling standard bound to a

subset of languages limits the overall value.

This work is an attempt to start improving weaknesses in the software porting

process by providing relevant, interactive and automated programmer assistance at design

time without the advantage of real hardware. The framework is intended to be platform

agnostic. The research uses two of the most common architectures for demonstration

purposes. Code originally built for one platform is used to predict the performance of a

future port to another. Specific contributions are as follows.

5

• Extracting fine-grain performance feedback from non-instrumented,

unmodified binaries. Better, more detailed range of metrics gathered non-intrusively.

• Accounting for the entire build process. Describes the true nature of software

in ways that cannot be known at the source code level.

• Allowing language agnostic profiling. A plausible solution for use with any

software package capable of running on a given platform.

• Reducing dependence on physical measurement. Software changes can be

evaluated without additional test hardware or features.

• Lowering the cost to estimate software cross-platform. Highlight the

potential for other devices to run software from a single development platform.

• Deriving cross-architecture diagnostics via Artificial Intelligence methods.

The ability to broadcast the effects of software changes to alternative CPU hardware

without build tools or directed effort.

6

Figure 1: Overview Illustration of Proposed Framework

Methodology Overview

Figure 1 provides an overview of the proposed dynamic analysis framework,

PortAuthority. First, if unavailable Module 1, instruction prediction module, uses a

machine learning approach to automatically generate code for the target platform. The

key component to instruction prediction is the code corpus referencing both the source

and target platforms. This corpus is used to learn sufficient historical patterns of code and

to map relationships between each architecture’s instructions. Then using Module 2,

previously recorded micro profiles are used to obtain performance data for the

instructions from a given platform. Finally, in Module 3 the code is analyzed via

instruction profiling and evaluation reports are generated regarding the program’s

structure and performance estimates for the software.

7

Each module is evaluated using the same set of test applications. The set includes

open-source code from the video game, scientific computing, machine learning, and

operating system communities. The mix of coding styles here is intended to help produce

a well-rounded method capable of working with a variety of binary input. Software

quality and diversity are critical factors in the evaluation of this technique. The

PortAuthority tool has been tested on many additional pieces of software over the past

several years and the included test catalog is representative of those outcomes.

With each test, a sample area of 2-4 million instructions is used in order to keep

consistency across the recorded results. While the execution of each is highly detailed,

the expected runtime of any example is only a few seconds. The executables from the test

catalog are composed from 30 to 60 unique instructions per application. The overall

structure of an individual program is loosely in line with the others as each generated

executable is composed using identical settings and roughly matching the statistical

distribution of instructions available. This emphasizes that repetitive elements involved in

compiling a program may overshadow custom computation internally, especially when

considering all these programs conform to the same requirements for calling functions,

application binary interfaces and other forms of compliance code.

The intent here is not to displace existing tools and methodologies but to

complement them. To that end, instruction metrics will be juxtaposed with conventional

versions. Significant differences are debated as either advantageous or not depending

upon circumstance. The insights provided by instruction metrics are divergent but also

correspond closely with their better-known counterparts. Executable and Linkable Format

(ELF) files can be generated for a variety of platforms. Here the work is done with what

8

was felt to be the two most contemporary choices for cross-architecture development,

ELF files using the x86-64 and AARCH64 CPU architectures. The hardware tested

included the Marcher system (Zong et. al, 2017) and the NVIDIA TX2 respectively.

There is no known limitation to working with upcoming platforms like RISC-V.

Conducted properly, the expectation is that the method will function well with all ELF

generating targets.

The first test program is a short Fibonacci sequence calculator. Next, a slightly

modified version the logcat application included with the Android operating system.

Logcat provides a mechanism for filtering and prioritizing messages familiar to users of

debug logs. Originally pulled from commit hash cfaded (Android Open Source Project,

2022), changes were made to this code in order to pump messages directly so that the

program could be tested without the need for a second application for input. Next, a

routine from the TensorFlow framework, an open-source platform for machine learning.

This test lifts code for single-threaded matrix multiplication from version 1.4.1 and

includes some infrastructure to support execution outside of the full software suite. The

final test is a game project designed for the Arduboy handheld game console, Sirene.

While there are several hundred games for the console, most use a single game engine.

This makes results between those projects are noticeably similar. This will be shown

using another Arduboy game, Shrun, much later in the paper along with a few other one-

off examples to enhance experimental quality.

The rest of the paper is organized as follows. Chapter II discusses Related Work

in software portability, profiling, and instruction prediction. Chapter III broadly explains

the innovative, non-intrusive profiling method used in the initial research. In this chapter

9

a detailed use case is also presented. Chapter IV describes the basic principles behind

application instruction profiling. Chapter V examines the Estimation module. Chapter VI

reviews the initial work and introduces new challenges discovered while piloting the

PortAuthority prototype. Chapter VII provides details related to the methodology used in

the Instruction Prediction module of the proposed framework. Chapter VIII demonstrates

speed improvements later added to the instruction profiling method. Chapter IX will

discuss background on target application areas. Chapter X discusses future work and

finally, Chapter XI concludes this study.

10

II. RELATED WORK

More conscious thought around future ports during the development cycle is

desired. A common but poor practice is to apply improvised methods when the eventual

need is discovered. Economically the costs of an improper port work against sound

investment principles in a product line destined to remain on the market for a prolonged

period. To accept uncertainty in new software can be uncomfortable and lack of foresight

means addressing portability concerns early is an area for improvement for many

developers. Software components exhibit portability when their adaptation costs are less

than those of redevelopment (Mooney, 2000). This work is an attempt to improve

weaknesses in the software porting process by providing programmer assistance via

binary analysis. Binary analysis refers to the process of examining the raw data for a

compiled application. While binary analysis is useful with or without source code it can

be difficult to ascertain the key details of a program’s intent when reviewing only native

assembly, the given language for binary analysis. For this reason, debugging the high-

level operation of an executable is more often done against the source for that program

and binary analysis tends to be reserved for more specific use cases. The advantage of

studying a binary directly is that it can give insight beyond what is available at the source

level. Actual resource utilization for a target platform can only be known post

compilation therefore binary analysis is used more often in later stages of a development

lifecycle and where optimization, threat assessment, or reverse engineering are required.

Static binary analysis can provide useful data without executing a program like the

required space for different program segments. In contrast, dynamic binary analysis

requires an actively executing program to report on a desired behavior, consider

11

performance counters. Each form of analysis provides access to different pieces of

information, and each has notable strengths and weaknesses. Binary analysis relates

closely to binary translation which in turn relates to instruction prediction. In this chapter,

background for each of these areas is introduced to promote a better understanding of the

PortAuthority framework.

Portable Software

Foundational work by Mooney provides a clear framework for describing various

commonsense patterns to adapt software. He proposed guidelines for increasing and

exploiting portability including:

 • Control the interfaces

• Isolate dependencies

• Think portable

There is no quick way to predict the runtime behavior of software without

executing some sample code on a device. It is unrealistic to judge software performance

without a due diligence porting trial and some upfront, hand-coded work. When working

with portable software an engineer needs to be confident the source can be cross-

compiled and that the resulting code will run deterministically. This requires a successful

cross-platform developer to keep Mooney’s principles in mind constantly. If software is

not portable, it could take up to a few months of redevelopment time to generate a

reasonable performance estimate of the anticipated final product. Meanwhile, developing

a fresh codebase is also viewed as undesirable even for a new platform. This is because

12

software products tend to benefit from implementation in multiple environments when

they remain in the market. Thus, long life is normal for professionally developed

software. Average lifetimes of ten years are common with some going far beyond that

threshold (Tamai and Torimitsu, 1992). Based on these observations, it can be concluded

that the likelihood of eventual porting is high (Parnas, 1994). Alternatives to porting code

include forking, copying, and splitting source development in independent ways for

differing environments. While considered a low-cost alternative, studies of this

phenomenon have called for new techniques to automate porting tasks to reduce the

maintenance costs associated with software forks (Ray and Kim, 2012).

Static Analysis

Numerous utilities are available to parse, disassemble, and even recompile

existing binaries. All are forms of static analysis. The first two tasks are critical to the

implementation of the PortAuthority framework, but not necessarily clearly expressed in

the final user output. The ability to parse and disassemble a binary is highly valued when

reverse engineering a compilation process or compiled build product. During functional

development or program optimization a compiler’s interpretation of a user’s source can

occasionally lead to interesting bugs that require visibility on the assembly level to fix

(Le et al., 2015). Disassembling a binary can help diagnose this condition before software

is released. In contrast, the same methods can also be used to reverse engineer a product.

Reverse engineering takes place outside of the initial development cycle and potentially

by an outside party of developers. The challenge is to rebuild a software product lacking

its source. This process can involve stages like redocumentation and design recovery but

13

fundamentally must begin with the elemental assembly code due constraints viewing the

original source. Recompiling working versions of existing software from reverse

engineered source serves as a high accomplishment in this practice. Specific examples of

tools built for this purpose are IDA Pro and Ghidra (IOActive, 2008 and Rohleder, 2019).

The Binary Analysis Platform (BAP) from Carnegie Mellon uses an intermediate

representation to support program analysis (Brumley et al., 2011). The tool effectively

combines the functionality of the standard GNU Binutils with a scripting language. The

analytical features demonstrated by their team are static, and though not required it is also

possible to execute IR created through this tool. BAP is highly extensible and tailored for

the creation of custom tools built on its core methodology. Included extensions highlight

a range of analysis from simple tools for translating between machine code and

instruction mnemonics to more complex filters used to detect source code styles favored

by the developer. BAP can also be used to build structures illustrating program execution,

such as call graphs. Like many verification tools, detailed information about the run time

complexity of individual functions can be derived, but information on whole program

execution seems scarce. The high-level analysis provided by BAP is not suitable for

evaluating the performance of an application.

Dynamic Analysis

Program optimization often requires the use of dynamic analysis, think execution

profiler. While these utilities are powered by a variety of diverse techniques, binary

sampling and source instrumentation are the two most common methods (Pereira et al.,

2017). Sampling profilers halt and record the state of a running executable periodically.

14

Instrumented profilers compile in special markers that allow them to gather similar kinds

of information but from predetermined locations within an application. Given this broad

definition, PortAuthority could be categorized as a sampling profiler with a very short

period. It is set up by default to analyze every instruction within an application for a

given range. In contrast, standard profilers might only sample once every millisecond.

These other profilers are suited for a much different task and usually within the scope of

the same or similar hardware. Specifically, when optimizing a program, it is valuable to

know areas which are frequently executed. Sampling at a high enough rate can provide a

representative view of that information much faster than single stepping each instruction.

Peak memory usage and other metrics can also be discovered through using interval-

based profiling (Jin et al., 2012). Instrumented profilers work in a comparable way. They

either log or break at distinct points within a program. This means that they depend on

the processor crossing marked address locations within the program and do not arbitrarily

halt the executing process. The output, however, is like that of a sampling profiler.

Instrumenting an application may alter its personality and requires metadata to be

included with a binary. As those characteristics work against goals for this research,

PortAuthority is not implemented in a way that would allow it to be categorized as an

instrumented profiler.

With twenty years of active development, Valgrind is one of the most mature

dynamic analysis tools available today. The fundamental example use case for this

program is to check for memory leaks. This type of validation is valuable when

developing in languages without garbage collection. Though initially targeted as a

memory debugging tool only, the project now serves as a generic platform for a variety of

15

verification tasks (Nethercote and Seward, 2007). Valgrind uses a unique just-in-time

compilation technique to drive its analytical processes. A user’s binary is first translated

into an intermediate representation. From this state, the code may be transformed or

augmented in a variety of ways before the IR is recompiled back into code for the host

platform. Common augmentations for the IR include various forms of instrumentation

and standard library replacement. Running the code in this modified state enables the

series of extensions tied into Valgrind to perform their work with the caveats of reduced

execution speed and implementation detail. For validation purposes, this approach has

proved extremely useful. Valgrind is excellent for verification tasks but building an

extension for this research would not be viable. As discussed with BAP, profiling the

original binary representation is crucial to the usefulness of any performance output from

PortAuthority. Augmentation in the form of IR obfuscates performance aspects of the

compiler’s intent making predictions less accurate.

There are of course informal methods of dynamic analysis as well. Lots of

engineers work in an unstructured way with data directly from their development

machine. Consider RAPL (Running Average Power Limit), a processor feature

introduced by Intel and almost exclusively available on their chips. This feature adds

registers containing continuous energy and power consumption information (Travers,

2015). Excluding previously mentioned performance counter portability problems, using

RAPL is an improvement over older methods, though it still has some inherent

limitations when monitoring consumption in real time. For instance, its readings are not

application focused and capturing the data can incur significant overhead. Therefore,

background processes using RAPL, and even direct API usage can affect the resulting

16

estimate (Treibig et al., 2010). Worth noting, certain other metrics are beyond the ability

of a user manually monitoring performance counters entirely. PortAuthority works to

eliminate both the portability and observer effect problems associated with these ad-hoc

dynamic analysis methods.

Instruction Profiling

A practical application of instruction profiling is used in the open source

CacheSim utility distributed by Insomniac Games (Insomniac Games, 2017). Console

games are often developed on hardware more powerful than what will be available to the

consumer. As such, once functional testing is complete, an optimization round will likely

be required in order to ship the final product on retail hardware. Caches are orders of

magnitude smaller and faster than conventional RAM, so proper usage has a large impact

on performance. Thus, a frequent target of game optimization is cache utilization.

CacheSim can estimate cache performance for a target architecture. The tool does this by

filling a simulated version of the target cache hardware based on the record of memory

accesses provided by the host. Fine grained analysis of the memory accesses within a

program is facilitated by a single step debugging mechanism within the tool. Insomniac

Games confirmed their usage of CacheSim as a unit test during the Xbox One console

generation, though it is unclear if it is still in regular use. Noted issues with the tool

include some sensitivity to array prefetching. This makes the tool overly pessimistic

about cache performance in certain scenarios. There are other small caveats mentioned

given that the program is not entirely hardware accurate. Those limitations will be

expanded upon in the later section on instruction profiling.

17

Instruction Prediction

A few contemporary tools exist combining the use of Natural Language

Processing (NLP) with binary analysis. Specific examples include instruction2vec and

Asm2Vec, each based off the widely popular Word2Vec algorithm (Treibig et al., 2019).

The focus of these two tools is currently to provide cross-architecture bug, malware, and

plagiarism detection. The value in this approach is amplified by the diverse nature of

assembly languages and the lack of a dictionary for direct translation. Much like a natural

language, between vendors assembly languages may require multiple indirect instructions

as a substitute for one from a competing architecture. Many conversational themes affect

the quality of the outcomes when comparing binary forms of ported applications. To

address performance, there is also a general strategy and ample prior research to expand

the reach of existing data using supervised learning (Zheng et al., 2015). Lacking big data

for multiple platforms extending this approach is less of an option for this study. Each of

these methods utilizes machine learning for their predictions. Using the first two methods

it is possible to compare program similarities cross-platform however with the latter this

is not possible. Within the PortAuthority framework there is an attempt to combine the

best that each of these approaches has to offer. The key difference is that PortAuthority

uses machine learning to predict instructions likely to be compiled during a direct port.

Performance evaluation happens indirectly later in the process and without inferencing.

This means that the machine learning components of PortAuthority have more in

common with the vectorization tools as there is a requirement to effectively plagiarize the

innerworkings of a program for the purposes of cross-architecture performance

18

evaluation. These features of PortAuthority are novel and lack deeply comparable prior

research.

19

III. NON-INSTRUSIVE SOFTWARE ENERGY ANAYLYSIS

While multitudes of tools exist to help developers improve and distribute their

source code, most of these options do not operate in ways that adequately address aspects

of cross-platform development. Traditionally, this is difficult because profilers assume a

single target and can require other tools and libraries commonly found for that platform

in order to function. There are fundamental limitations to established profiling designs

where source modification, binary instrumentation, or direct access to hardware is

required. For example, relying on source modifications limits a profiler’s ability to target

multiple languages. Virtualization is one approach that can be used to avoid these issues

while profiling, but it also comes with problems of its own. Functional correctness is an

excellent use case for virtualization, but also a minimum standard for quality in software.

Virtualization is limited in its ability to deeply profile software as it makes abstract the

innate uniqueness within a computing platform. With the availability of many correct

implementations, current tools based on virtualization technology do little to directly

address performance, a further level of functional betterment. This chapter outlines a

study, where PortAuthority is used to attack a specific profiling problem not adequately

addressed by existing tools.

An Unaddressed Problem

An IDE will regularly include features where source code improvements can be

suggested or automatically applied from within the environment augmenting the skills of

a developer. In addition, lower-level compiler optimizations are readily available for a

variety of languages and programming setups that continue to enhance the code on the

20

back end. Common optimizations include transformations that automatically improve the

speed or lower the memory usage of an application. However, no equivalent options exist

to tailor the compilation, linking or refactoring of a program for better energy efficiency.

Why is this the case? What would be required of a profiler in order to integrate energy

efficiency analysis into an IDE?

Interested Parties

First, it should be established why this problem is important. Research on the

popular developer community Stack Overflow has conveyed that there is growing interest

from software developers in monitoring and improving the energy consumption of their

applications. Unfortunately, most of the questions related to software energy efficiency

are not answered or poorly answered (Pinto et al., 2014). Open-source mobile

applications have been found to contain a searchable stream of energy-aware commits

(Bao et al., 2016). Because developers are actively fixing consumption problems, it

stands to reason that automated techniques that can help detect and locate them should

also be in development.

In certain circumstances, energy aware interfaces have been created in order to

capture obscure conservation knowledge and increase access to power saving techniques,

removing the need for developers to sort out the best approach on their own (Moura et al.,

2015). Within most projects however, bug fixes or features that require increased energy

efficiency will not have the luxury of using such an interface and will need other ways to

debug and eventually resolve these issues.

21

Existing tools such as the Battery Historian for Android can be used to debug this

category of problems by reporting the active current draw from the mobile device’s

battery (Google, 2017). However, this tool’s suggested code improvements focus on

features specific to the Android platform (e.g., GPS and wake locks) in line with other

reference materials from Google, restricting portability. Similarly, wisps of technical

documentation from Intel delve into energy usage as it relates to algorithms and data

organization but lack specific examples or toolkits that would help developers precisely

replicate their results (Intel, 2011). Growing amounts of research are being conducted on

the development of more aggressive and portable energy aware testing procedures due to

a growing consciousness of these issues (Jabbarvand and Malek, 2017).

Solutions

Basic access to power consumption estimation on off-the-shelf development

systems is normally present. Notably, software can and has been expanded with drivers

connected to external meters for more accurate results, but most users will rely on the

standard software implementations. PAPI is one example of a power profiling API for

users of the high-performance computing languages C and Fortran (Weaver et. al, 2012).

Jalen is an option for software running on the Java Virtual Machine (Noureddine et. al,

2014). Each of these approaches is backed by hardware counter registers. Counter

registers can work well in the absence of physical metering as specific actions taken by

the CPU greatly influence power usage. However, this is not always the case.

For many reasons, performance counters remain non-ideal for power metering

purposes and different problems can arise when correlating their values to the underlying

22

usage. Consider the RAPL feature promoted by Intel and the challenges presented

monitoring consumption in real time. Two major problems exist, its readings are not

application focused and capturing the data can incur significant overhead. These

limitations make it possible for background processes using RAPL, and even direct API

access to affect the resulting estimate (Treibig et. al, 2010). Energy usage is inherently

tied to a platform. Much more so than the other optimizations mentioned. Using less

memory, or less instructions will plausibly create similar betterment cross-platform, but

something like energy usage is not always tied to improved performance (Abdulsalam et

al., 2015).

Existing methods to determine software energy usage require hardware support

for measurement, affect run time behavior, or are tied to certain programming languages.

Easy approaches are restricted, and this can lead to a lack of awareness on energy related

improvements. To provide the same usability and increased code quality that are

available for standard optimizations, tools need to overcome these problems and provide

similar descriptive warning messages and indicators of severity. Using PortAuthority to

track the energy usage of basic instructions at the binary level, it is possible to build

generalized rules for improving code’s energy efficiency and share that information with

users at development time. The approach is non-intrusive, language agnostic, cross-

platform, and most importantly can be seamlessly integrated into popular IDEs.

To accomplish this, PortAuthority can be used to build Portable Energy Scores.

The Portable Energy Score is a normalized score that reflects the relative energy

efficiency among basic low-level instructions such as add, mov, or stack operations.

Scores are based on real power measurements from tools like the Marcher system (Zong

23

et. al, 2017), a fully equipped open development platform for measuring fine-grained

energy consumption of arbitrary programs. As measured, instruction energy usage

numbers are small, floating-point values and normalizing these to a whole number

clarifies results. Once scores are established, a quality estimate for platform energy usage

can be calculated using non-exact development hardware and without access to

comparable measuring equipment. For example, an unmodified Intel Coffee Lake

machine could estimate the relative energy usage for software to be run on Kaby Lake

hardware if supplied with that platform’s per instruction energy scores. Normalized

instructions are added to a lookup table, and as each is encountered during the single

stepped run of a program the usage estimate is monotonically increased by the

corresponding energy score. Higher scores suggest more energy would be used and in

what relative quantity.

Figure 2: IDE Integration Screenshot

24

Figure 2 is a screenshot captured from an early IDE integration demonstration.

Here Portable Energy Score analysis using PortAuthority was added to the Visual Studio

Code UI and evaluated with several sample projects. In theory, the following instructions

could be applied generally to any extensible IDE, though each will have some unique

setup requirements. Extending Visual Studio Code with a custom integrated task can be

done on a per project basis. The IDE will create a hidden folder within each project

named vscode. This folder contains settings files for various generic IDE and debugger

tasks. For this research the tasks.json file within this directory was modified. This file

supports different task types and labels and allows users to specify specific arguments to

a list of utilities. PortAuthority is a shell application but there are other supported base

types including scripts. When configured correctly, tasks.json entries will be placed

within the top level menus of the Visual Studio Code IDE under the Run Task option

under the Terminal menu.

While testing this setup, three basic rules for energy efficiency were established

and reported via the IDE. The first rule suggests that a developer find alternatives to

replace clusters of stack instructions. The power consumption of stack instructions is

significant, just below the highest of the x86-64 mnemonics tested. This could be

valuable knowledge to reference during an optimization pass. Because the stack

operation’s Portable Energy Score is so high, it creates the potential to refactor using

different instructions for better efficiency. The second rule in the set is based on the

comparatively poor performance of the add instruction when compared to that of the sub

operator. Their execution speed and size are similar, but power usage is substantially

different. Because they are also at times easily interchangeable, finding areas to swap

25

higher energy usage add instructions for sub instructions makes for an attractive rule.

Consider the example of a loop within a program. In many cases, processing within the

loop may be order independent. This property has been exploited by other optimizations

such as loop unrolling. In this instance, iterating through a loop and decrementing a

control variable has shown to be more energy efficient than incrementing one.

Specifically, a seven percent decrease in overall energy usage was observed over a

duration of twenty minutes (Ford and Zong, 2021). The error displayed in Figure 2 was

triggered by this rule. The final rule established was the doubling rule. This rule describes

any section of instructions that causes register contention. Intense focus on reusing a

register incurs a significant energy consumption penalty. From the study this value

capped at double the measurement from a sample with properly diverse register

utilization. Hence, doubling. As of this writing, energy usage evaluation as a software

construct is highly unconventional. The closest work by Tumeo was intended to work on

intermediate representation and did not include specific components required to produce

viable estimates. (Tumeo, 2017). Rather than providing a functioning test system, this

research served primarily to motivate the need for such a technology. Further details on

the innovations present in this prototype using PortAuthority are detailed in the next two

chapters.

26

IV. INSTRUCTION PROFILING MODULE

Given proper instruction information about the assembly language makeup of an

application, it is possible to derive quality performance estimates for the execution of an

entire program. This process trades off access to specific analytic tools for access to

greater computational power. As designed the Instruction Profiling module quickly single

steps an entire program and makes instruction data available to the pluggable set of

analyzers in the Estimation module.

Figure 3: Single Stepped Instruction Profiling Workflow

27

Overview

Figure 3 illustrates the details for this module of the PortAuthority framework.

First, when using PortAuthority, users have the option to select a specific profiling

window based on a function signature or range of addresses. By default, the entire

application is profiled. In the second stage shown in Figure 3, the module then runs the

program via emulation, attaches using the GDB protocol, or where available, launches

and probes the process through faster direct access using the ptrace call. This makes the

module compatible with a large variety of processors and operating systems. To date,

instruction profiles have been recorded on x86, x86-64, ARMv7a, AARCH64 and AVR

architectures. During a standard profiling session, this module reads in the ELF

information from an executable then steps the process to completion or within a defined

boundary, as shown in stage three. PortAuthority can be extended for many forms of

secondary analysis (see stage four). This is explained in greater detail in the next chapter.

At the end of a profiling session, a user is given relevant console output, or a report can

be generated as presented in the final, rightmost stage five. While the bulk of this

research is focused on the secondary analysis provided by PortAuthority, Instruction

Profiling in and of itself has analytical value. Figure 4 illustrates the categorization of the

Sirene game test program. This example is faithful to the volumes of instructions

expected to occur most often in the test programs. Of note, Sirene exhibits a little higher

than normal percentage of arithmetic instructions and the entire test catalog is dominated

by data movement.

28

Figure 4: Instruction Categorization of Game (Sirene)

Categorization is the lens to view what exactly a binary version of a program does

on hardware. Optimizations performed at the instruction level may not always align with

those perceived in the source. Development environments have long provided options

that help developers to optimize source code for higher performance or lower memory

usage. For instance, an IDE may suggest removing or updating code. But beyond the

source level, compilers like GCC and Clang also have macro-options which bundle

together many smaller unique transformations into more user-friendly levels of

automatically applied optimization that do not require developer input or knowledge.

Other forms, like link time optimization, can be introduced even later in the build

process. These options have wide ranging effects on the generated assembly code. Figure

5 shows internally how a compiler may choose to optimize code in ways not described

directly via the original source.

29

Figure 5: Example of Source Optimizations That Provide Identical Binary Paths

In the figure above, the direction of the loop makes no difference on the

underlying assembly. In each version, the loop is decremented despite the developer’s

intent to increment the loop in the sample to the right. After a refactor the hardware

version of similar source may also read quite differently than its predecessor. This

indirect relationship between source code and generated instructions means that

Instruction Categorization provides better insight into how source is interpreted by

various compilers than higher level tools. Even working with low-level intermediate

representations cannot provide the same fidelity as probing instruction outputs directly

due to the post compilation optimizations injected during the build process. Amongst

other benefits, in depth knowledge of the types of operations a program executes opens a

conversation for developers to explore acceleration options. Floating point intensive

applications may want to consider offloading CPU work to a GPGPU for instance. The

tool could moreover be used to speculate on more exotic forms of acceleration like

Processing-In-Memory (Ahn et al., 2015).

30

Evaluation

Instruction profilers reviewed and designed in this research trend pessimistic. The

feedback provided by several sources has implied worst-case results are preferred in

place of overly optimistic projections when profiling software. While a good measure of

performance for various metrics, instruction profilers are not 100% hardware accurate

and should not be considered as such. One clear oversight is the lack of consideration for

out of order execution. The goal of these tools is to give user’s something from almost

nothing, broadly addressing the concerns of developer’s preparing for upcoming and

inaccessible hardware. For in depth performance analysis, other more mature tools and

greater access to development hardware will need to materialize. You can see evidence of

this in the results reported for the other core modules.

Validation for this module is largely defined by the other modules’ results. It is

possible to compare instruction output from either another stepping profiler or an

emulator, but the results will lack for difference as the underlying mechanisms are the

same as those implemented in PortAuthority. Comparing the differences in stepped

output between specific implementations is also a dry read. As it is trivial to establish the

ground truth for single stepped instruction profiling, the crucial feature to evaluate in the

research related to Instruction Profiling is sampling behavior. This is the subject of a later

chapter. The categorization data for each test program is listed in Table 1.

31

Table 1: Top Categorization of the Test Catalog

Test Program Data Movement Arithmetic Branch
Fibonacci (24) 53 % 26 % 21 %

logcat 59 % 25 % 15 %
TensorFlow (MatMul) 60 % 23 % 17 %

Game (Sirene) 47 % 35 % 16 %
LINPACK 73 % 24 % 1 %

A final note on instruction profiling. It not only works to generically compare

various hardware resources, but also as a way to compare different programming

languages. The core test programs for this research are all based on the C language,

though from various distinct sources. As a special provision for this section results are

also included for a well-known Fortran benchmarking tool, LINPACK. LINPACK is a

numerical linear algebra library, and a derivative is the central benchmark behind the

Green500 list (Feng and Cameron, 2007). Here a historical version is used which is

readily available on GitHub. Though LINPACK is written in Fortran, its post compilation

structure is comparable to other ELF executables. This validates the assertion that

instruction-based techniques are widely applicable and largely source agnostic for

natively compiled languages. By this logic, the other modules should also be applicable

to ELF programs written in languages other than C.

32

V. ESTIMATION MODULE

The Estimation module attaches estimates of various performance metrics to

individual instructions. The expectation is that the set of instructions is provided by the

Instruction Profiling module. Two techniques are employed in this research to attain the

metrics tested. Other platform characteristics and extraction methods are discussed later,

but here the focus is on the features which have been most robustly evaluated.

Figure 6: An Example Micro Profile

Overview

A simple metric derived via instruction profiling is instruction counts. This can be

used to determine the relative execution time of a program. While the static data will not

give the user a measurable time to completion, the relative time difference between two

programs will be obvious given that each version will have a different number of total

instructions. Larger differences in instruction counts will result in larger time deltas. This

is constant within a platform as the CPU instruction is the most elemental unit of

33

productivity with a contemporary computing device. For many reasons this may not be

true if counts between two programs differ by a handful of instructions, but that

vagueness dissipates quickly within the range of only a few hundred overall instances. In

these exception cases, the real-world completion time would be small enough to be non-

perceptible, so as a rule the method still works.

While simple instruction profiling metrics like this can be useful, if a developer

desires more complex insight there are a few options to create new values. One of the

established approaches to determine less apparent per instruction metrics is called micro

profiling (Ford and Zong, 2021). Micro profiling requires the creation an inline assembly

program containing only a representative instruction or small set of related instructions.

Internally this program should loop for a period sufficient to execute several billion

instruction instances. The code is referred to as a micro profile. See Figure 6. A micro

profile should contain a gentle blend of slightly varied operations (like different register

usage) in order provide the best outcome. While a micro profile executes, the desired

metric will be evaluated via instrumentation. The measured sum of a metric for the entire

micro profile is then divided by the total number of instruction instances run. This

operation reveals an instruction’s performance signature. Because the same instructions

comprise all programs on a platform, these values can be reused when profiling other

applications. Ironically, micro profiles are highly unportable between different CPU

architectures, but their creation is trivial to the point of automation. Ideally manufacturers

or a community of developers would also share the results of their micro profiling efforts

in order to jump start the development of ports to specific platforms. As shown before,

34

energy usage is an example of an effective metric that can be determined via micro

profiling.

Apart from measuring their effects on various subsystems, performance metrics

can also be resolved by tracking the in-memory location of instruction instances. This

technique is referred to here as mapping. There is a core assumption that data sizes

remain similar or proportional across two platforms while mapping. Like cache

utilization with CacheSim, memory usage may also be tracked using a form of instruction

mapping. In this research it has been observed that decoding memory addresses resident

inside certain assembly language instructions will allow those locations to be tracked as

in use by a profiler. Aggregating these segments of memory during a debugging session

can provide a good estimate of the maximum amount of memory required to port existing

functionality across a variety of unique platforms. Any significant differences in memory

usage from this estimate while profiling a future port likely indicates a programming

error. For instance, while standard data types, like int in the C language, may compile to

different sizes on separate platforms, it is not required to use these types exclusively. A

portable program with vastly different data structure sizes should be refactored using

more deterministic language constructs. Next, a walk through the pseudocode below to

help to describe the specifics of this technique.

35

typedef value_type;

main()

 const values;

 i = 0
 j = 0
 value_type value
 value_type* test = (value_type*)malloc(values*sizeof(value_type))

 while(j < 2*values*sizeof(value_type))

 test[i++] = value
 if(i == values)
 i = 0
 j++

In the example above a block of memory is allocated and each value is written to

twice. The exact size of the block and constant here is unimportant. To determine the

memory usage of this function using instruction profiling the profiler will tag each store

instruction for a given architecture. Load instructions could also be used or a mixture.

Using both could provide finer results, but in most cases addresses outside the overlap in

common addresses between the load and store instructions would be irrelevant. For this

walk through, using the AARCH64 RISC instruction set will be comparatively brief as

there are less store instructions to describe. Two specific store instructions are tracked

within PortAuthority, STR and STUR. The effect of each of these instructions is to

transfer data from a register to a memory address encoded within the opcode. By

mapping these addresses inside an exclusive set, the profiler can discern the amount of

memory used by an executable. When tracking load and store instructions relative

memory access requirements can also be described. Available memory bandwidth is a

key limiter to in-memory processing, the acceleration technique described previously

(Ahn et al., 2015).

36

Accurate depictions of code coverage can also be calculated via mapping.

Because this module is driven by ELF data, it is easy to know all the executable

addresses within a binary. These are the instructions contained within the .text section of

a given program. While the profiled application is executing, addresses hit during the

session are captured by the PortAuthority framework. Then this module only needs to

perform a simple set of calculations on these data to provide an accurate view of the

percentage of an application covered. The sum of the instruction sizes at each unique

address hit during the profile divided by the total size of the .text section is used to

evaluate the instruction coverage of a particular run.

Evaluation

As mentioned, energy usage can be determined on a per instruction basis and

applied generically across a set of individual programs. Prior research has shown

instruction-based energy estimates for a collection of applications to be within 10% of the

final values provided by other contemporary methods (Ford and Zong, 2021). Baseline

measurements in previous work show PortAuthority results to not only be comparable to

values provided by other software approaches (like RAPL) but also to physical

measurement using specialized hardware like the Marcher system (Zong et al., 2017).

The energy outcomes for the test catalog are shown in Table 2 and conform to this

expectation.

37

Table 2: Energy Usage Comparison for the Test Catalog

Test Program Measured
x86-64

Estimated
x86-64

Measured
AARCH64

Estimated
AARCH64

Fibonacci (48) 1615.53 J 1688.72 J 93.70 J 95.77 J
logcat 1533.32 J 1559.28 J 89.43 J 92.32 J

TF (MatMul) 3190.15 J 3233.48 J 187.50 J 190.01 J
Game (Sirene) 2709.76 J 2722.77 J 157.53 J 160.99 J

For memory usage, static elements like the data segment and program sizes can be

easily determined cross-platform using ELF data. The important sections of a program all

report their size in the executable’s metadata. Using these data combined with the process

described above to gather the dynamically allocated memory required during program

execution can provide a valid impression of the memory required to load a program. For

dynamic memory usage this technique was evaluated against the Valgrind memcheck

tool. This would be roughly equivalent to the output from the top application on Linux or

the memory usage reported from a similar system monitor if applicable for a platform.

Table 3 details this research’s memory usage comparisons.

Table 3: Memory Usage Comparison for the Test Catalog

Test Program Valgrind Usage PortAuthority Usage
Fibonacci (8) 636 B 764 B

logcat 73.26 KB 64.31 KB
TF (MatMul) 257.34 KB 258.77 KB
Game (Sirene) 69.63 KB 69.88 KB

While most of these programs have alignment across both tools, there is a

material difference in the logcat values. This discrepancy highlights some dissimilarity in

the information provided by Valgrind and PortAuthority. Recall that Valgrind depends on

38

the ability to run a program inside an instrumented run time and PortAuthority does not.

The values for memory usage returned by Valgrind are based on resources allocated by

the standard library. This does not guarantee that those resources are used during program

execution. PortAuthority on the other hand reports exactly what pieces of the allocated

memory were used during the profiled run. In the unit test for this research, logcat

allocates more memory resources than it accesses. Unlike the other programs, this

process has clearly identifiable unused resources. The dispute is not necessarily bad, but

one metric may be more valuable than the other under certain conditions. PortAuthority’s

version of memory usage represents in the lowest common denominator.

Finally, coverage evaluation. As a baseline measurement for coverage quality, the

Estimation module results are compared to output from another code coverage

tool, Gcov. This program is a recognized standard for statement profiling, and it is

included with the GNU Compiler Collection. Unlike the PortAuthority framework, to use

Gcov an application must first be compiled with two flags, -fprofile-arcs and -ftest-

coverage. These flags signal the compiler to instrument the source so that when run a

series of log files are produced detailing the paths taken by the application. No source

modifications are necessary, however creating a new binary is a required part of the

multistep process to generate a clean Gcov profile. After executing the instrumented

program, a set of data files are produced. These are intended to be ingested by tools like

lcov which will in turn produce a human-readable coverage report. Coverage via Gcov

has a healthy set of ordering and version requirements, as opposed to the non-intensive to

non-existent prerequisites for PortAuthority analysis. For this research we compared

39

PortAuthority’s instruction coverage with statement coverage from Gcov with favorable

results as shown in Table 4.

Table 4: Coverage Comparison for the Test Catalog

Test Program Gcov Line Coverage PortAuthority Coverage
Fibonacci (24) 100.0 % 100.0 %

logcat 15.6 % 13.1%
TF (MatMul) 39.6 % 11.2%
Game (Sirene) 17.4 % 14.5%

Using DWARF data and the GNU Binutils developers can easily display source

intermixed with object disassembly using objdump. This is the most readily available

visualization of the relationship between the metrics provided by the two tools. In most

cases the two will track within a narrow tolerance. From the test catalog one result stands

out as obviously dissimilar between Gcov and PortAuthority. Further investigation

reveals that this difference is related to the use of C++ templates. This feature allows for

blocks of source code to be written using generic type information and then reused with

multiple concrete data types. The feature is implemented by the compiler and results in

multiple similar but distinct functions being generated in the final output binary where

real types are repeatedly substituted for the generic.

In the non-conformant TensorFlow test case, templated classes are heavily

utilized throughout the source. Internally to the compiler, this results in concrete

functions for each method within a class being generated for each type requested by the

developer. During later passes the compiler is allowed to dead strip unused code

including class methods. Only the class methods necessary for proper execution are

required to be placed in the final binary. However, in this example there is at least one

40

instance where the specific code for an unused templated method is still set to be emitted

into the output binary. The compiler is reluctant to strip the function, but the reason why

is unclear because rules within a compiler can be opaque. Setting the compiler options to

dead strip code can increase coverage numbers using either tool, but in this instance even

targeted directives to the compiler about these functions are ignored.

The presence of extra, unused instructions is a topic for debate on the meaning

implied by metrics given by various tools. Coverage is frequently used by developers to

evaluate the robustness of their unit test infrastructure. Specifically, it helps answer the

question of whether there are enough tests to be confident in a software release. Once

released, bugs may be found anywhere accessible to the user, so it is important to cover

all available functions. By nature, templates are minimizing the lines of code within a

source file. Executing even one variant of a template function is enough to include that

line in the overall coverage metric returned by Gcov. In contrast, PortAuthority is

reporting coverage based upon all execution paths generated within the binary. This is

inherently a greater search area than lines of code when templates are involved. If

developers are executing multiple variants in their production code, they may be lulled

into a false sense of coverage when testing a single variant within a unit test framework.

Using line coverage as measurement of unit test completeness does not account for

templatized variants in the way PortAuthority does. However, in the research test case,

the code is unexecuted which makes the value of either approach conditional.

A final note on coverage. Regardless of architecture, instruction coverage should

be the same for all platforms. However, coverage percentages can drift a bit based on

instruction size. Some platforms, like AARCH64, have a uniform instruction size but

41

notably x86-64 does not. The end calculation within PortAuthority is based on the

program size in bytes, not actual instructions, so reported numbers may differ slightly

based on the architecture a developer chose to profile.

42

VI. ARCHITECURE CHALLENGES AND PROFIING EFFICIENTLY

After living with a prototype, it is not uncommon to identify a list of immediate

design improvements. Notably while the initial method developed for PortAuthority is

inherently cross-platform and architecture independent it does not work cross-

architecture. Profiling applications using this method requires that new potential targets

are compatible with the same application binary interface as the machine used to develop

the code. Instruction profiling in its initial form is valuable within a given CPU

architecture across multiple distinct, conforming platforms but less so as new instruction

sets are encountered. Automatic, robust cross-architecture support is critical for the

adoption of any technique designed to enhance the experience developing portable code.

While it is not impossible or uncommon to encounter ports destined for similarly

architected or compatible systems it is also not guaranteed that this will be the case. In

fact, foundational innovation in a stagnant technology market is often motivated by

significant changes to a platform’s underlying CPU architecture.

Another glaring issue with the initial version of the tool is profiling speed.

Functionally, single stepping executable code produces the highest fidelity results when

using instruction profiling. However, halting an application for analysis has a high cost

with the operating systems tested. Therefore, repeated halting for every instruction

executed quickly compounds the overhead, affects the debugging experience, and

ultimately reduces the value of the technique in real world scenarios.

43

The Unaddressed Problems

The CPU architecture landscape will soon become more fragmented than it has

been in a generation. This makes porting software to a new platform require considerable

effort. Currently, utilizing emulation tools such as Apple’s Rosetta (Apple 2020) is the

most straightforward way to reuse cross-architecture software because it introduces

minimal development cost. Unfortunately, emulation overwhelmingly favors

compatibility over performance. In fact, degradation of 20% or more due to the overhead

incurred through emulation has been reported when using Rosetta (McShan 2021). Even

in the event simulators do exist, tools that can emulate cross-architecture devices for the

purposes of performance modeling are lacking (Zheng et al., 2015). Creating emulators

with a deep understanding of the implications of running software built for a new

architecture will also lack finesse given a standard product release timeline. The presence

of real hardware will always be before the completion of widely available, and highly

accurate simulators. While emulation tools provide a temporary solution, their timely

obsolescence is expected as a technology transition window expires. Cost effective tools

that can help developers port software and avoid work arounds like emulation are

becoming more valuable but there are non-trivial challenges to their development.

Adding to porting frustrations, specific hardware and supporting toolkits (e.g.,

libraries and compilers) may not be readily available for developers. For example, retail

hardware was not obtainable until six months after Apple announced the M1 chip, the

fulcrum point for their corporate shift from x86 to ARM. Even once available, the

process of natively porting and creating new, dedicated code to support an alternative

architecture may have a steep learning curve. The cost to fix all compatibility issues can

44

be high and extremely time-consuming. Incompatibility in key areas will significantly

delay ports to a new platform. Despite this, development tools remain woefully

unequipped to tackle multi-architecture development directly and adding yet another

profiler to the mix without cross-architecture capability immediately limits its appeal.

Additionally, a hundreds-fold slowdown is observable when profiling the sample

Fibonacci sequence code using the initial version of PortAuthority. While the real-world

consequences for this tiny application are small, this not ideal for larger programs. When

attempting to profile an application with a normal execution time of several minutes, this

process quickly becomes untenable. The potential for a profiler to evaluate whole

program execution is important as insights gained from profiling pieces of an application

may be different than those based on running an application to completion. The market

for higher precision instruments with slower speeds is clearly niche. Generally, profilers

are allowed to trade some accuracy for throughput. The positive community response has

continued to direct profilers to be developed in this way. The desire for lower fidelity

tools that work quickly is well established and there are defined limits to expected

imperfections (Patel and Rajawat, 2013). Increased speed can be accomplished through a

variety of stock techniques like sampling or data filtering (Lin et. al, 2013). Time and

time again researchers have affirmed the advantages of a faster profiler when compared

to the hyper accurate. Eliminating redundant data or the need for verbose information is a

core value in computer science. Profiling should be organized in a way where detailed

information is available but also not typically required for quality insights.

With mild improvements, PortAuthority can be used in these previously problem

areas to great effect. Details on the features added to PortAuthority to remedy the second

45

wave of challenges encountered are presented in the next two chapters. Chapter VII

showcases how the first issue was resolved. It outlines the Machine Learning (ML)

program used to build representative cross-architecture binaries for analysis with

PortAuthority. Chapter VIII presents a modified execution sampling process whereby

large instruction segments are not exhaustively single stepped. They are instead later

recovered and passed to the framework as if recorded naturally. This addresses efficiency

problems related to instruction profiling as the research indicates back tracing

instructions is significantly faster than recording them linearly.

46

VII. INSTRUCTION PREDICTION MODULE

The primary responsibility of the Instruction Prediction module is to determine

what cross-architecture instructions are expected to compile for a target platform based

on the original instructions used on a source platform in the event of a port. This greatly

extends the value of instruction profiling and estimation. Given quality micro profiles or

other estimation information it is possible to create new estimates for a separate platform

without officially porting software. A probabilistic n-gram model is used to facilitate

instruction prediction in PortAuthority. Contiguous sequences of n items, or n-grams,

have been used successfully in this family of pattern matching techniques with binaries

compiled using similar levels of optimization (Lee et al., 2019).

Overview

Predictive artificial intelligence in PortAuthority is powered by learned n-gram

instruction distribution lists. The lists are built based on the content of a code corpus that

consists of many identical functions built for each supported architecture. A small

amount of compiled source data is required to reveal sufficient historical patterns of the

relationship between assembly instructions from two disparate platforms. For this

research, the focus is on predicting instructions in a potential AARCH64 port using a

finished x86-64 source binary. To generate a distribution list, a training step is required

whereby an application windows across n instructions at a time recording an x86-64 n-

gram and the corresponding ARM architecture n-gram from the code corpus. Later to

construct a representative ported AARCH64 version of an arbitrary x86-64 program,

PortAuthority emits equivalent AARCH64 n-grams using reference n-grams from a

47

disassembled source application according to the learned probability from the database of

previously compiled sample functions. An example of these data is shown in Table 5.

This output is composed of a list of AARCH64 n-gram frequencies attached to each

discovered x86-64 2-gram from the code corpus.

Table 5: N-gram Distributions For x86-64 PUSH-MOV

N-gram Frequency %
SUB-STP 45
SUB-STR 16
STP-STR 6
MOV-STP 5
STP-MOV 5

 The code corpus used in this research follows the high data standard described by

Post (Post, 2018). It is critical that these executable segments are created using the same

process and with identical source code across platforms. In addition to available open-

source code, the corpus also includes a selection of Clang compiler tests and computer-

generated C code using Csmith (Yang et al., 2011). Each function in the code corpus is

compiled using the Clang compiler from the LLVM project at commit hash bb7a57.

One important issue that must be addressed when translating executable code is

the potential difference in instruction density between the source platform and the target

platform. For instance, the number of AARCH64 instructions in a given program is

typically larger than that of its x86-64 counterpart. Using data from the code corpus, it

can be observed that on average AARCH64 variants of each program contain around 5%

more individual instructions than those built for x86- 64. Therefore, generating an

executable with a 1:1 ratio of instructions often ignores a certain percentage of

48

instructions that should appear in a port. To solve this problem, the module is designed to

supplement raw n-gram sequences with statistical occurrence data. Each generated

executable is padded after the initial n-gram conversion with an additional short list of

raw probabilistic instructions equal to the deficit expected between corresponding

platforms. Finally, all the generated instructions are passed to the Estimation module, as

before with recorded instructions, for further processing.

Evaluation

The effectiveness of the Instruction Prediction module can be measured in many

ways. The first perspective is context-free. Before a model generated by the module can

be considered valid it must be shown comparable to a compiled application when viewed

as a bag-of-words. Do the instances of various instructions closely match those of a

compiled version of the same program not considering order? The test for this property is

straightforward. Figure 7 depicts the expected differences between a predicted version of

the Fibonacci test program before and after a complete port. The results show matching

opcodes in worst-case descending order and capped at the point of insignificant

difference. There are other unique instructions in each program not shown in the figure,

however when judged context-free the useful differences in those instructions would not

be apparent. From a very high level it is known that this program is communicating the

same intent as a proper software port as it is using roughly the same instructions in

roughly the same distribution. That alone is enough to enable basic instruction estimation

in this area of the research.

49

The findings from this round of experimentation indicate that 2-gram sequencing

provides the best instruction predictions. The first instruction generation scheme, shown

in the top left of Figure 7, is based purely on the statistical distribution of instructions the

compiler will generate for any program. All latter schemes use an x86-64 version of the

core application as a source for emitting equivalent AARCH64 n-grams. The results for

each scheme are shown in decreasing order of difference (left to right) versus a compiled

binary. The scale of differences between the candidate and the reference instruction

instances drops sharply where n-grams are used. Immediately, the outline of the 2-gram

prediction snaps tighter to the instruction mix exhibited by the full port. Unfortunately,

this momentum is not clearly maintained as we increase values for n, as evidenced by the

diminishing return of the 3 and 4-gram predictions. The trend of worsening instruction

improvements accompanied by loss of cohesion on instances originally further to the

right on our chart holds true as n increases. This amplified noise is visible in bottom half

of Figure 7 where 3-gram and 4-gram schemes are active.	

Figure 7: Comparison of Predicted Instructions to Real Using the Fibonacci Test

50

While context-free evaluation is valuable, applications are inherently reliant on

context. A working program not only requires proper ordering, but also adherence to

subtle platform and vendor binary contracts in order to execute. Cache utilization is an

excellent example of why context is also valuable when estimating performance. Through

experimentation, it is well known that full applications predicted by this module will have

few exact instruction matches internally to their compiled counterparts. Typically, this

can be as low as 8 to 10%. If you compare an instruction at an arbitrary address from the

compiled application with the instruction at the same address in the predicted version, a

large majority of the time it will be different. An exact match is an easy way to prove

context correctness, however context integrity can be evaluated without exactly matching

a reference program. This research uses the Bilingual Evaluation Understudy (BLEU)

score to bridge that gap (Papineni et al., 2002).

The BLEU score is a widely accepted metric for evaluating the quality of a

generated sentence to a reference sentence. It is always in the range of 0 to 1, with 1

being a perfect match (generally unobtainable) and 0 being a perfect mismatch. Although

the BLEU score is mostly used for natural language translation, here it is used to evaluate

the quality of code translation between different hardware architectures. The generated

code for the target platform is known as the candidate. When comparing a candidate to its

reference (a native port), the calculator will window over the candidate combining terms

at a distance of n. In place of an exact match, scores are calculated based on instances of

that n-gram in the reference code using statistical precision.

Expectations for readability can be viewed as appreciably better for each 10%

improvement in a BLEU score. Scores that are less than 0.20 usually do not provide

51

significant value while scores above 0.60 offer the highest fluency (Lavie, 2011). The

score will also penalize instructions that appear in the candidate program more times than

its references. Hence there is a high level of correlation between the closest modeling

executables tested using other metrics and their BLEU scores (Ford et al., 2021). See

Table 6 for a full set of test results. One limitation to improving our BLEU scores is the

lack of several reference translations to compare against as compilers should always build

source in the exact same way. In contrast, a human translator would not be held to the

same standard.

Table 6: BLEU Scores for the Test Catalog

Test Program Score
Fibonacci (24) 0.22

logcat 0.79
TensorFlow (MatMul) 0.33

Game (Sirene) 0.42

Based on this evaluation, 2-gram instruction prediction is again recommended

when profiling ELF executables as it generates the best result and fits for broad

categories of analysis. Exact matches are never greater than 10% in any of the tests, while

a minimum BLEU score of 0.20 is maintained over all experiments. This suggests the gist

of a given program is clear, albeit with significant ordering errors. These scores

compliment the results presented during the context free testing. Most of the translated

executables provide good, understandable translations and one test even achieves the

high-quality standard.

Papineni et al. reported that natural language translations achieve their highest

levels of n-gram correlation around n values of 4 (Papineni et al., 2002). Functional

52

blocks may contribute to the comparatively low best value in this research where n equals

2. In reviewing the mixed disassembly of the test catalog, it was observed that for some

lines of code only 1 or 2 instructions are required to convey the source intent. If the

majority of the functionality described in source is built using only a few instructions per

line, it makes sense that larger n-grams would fail to produce consistent results.

Ultimately, trusted values are more important than high numbers for n. Where possible,

clarity may be improved by translating from the platform with the lowest instruction

density. While the code corpus consisted of a thousand source functions, noticeable

quality remained even with half this amount of data. Below this, experiments were less

successful. To maintain this level of integrity, a code corpus must be composed from a

diverse selection of software and using similar compilation processes on each platform.

Access to native cross-platform porting tools, without requirements for source

code, and while lacking higher levels of interpretation is also a pioneering aspect of this

research. Using the BLEU score to evaluate these ports has been well received in the low-

level software community and many future research forks should be possible based on

the template provided here. Simultaneous multi-platform debugging information is made

possible by this creative feature and displaces other methods like static scaling or

serialized multi-target testing in an expanding number of profiling use cases.

53

VIII. SAMPLED INSTRUCTION PROFILING

One issue often cited with the Instruction Profiling module is the lack of profiling

speed. When compared with a traditional sampling profiler, following the path of each

instruction as opposed to several hundred or thousands at a time has visible user impact.

This research observed profiling times 200 times slower than normal program execution

while single stepping, and that rate is not acceptable for analyzing software with

prolonged execution time. For specific workloads, it is possible to profile a single

iteration and scale instruction profiling results to minimize profiling time. PortAuthority

supports scaling and the feature is adjustable to match the common limiting behaviors of

executable functions. However, this does little to address problems with whole program

execution as inevitably applications are composed of numerous unique algorithms, each

with different Big O representations, which can be chained together unpredictably. This

chapter explores additional features added to PortAuthority in order to address problems

during whole program execution including batch sampling, call stack tracing, instruction

backfilling, and fail-safe reconstruction. Combined these features significantly accelerate

instruction profiling times with little loss in overall estimation quality for the entire

lifetime of a process.

Overview

 Instruction profiling has been proposed to address specific weakness of

conventional development tools. In its purest form however, this method lacks the

expected usability of those products. The proliferation of sample-based tools is a good

indication that they typically provide what developers want from a profiler. They are

54

reasonably fast and can generate enough data to progress development past regular

production hurdles. To bridge the gap and bring commercial viability to instruction

profiling this research also includes suggestions for blending the two methodologies

while retaining the best elements of both. It is possible to produce quality cross-platform

instruction profiling results while sampling from a working application at the cost of

increased algorithmic complexity.

Figure 8: An Illustrated Example of Call Stack Tracing.

Instruction profiling requires a captured list of instructions near the number and

categorization of an actual port to a target platform. Sampling inherently denies

PortAuthority this core requirement so additional mechanisms are introduced in order to

estimate the missing instruction data. The first of which is call stack tracing. Call stack

tracing provides a broad overview of the functions executed over the profiling interval.

55

This feature is implemented in PortAuthority as a two-step process. First, the profiler will

take advantage of the function call record resident in many compiled executables.

Inherent to many CPU architectures is the ability to use a stack pointer register to back

trace the execution of a halted, native program. This gives standardized access to the

memory address of a caller from a callee in a recursive way. In a standard IDE debugger,

the resulting execution chain is commonly referred to as the call stack. On conformant

architectures it is then possible to navigate a list of stack pointer/instruction address pairs

in applications programmatically. Because this is a property of the underlying hardware,

this technique works with code built from a diverse set of source languages. Call stack

tracing is feasible using any of the current PortAuthority front ends though it has only

been implemented using ptrace. The core requirements are access to an initial value from

the stack pointer register and the ability to probe an application’s memory. Creative use

of these features allows PortAuthority to read from the stack and enables it back trace

function calls and recover instructions previously executed during the sampling interval

(Figure 8 illustrates an example of call stack tracing). Each colored block in the diagram

represents a function. Each function in turn calls another depicted just ahead of its caller

in the Z-order of the figure. Using the method sketched it is possible to create a

reversable pointer system whereby callee functions can determine their callers.

As described is the brute force approach to reconstruct a call stack. There is also a

formal bytecode designed to describe all the stack decisions a compiler has made during

compilation (DWARF Standards Committee, 2007). Interpretable call frame information

is optionally available in ELF executables compiled with DWARF debugging symbols,

but these can be stripped during production. Tailored stack data is handy when debugging

56

because in many languages this memory is used in an unstructured way for data beyond

call frames, including local variables. The decision to crawl the stack directly in

PortAuthority is driven by the desire to operate without a requirement for symbols. Using

the brute force approach means that the tool can work with a greater variety of non-

instrumented executables but is limited in the call depth it can uncover.

 In the following experiments, while processing x86-64 ELF binaries, ptrace

based call stack tracing is used to facilitate on-the-fly instruction prediction and generate

code for AARCH64. On this profiling platform, the top of the stack always resides in the

rsp register. Stacks by convention on Linux start high in the upper address space of a

platforms’s virtual memory then grow downward. To find previous frames, PortAuthority

will incrementally search upwards in memory from the current frame’s stack pointer to

find a value greater than the initial address given by reading rsp. Recall the key pieces of

frame information include stack pointer/instruction address pairs and that the address

ranges for both the executable .text section and the stack are narrowly scoped. When

combined with the knowledge that stack information is regularly formatted, the tool can

consistently filter out stack noise and retrieve data of interest. If the search is successful

and stops adjacent to a stored value that also resolves into the address range of the .text

section of the ELF executable being profiled, the algorithm assumes it has correctly

bypassed any data not related to call stack recovery. This happens recursively until

PortAuthority is unable to define a valid executable frame using these parameters.

Specific platforms may define the stack behavior differently, but the presence of stack

pointer/instruction address pairs and some notion of exploitable compiler conventions

should be commonly applicable.

57

Tracing the call stack identifies functions of interest but fails to present a

complete set of instructions run over a sample interval. For each call discovered, only one

additional correct executable instruction can be confirmed. To compliment call stack

tracing another step has been added as part of the reconstruction process. This step is

referred to as instruction backfilling. For each frame discovered, PortAuthority will

iterate backwards from the address found in-memory by one instruction until a ret opcode

is encountered. The next instruction is marked as the beginning of the function in the call

frame being interrogated. Then the range of addresses from this boundary back to the

address found on the call stack are decoded and added to the list of instructions to profile.

This produces results like single stepping the process, but without the overhead of

starting and stopping the process multiple times.

A ret instruction internal to a function would work against this scheme. Forcing

an early ret instruction is difficult and unexpected given how compilers typically layout

an execution path. Despite efforts in Figure 9 to return in multiple locations, the branches

within the function all jump to the same final destination. A function has standard duties

that help it prepare for its assigned tasks and to return control to the function from which

it was called. Repetitive elements within a program like the prologue and epilogue make

up a considerable portion of an application’s execution. In fact, so much time can be lost

during these boilerplate activities that there are specific optimizations to reduce their cost,

like function inlining. In reference to Figure 9, each branch must execute the epilogue to

conform to binary interface expectations so returning from a single location ultimately

makes the most sense. While this range to ret search method will not always provide a

perfect account of the instructions run, the behavior is reliably close to correct.

58

Figure 9: Placement of Compiled ret Instructions.

Measuring or optimizing code will provide the most benefit to a developer on

longer running or more frequently hit segments. This makes sample-based profiling a

good tradeoff even though it does not provide a full picture of a program’s execution.

However, a common complaint with this approach is that it may miss smaller sections of

code that run to completion within the sampling interval. A remnant of this behavior also

affects PortAuthority. When sampling, the depth to which PortAuthority can trace and

backfill the call stack does not always provide a number of instructions equal to that

which should run over a sampling interval. Remember that while instruction profilers are

tolerant to some incorrectly reported instructions, they struggle with misreported

instruction counts. Providing a statistically significant wrong volume of instructions will

yield consistently worse estimates, so the tool must guarantee that somehow during

reconstruction it can always provide a count of instructions near that of a single stepped

59

profile. Two fail-safe mechanisms were proposed during this research (statistical

occurrence data and repeat until full) for use when PortAuthority establishes that a call

stack is too shallow. Statistical occurrence data as defined previously is simply a

continual output of probabilistic instructions from most frequently occurring on a

platform to the least. The probability of an instruction is derived from the n-gram

instruction prediction code corpus created for cross-architecture prediction. The repeat

until full process recycles the existing data gathered from the current call stack until a

collection of instructions equal to what should have been executed during the last sample

interval has been accounted for. Repeat until full was found to be superior and is used

exclusively in the following evaluation.

Evaluation

The familiar test programs are rerun through the previous profiling tests in order

to evaluate their suitableness for sample-based profiling. In addition, extra benchmarks

are added to further demonstrate expected outcomes. Batch sampling is implemented in

this research by modifying the ptrace system call central to the operation of

PortAuthority. Here the INTERRUPT parameter is used in place of SINGLESTEP. This

changes the behavior of the call and allows ptrace to arbitrarily stop a running process

and examine the current state. Looped ptrace calls using the INTERRUPT parameter

combined with an additional call using the CONT parameter, which resumes execution

from a halted state, form the algorithmic base of batch sampling for this experiment.

Starting with Table 7, the categorization results for each program are recalculated using

sampled profiling. In Table 8, the previously measured values are shown alongside the

60

newly sampled energy estimation results for the profiled x86-64 platform. AARCH64 is

excluded here as the sampling technique does not change the downstream instruction

prediction/profiling process outside the initial input value for the profiling host.

Table 7: Top Sampled Categorization of the Test Catalog

Test Program Data Movement Arithmetic Branch
Fibonacci (24) 45 % 25 % 13 %

logcat 62 % 22 % 15 %
TensorFlow (MatMul) 61 % 24 % 4 %

Game (Sirene) 51 % 32 % 5 %
CoreMark ® 73 % 24 % 1 %

LINPACK (Fortran) 74 % 22 % 1 %
Game (Shrun) 49 % 33 % 6 %

CSmith 42 % 27 % 12 %

 The fidelity of the branch instructions is the area of categorization most

negatively impacted by sampling. Here a sampling interval of 4 milliseconds is used. The

instruction mix of each program tends to get fuzzier with larger sampling intervals and

this value should calibrated per profiling platform. As a rule, sampling will amplify the

strength of more common instances within a group. Call stack tracing has been made as

robust as possible in order to limit the effects of sampling, but currently only about half

of the instructions are recovered. The rest of the returned data is provided via repeat until

full. While not ideal, it is still possible to estimate quality energy usage results as signaled

by the data in Table 8. In aggregate instruction backfilling experimentation has shown the

errors recorded are acceptable as certain instruction profiling metrics are tolerant to some

level of distortion.

Unfortunately, memory usage estimation is not an option while sampling. The

focus for this sampling method has been instruction recovery and not register integrity.

61

Because the previously described method of memory usage estimation requires register

data in order to map various hardware addresses actively in use, without further work to

record and patch register data it is not worth attempting with this version. However,

relative memory access requirements should still be possible to attain as that estimation is

purely instruction based. The shallow results from live call stack tracking and the

contingency of repeat until full, also distract from reasonable coverage estimations. A

modified or several aggregated methods of sampling will be required in order to properly

enable all described metrics simultaneously. If it is critical to analyze an extremely short

segment of code, or one of the known blocked metrics the suggestion is to use the single

stepping mode of PortAuthority and limit its execution range to the function(s) of interest

for best performance.

Table 8: Sampled Energy Usage Comparison for the Test Catalog

Test Program Measured
x86-64

Estimated
x86-64

Fibonacci (48) 1615.53 J 1582.71 J
logcat 1533.32 J 1563.98 J

TF (MatMul) 3190.15 J 3094.30 J
Game (Sirene) 2709.76 J 2681.89 J
CoreMark ® 2301.36 J 2206.34 J
LINPACK 3437.01 J 3386.27 J

Game (Shrun) 2829.87 J 2914.34 J
CSmith 1867.82 J 1912.33 J

62

IX. BACKGROUND

Binary Translation

For decades, the vision of allowing the same standard OS and application object

code to run on different hardware platforms has existed (Altman et al., 2001). There are

many advantages to allowing low-level architecture to become just another layer of

software. Indeed, features like Just-in-time (JIT) compilation and research involving the

Java Virtual Machine (JVM) are widespread. However, despite advantages like the

reduction in porting overhead the world has yet to see many major industry players make

an open virtual machine the centerpiece of their ecosystem. Google is highly reliant on

their legacy Dalvik and more contemporary ART (Android Runtime), though the external

adoption of these technologies is tiny in comparison to that of the JVM. The technique

serves a singular purpose within their domain. Virtualization within Android allows chip

vendors to easily enter Google’s software ecosystem but does little to expand the reach of

their respective software packages. Their primary mobile competitor, Apple, also offers

some virtualization technology in the form of Rosetta 2 (Apple 2020). As mentioned

above, this is intended as a bridge technology and within a few years is expected to be

phased out of their core offering. High tech vendors do not like to compete based solely

on the market value of a commodity.

“With industry-leading performance, powerful features, and incredible efficiency,

M1 is Apple’s first chip designed specifically for the Mac.”

The phrase above is indicative of the market factors in the industry. Notice there

is little reference to cooperation, compatibility, or emulated performance. It works to a

63

company's advantage to promote the custom aspects of their hardware which comes with

the caveat of requiring native code. Even something as core as the width of memory

addresses, integers, and other data is still flexible within the current computing landscape.

Contemporary platforms are expected to support 64-bit instructions, but getting

computational work done in the layers of an Edge computing system is not bound by the

same convention. 32-bit MCUs are in regular usage and many companies still make 8-bit

devices (Microchip, 2021). This reality should be considered at design time to enable and

effectively implement a portable software component. Efficiently building software

designed around a truly diverse set of hardware will require the existence of more tools

like PortAuthority. Tools that report on the fundamental output of a computational device

and not just in reference to other siloed products. Binary translation is a function

workaround, not a final production solution for multi-platform development.

64

Commercial Architecture Change

Groves from IBM rightly suggested that computer architectures will always be

significantly influenced by the underlying trends and capabilities of computer

technologies (Groves, 2010). This has applied not only as computers transitioned from

electromechanical relays to vacuum tubes to transistors to integrated circuits but could

also include aspects like software. Since that writing, it has been observed that even long-

established hardware concepts like Moore’s Law are no longer as relevant (Hennessy and

Patterson, 2018). Whereas previously the key hardware technologies that affected

computer architectures were those related to density and speed of digital switches,

perhaps the access time of digital storage, hardware today is starting to look very domain

specific. Large processor transitions like Apple silicon can just as easily be politically or

cost motivated as they are by true innovation. Today the focus of Groves’ statement shifts

more towards trends than capabilities. In the past notable transitions were based on

obvious technical enhancements like register size (8-bit, 16-bit, 32-bit, 64-bit). However,

with Apple silicon, the public interest was around bespoke enhancements to an existing

processor architecture widely available to a variety of companies. For this reason, while

heralded as uniquely high performing at the time devices with similar performance have

quickly come to market.

 If a corporation’s proprietary software can be considered a significant factor in the

transition from one CPU architecture to another, this leaves independent developers in a

tight spot. These individuals are motivated by an entirely different set of economic,

artistic, or personal concerns. For example, in the current environment developers might

be disproportionately affected by foundational architecture improvements targeted at a

65

retail Apple product like Final Cut Pro. This realization means that software engineers

need to be ready to pivot hardware at a moment’s notice as near anything can force a

transition.

This has been true in the video game industry throughout its history. The timeline

of industry transitions can be viewed through home console generations. These periods of

time outline cost competitive hardware from different organizations and adequately

demonstrate the diversity that can exist in a computing field simultaneously. Developers

in this industry are often faced with market concerns that are deeply divided from the

business interest of the available partner gaming platforms. A recent prior generation saw

Microsoft ship a console with a cost reduced PowerPC core derived from Sony’s Cell

processor. At that time the three biggest consoles shared enough common architecture to

create applications using the lowest common denominator. The result was that the special

features of each would largely be ignored (Shippy and Phipps, 2009). In contrast,

contemporary games are often ported from x86 to less powerful ARM devices in order to

capture the widest market available in the current console generation. Hardware

transitions have happened at a quicker pace in the games industry when compared with

the PC market. Entire console generations are complete within 5 or 6 years and the

technology changes can stretch from almost non-existent to radical.

Conditions are right for architecture transitions to start happening faster in

broader areas of the computing industry. The portability of standardized high-level

languages makes this less chaotic than in the distant past but still burdensome. The

content in this section bares special meaning to the author of PortAuthority who sees a

66

clear gap and the need for tools that transcend commercial architecture transitions like

instruction profilers.

Figure 10: A Simple 3-Stage Edge Computing System.

Edge Computing

While there are many reasons to stay engaged with cross-platform development,

perhaps the most demonstrative today of the power of PortAuthority analysis is Edge

computing. Edge computing has clear benefits inside IoT systems that follow the pattern

demonstrated in Figure 10. Specific applications include those for smart cities, Industry

4.0, and home automation. Cloud based video game streaming is another research area

67

where computation, specifically rendering, at the edge of a network has shown significant

promise (Yates et al., 2017). Other compelling reasons to utilize Edge computing include

the desire for complete offline capability. There are several consumers and geographical

regions where having a fully connected system may not be wanted or possible. Safety for

instance can be compromised by the overuse of network communication. Given these

constraints one option is to gather and process more data near or on the generating device

suggesting the use of Edge computing. These systems can be composed of several

heterogeneously architected devices operating simultaneously to perform a single task.

While cloud servers are currently the primary actors in IoT computation today, it is not

the case that other Edge devices have little or no computational ability. Smart phones are

a ubiquitous Edge computing device and excellent examples of performance on the Edge.

The phone market now expects dual aperture cameras, biometric sensors, and high-

resolution video to be available on most individuals. In turn, device makers are beginning

to broaden their product offering to include relatively powerful devices even when

directly compared to consumer PCs.

System Profilers

Figure 10 illustrates a basic, heterogenous system where it is possible to improve

application performance using Edge computing as an alternative. In this research where

possible the term system has been reserved for this style of multi-element application.

Single computers within each system are referred to as targets or platforms. This example

is a simple three-layer system containing a management server, input sensors, and

smaller, mid-tier compute elements that connect the two. In the model each layer is

68

expected to be occupied by less hardware as the model progresses from the bottom to the

top. Within this system you should expect the server to be connected via a traditional

wired network. For this discussion, the next layer would be linked with a standard

wireless protocol. The bottom elements by contrast can be thought of as directly

connected to the middle layer edge devices. Specific speeds and technology for the

network are less important when describing this scenario as proper Edge computing

should benefit any combination.

As data is generated within this system, communication between the bottom and

middle layer devices is expected to be near instant. Migrating data up from the mobile

edge devices however requires enough time that the server’s ability to process the

information in real time is limited. The immediate opportunity to improve throughput in

this system statically, without hardware changes, relies on processing as much data as

possible on the edge devices receiving the input. Using these available compute resources

reduces the burden on the application by eliminating transfers to the server, processing on

the server and return trips to the mobile edge devices. None of these intermediate

operations benefit the global task and are considered overhead. Implementing an Edge

computing scheme in this instance would improve the system’s ability to scale.

The bottom most elements in the figure could implemented as microcontrollers.

For many system profilers this could represent a development problem as most profiling

utilities require multitasking support and some also require access to a filesystem to

generate intermediate files or test reports. This is not true of PortAuthority as

demonstrated by its support of AVR processors. By design AVR microcontrollers run a

single program directly on bare metal. Any requirements of an operating system or

69

filesystem are built directly into each application and flashed onto the unit’s non-volatile

memory. While excellent for embedded deployments, this limits debug access to the

target. Conventional source level debugging is only available on these devices by way of

a JTAG interface and a separate hardware controller. With PortAuthority however, it is

possible to use emulation to gather executed instruction data via a remote gdb stub. As

discussed, with a reasonably accurate list of executed instructions performance metrics

evaluated via mapping to become possible instantly for any target. Provided users can

create the desired micro profiling data, other discussed metrics are possible to obtain even

for this much less complex architecture. For example, energy usage can be determined

using physical metering on AVR via projects like PowMeter shield for the Arduino Nano

(Pandauino, 2019). Real time software performance is also estimable here as instructions

take well known numbers of clock cycles to execute (usually one). Using PortAuthority,

most of the profiling work could be done on an established platform and extended here

where conventional debugging will never be possible by design.

To reiterate, it is difficult enough to find tools and languages that span all

platforms used as part of complex Edge systems. Consider also that portability is

invisible when running an application and that that makes the potential for easily

distributing work from the cloud non-trivial to discern. Mooney’s guideline mentioned

above, Think Portable, lacks some of the direct prescription of the others. He suggests not

an increase in, but constant awareness of how your changes impact the portability of the

design. Even if you use best practices to express portability in software, the vagueness of

that standard can be limiting. The critical thinking skills involved require experience and

training as well as vigilance from an engineer. Tools for dynamic analysis, performance

70

profiling and the like can be made available cross-platform, but the ability to use them

still requires the user’s code base to compile for each individual platform of interest.

Even though development software many run on multiple operating systems, it can still

fail to effectively aid co-design for heterogenous development teams. Many IDEs do

include simulators and emulators to address co-design tasks, but they lack the ability to

predict beyond functional correctness on other platforms. Few if any analysis tools are

targeted towards heterogenous platform co-design like PortAuthority. The lack of

automation in this debug process severely limits a developer’s ability to remain aware of

the portability impacts of changes they are making to their code.

71

X. FUTURE WORK AND DISCUSSION

The work in this research has proven itself through a few peer reviewed

publications, but the PortAuthority tool itself is still primitive. There are many areas of

improvement, but it is thought to be at a stage where information can be made widely

available, and where others might be willing to join in the development.

Some of the immediate enhancements for the future have already been mentioned.

The need for better call stack tracing with register patching is obvious. Considerable

improvements here would allow coverage and memory usage estimation to be used with

sampled analysis and reduce the dependency on instruction backfilling. Existing DWARF

call frame data from various projects could be investigated in order to help with this task.

While this research acknowledges the value of this information, PortAuthority does not

use it as it is not guaranteed to be available. However, patterns buried in the DWARF

data could allow for deeper and more rich call stack tracing. This change would make

parts of the tool more tailored for specific supported architectures but not at the cost of

the almost fully generic method available today. It could be viewed as an enhancement

for select boards instead of a change for all.

Another point of interest is the greater use of intrinsic functions to gain tighter

control over a sampling interval. In the latest build, PortAuthority will only use intrinsic

controls for instruction counts on x86-64. Specifically fence opcodes and the __rdtsc call

are used in the implementation. This improvement has allowed consistent, controlled

samples of around 4 milliseconds, but it is worth exploring even smaller intervals. When

profiling directly using an AARCH64 based target, as of now there is no equivalent

intrinsic. The consequence of non-intrinsic operation is that the sampling interval must

72

grow substantially in order to return a consistent result using stock C++11 based timers.

There are some registers of interest available on AARCH64, like the Performance

Monitors Cycle Count Register (PMCCNTR_EL0), but the proper way to access these

data has not been resolved. The problem might be avoided all together with a custom

processor element designed to record executed instructions. While worth mentioning, that

task is far beyond the capability of the author.

Of course, there is also a persistent desire to add more instruction metrics to

PortAuthority. Simultaneous analysis of instruction data is core to the philosophy of the

application so a new set of analyzers should not adversely affect profiling time. The most

logical crop of metrics to explore next is combinatorial metrics. These would be

instruction level performance metrics derived from multiple existing data points.

Realistic CPU performance is an example of something that may be possible. Cache

utilization is an existing instruction metric that is directly connected with reduced

program execution time. Combining the worst-case performance evaluation of an

instruction via micro profiling with memory usage information found through instruction

mapping it should be possible to derive a CPU performance estimate closer to real world

than one derived from a single metric.

Even though PortAuthority is a command line application, with a few new output

options its data could be readily consumable by a conventional IDE. Something

straightforward like a warning when an inquired metric reaches a defined threshold

would be a good start. When properly formatted, command line can be interpreted by

built-in regular expression engines within popular development environments. Modifying

Port Authority’s output behavior would help tap into existing user experiences for those

73

familiar with an environment’s features. Some work has been done with PortAuthority to

leverage established parsing tools within the Visual Studio Code IDE (Ford and Zong,

2021). These tools are designed to parse GCC output warnings from the command line

and point back to the location within source code where the problem occurred. While

preliminary work has been done in this specific IDE, there are many extensible IDEs

available where the concepts tested would apply. For added effect information could also

be displayed using ANSI escape codes to colorize the terminal output.

On a related note, a near future goal would be to find an appropriate software

project and integrate the PortAuthority tool with a team at design time. This experience

should allow for better evaluations of feature enhancements and hopefully more bug

fixes. Ultimately it would be nice to have PortAuthority alongside a project for a few

development cycles in order to create a post-mortem analysis. The feedback expected on

the tool includes topics from usability to value. Everything learned here could be

reincorporated back into future versions of PortAuthority.

Also worth investigating are other methods for instruction prediction. As shown

in Table 5, the most common 2-gram match used for PUSH-MOV instructions occurs

45% of the time. Afterwards there is a steep taper across the frequency of the other

AARCH64 choices. Within the research corpus there are 2-gram matches with perfect 1:1

translation between the two architectures, however the regular best returns are lower than

50% and paired with several less used combinations like the values in Table 5. While the

current method has yielded positive results, the process would be improved by bettering

these numbers and lowering the number of 2-gram combinations. One possible

improvement would be to consider the previous state when selecting an appropriate pair

74

instead of the raw probability. A second pass that accounts for previous instructions may

improve this piece of PortAuthority.

There is a reoccurring feature request to make generated PortAuthority binaries

conventionally executable. Unfortunately, no obvious path to create a fully working,

automatically ported application exists. It is possible to build an ELF file that will run in

a limited capacity from the generated list of instructions, though with considerable

caveats. For one, no method has been devised to break up the monotonous block of

instructions resulting from the code generation process into something more akin to

standard functions. The only known way to process the ELF is linearly top to bottom with

no branches or jumps. Structurally the entire executable path becomes like an unrolled

loop in the resulting binary. Additionally, the output of the code is nonsense. The ELF

will run uninitialized and lacking proper data, variables, etc. As a bag of instructions used

for the purposes of instruction profiling the “compiled” content here works fine. In

comparison to a standard binary, it will be large, unreadable, unmodifiable and produce

worthless results. These limitations make the value of such a binary questionable for most

tasks, however it would make a great experimental control group and demo if the

additional work was made to have these false ELF files execute normally.

The procedure to produce a false ELF was first described in a related work (Ford

et al., 2021). Before a significant refactor, PortAuthority could only read and operate on

ELF files. To get estimation data during this phase of the program’s development the

researcher used objcopy to inject raw binary data into incomplete ELF files using the

update-section option. This tactic allows developers to override the text section from a

basic C program with generated instruction data. The file is still not executable on its own

75

due to limitations patching faults caused by ABI non-compliance, branch endpoint

changes, and stack corruption. Next, a virtual machine called the Flat VM is used to

facilitate execution. The Flat VM contains shared micro profiling data from the core of

PortAuthority. For each clock of the virtual machine, it increments by one instruction and

applies the appropriate estimation metric like the single stepped PortAuthority workflow.

With improved instruction generation this requirement could be omitted.

Most of the previous method’s steps can be retained when creating a properly

executable binary. The largest difference takes place during instruction generation. The

goal is to mimic the Flat VM while only relying on the ISA. Greater knowledge and

tailoring of instructions will be required at code generation time to pull this off. Most

instructions can operate on a single unchanging state and not cause breaking runtime

errors. For example, the mov instruction. If this operates on two registers, it is likely that

by finding registers that are not a part of the ABI and then using those as part of every

generated call will succeed unilaterally. Other instructions, like those that access

memory, would need very specific updates in order to keep execution flowing strictly

from the current address to the instruction at the next address from beginning to end.

Access to many sections of memory is often limited by the application runtime. Each

instruction that accesses memory would need to be patched dynamically in order to

ensure it touches an area that will not trigger exceptions by the CPU. Another obvious

problem is with branch instructions. These would need to be patched to always route to

the instruction one address ahead of the current location. Other issues are expected, but

each should be addressable within the context of the ISA provided generated instructions

are emitted with a greater level of detail.

76

The final piece of near future PortAuthority work is related to interpreted

language support. There is a path for ELF files to give targeted debug information based

on lines in the developer’s source. It is based on elective DWARF information being

compiled into the program. If the profiler is injected into earlier phases of a project, it

should be possible to reduce some of the data austerity PortAuthority is designed to

content with and make a mixed conventional/instruction-based tool that gives even higher

quality insight on a code bases’ relatively portability. Extending this feature to interpreted

languages is more difficult however because there is no obvious connection from the

runtime to the developer’s application source. In preparation for this research

PortAuthority was tested on code written in Python, PHP, and JavaScript. This technique

could also be used for other languages like C#. When launched, PortAuthority was able

attach to their respective interpreters and report on the relative nature of each program but

correlating runtime behavior to source changes was overly difficult. In early tests, trivial

examples could be fully described using the PH7 PHP interpreter. The Hermes JavaScript

engine was also trialed. There needs to be additional research into a glue layer. This

feature would require some implementation per language, and that work was found to be

outside the scope of this project.

77

XI. CONCLUSION

This work has been difficult and requires a set of knowledge and skills not widely

available. Working at the machine and assembly language levels to describe in detail

actions beyond functional programming is non-trivial. Instruction profiling becomes

essential only when developers find themselves without the comforts of years of

instrumentation and tailoring for established platforms. PortAuthority is a tool for the

harshest environments.

Some would believe that this work is fully unnecessary. While its value may be

limited for short spans of time during a dominant platform’s heyday, a remnant of

developers will always need something like PortAuthority. The success of instruction

profiling will be determined by whether there is constant improvement on the design

during the off season. Rushing to complete a tool like this as the need arises ignores the

inherent challenges. To tie back into the future work discussion an unexpected but perfect

use case for a beta version of PortAuthority must be present amid the current chip

shortage. Thousands of manufacturers are scrambling to build their products around

silicon supply chains that no longer exist. Only companies with the capability to

reengineer their hardware and quickly port their software have a path to continue forward

during this unprecedented time. With PortAuthority, it is possible to study an existing

piece of software from a supply chain-stricken product and give reasonable direction as

to what could be substituted.

Capability with high powered silicon is a requirement, but the long tail of value

for PortAuthority may be in the static technology marketplace. MOS 6502 style

processors used in the earliest PCs are still widely used in embedded products. Code

78

analysis and substitutions can be more easily solved in this category and the volumes of

new units still produced are significant. Based on availability or for cost savings many

product owners might consider backporting. How far back could the PortAuthority

method effectively be backported? The 6502 is likely too far, because the architecture’s

owner has not progressed the compiler to modern standards. Other owners, like those for

the AVR architecture, have made a conformant compiler available for their 8-bit CPUs.

At a minimum PortAuthority requires an ELF binary meeting the Unix System 4.0

standard. Temporally this puts the foundation around the year 1987 during the inaugural

release of GCC which targeted devices like the Motorola 68000. The ELF binary design

has had far more viability than any of the compliant CPU architectures and for now still

seem less volatile. That is the basis for the decision to make ELF the operational core of

PortAuthority. There has been consideration given to mainstream software platforms like

Windows and OSX that do not natively use the ELF executable format. While it may not

be possible to run PortAuthority to profile directly on these platforms, it is possible to

drive the profiler using micro profiling data recorded under those operating systems. The

Clang compiler used in this research equally targets ELF and the specific formats of these

vendors, so there is a bit of flexibility even outside the preferred ELF requirement

mentioned here. The relative work to parse instructions from Windows executable or

Mach-O files is possible but with compiler equality unnecessary.

It’s certainly unfair to talk about viability without threats to viability. The first

would be a sudden rise in non-assembly language-based platforms. There are boards

designed to immediately run interpreted languages like Python. In the past similar efforts

like Jazelle, branded Java native processors, found only limited success but markets can

79

change. As they exist today, these products run small VMs and are driven by processors

that still rely on instructions. However, hardware could be written to work on the Python

language directly and in that area of the market PortAuthority as designed would be much

less useful. A similar problem occurs with Quantum computing. OpenQASM and other

assembly languages for these processing elements bear little resemblance to those for von

Neuman or Harvard architectures (McCaskey and Nguyen 2021). Again, in this space the

work happening inside PortAuthority would need to be thought about much differently.

This project has typically been thought about as something that promotes

operation on existing or upcoming hardware, but it could also be used to help design

hardware from scratch. Assuming the fictional hardware stays within the lanes described

by the previous paragraph, a user could extract the operations most required by their

applications and graft those requirements on to a new, yet unspecified design. This takes

the previous point on co-design to the next level. Taken to the extreme, a version of this

tool could be used to generate ideas for an ASIC that could increase algorithmic

performance.

Ambitions aside, as the tool works today it is suggested that PortAuthority run on

the strongest hardware in a supported fleet. Instruction profiling is CPU intensive, and the

best hope to reduce that burden, sampling, has proven difficult to calibrate. Sampling is a

feature that was introduced later in the development of PortAuthority so thoughts on how

to achieve the best balance of speed and accuracy are comparatively immature. The aim

of this researcher is to push for improvements in cross-platform development, not to

provide a perfect solution. To say the PortAuthority process is easier than a conventional

process would be wrong, though complimentary feels right. If this project promotes

80

others to attack portability during software development in an equally creative fashion, it

will have met its intended return. Perhaps that is a challenge to anyone to show better

simultaneous, multi-platform, debug information to a developer. Researchers need to get

others thinking about this problem in a different way to truly innovate. Promote being the

operative word; to further, advance, raise.

The predominant open question on instruction profiling is what other metrics are

possible? It’s unclear, but theoretically the data for most anything should be baked into

the executable. Even non-direct CPU metrics like network bandwidth should be possible.

If accepted that this information should be resident in a compiled program, then the

question is more how to efficiently and accurately mine it.

81

 REFERENCES

Abdulsalam, S., Zong, Z., Gu, Q., Qiu, M. (2015). Using the Greenup, Powerup, and

Speedup Metrics to Evaluate Software Energy Efficiency. In Proceedings of the Sixth

International Green and Sustainable Computing Conference – IGSC ‘15, pages 1-8.

Altman E. R., Ebcioglu K., Gschwind M., Sathaye S. (2001). Advances and Future

Challenges in Binary Translation and Optimization. Proceedings of the IEEE, pages

1710-1722.

Ahn, J., Hong, S., Yoo, S., Mutlu, O., and Choi, K. (2015). A Scalable Processing-In-

Memory Accelerator for Parallel Graph Processing. In Proceedings of the 42nd Annual

International Symposium on Computer Architecture - ISCA '15, pages 105–117.

Android Open Source Project. (2022). Platform Core Repository.

https://android.googlesource.com/platform/system/core/

Apple Inc. (2020). About the Rosetta Translation Environment.

https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-

environment.

Bacchus, A. (2021). Microsoft goes all-in on Windows 10 on ARM.

https://www.digitaltrends.com/computing/microsoft-goes-all-in-on-arm-build-2021.

Bao, L., Lo, D., Xia, X., Wang, X., Tian, C. (2016). How Android App Developers

Manage Power Consumption? An Empirical Study by Mining Power Management

Commits. IEEE/ACM 13th Working Conference on Mining Software Repositories, pages

37-48.

Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J. (2011). Bap: A Binary Analysis

Platform. Computer Aided Verification, pages 463-469.

82

Ding, S. H. H., Fung B. C. M., Charland, P. (2019). Asm2Vec: Boosting Static

Representation Robustness for Binary Clone Search against Code Obfuscation and

Compiler Optimization. 2019 IEEE Symposium on Security and Privacy, pages 472-489.

DWARF Standards Committee. (2007). DWARF Debugging Format Version 5 Standard.

http://dwarfstd.org/Dwarf5Std.php.

Feng, W. and Cameron, K. (2007). The Green500 List: Encouraging Sustainable

Supercomputing. Computer, Volume 40, pages. 50-55.

Ford, B., Zong, Z. (2021). PortAuthority: Integrating Energy Efficiency Analysis into

Cross-Platform Development Cycles via Dynamic Program Analysis. Sustainable

Computing: Informatics and Systems, Volume 30, page 100530.

Ford, B., Qasem, A., Tesˇic ́, J., Zong, Z. (2021). Migrating Software from x86 to ARM

Architecture: An Instruction Prediction Approach.	2021 IEEE International Conference

on Networking, Architecture and Storage - NAS 2021.

Google. (2017). Battery Historian. https://github.com/google/battery-historian.

Groves, D. (2010). Brief History of Computer Architecture Evolution and Future Trends.

Henderson, J. (1988). Software portability. Aldershot, Hants, England: Gower Technical

Press

Hennessy, J.L., Patterson, D. A. (2018). A New Golden Age for Computer Architecture:

Domain-specific Hardware/Software Co-design, Enhanced Security, Open Instruction

Sets, and Agile Chip Development. Proceedings of the ACM/IEEE 45th Annual

International Symposium on Computer Architecture - ISCA 2018, pages. 27-29.

IOActive, Inc. (2008). Reverse Engineering Code with IDA Pro (1st. ed.). Syngress

Publishing.

83

Insomniac Games. (2017). CacheSim. https://github.com/InsomniacGames/ig-cachesim

Intel. (2011). https://developer.android.com/training/monitoring- device-state/index.html.

Jabbarvand, R., Malek, S. (2017). Advancing Energy Testing of Mobile Applications.

In 2017 IEEE/ACM 39th International Conference on Software Engineering

Companion, pages 491-492.

Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S. (2012). Understanding and Detecting Real-

World Performance Bugs. SIGPLAN Notices 47, pages 77–88.

Lardinois, F. (2020). Apple announces the M1, the first chip in its Apple silicon family.

https://techcrunch.com/2020/11/10/apple-announces-the-m1-the-first-member-of-its-

apple-silicon-family.

Lavie, A. (2011) Evaluating the Output of Machine Translation Systems.

https://www.cs.cmu.edu/ alavie/Presentations/MT- Evaluation-MT-Summit-Tutorial-

19Sep11.pdf

Le, V., Sun, C., Su, Z. (2015). Finding Deep Compiler Bugs via Guided Stochastic

Program Mutation. SIGPLAN Notices 50, pages 386–399.

Lee Y., Kwon H., Choi, S.-H., Lim, S.-H., Baek, S. H., Park K.-W. (2019).

Instruction2vec: Efficient Preprocessor of Assembly Code to Detect Software Weakness

with CNN. Applied Sciences, Volume 9.

Lin, L., Liao, X., Jin, H., Li, P. (2019). Computation offloading toward edge computing.

Proceedings of the IEEE 107, 1584–1607. https://ieeexplore.ieee.org/document/8758310.

84

Lin, Y. D., Ho, C. Y., Lai, Y. C., Du, T. H., & Chang, S. L. (2013). Booting, Browsing

and Streaming Time Profiling, and Bottleneck Analysis on Android-based

Systems. Journal of Network and Computer Applications 36, pages 1208-1218.

McCaskey, A. and Nguyen, T. (2021). A MLIR Dialect for Quantum Assembly

Languages. Proceedings of the International Conference on Quantum Computing and

Engineering - QCE ‘21, pages 255-264.

McShan, F., 2021. Performance of Rosetta 2 on Apple M1.

https://mjtsai.com/blog/2020/11/16/performance-of-rosetta-2-on-apple-m1.

Microchip Technology Inc., (2021). Microcontrollers and Microprocessors.

https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors

Mooney, J. (2000). Bringing Portability to the Software Process.

Mooney, J. (2004). Developing Portable Software. Information Technology, pages 55-84.

Moura, I., Pinto, G., Ebert, F., Castor, F. (2015). Mining Energy-Aware Commits.

In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pages

56-67.

Nethercote, N., Seward, J. (2007). Valgrind. SIGPLAN Notices 42, pages 89–100.

Noureddine, A., Rouvoy, R., Seinturier, L. (2014). Unit Testing of Energy Consumption

of Software Libraries. In Proceedings of the 29th Annual ACM Symposium on Applied

Computing, pages 1200-1205.

Pandauino. (2019). PowMeter for Nano. https://pandauino.com/en/powmeter-for-nano.

85

Papineni, K., Roukos, S., Ward, T., Zhu, W.-J. (2002). Bleu: A Method for Automatic

Evaluation of Machine Translation. Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, pages 311–318.

Parnas, D. L. (1994). Software aging. Proceedings of the 16th International Conference

on Software Engineering - ICSE ‘94, pages 279-287.

Patel, R., Rajawat, A. (2013). Recent Trends in Embedded System Software Performance

Estimation. Design Automation for Embedded Systems 17, pages 193-213.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva, J. (2017).

Energy Efficiency across Programming Languages: How Do Energy, Time, and Memory

Relate? Proceedings of the 10th ACM SIGPLAN International Conference on Software

Language Engineering - SLE ‘17, pages 256– 267.

Pinto, G., Castor, F., Liu, Y. D. (2014). Mining Questions About Software Energy

Consumption. In Proceedings of the 11th Working Conference on Mining Software

Repositories, pages 22-31.

Post, M. (2018). A Call for Clarity in Reporting BLEU Scores. Proceedings of the Third

Conference on Machine Translation. Association for Computational Linguistics, pages

186–191.

Ray, B., Kim, M. (2012). A Case Study of Cross-System Porting in Forked Projects,

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering - FSE '12, pages 1–11.

Rohleder, R. (2019). Hands-on Ghidra - A Tutorial about the Software Reverse

Engineering Framework. Proceedings of the 3rd ACM Workshop on Software Protection

- SPRO '19, pages. 77–78.

86

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L. (2016). Edge computing: Vision and

challenges. IEEE Internet of Things Journal 3, 637–646.

Shippy, David and Phipps, Mickie. 2009. The Race for a New Game Machine: Creating

the Chips Inside the XBox 360 and the Playstation 3. Citadel.

Tamai, T., Torimitsu, Y. (1992). Software Lifetime and its Evolution Process Over

Generations. Proceedings of the Conference on Software Maintenance – ICSM ‘92, pages

63–69.

Tumeo, A. (2017). Architecture Independent Integrated Early Performance and Energy

Estimation. Proceedings of the Eighth International Green and Sustainable Computing

Conference - IGSC ‘17, pages 1-6.

Travers, M. (2015). CPU Power Consumption Experiments and Results Analysis of Intel

i7-4820K. Newcastle University. http://async.org.uk/tech-reports/NCL-EEE-MICRO-

TR-2015-197.pdf

Treibig, J., Hager, G., Wellein, G. (2010). Likwid: A Lightweight Performance-Oriented

Tool Suite for x86 Multicore Environments. Proceedings of the 39th International

Conference on Parallel Processing Workshops – ICPP 2010, pages 207–216.

Weaver, V. M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D.,

Moore, S. (2012). Measuring Energy and Power with PAPI. Proceedings of the 41st

International Conference on Parallel Processing Workshops, pages 262-268.

Yang, X., Chen, Y., Eide, E., Regehr, J. (2011). Finding and Understanding Bugs in C

Compilers. SIGPLAN Notices 46, pages 283–294.

87

Yates, R.D., Tavan, M., Hu, Y., Raychaudhuri, D. (2017). Timely Cloud

Gaming. Proceedings of the IEEE Conference on Computer Communications -

INFOCOM ‘17, pages 1-9.

Zheng, X., Ravikumar, P., John, L.K., Gerstlauer, A. (2015). Learning-Based Analytical

Cross-Platform Performance Prediction. Proceedings of the International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation - SAMOS ‘15,	

pages 52–59.

Zong, Z., Ge, R., and Gu, Q. (2017). Marcher: A Heterogeneous System Supporting

Energy-Aware High-Performance Computing and Big Data Analytics. Big data

Research 8, pages 27-38.

