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ABSTRACT 

In recent history, most software has been built for a single hardware class and 

developers rarely needed to consider cross-platform development. With emerging 

paradigms like Edge computing and the introduction of alternative mainstream 

processing elements, we have reached a landmark for multi-platform development. 

Moreover, the barriers to successfully introducing a new CPU architecture are also 

falling, as demonstrated by RISC-V. This can only lead to greater fragmentation in the 

ecosystem of development platforms and tools that advocate for software portability lag 

far behind this trend. A notable example at present is the introduction of Apple silicon 

and Apple’s substantial efforts to migrate software from previously supported Intel CPUs 

to ARM. Unfortunately, in order to access the interesting features of a new platform, 

developers will be required to rebuild or port their existing software. Porting software can 

uncover unexpected behavior and produce uncertain results in code that was previously 

considered stable. A dearth of development tools geared towards porting software means 

addressing these problems requires significant work and it is difficult for developers to 

predict the performance and energy consumption of software early on without testing it 

on the target hardware. Privileged access to prototypes and limited options for simulation 

before release further complicate the problem.  

This dissertation proposes a cost-effective instruction profiling framework that 

promotes portable software by allowing developers to estimate certain metrics inherent to 

their software on other platforms without modifying their code and without direct access 
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to hardware. Specifically, the framework includes three modules: (1) The instruction 

profiling module analyzes existing code in an efficient way and produces evaluation 

reports. (2) The estimation module leverages prerecorded metrics to calculate the 

performance of this code on another platform. (3) The instruction prediction module uses 

a machine learning approach to automatically generate cross-architecture code for other 

possible targets. The framework can forecast various metrics including instruction 

categorization, code coverage, and resource usage simultaneously. Data produced is 

comparable to existing off-the-shelf benchmarks but available for multiple platforms after 

a single profiling pass. Experiments herein confirm performance estimates are within 

externally established tolerances and powerful enough to provide automated assistance to 

developers considering a software port between disparate platforms. 
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I. INTRODUCTION 

Toolchains and environments have long provided options that help developers to 

optimize source code for higher performance or lower memory usage. For instance, 

environments may suggest removing or updating code. Compilers like GCC and Clang 

have macro-options which bundle together many smaller unique transformations into 

more user-friendly levels of automatically applied optimization. Other forms, like link 

time optimization, can be introduced even later in the build process. These options have 

wide ranging effects on the generated assembly code. Though these enhancements target 

speed improvements or memory savings broadly, they do little to describe how the code 

might perform on a different platform. Unfortunately, very few cross-platform 

forecasting tools are available to developers. 

Without proper programmer assistance, problems may not be immediately 

discoverable given that source code may translate to hardware in a variety of ways. 

Optimizations or other compiler flags can radically change the source intent so long as 

the resulting evaluation is the same. For example, dead code elimination allows a 

compiler to completely remove sections of code it does not expect to be productive 

during execution. Lacking the ability to make transformations discretely and 

automatically through a compiler, another option is to provide commentary on a 

developer’s code so that they could be empowered to make some of these changes 

themselves. Of course, this information would be most useful to a developer at 

development time and on their personal hardware. As few environments are setup for 

cross-platform development, projects normally need to explicitly include additional 

libraries, run an external program or engineer other code to compensate. Instead, the 
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common software engineering practice today does not account for software ports which 

could force an expensive future redevelopment cycle. Investigating portability at the 

beginning of a project and staying mindful of possible ports throughout the entire 

software development cycle is more desired and cost-effective long term (Mooney, 

2004).  

One area where cross-platform development tools are handy is in the creation of 

systems with Edge computing elements. Edge computing refers to the practice of 

offloading computational effort from strained central areas to areas on a network where 

existing utilization is low. There are increasing computational needs that make Edge 

computing a promising alternative to the cloud. Edge computing is a novel and available 

solution that can alleviate problems caused by distributed applications as data 

propagation has become the limiting factor in the expansion of cloud computing. The 

volume of data being produced in the field is growing at a rate far greater than 

improvements in communication technology (Lin et al., 2019 and Shi et al., 2016). 

Normal impacts from this kind of expansion range from increased financial costs to lower 

quality of service. Devices on the Edge are typically less powerful, so software developed 

with servers in mind may perform worse than expected in this environment. In addition, 

emerging areas like Edge computing lack host options based on x86, the dominant server 

CPU architecture. The demands of this segment favor custom processor designs and the 

market is held by Instruction Set Architectures (ISA) that are historically modifiable 

unlike x86. Customization requires a product be either licensable as with the ARM 

architecture or fully open like RISC-V. This highlights another threat to mono-platform 

development, large scale CPU architecture transitions. 
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Over the past few decades, x86 has undoubtedly become the dominant 

architecture for software running on modern CPUs, thanks to the long-term support from 

both Intel and AMD. This trend is shifting quickly with ARM emerging as a highly 

competitive CPU architecture. Recently, Apple has made a significant investment in 

ARM by designing its own ARM-based System-on-a-Chip (SoC) hardware. Announced 

in late 2020, the M1 chip will be used to power all its primary products (e.g., MacBook, 

iMac, and iPad) (Lardinois, 2020). Less than a year later, Microsoft also announced its 

plan to further endorse the ARM architecture in Windows 10 and develop comparable 

hardware (Bacchus, 2021). Considering the size of their combined software ecosystem, it 

is inevitable that significant amounts of software will be fully ported to ARM or support 

both x86 and ARM simultaneously. 

Consider that each platform, regardless of CPU architecture, provides only limited 

execution context transferability to another. The relationships between registers, memory 

and other CPU associated hardware do not map directly between different platforms. 

Therefore, there exists a set of non-uniform performance metrics for each device: power, 

bandwidth, compute capability. For instance, servers may require more energy to operate 

but could also perform CPU tasks faster than Edge devices. Given this diversity, it is 

difficult for developers to predict the performance of their software. Most opt instead to 

test explicitly on the target hardware.  

Aside from the obvious ability to do empirical testing, extra performance data 

may be reported from the underlying device itself. Some examples include platform 

specific counter registers and variables exposed in the Filesystem Hierarchy Standard in 

Linux. Integrated data sources provide a variety of metrics, so calculations can be made 
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considering a substantial number of detailed values from the hardware. Counters can 

work well in the absence of physical metering as specific actions tracked by these 

registers influence resource consumption (Treibig et al., 2010). However, performance 

counters were not designed in a portable way and different problems can arise when 

attempting to relate their values outside narrow specifications or cross-platform. As 

counters track the dimensions of an entire platform, it may also be impossible to sort out 

the demands of a single process on a multi-process host without some interference. 

Extracting and comparing these data from multiple unique platforms requires a clear 

duplication of work and several bespoke pieces of test equipment. The scarcity of device 

hardware also plays a role in the ability to effectively port software when developers rely 

on direct platform testing or inherent platform features. 

In addition to hardware, it is also wise to consider language. With the diversity of 

high-level programming languages, a good cross-platform profiling solution should not 

be attached to a specific programming language. Developers use different programming 

languages for different projects, and perhaps even a mix set of programming languages 

within a single application. Providing an otherwise flexible profiling standard bound to a 

subset of languages limits the overall value. 

This work is an attempt to start improving weaknesses in the software porting 

process by providing relevant, interactive and automated programmer assistance at design 

time without the advantage of real hardware. The framework is intended to be platform 

agnostic. The research uses two of the most common architectures for demonstration 

purposes. Code originally built for one platform is used to predict the performance of a 

future port to another. Specific contributions are as follows. 
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• Extracting fine-grain performance feedback from non-instrumented, 

unmodified binaries. Better, more detailed range of metrics gathered non-intrusively. 

• Accounting for the entire build process. Describes the true nature of software 

in ways that cannot be known at the source code level. 

• Allowing language agnostic profiling. A plausible solution for use with any 

software package capable of running on a given platform. 

• Reducing dependence on physical measurement. Software changes can be 

evaluated without additional test hardware or features. 

• Lowering the cost to estimate software cross-platform. Highlight the 

potential for other devices to run software from a single development platform. 

• Deriving cross-architecture diagnostics via Artificial Intelligence methods. 

The ability to broadcast the effects of software changes to alternative CPU hardware 

without build tools or directed effort. 
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Figure 1: Overview Illustration of Proposed Framework 

 

Methodology Overview 

Figure 1 provides an overview of the proposed dynamic analysis framework, 

PortAuthority. First, if unavailable Module 1, instruction prediction module, uses a 

machine learning approach to automatically generate code for the target platform. The 

key component to instruction prediction is the code corpus referencing both the source 

and target platforms. This corpus is used to learn sufficient historical patterns of code and 

to map relationships between each architecture’s instructions. Then using Module 2, 

previously recorded micro profiles are used to obtain performance data for the 

instructions from a given platform. Finally, in Module 3 the code is analyzed via 

instruction profiling and evaluation reports are generated regarding the program’s 

structure and performance estimates for the software.   
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Each module is evaluated using the same set of test applications. The set includes 

open-source code from the video game, scientific computing, machine learning, and 

operating system communities. The mix of coding styles here is intended to help produce 

a well-rounded method capable of working with a variety of binary input. Software 

quality and diversity are critical factors in the evaluation of this technique. The 

PortAuthority tool has been tested on many additional pieces of software over the past 

several years and the included test catalog is representative of those outcomes. 

With each test, a sample area of 2-4 million instructions is used in order to keep 

consistency across the recorded results. While the execution of each is highly detailed, 

the expected runtime of any example is only a few seconds. The executables from the test 

catalog are composed from 30 to 60 unique instructions per application. The overall 

structure of an individual program is loosely in line with the others as each generated 

executable is composed using identical settings and roughly matching the statistical 

distribution of instructions available. This emphasizes that repetitive elements involved in 

compiling a program may overshadow custom computation internally, especially when 

considering all these programs conform to the same requirements for calling functions, 

application binary interfaces and other forms of compliance code.  

The intent here is not to displace existing tools and methodologies but to 

complement them. To that end, instruction metrics will be juxtaposed with conventional 

versions. Significant differences are debated as either advantageous or not depending 

upon circumstance. The insights provided by instruction metrics are divergent but also 

correspond closely with their better-known counterparts. Executable and Linkable Format 

(ELF) files can be generated for a variety of platforms. Here the work is done with what 
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was felt to be the two most contemporary choices for cross-architecture development, 

ELF files using the x86-64 and AARCH64 CPU architectures. The hardware tested 

included the Marcher system (Zong et. al, 2017) and the NVIDIA TX2 respectively. 

There is no known limitation to working with upcoming platforms like RISC-V. 

Conducted properly, the expectation is that the method will function well with all ELF 

generating targets. 

The first test program is a short Fibonacci sequence calculator. Next, a slightly 

modified version the logcat application included with the Android operating system. 

Logcat provides a mechanism for filtering and prioritizing messages familiar to users of 

debug logs. Originally pulled from commit hash cfaded (Android Open Source Project, 

2022), changes were made to this code in order to pump messages directly so that the 

program could be tested without the need for a second application for input. Next, a 

routine from the TensorFlow framework, an open-source platform for machine learning. 

This test lifts code for single-threaded matrix multiplication from version 1.4.1 and 

includes some infrastructure to support execution outside of the full software suite. The 

final test is a game project designed for the Arduboy handheld game console, Sirene. 

While there are several hundred games for the console, most use a single game engine. 

This makes results between those projects are noticeably similar. This will be shown 

using another Arduboy game, Shrun, much later in the paper along with a few other one-

off examples to enhance experimental quality. 

The rest of the paper is organized as follows. Chapter II discusses Related Work 

in software portability, profiling, and instruction prediction. Chapter III broadly explains 

the innovative, non-intrusive profiling method used in the initial research. In this chapter 
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a detailed use case is also presented. Chapter IV describes the basic principles behind 

application instruction profiling. Chapter V examines the Estimation module. Chapter VI 

reviews the initial work and introduces new challenges discovered while piloting the 

PortAuthority prototype. Chapter VII provides details related to the methodology used in 

the Instruction Prediction module of the proposed framework. Chapter VIII demonstrates 

speed improvements later added to the instruction profiling method. Chapter IX will 

discuss background on target application areas. Chapter X discusses future work and 

finally, Chapter XI concludes this study. 
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II. RELATED WORK 

More conscious thought around future ports during the development cycle is 

desired. A common but poor practice is to apply improvised methods when the eventual 

need is discovered. Economically the costs of an improper port work against sound 

investment principles in a product line destined to remain on the market for a prolonged 

period. To accept uncertainty in new software can be uncomfortable and lack of foresight 

means addressing portability concerns early is an area for improvement for many 

developers. Software components exhibit portability when their adaptation costs are less 

than those of redevelopment (Mooney, 2000). This work is an attempt to improve 

weaknesses in the software porting process by providing programmer assistance via 

binary analysis. Binary analysis refers to the process of examining the raw data for a 

compiled application. While binary analysis is useful with or without source code it can 

be difficult to ascertain the key details of a program’s intent when reviewing only native 

assembly, the given language for binary analysis. For this reason, debugging the high-

level operation of an executable is more often done against the source for that program 

and binary analysis tends to be reserved for more specific use cases. The advantage of 

studying a binary directly is that it can give insight beyond what is available at the source 

level. Actual resource utilization for a target platform can only be known post 

compilation therefore binary analysis is used more often in later stages of a development 

lifecycle and where optimization, threat assessment, or reverse engineering are required. 

Static binary analysis can provide useful data without executing a program like the 

required space for different program segments. In contrast, dynamic binary analysis 

requires an actively executing program to report on a desired behavior, consider 
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performance counters. Each form of analysis provides access to different pieces of 

information, and each has notable strengths and weaknesses. Binary analysis relates 

closely to binary translation which in turn relates to instruction prediction. In this chapter, 

background for each of these areas is introduced to promote a better understanding of the 

PortAuthority framework.  

 

Portable Software 

Foundational work by Mooney provides a clear framework for describing various 

commonsense patterns to adapt software. He proposed guidelines for increasing and 

exploiting portability including: 

 • Control the interfaces  

• Isolate dependencies  

• Think portable 

 

There is no quick way to predict the runtime behavior of software without 

executing some sample code on a device. It is unrealistic to judge software performance 

without a due diligence porting trial and some upfront, hand-coded work. When working 

with portable software an engineer needs to be confident the source can be cross-

compiled and that the resulting code will run deterministically. This requires a successful 

cross-platform developer to keep Mooney’s principles in mind constantly. If software is 

not portable, it could take up to a few months of redevelopment time to generate a 

reasonable performance estimate of the anticipated final product. Meanwhile, developing 

a fresh codebase is also viewed as undesirable even for a new platform. This is because 
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software products tend to benefit from implementation in multiple environments when 

they remain in the market. Thus, long life is normal for professionally developed 

software. Average lifetimes of ten years are common with some going far beyond that 

threshold (Tamai and Torimitsu, 1992). Based on these observations, it can be concluded 

that the likelihood of eventual porting is high (Parnas, 1994). Alternatives to porting code 

include forking, copying, and splitting source development in independent ways for 

differing environments. While considered a low-cost alternative, studies of this 

phenomenon have called for new techniques to automate porting tasks to reduce the 

maintenance costs associated with software forks (Ray and Kim, 2012). 

 

Static Analysis 

Numerous utilities are available to parse, disassemble, and even recompile 

existing binaries. All are forms of static analysis. The first two tasks are critical to the 

implementation of the PortAuthority framework, but not necessarily clearly expressed in 

the final user output. The ability to parse and disassemble a binary is highly valued when 

reverse engineering a compilation process or compiled build product. During functional 

development or program optimization a compiler’s interpretation of a user’s source can 

occasionally lead to interesting bugs that require visibility on the assembly level to fix 

(Le et al., 2015). Disassembling a binary can help diagnose this condition before software 

is released. In contrast, the same methods can also be used to reverse engineer a product. 

Reverse engineering takes place outside of the initial development cycle and potentially 

by an outside party of developers. The challenge is to rebuild a software product lacking 

its source. This process can involve stages like redocumentation and design recovery but 
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fundamentally must begin with the elemental assembly code due constraints viewing the 

original source. Recompiling working versions of existing software from reverse 

engineered source serves as a high accomplishment in this practice. Specific examples of 

tools built for this purpose are IDA Pro and Ghidra (IOActive, 2008 and Rohleder, 2019). 

The Binary Analysis Platform (BAP) from Carnegie Mellon uses an intermediate 

representation to support program analysis (Brumley et al., 2011). The tool effectively 

combines the functionality of the standard GNU Binutils with a scripting language. The 

analytical features demonstrated by their team are static, and though not required it is also 

possible to execute IR created through this tool. BAP is highly extensible and tailored for 

the creation of custom tools built on its core methodology. Included extensions highlight 

a range of analysis from simple tools for translating between machine code and 

instruction mnemonics to more complex filters used to detect source code styles favored 

by the developer. BAP can also be used to build structures illustrating program execution, 

such as call graphs. Like many verification tools, detailed information about the run time 

complexity of individual functions can be derived, but information on whole program 

execution seems scarce. The high-level analysis provided by BAP is not suitable for 

evaluating the performance of an application. 

 

Dynamic Analysis 

Program optimization often requires the use of dynamic analysis, think execution 

profiler. While these utilities are powered by a variety of diverse techniques, binary 

sampling and source instrumentation are the two most common methods (Pereira et al., 

2017). Sampling profilers halt and record the state of a running executable periodically. 
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Instrumented profilers compile in special markers that allow them to gather similar kinds 

of information but from predetermined locations within an application. Given this broad 

definition, PortAuthority could be categorized as a sampling profiler with a very short 

period. It is set up by default to analyze every instruction within an application for a 

given range. In contrast, standard profilers might only sample once every millisecond. 

These other profilers are suited for a much different task and usually within the scope of 

the same or similar hardware. Specifically, when optimizing a program, it is valuable to 

know areas which are frequently executed. Sampling at a high enough rate can provide a 

representative view of that information much faster than single stepping each instruction. 

Peak memory usage and other metrics can also be discovered through using interval-

based profiling (Jin et al., 2012). Instrumented profilers work in a comparable way. They 

either log or break at distinct points within a program. This means that they depend on 

the processor crossing marked address locations within the program and do not arbitrarily 

halt the executing process. The output, however, is like that of a sampling profiler. 

Instrumenting an application may alter its personality and requires metadata to be 

included with a binary. As those characteristics work against goals for this research, 

PortAuthority is not implemented in a way that would allow it to be categorized as an 

instrumented profiler. 

With twenty years of active development, Valgrind is one of the most mature 

dynamic analysis tools available today. The fundamental example use case for this 

program is to check for memory leaks. This type of validation is valuable when 

developing in languages without garbage collection. Though initially targeted as a 

memory debugging tool only, the project now serves as a generic platform for a variety of 
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verification tasks (Nethercote and Seward, 2007). Valgrind uses a unique just-in-time 

compilation technique to drive its analytical processes. A user’s binary is first translated 

into an intermediate representation. From this state, the code may be transformed or 

augmented in a variety of ways before the IR is recompiled back into code for the host 

platform. Common augmentations for the IR include various forms of instrumentation 

and standard library replacement. Running the code in this modified state enables the 

series of extensions tied into Valgrind to perform their work with the caveats of reduced 

execution speed and implementation detail. For validation purposes, this approach has 

proved extremely useful. Valgrind is excellent for verification tasks but building an 

extension for this research would not be viable. As discussed with BAP, profiling the 

original binary representation is crucial to the usefulness of any performance output from 

PortAuthority. Augmentation in the form of IR obfuscates performance aspects of the 

compiler’s intent making predictions less accurate. 

There are of course informal methods of dynamic analysis as well. Lots of 

engineers work in an unstructured way with data directly from their development 

machine. Consider RAPL (Running Average Power Limit), a processor feature 

introduced by Intel and almost exclusively available on their chips. This feature adds 

registers containing continuous energy and power consumption information (Travers, 

2015). Excluding previously mentioned performance counter portability problems, using 

RAPL is an improvement over older methods, though it still has some inherent 

limitations when monitoring consumption in real time. For instance, its readings are not 

application focused and capturing the data can incur significant overhead. Therefore, 

background processes using RAPL, and even direct API usage can affect the resulting 
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estimate (Treibig et al., 2010). Worth noting, certain other metrics are beyond the ability 

of a user manually monitoring performance counters entirely. PortAuthority works to 

eliminate both the portability and observer effect problems associated with these ad-hoc 

dynamic analysis methods. 

 

Instruction Profiling 

A practical application of instruction profiling is used in the open source 

CacheSim utility distributed by Insomniac Games (Insomniac Games, 2017). Console 

games are often developed on hardware more powerful than what will be available to the 

consumer. As such, once functional testing is complete, an optimization round will likely 

be required in order to ship the final product on retail hardware. Caches are orders of 

magnitude smaller and faster than conventional RAM, so proper usage has a large impact 

on performance. Thus, a frequent target of game optimization is cache utilization. 

CacheSim can estimate cache performance for a target architecture. The tool does this by 

filling a simulated version of the target cache hardware based on the record of memory 

accesses provided by the host. Fine grained analysis of the memory accesses within a 

program is facilitated by a single step debugging mechanism within the tool. Insomniac 

Games confirmed their usage of CacheSim as a unit test during the Xbox One console 

generation, though it is unclear if it is still in regular use. Noted issues with the tool 

include some sensitivity to array prefetching. This makes the tool overly pessimistic 

about cache performance in certain scenarios. There are other small caveats mentioned 

given that the program is not entirely hardware accurate. Those limitations will be 

expanded upon in the later section on instruction profiling. 
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Instruction Prediction 

A few contemporary tools exist combining the use of Natural Language 

Processing (NLP) with binary analysis. Specific examples include instruction2vec and 

Asm2Vec, each based off the widely popular Word2Vec algorithm (Treibig et al., 2019). 

The focus of these two tools is currently to provide cross-architecture bug, malware, and 

plagiarism detection. The value in this approach is amplified by the diverse nature of 

assembly languages and the lack of a dictionary for direct translation. Much like a natural 

language, between vendors assembly languages may require multiple indirect instructions 

as a substitute for one from a competing architecture. Many conversational themes affect 

the quality of the outcomes when comparing binary forms of ported applications. To 

address performance, there is also a general strategy and ample prior research to expand 

the reach of existing data using supervised learning (Zheng et al., 2015). Lacking big data 

for multiple platforms extending this approach is less of an option for this study. Each of 

these methods utilizes machine learning for their predictions. Using the first two methods 

it is possible to compare program similarities cross-platform however with the latter this 

is not possible. Within the PortAuthority framework there is an attempt to combine the 

best that each of these approaches has to offer. The key difference is that PortAuthority 

uses machine learning to predict instructions likely to be compiled during a direct port. 

Performance evaluation happens indirectly later in the process and without inferencing. 

This means that the machine learning components of PortAuthority have more in 

common with the vectorization tools as there is a requirement to effectively plagiarize the 

innerworkings of a program for the purposes of cross-architecture performance 
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evaluation. These features of PortAuthority are novel and lack deeply comparable prior 

research. 
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III. NON-INSTRUSIVE SOFTWARE ENERGY ANAYLYSIS 
 

While multitudes of tools exist to help developers improve and distribute their 

source code, most of these options do not operate in ways that adequately address aspects 

of cross-platform development. Traditionally, this is difficult because profilers assume a 

single target and can require other tools and libraries commonly found for that platform 

in order to function. There are fundamental limitations to established profiling designs 

where source modification, binary instrumentation, or direct access to hardware is 

required. For example, relying on source modifications limits a profiler’s ability to target 

multiple languages. Virtualization is one approach that can be used to avoid these issues 

while profiling, but it also comes with problems of its own. Functional correctness is an 

excellent use case for virtualization, but also a minimum standard for quality in software. 

Virtualization is limited in its ability to deeply profile software as it makes abstract the 

innate uniqueness within a computing platform. With the availability of many correct 

implementations, current tools based on virtualization technology do little to directly 

address performance, a further level of functional betterment. This chapter outlines a 

study, where PortAuthority is used to attack a specific profiling problem not adequately 

addressed by existing tools. 

 

An Unaddressed Problem 

An IDE will regularly include features where source code improvements can be 

suggested or automatically applied from within the environment augmenting the skills of 

a developer. In addition, lower-level compiler optimizations are readily available for a 

variety of languages and programming setups that continue to enhance the code on the 
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back end. Common optimizations include transformations that automatically improve the 

speed or lower the memory usage of an application. However, no equivalent options exist 

to tailor the compilation, linking or refactoring of a program for better energy efficiency. 

Why is this the case? What would be required of a profiler in order to integrate energy 

efficiency analysis into an IDE? 

 

Interested Parties 

First, it should be established why this problem is important. Research on the 

popular developer community Stack Overflow has conveyed that there is growing interest 

from software developers in monitoring and improving the energy consumption of their 

applications. Unfortunately, most of the questions related to software energy efficiency 

are not answered or poorly answered (Pinto et al., 2014). Open-source mobile 

applications have been found to contain a searchable stream of energy-aware commits 

(Bao et al., 2016). Because developers are actively fixing consumption problems, it 

stands to reason that automated techniques that can help detect and locate them should 

also be in development.  

In certain circumstances, energy aware interfaces have been created in order to 

capture obscure conservation knowledge and increase access to power saving techniques, 

removing the need for developers to sort out the best approach on their own (Moura et al., 

2015). Within most projects however, bug fixes or features that require increased energy 

efficiency will not have the luxury of using such an interface and will need other ways to 

debug and eventually resolve these issues.  
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Existing tools such as the Battery Historian for Android can be used to debug this 

category of problems by reporting the active current draw from the mobile device’s 

battery (Google, 2017). However, this tool’s suggested code improvements focus on 

features specific to the Android platform (e.g., GPS and wake locks) in line with other 

reference materials from Google, restricting portability. Similarly, wisps of technical 

documentation from Intel delve into energy usage as it relates to algorithms and data 

organization but lack specific examples or toolkits that would help developers precisely 

replicate their results (Intel, 2011). Growing amounts of research are being conducted on 

the development of more aggressive and portable energy aware testing procedures due to 

a growing consciousness of these issues (Jabbarvand and Malek, 2017).  

 

Solutions 

Basic access to power consumption estimation on off-the-shelf development 

systems is normally present. Notably, software can and has been expanded with drivers 

connected to external meters for more accurate results, but most users will rely on the 

standard software implementations. PAPI is one example of a power profiling API for 

users of the high-performance computing languages C and Fortran (Weaver et. al, 2012). 

Jalen is an option for software running on the Java Virtual Machine (Noureddine et. al, 

2014). Each of these approaches is backed by hardware counter registers. Counter 

registers can work well in the absence of physical metering as specific actions taken by 

the CPU greatly influence power usage. However, this is not always the case. 

For many reasons, performance counters remain non-ideal for power metering 

purposes and different problems can arise when correlating their values to the underlying 
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usage. Consider the RAPL feature promoted by Intel and the challenges presented 

monitoring consumption in real time. Two major problems exist, its readings are not 

application focused and capturing the data can incur significant overhead. These 

limitations make it possible for background processes using RAPL, and even direct API 

access to affect the resulting estimate (Treibig et. al, 2010). Energy usage is inherently 

tied to a platform. Much more so than the other optimizations mentioned. Using less 

memory, or less instructions will plausibly create similar betterment cross-platform, but 

something like energy usage is not always tied to improved performance (Abdulsalam et 

al., 2015).  

Existing methods to determine software energy usage require hardware support 

for measurement, affect run time behavior, or are tied to certain programming languages. 

Easy approaches are restricted, and this can lead to a lack of awareness on energy related 

improvements. To provide the same usability and increased code quality that are 

available for standard optimizations, tools need to overcome these problems and provide 

similar descriptive warning messages and indicators of severity. Using PortAuthority to 

track the energy usage of basic instructions at the binary level, it is possible to build 

generalized rules for improving code’s energy efficiency and share that information with 

users at development time. The approach is non-intrusive, language agnostic, cross-

platform, and most importantly can be seamlessly integrated into popular IDEs.  

To accomplish this, PortAuthority can be used to build Portable Energy Scores. 

The Portable Energy Score is a normalized score that reflects the relative energy 

efficiency among basic low-level instructions such as add, mov, or stack operations. 

Scores are based on real power measurements from tools like the Marcher system (Zong 
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et. al, 2017), a fully equipped open development platform for measuring fine-grained 

energy consumption of arbitrary programs. As measured, instruction energy usage 

numbers are small, floating-point values and normalizing these to a whole number 

clarifies results. Once scores are established, a quality estimate for platform energy usage 

can be calculated using non-exact development hardware and without access to 

comparable measuring equipment. For example, an unmodified Intel Coffee Lake 

machine could estimate the relative energy usage for software to be run on Kaby Lake 

hardware if supplied with that platform’s per instruction energy scores. Normalized 

instructions are added to a lookup table, and as each is encountered during the single 

stepped run of a program the usage estimate is monotonically increased by the 

corresponding energy score. Higher scores suggest more energy would be used and in 

what relative quantity. 

 

Figure 2: IDE Integration Screenshot 
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Figure 2 is a screenshot captured from an early IDE integration demonstration. 

Here Portable Energy Score analysis using PortAuthority was added to the Visual Studio 

Code UI and evaluated with several sample projects. In theory, the following instructions 

could be applied generally to any extensible IDE, though each will have some unique 

setup requirements. Extending Visual Studio Code with a custom integrated task can be 

done on a per project basis. The IDE will create a hidden folder within each project 

named vscode. This folder contains settings files for various generic IDE and debugger 

tasks. For this research the tasks.json file within this directory was modified. This file 

supports different task types and labels and allows users to specify specific arguments to 

a list of utilities. PortAuthority is a shell application but there are other supported base 

types including scripts. When configured correctly, tasks.json entries will be placed 

within the top level menus of the Visual Studio Code IDE under the Run Task option 

under the Terminal menu.  

While testing this setup, three basic rules for energy efficiency were established 

and reported via the IDE. The first rule suggests that a developer find alternatives to 

replace clusters of stack instructions. The power consumption of stack instructions is 

significant, just below the highest of the x86-64 mnemonics tested. This could be 

valuable knowledge to reference during an optimization pass. Because the stack 

operation’s Portable Energy Score is so high, it creates the potential to refactor using 

different instructions for better efficiency. The second rule in the set is based on the 

comparatively poor performance of the add instruction when compared to that of the sub 

operator. Their execution speed and size are similar, but power usage is substantially 

different. Because they are also at times easily interchangeable, finding areas to swap 
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higher energy usage add instructions for sub instructions makes for an attractive rule. 

Consider the example of a loop within a program. In many cases, processing within the 

loop may be order independent. This property has been exploited by other optimizations 

such as loop unrolling. In this instance, iterating through a loop and decrementing a 

control variable has shown to be more energy efficient than incrementing one. 

Specifically, a seven percent decrease in overall energy usage was observed over a 

duration of twenty minutes (Ford and Zong, 2021). The error displayed in Figure 2 was 

triggered by this rule. The final rule established was the doubling rule. This rule describes 

any section of instructions that causes register contention. Intense focus on reusing a 

register incurs a significant energy consumption penalty. From the study this value 

capped at double the measurement from a sample with properly diverse register 

utilization. Hence, doubling. As of this writing, energy usage evaluation as a software 

construct is highly unconventional. The closest work by Tumeo was intended to work on 

intermediate representation and did not include specific components required to produce 

viable estimates. (Tumeo, 2017). Rather than providing a functioning test system, this 

research served primarily to motivate the need for such a technology. Further details on 

the innovations present in this prototype using PortAuthority are detailed in the next two 

chapters. 
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IV. INSTRUCTION PROFILING MODULE 
 

Given proper instruction information about the assembly language makeup of an 

application, it is possible to derive quality performance estimates for the execution of an 

entire program. This process trades off access to specific analytic tools for access to 

greater computational power. As designed the Instruction Profiling module quickly single 

steps an entire program and makes instruction data available to the pluggable set of 

analyzers in the Estimation module.  

 

 

Figure 3: Single Stepped Instruction Profiling Workflow 
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Overview 

Figure 3 illustrates the details for this module of the PortAuthority framework. 

First, when using PortAuthority, users have the option to select a specific profiling 

window based on a function signature or range of addresses. By default, the entire 

application is profiled. In the second stage shown in Figure 3, the module then runs the 

program via emulation, attaches using the GDB protocol, or where available, launches 

and probes the process through faster direct access using the ptrace call. This makes the 

module compatible with a large variety of processors and operating systems. To date, 

instruction profiles have been recorded on x86, x86-64, ARMv7a, AARCH64 and AVR 

architectures. During a standard profiling session, this module reads in the ELF 

information from an executable then steps the process to completion or within a defined 

boundary, as shown in stage three. PortAuthority can be extended for many forms of 

secondary analysis (see stage four). This is explained in greater detail in the next chapter. 

At the end of a profiling session, a user is given relevant console output, or a report can 

be generated as presented in the final, rightmost stage five. While the bulk of this 

research is focused on the secondary analysis provided by PortAuthority, Instruction 

Profiling in and of itself has analytical value. Figure 4 illustrates the categorization of the 

Sirene game test program. This example is faithful to the volumes of instructions 

expected to occur most often in the test programs. Of note, Sirene exhibits a little higher 

than normal percentage of arithmetic instructions and the entire test catalog is dominated 

by data movement. 
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Figure 4: Instruction Categorization of Game (Sirene) 

 

Categorization is the lens to view what exactly a binary version of a program does 

on hardware. Optimizations performed at the instruction level may not always align with 

those perceived in the source. Development environments have long provided options 

that help developers to optimize source code for higher performance or lower memory 

usage. For instance, an IDE may suggest removing or updating code. But beyond the 

source level, compilers like GCC and Clang also have macro-options which bundle 

together many smaller unique transformations into more user-friendly levels of 

automatically applied optimization that do not require developer input or knowledge. 

Other forms, like link time optimization, can be introduced even later in the build 

process. These options have wide ranging effects on the generated assembly code. Figure 

5 shows internally how a compiler may choose to optimize code in ways not described 

directly via the original source. 
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Figure 5: Example of Source Optimizations That Provide Identical Binary Paths 

 

In the figure above, the direction of the loop makes no difference on the 

underlying assembly. In each version, the loop is decremented despite the developer’s 

intent to increment the loop in the sample to the right. After a refactor the hardware 

version of similar source may also read quite differently than its predecessor. This 

indirect relationship between source code and generated instructions means that 

Instruction Categorization provides better insight into how source is interpreted by 

various compilers than higher level tools. Even working with low-level intermediate 

representations cannot provide the same fidelity as probing instruction outputs directly 

due to the post compilation optimizations injected during the build process. Amongst 

other benefits, in depth knowledge of the types of operations a program executes opens a 

conversation for developers to explore acceleration options. Floating point intensive 

applications may want to consider offloading CPU work to a GPGPU for instance. The 

tool could moreover be used to speculate on more exotic forms of acceleration like 

Processing-In-Memory (Ahn et al., 2015).  
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Evaluation 

Instruction profilers reviewed and designed in this research trend pessimistic. The 

feedback provided by several sources has implied worst-case results are preferred in 

place of overly optimistic projections when profiling software. While a good measure of 

performance for various metrics, instruction profilers are not 100% hardware accurate 

and should not be considered as such. One clear oversight is the lack of consideration for 

out of order execution. The goal of these tools is to give user’s something from almost 

nothing, broadly addressing the concerns of developer’s preparing for upcoming and 

inaccessible hardware. For in depth performance analysis, other more mature tools and 

greater access to development hardware will need to materialize. You can see evidence of 

this in the results reported for the other core modules. 

Validation for this module is largely defined by the other modules’ results. It is 

possible to compare instruction output from either another stepping profiler or an 

emulator, but the results will lack for difference as the underlying mechanisms are the 

same as those implemented in PortAuthority. Comparing the differences in stepped 

output between specific implementations is also a dry read. As it is trivial to establish the 

ground truth for single stepped instruction profiling, the crucial feature to evaluate in the 

research related to Instruction Profiling is sampling behavior. This is the subject of a later 

chapter. The categorization data for each test program is listed in Table 1. 
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Table 1: Top Categorization of the Test Catalog 

Test Program Data Movement Arithmetic Branch 
Fibonacci (24) 53 % 26 % 21 % 

logcat 59 % 25 % 15 % 
TensorFlow (MatMul) 60 % 23 % 17 % 

Game (Sirene) 47 % 35 % 16 % 
LINPACK 73 % 24 %   1 % 

 

 

A final note on instruction profiling. It not only works to generically compare 

various hardware resources, but also as a way to compare different programming 

languages. The core test programs for this research are all based on the C language, 

though from various distinct sources. As a special provision for this section results are 

also included for a well-known Fortran benchmarking tool, LINPACK. LINPACK is a 

numerical linear algebra library, and a derivative is the central benchmark behind the 

Green500 list (Feng and Cameron, 2007). Here a historical version is used which is 

readily available on GitHub. Though LINPACK is written in Fortran, its post compilation 

structure is comparable to other ELF executables. This validates the assertion that 

instruction-based techniques are widely applicable and largely source agnostic for 

natively compiled languages. By this logic, the other modules should also be applicable 

to ELF programs written in languages other than C. 
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V. ESTIMATION MODULE 

The Estimation module attaches estimates of various performance metrics to 

individual instructions. The expectation is that the set of instructions is provided by the 

Instruction Profiling module. Two techniques are employed in this research to attain the 

metrics tested. Other platform characteristics and extraction methods are discussed later, 

but here the focus is on the features which have been most robustly evaluated. 

 

 

Figure 6: An Example Micro Profile 

 

Overview 

A simple metric derived via instruction profiling is instruction counts. This can be 

used to determine the relative execution time of a program. While the static data will not 

give the user a measurable time to completion, the relative time difference between two 

programs will be obvious given that each version will have a different number of total 

instructions. Larger differences in instruction counts will result in larger time deltas. This 

is constant within a platform as the CPU instruction is the most elemental unit of 
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productivity with a contemporary computing device. For many reasons this may not be 

true if counts between two programs differ by a handful of instructions, but that 

vagueness dissipates quickly within the range of only a few hundred overall instances. In 

these exception cases, the real-world completion time would be small enough to be non-

perceptible, so as a rule the method still works. 

While simple instruction profiling metrics like this can be useful, if a developer 

desires more complex insight there are a few options to create new values. One of the 

established approaches to determine less apparent per instruction metrics is called micro 

profiling (Ford and Zong, 2021). Micro profiling requires the creation an inline assembly 

program containing only a representative instruction or small set of related instructions. 

Internally this program should loop for a period sufficient to execute several billion 

instruction instances. The code is referred to as a micro profile. See Figure 6. A micro 

profile should contain a gentle blend of slightly varied operations (like different register 

usage) in order provide the best outcome. While a micro profile executes, the desired 

metric will be evaluated via instrumentation. The measured sum of a metric for the entire 

micro profile is then divided by the total number of instruction instances run. This 

operation reveals an instruction’s performance signature. Because the same instructions 

comprise all programs on a platform, these values can be reused when profiling other 

applications. Ironically, micro profiles are highly unportable between different CPU 

architectures, but their creation is trivial to the point of automation. Ideally manufacturers 

or a community of developers would also share the results of their micro profiling efforts 

in order to jump start the development of ports to specific platforms. As shown before, 
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energy usage is an example of an effective metric that can be determined via micro 

profiling. 

Apart from measuring their effects on various subsystems, performance metrics 

can also be resolved by tracking the in-memory location of instruction instances. This 

technique is referred to here as mapping. There is a core assumption that data sizes 

remain similar or proportional across two platforms while mapping. Like cache 

utilization with CacheSim, memory usage may also be tracked using a form of instruction 

mapping. In this research it has been observed that decoding memory addresses resident 

inside certain assembly language instructions will allow those locations to be tracked as 

in use by a profiler. Aggregating these segments of memory during a debugging session 

can provide a good estimate of the maximum amount of memory required to port existing 

functionality across a variety of unique platforms. Any significant differences in memory 

usage from this estimate while profiling a future port likely indicates a programming 

error. For instance, while standard data types, like int in the C language, may compile to 

different sizes on separate platforms, it is not required to use these types exclusively. A 

portable program with vastly different data structure sizes should be refactored using 

more deterministic language constructs. Next, a walk through the pseudocode below to 

help to describe the specifics of this technique. 
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typedef value_type; 
 
main() 
 
    const values; 
 
    i = 0 
    j = 0 
    value_type value 
    value_type* test = (value_type*)malloc(values*sizeof(value_type)) 
 
    while(j < 2*values*sizeof(value_type)) 
 
        test[i++] = value 
        if(i == values) 
            i = 0 
        j++ 
 
 

In the example above a block of memory is allocated and each value is written to 

twice. The exact size of the block and constant here is unimportant. To determine the 

memory usage of this function using instruction profiling the profiler will tag each store 

instruction for a given architecture. Load instructions could also be used or a mixture. 

Using both could provide finer results, but in most cases addresses outside the overlap in 

common addresses between the load and store instructions would be irrelevant. For this 

walk through, using the AARCH64 RISC instruction set will be comparatively brief as 

there are less store instructions to describe. Two specific store instructions are tracked 

within PortAuthority, STR and STUR. The effect of each of these instructions is to 

transfer data from a register to a memory address encoded within the opcode. By 

mapping these addresses inside an exclusive set, the profiler can discern the amount of 

memory used by an executable. When tracking load and store instructions relative 

memory access requirements can also be described. Available memory bandwidth is a 

key limiter to in-memory processing, the acceleration technique described previously 

(Ahn et al., 2015). 
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Accurate depictions of code coverage can also be calculated via mapping. 

Because this module is driven by ELF data, it is easy to know all the executable 

addresses within a binary. These are the instructions contained within the .text section of 

a given program. While the profiled application is executing, addresses hit during the 

session are captured by the PortAuthority framework. Then this module only needs to 

perform a simple set of calculations on these data to provide an accurate view of the 

percentage of an application covered. The sum of the instruction sizes at each unique 

address hit during the profile divided by the total size of the .text section is used to 

evaluate the instruction coverage of a particular run. 

 

Evaluation 
 

As mentioned, energy usage can be determined on a per instruction basis and 

applied generically across a set of individual programs. Prior research has shown 

instruction-based energy estimates for a collection of applications to be within 10% of the 

final values provided by other contemporary methods (Ford and Zong, 2021). Baseline 

measurements in previous work show PortAuthority results to not only be comparable to 

values provided by other software approaches (like RAPL) but also to physical 

measurement using specialized hardware like the Marcher system (Zong et al., 2017). 

The energy outcomes for the test catalog are shown in Table 2 and conform to this 

expectation. 
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Table 2: Energy Usage Comparison for the Test Catalog 

Test Program Measured 
x86-64 

Estimated 
x86-64 

Measured 
AARCH64 

Estimated 
AARCH64 

Fibonacci (48) 1615.53 J 1688.72 J 93.70 J 95.77 J 
logcat 1533.32 J 1559.28 J 89.43 J 92.32 J 

TF (MatMul) 3190.15 J 3233.48 J 187.50 J 190.01 J 
Game (Sirene) 2709.76 J 2722.77 J 157.53 J 160.99 J 

 

For memory usage, static elements like the data segment and program sizes can be 

easily determined cross-platform using ELF data. The important sections of a program all 

report their size in the executable’s metadata. Using these data combined with the process 

described above to gather the dynamically allocated memory required during program 

execution can provide a valid impression of the memory required to load a program. For 

dynamic memory usage this technique was evaluated against the Valgrind memcheck 

tool. This would be roughly equivalent to the output from the top application on Linux or 

the memory usage reported from a similar system monitor if applicable for a platform. 

Table 3 details this research’s memory usage comparisons. 

 

Table 3: Memory Usage Comparison for the Test Catalog 
 

Test Program Valgrind Usage PortAuthority Usage 
Fibonacci (8)        636 B        764 B 

logcat   73.26 KB   64.31 KB 
TF (MatMul) 257.34 KB 258.77 KB 
Game (Sirene)   69.63 KB   69.88 KB 

 

While most of these programs have alignment across both tools, there is a 

material difference in the logcat values. This discrepancy highlights some dissimilarity in 

the information provided by Valgrind and PortAuthority. Recall that Valgrind depends on 
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the ability to run a program inside an instrumented run time and PortAuthority does not. 

The values for memory usage returned by Valgrind are based on resources allocated by 

the standard library. This does not guarantee that those resources are used during program 

execution. PortAuthority on the other hand reports exactly what pieces of the allocated 

memory were used during the profiled run. In the unit test for this research, logcat 

allocates more memory resources than it accesses. Unlike the other programs, this 

process has clearly identifiable unused resources. The dispute is not necessarily bad, but 

one metric may be more valuable than the other under certain conditions. PortAuthority’s 

version of memory usage represents in the lowest common denominator. 

Finally, coverage evaluation. As a baseline measurement for coverage quality, the 

Estimation module results are compared to output from another code coverage 

tool, Gcov. This program is a recognized standard for statement profiling, and it is 

included with the GNU Compiler Collection. Unlike the PortAuthority framework, to use 

Gcov an application must first be compiled with two flags, -fprofile-arcs and -ftest-

coverage. These flags signal the compiler to instrument the source so that when run a 

series of log files are produced detailing the paths taken by the application. No source 

modifications are necessary, however creating a new binary is a required part of the 

multistep process to generate a clean Gcov profile. After executing the instrumented 

program, a set of data files are produced. These are intended to be ingested by tools like 

lcov which will in turn produce a human-readable coverage report. Coverage via Gcov 

has a healthy set of ordering and version requirements, as opposed to the non-intensive to 

non-existent prerequisites for PortAuthority analysis. For this research we compared 
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PortAuthority’s instruction coverage with statement coverage from Gcov with favorable 

results as shown in Table 4. 

 

Table 4: Coverage Comparison for the Test Catalog 
 

Test Program Gcov Line Coverage PortAuthority Coverage 
Fibonacci (24) 100.0 % 100.0 % 

logcat   15.6 %    13.1% 
TF (MatMul)   39.6 %    11.2% 
Game (Sirene)   17.4 %    14.5% 

 

Using DWARF data and the GNU Binutils developers can easily display source 

intermixed with object disassembly using objdump. This is the most readily available 

visualization of the relationship between the metrics provided by the two tools. In most 

cases the two will track within a narrow tolerance. From the test catalog one result stands 

out as obviously dissimilar between Gcov and PortAuthority. Further investigation 

reveals that this difference is related to the use of C++ templates. This feature allows for 

blocks of source code to be written using generic type information and then reused with 

multiple concrete data types. The feature is implemented by the compiler and results in 

multiple similar but distinct functions being generated in the final output binary where 

real types are repeatedly substituted for the generic. 

In the non-conformant TensorFlow test case, templated classes are heavily 

utilized throughout the source. Internally to the compiler, this results in concrete 

functions for each method within a class being generated for each type requested by the 

developer. During later passes the compiler is allowed to dead strip unused code 

including class methods. Only the class methods necessary for proper execution are 

required to be placed in the final binary. However, in this example there is at least one 
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instance where the specific code for an unused templated method is still set to be emitted 

into the output binary. The compiler is reluctant to strip the function, but the reason why 

is unclear because rules within a compiler can be opaque. Setting the compiler options to 

dead strip code can increase coverage numbers using either tool, but in this instance even 

targeted directives to the compiler about these functions are ignored. 

The presence of extra, unused instructions is a topic for debate on the meaning 

implied by metrics given by various tools. Coverage is frequently used by developers to 

evaluate the robustness of their unit test infrastructure. Specifically, it helps answer the 

question of whether there are enough tests to be confident in a software release. Once 

released, bugs may be found anywhere accessible to the user, so it is important to cover 

all available functions. By nature, templates are minimizing the lines of code within a 

source file. Executing even one variant of a template function is enough to include that 

line in the overall coverage metric returned by Gcov. In contrast, PortAuthority is 

reporting coverage based upon all execution paths generated within the binary. This is 

inherently a greater search area than lines of code when templates are involved. If 

developers are executing multiple variants in their production code, they may be lulled 

into a false sense of coverage when testing a single variant within a unit test framework. 

Using line coverage as measurement of unit test completeness does not account for 

templatized variants in the way PortAuthority does. However, in the research test case, 

the code is unexecuted which makes the value of either approach conditional.  

A final note on coverage. Regardless of architecture, instruction coverage should 

be the same for all platforms. However, coverage percentages can drift a bit based on 

instruction size. Some platforms, like AARCH64, have a uniform instruction size but 
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notably x86-64 does not. The end calculation within PortAuthority is based on the 

program size in bytes, not actual instructions, so reported numbers may differ slightly 

based on the architecture a developer chose to profile. 
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VI. ARCHITECURE CHALLENGES AND PROFIING EFFICIENTLY 

After living with a prototype, it is not uncommon to identify a list of immediate 

design improvements. Notably while the initial method developed for PortAuthority is 

inherently cross-platform and architecture independent it does not work cross-

architecture. Profiling applications using this method requires that new potential targets 

are compatible with the same application binary interface as the machine used to develop 

the code. Instruction profiling in its initial form is valuable within a given CPU 

architecture across multiple distinct, conforming platforms but less so as new instruction 

sets are encountered. Automatic, robust cross-architecture support is critical for the 

adoption of any technique designed to enhance the experience developing portable code. 

While it is not impossible or uncommon to encounter ports destined for similarly 

architected or compatible systems it is also not guaranteed that this will be the case. In 

fact, foundational innovation in a stagnant technology market is often motivated by 

significant changes to a platform’s underlying CPU architecture.  

Another glaring issue with the initial version of the tool is profiling speed. 

Functionally, single stepping executable code produces the highest fidelity results when 

using instruction profiling. However, halting an application for analysis has a high cost 

with the operating systems tested. Therefore, repeated halting for every instruction 

executed quickly compounds the overhead, affects the debugging experience, and 

ultimately reduces the value of the technique in real world scenarios. 
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The Unaddressed Problems 

The CPU architecture landscape will soon become more fragmented than it has 

been in a generation. This makes porting software to a new platform require considerable 

effort. Currently, utilizing emulation tools such as Apple’s Rosetta (Apple 2020) is the 

most straightforward way to reuse cross-architecture software because it introduces 

minimal development cost. Unfortunately, emulation overwhelmingly favors 

compatibility over performance. In fact, degradation of 20% or more due to the overhead 

incurred through emulation has been reported when using Rosetta (McShan 2021). Even 

in the event simulators do exist, tools that can emulate cross-architecture devices for the 

purposes of performance modeling are lacking (Zheng et al., 2015). Creating emulators 

with a deep understanding of the implications of running software built for a new 

architecture will also lack finesse given a standard product release timeline. The presence 

of real hardware will always be before the completion of widely available, and highly 

accurate simulators. While emulation tools provide a temporary solution, their timely 

obsolescence is expected as a technology transition window expires. Cost effective tools 

that can help developers port software and avoid work arounds like emulation are 

becoming more valuable but there are non-trivial challenges to their development. 

Adding to porting frustrations, specific hardware and supporting toolkits (e.g., 

libraries and compilers) may not be readily available for developers. For example, retail 

hardware was not obtainable until six months after Apple announced the M1 chip, the 

fulcrum point for their corporate shift from x86 to ARM. Even once available, the 

process of natively porting and creating new, dedicated code to support an alternative 

architecture may have a steep learning curve. The cost to fix all compatibility issues can 
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be high and extremely time-consuming. Incompatibility in key areas will significantly 

delay ports to a new platform. Despite this, development tools remain woefully 

unequipped to tackle multi-architecture development directly and adding yet another 

profiler to the mix without cross-architecture capability immediately limits its appeal. 

Additionally, a hundreds-fold slowdown is observable when profiling the sample 

Fibonacci sequence code using the initial version of PortAuthority. While the real-world 

consequences for this tiny application are small, this not ideal for larger programs. When 

attempting to profile an application with a normal execution time of several minutes, this 

process quickly becomes untenable. The potential for a profiler to evaluate whole 

program execution is important as insights gained from profiling pieces of an application 

may be different than those based on running an application to completion. The market 

for higher precision instruments with slower speeds is clearly niche. Generally, profilers 

are allowed to trade some accuracy for throughput. The positive community response has 

continued to direct profilers to be developed in this way. The desire for lower fidelity 

tools that work quickly is well established and there are defined limits to expected 

imperfections (Patel and Rajawat, 2013). Increased speed can be accomplished through a 

variety of stock techniques like sampling or data filtering (Lin et. al, 2013). Time and 

time again researchers have affirmed the advantages of a faster profiler when compared 

to the hyper accurate. Eliminating redundant data or the need for verbose information is a 

core value in computer science. Profiling should be organized in a way where detailed 

information is available but also not typically required for quality insights. 

With mild improvements, PortAuthority can be used in these previously problem 

areas to great effect. Details on the features added to PortAuthority to remedy the second 
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wave of challenges encountered are presented in the next two chapters. Chapter VII 

showcases how the first issue was resolved. It outlines the Machine Learning (ML) 

program used to build representative cross-architecture binaries for analysis with 

PortAuthority. Chapter VIII presents a modified execution sampling process whereby 

large instruction segments are not exhaustively single stepped. They are instead later 

recovered and passed to the framework as if recorded naturally. This addresses efficiency 

problems related to instruction profiling as the research indicates back tracing 

instructions is significantly faster than recording them linearly. 
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VII. INSTRUCTION PREDICTION MODULE 
 

The primary responsibility of the Instruction Prediction module is to determine 

what cross-architecture instructions are expected to compile for a target platform based 

on the original instructions used on a source platform in the event of a port. This greatly 

extends the value of instruction profiling and estimation. Given quality micro profiles or 

other estimation information it is possible to create new estimates for a separate platform 

without officially porting software. A probabilistic n-gram model is used to facilitate 

instruction prediction in PortAuthority. Contiguous sequences of n items, or n-grams, 

have been used successfully in this family of pattern matching techniques with binaries 

compiled using similar levels of optimization (Lee et al., 2019). 

 

Overview 

Predictive artificial intelligence in PortAuthority is powered by learned n-gram 

instruction distribution lists. The lists are built based on the content of a code corpus that 

consists of many identical functions built for each supported architecture. A small 

amount of compiled source data is required to reveal sufficient historical patterns of the 

relationship between assembly instructions from two disparate platforms. For this 

research, the focus is on predicting instructions in a potential AARCH64 port using a 

finished x86-64 source binary. To generate a distribution list, a training step is required 

whereby an application windows across n instructions at a time recording an x86-64 n-

gram and the corresponding ARM architecture n-gram from the code corpus. Later to 

construct a representative ported AARCH64 version of an arbitrary x86-64 program, 

PortAuthority emits equivalent AARCH64 n-grams using reference n-grams from a 
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disassembled source application according to the learned probability from the database of 

previously compiled sample functions. An example of these data is shown in Table 5. 

This output is composed of a list of AARCH64 n-gram frequencies attached to each 

discovered x86-64 2-gram from the code corpus. 

 

Table 5: N-gram Distributions For x86-64 PUSH-MOV 

N-gram  Frequency % 
SUB-STP 45 
SUB-STR 16 
STP-STR 6 
MOV-STP 5 
STP-MOV 5 

 

 The code corpus used in this research follows the high data standard described by 

Post (Post, 2018). It is critical that these executable segments are created using the same 

process and with identical source code across platforms. In addition to available open-

source code, the corpus also includes a selection of Clang compiler tests and computer-

generated C code using Csmith (Yang et al., 2011). Each function in the code corpus is 

compiled using the Clang compiler from the LLVM project at commit hash bb7a57. 

One important issue that must be addressed when translating executable code is 

the potential difference in instruction density between the source platform and the target 

platform. For instance, the number of AARCH64 instructions in a given program is 

typically larger than that of its x86-64 counterpart. Using data from the code corpus, it 

can be observed that on average AARCH64 variants of each program contain around 5% 

more individual instructions than those built for x86- 64. Therefore, generating an 

executable with a 1:1 ratio of instructions often ignores a certain percentage of 
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instructions that should appear in a port. To solve this problem, the module is designed to 

supplement raw n-gram sequences with statistical occurrence data. Each generated 

executable is padded after the initial n-gram conversion with an additional short list of 

raw probabilistic instructions equal to the deficit expected between corresponding 

platforms. Finally, all the generated instructions are passed to the Estimation module, as 

before with recorded instructions, for further processing. 

 

Evaluation 
 

The effectiveness of the Instruction Prediction module can be measured in many 

ways. The first perspective is context-free. Before a model generated by the module can 

be considered valid it must be shown comparable to a compiled application when viewed 

as a bag-of-words. Do the instances of various instructions closely match those of a 

compiled version of the same program not considering order? The test for this property is 

straightforward. Figure 7 depicts the expected differences between a predicted version of 

the Fibonacci test program before and after a complete port. The results show matching 

opcodes in worst-case descending order and capped at the point of insignificant 

difference. There are other unique instructions in each program not shown in the figure, 

however when judged context-free the useful differences in those instructions would not 

be apparent. From a very high level it is known that this program is communicating the 

same intent as a proper software port as it is using roughly the same instructions in 

roughly the same distribution. That alone is enough to enable basic instruction estimation 

in this area of the research. 
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The findings from this round of experimentation indicate that 2-gram sequencing 

provides the best instruction predictions. The first instruction generation scheme, shown 

in the top left of Figure 7, is based purely on the statistical distribution of instructions the 

compiler will generate for any program. All latter schemes use an x86-64 version of the 

core application as a source for emitting equivalent AARCH64 n-grams. The results for 

each scheme are shown in decreasing order of difference (left to right) versus a compiled 

binary. The scale of differences between the candidate and the reference instruction 

instances drops sharply where n-grams are used. Immediately, the outline of the 2-gram 

prediction snaps tighter to the instruction mix exhibited by the full port. Unfortunately, 

this momentum is not clearly maintained as we increase values for n, as evidenced by the 

diminishing return of the 3 and 4-gram predictions. The trend of worsening instruction 

improvements accompanied by loss of cohesion on instances originally further to the 

right on our chart holds true as n increases. This amplified noise is visible in bottom half 

of Figure 7 where 3-gram and 4-gram schemes are active.	 

 

 

Figure 7: Comparison of Predicted Instructions to Real Using the Fibonacci Test 
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While context-free evaluation is valuable, applications are inherently reliant on 

context. A working program not only requires proper ordering, but also adherence to 

subtle platform and vendor binary contracts in order to execute. Cache utilization is an 

excellent example of why context is also valuable when estimating performance. Through 

experimentation, it is well known that full applications predicted by this module will have 

few exact instruction matches internally to their compiled counterparts. Typically, this 

can be as low as 8 to 10%. If you compare an instruction at an arbitrary address from the 

compiled application with the instruction at the same address in the predicted version, a 

large majority of the time it will be different. An exact match is an easy way to prove 

context correctness, however context integrity can be evaluated without exactly matching 

a reference program. This research uses the Bilingual Evaluation Understudy (BLEU) 

score to bridge that gap (Papineni et al., 2002). 

The BLEU score is a widely accepted metric for evaluating the quality of a 

generated sentence to a reference sentence. It is always in the range of 0 to 1, with 1 

being a perfect match (generally unobtainable) and 0 being a perfect mismatch. Although 

the BLEU score is mostly used for natural language translation, here it is used to evaluate 

the quality of code translation between different hardware architectures. The generated 

code for the target platform is known as the candidate. When comparing a candidate to its 

reference (a native port), the calculator will window over the candidate combining terms 

at a distance of n. In place of an exact match, scores are calculated based on instances of 

that n-gram in the reference code using statistical precision.  

Expectations for readability can be viewed as appreciably better for each 10% 

improvement in a BLEU score. Scores that are less than 0.20 usually do not provide 



 

51 

significant value while scores above 0.60 offer the highest fluency (Lavie, 2011). The 

score will also penalize instructions that appear in the candidate program more times than 

its references. Hence there is a high level of correlation between the closest modeling 

executables tested using other metrics and their BLEU scores (Ford et al., 2021). See 

Table 6 for a full set of test results. One limitation to improving our BLEU scores is the 

lack of several reference translations to compare against as compilers should always build 

source in the exact same way. In contrast, a human translator would not be held to the 

same standard.  

 

Table 6: BLEU Scores for the Test Catalog 
 

Test Program Score 
Fibonacci (24) 0.22 

logcat 0.79 
TensorFlow (MatMul) 0.33 

Game (Sirene) 0.42 
 

Based on this evaluation, 2-gram instruction prediction is again recommended 

when profiling ELF executables as it generates the best result and fits for broad 

categories of analysis. Exact matches are never greater than 10% in any of the tests, while 

a minimum BLEU score of 0.20 is maintained over all experiments. This suggests the gist 

of a given program is clear, albeit with significant ordering errors. These scores 

compliment the results presented during the context free testing. Most of the translated 

executables provide good, understandable translations and one test even achieves the 

high-quality standard.  

Papineni et al. reported that natural language translations achieve their highest 

levels of n-gram correlation around n values of 4 (Papineni et al., 2002). Functional 



 

52 

blocks may contribute to the comparatively low best value in this research where n equals 

2. In reviewing the mixed disassembly of the test catalog, it was observed that for some 

lines of code only 1 or 2 instructions are required to convey the source intent. If the 

majority of the functionality described in source is built using only a few instructions per 

line, it makes sense that larger n-grams would fail to produce consistent results. 

Ultimately, trusted values are more important than high numbers for n. Where possible, 

clarity may be improved by translating from the platform with the lowest instruction 

density. While the code corpus consisted of a thousand source functions, noticeable 

quality remained even with half this amount of data. Below this, experiments were less 

successful. To maintain this level of integrity, a code corpus must be composed from a 

diverse selection of software and using similar compilation processes on each platform. 

Access to native cross-platform porting tools, without requirements for source 

code, and while lacking higher levels of interpretation is also a pioneering aspect of this 

research. Using the BLEU score to evaluate these ports has been well received in the low-

level software community and many future research forks should be possible based on 

the template provided here. Simultaneous multi-platform debugging information is made 

possible by this creative feature and displaces other methods like static scaling or 

serialized multi-target testing in an expanding number of profiling use cases. 
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VIII. SAMPLED INSTRUCTION PROFILING 

One issue often cited with the Instruction Profiling module is the lack of profiling 

speed. When compared with a traditional sampling profiler, following the path of each 

instruction as opposed to several hundred or thousands at a time has visible user impact. 

This research observed profiling times 200 times slower than normal program execution 

while single stepping, and that rate is not acceptable for analyzing software with 

prolonged execution time. For specific workloads, it is possible to profile a single 

iteration and scale instruction profiling results to minimize profiling time. PortAuthority 

supports scaling and the feature is adjustable to match the common limiting behaviors of 

executable functions. However, this does little to address problems with whole program 

execution as inevitably applications are composed of numerous unique algorithms, each 

with different Big O representations, which can be chained together unpredictably. This 

chapter explores additional features added to PortAuthority in order to address problems 

during whole program execution including batch sampling, call stack tracing, instruction 

backfilling, and fail-safe reconstruction. Combined these features significantly accelerate 

instruction profiling times with little loss in overall estimation quality for the entire 

lifetime of a process. 

 

Overview 

 Instruction profiling has been proposed to address specific weakness of 

conventional development tools. In its purest form however, this method lacks the 

expected usability of those products. The proliferation of sample-based tools is a good 

indication that they typically provide what developers want from a profiler. They are 



 

54 

reasonably fast and can generate enough data to progress development past regular 

production hurdles. To bridge the gap and bring commercial viability to instruction 

profiling this research also includes suggestions for blending the two methodologies 

while retaining the best elements of both. It is possible to produce quality cross-platform 

instruction profiling results while sampling from a working application at the cost of 

increased algorithmic complexity.  

 

 

Figure 8: An Illustrated Example of Call Stack Tracing. 

 

Instruction profiling requires a captured list of instructions near the number and 

categorization of an actual port to a target platform. Sampling inherently denies 

PortAuthority this core requirement so additional mechanisms are introduced in order to 

estimate the missing instruction data. The first of which is call stack tracing. Call stack 

tracing provides a broad overview of the functions executed over the profiling interval. 
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This feature is implemented in PortAuthority as a two-step process. First, the profiler will 

take advantage of the function call record resident in many compiled executables. 

Inherent to many CPU architectures is the ability to use a stack pointer register to back 

trace the execution of a halted, native program. This gives standardized access to the 

memory address of a caller from a callee in a recursive way. In a standard IDE debugger, 

the resulting execution chain is commonly referred to as the call stack. On conformant 

architectures it is then possible to navigate a list of stack pointer/instruction address pairs 

in applications programmatically. Because this is a property of the underlying hardware, 

this technique works with code built from a diverse set of source languages. Call stack 

tracing is feasible using any of the current PortAuthority front ends though it has only 

been implemented using ptrace. The core requirements are access to an initial value from 

the stack pointer register and the ability to probe an application’s memory.  Creative use 

of these features allows PortAuthority to read from the stack and enables it back trace 

function calls and recover instructions previously executed during the sampling interval 

(Figure 8 illustrates an example of call stack tracing).  Each colored block in the diagram 

represents a function. Each function in turn calls another depicted just ahead of its caller 

in the Z-order of the figure. Using the method sketched it is possible to create a 

reversable pointer system whereby callee functions can determine their callers. 

As described is the brute force approach to reconstruct a call stack. There is also a 

formal bytecode designed to describe all the stack decisions a compiler has made during 

compilation (DWARF Standards Committee, 2007). Interpretable call frame information 

is optionally available in ELF executables compiled with DWARF debugging symbols, 

but these can be stripped during production. Tailored stack data is handy when debugging 
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because in many languages this memory is used in an unstructured way for data beyond 

call frames, including local variables. The decision to crawl the stack directly in 

PortAuthority is driven by the desire to operate without a requirement for symbols. Using 

the brute force approach means that the tool can work with a greater variety of non-

instrumented executables but is limited in the call depth it can uncover. 

 In the following experiments, while processing x86-64 ELF binaries, ptrace 

based call stack tracing is used to facilitate on-the-fly instruction prediction and generate 

code for AARCH64. On this profiling platform, the top of the stack always resides in the 

rsp register. Stacks by convention on Linux start high in the upper address space of a 

platforms’s virtual memory then grow downward. To find previous frames, PortAuthority 

will incrementally search upwards in memory from the current frame’s stack pointer to 

find a value greater than the initial address given by reading rsp. Recall the key pieces of 

frame information include stack pointer/instruction address pairs and that the address 

ranges for both the executable .text section and the stack are narrowly scoped.  When 

combined with the knowledge that stack information is regularly formatted, the tool can 

consistently filter out stack noise and retrieve data of interest. If the search is successful 

and stops adjacent to a stored value that also resolves into the address range of the .text 

section of the ELF executable being profiled, the algorithm assumes it has correctly 

bypassed any data not related to call stack recovery. This happens recursively until 

PortAuthority is unable to define a valid executable frame using these parameters. 

Specific platforms may define the stack behavior differently, but the presence of stack 

pointer/instruction address pairs and some notion of exploitable compiler conventions 

should be commonly applicable.  
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Tracing the call stack identifies functions of interest but fails to present a 

complete set of instructions run over a sample interval. For each call discovered, only one 

additional correct executable instruction can be confirmed. To compliment call stack 

tracing another step has been added as part of the reconstruction process. This step is 

referred to as instruction backfilling. For each frame discovered, PortAuthority will 

iterate backwards from the address found in-memory by one instruction until a ret opcode 

is encountered. The next instruction is marked as the beginning of the function in the call 

frame being interrogated. Then the range of addresses from this boundary back to the 

address found on the call stack are decoded and added to the list of instructions to profile. 

This produces results like single stepping the process, but without the overhead of 

starting and stopping the process multiple times.  

A ret instruction internal to a function would work against this scheme. Forcing 

an early ret instruction is difficult and unexpected given how compilers typically layout 

an execution path. Despite efforts in Figure 9 to return in multiple locations, the branches 

within the function all jump to the same final destination. A function has standard duties 

that help it prepare for its assigned tasks and to return control to the function from which 

it was called. Repetitive elements within a program like the prologue and epilogue make 

up a considerable portion of an application’s execution. In fact, so much time can be lost 

during these boilerplate activities that there are specific optimizations to reduce their cost, 

like function inlining. In reference to Figure 9, each branch must execute the epilogue to 

conform to binary interface expectations so returning from a single location ultimately 

makes the most sense. While this range to ret search method will not always provide a 

perfect account of the instructions run, the behavior is reliably close to correct.  
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Figure 9: Placement of Compiled ret Instructions. 

 

Measuring or optimizing code will provide the most benefit to a developer on 

longer running or more frequently hit segments. This makes sample-based profiling a 

good tradeoff even though it does not provide a full picture of a program’s execution. 

However, a common complaint with this approach is that it may miss smaller sections of 

code that run to completion within the sampling interval. A remnant of this behavior also 

affects PortAuthority. When sampling, the depth to which PortAuthority can trace and 

backfill the call stack does not always provide a number of instructions equal to that 

which should run over a sampling interval. Remember that while instruction profilers are 

tolerant to some incorrectly reported instructions, they struggle with misreported 

instruction counts. Providing a statistically significant wrong volume of instructions will 

yield consistently worse estimates, so the tool must guarantee that somehow during 

reconstruction it can always provide a count of instructions near that of a single stepped 
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profile. Two fail-safe mechanisms were proposed during this research (statistical 

occurrence data and repeat until full) for use when PortAuthority establishes that a call 

stack is too shallow. Statistical occurrence data as defined previously is simply a 

continual output of probabilistic instructions from most frequently occurring on a 

platform to the least. The probability of an instruction is derived from the n-gram 

instruction prediction code corpus created for cross-architecture prediction. The repeat 

until full process recycles the existing data gathered from the current call stack until a 

collection of instructions equal to what should have been executed during the last sample 

interval has been accounted for. Repeat until full was found to be superior and is used 

exclusively in the following evaluation. 

 

Evaluation 
 

The familiar test programs are rerun through the previous profiling tests in order 

to evaluate their suitableness for sample-based profiling. In addition, extra benchmarks 

are added to further demonstrate expected outcomes. Batch sampling is implemented in 

this research by modifying the ptrace system call central to the operation of 

PortAuthority. Here the INTERRUPT parameter is used in place of SINGLESTEP. This 

changes the behavior of the call and allows ptrace to arbitrarily stop a running process 

and examine the current state. Looped ptrace calls using the INTERRUPT parameter 

combined with an additional call using the CONT parameter, which resumes execution 

from a halted state, form the algorithmic base of batch sampling for this experiment. 

Starting with Table 7, the categorization results for each program are recalculated using 

sampled profiling. In Table 8, the previously measured values are shown alongside the 
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newly sampled energy estimation results for the profiled x86-64 platform. AARCH64 is 

excluded here as the sampling technique does not change the downstream instruction 

prediction/profiling process outside the initial input value for the profiling host. 

 

Table 7: Top Sampled Categorization of the Test Catalog 

Test Program Data Movement Arithmetic Branch 
Fibonacci (24) 45 % 25 % 13 % 

logcat 62 % 22 % 15 % 
TensorFlow (MatMul) 61 % 24 %   4 % 

Game (Sirene) 51 % 32 %   5 % 
CoreMark ® 73 % 24 %   1 % 

LINPACK (Fortran) 74 % 22 %   1 % 
Game (Shrun) 49 % 33 %   6 % 

CSmith 42 % 27 % 12 % 
 

 The fidelity of the branch instructions is the area of categorization most 

negatively impacted by sampling. Here a sampling interval of 4 milliseconds is used. The 

instruction mix of each program tends to get fuzzier with larger sampling intervals and 

this value should calibrated per profiling platform. As a rule, sampling will amplify the 

strength of more common instances within a group. Call stack tracing has been made as 

robust as possible in order to limit the effects of sampling, but currently only about half 

of the instructions are recovered. The rest of the returned data is provided via repeat until 

full. While not ideal, it is still possible to estimate quality energy usage results as signaled 

by the data in Table 8. In aggregate instruction backfilling experimentation has shown the 

errors recorded are acceptable as certain instruction profiling metrics are tolerant to some 

level of distortion. 

Unfortunately, memory usage estimation is not an option while sampling. The 

focus for this sampling method has been instruction recovery and not register integrity. 
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Because the previously described method of memory usage estimation requires register 

data in order to map various hardware addresses actively in use, without further work to 

record and patch register data it is not worth attempting with this version. However, 

relative memory access requirements should still be possible to attain as that estimation is 

purely instruction based. The shallow results from live call stack tracking and the 

contingency of repeat until full, also distract from reasonable coverage estimations. A 

modified or several aggregated methods of sampling will be required in order to properly 

enable all described metrics simultaneously. If it is critical to analyze an extremely short 

segment of code, or one of the known blocked metrics the suggestion is to use the single 

stepping mode of PortAuthority and limit its execution range to the function(s) of interest 

for best performance. 

 

Table 8: Sampled Energy Usage Comparison for the Test Catalog 

Test Program Measured 
x86-64 

Estimated 
x86-64 

Fibonacci (48) 1615.53 J 1582.71 J 
logcat 1533.32 J 1563.98 J 

TF (MatMul) 3190.15 J 3094.30 J 
Game (Sirene) 2709.76 J 2681.89 J 
CoreMark ® 2301.36 J 2206.34 J 
LINPACK 3437.01 J  3386.27 J 

Game (Shrun) 2829.87 J 2914.34 J 
CSmith 1867.82 J 1912.33 J 
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IX. BACKGROUND 

 
Binary Translation 

 
For decades, the vision of allowing the same standard OS and application object 

code to run on different hardware platforms has existed (Altman et al., 2001). There are 

many advantages to allowing low-level architecture to become just another layer of 

software. Indeed, features like Just-in-time (JIT) compilation and research involving the 

Java Virtual Machine (JVM) are widespread. However, despite advantages like the 

reduction in porting overhead the world has yet to see many major industry players make 

an open virtual machine the centerpiece of their ecosystem. Google is highly reliant on 

their legacy Dalvik and more contemporary ART (Android Runtime), though the external 

adoption of these technologies is tiny in comparison to that of the JVM. The technique 

serves a singular purpose within their domain. Virtualization within Android allows chip 

vendors to easily enter Google’s software ecosystem but does little to expand the reach of 

their respective software packages. Their primary mobile competitor, Apple, also offers 

some virtualization technology in the form of Rosetta 2 (Apple 2020). As mentioned 

above, this is intended as a bridge technology and within a few years is expected to be 

phased out of their core offering. High tech vendors do not like to compete based solely 

on the market value of a commodity. 

 
“With industry-leading performance, powerful features, and incredible efficiency, 

M1 is Apple’s first chip designed specifically for the Mac.” 

 
The phrase above is indicative of the market factors in the industry. Notice there 

is little reference to cooperation, compatibility, or emulated performance. It works to a 
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company's advantage to promote the custom aspects of their hardware which comes with 

the caveat of requiring native code. Even something as core as the width of memory 

addresses, integers, and other data is still flexible within the current computing landscape. 

Contemporary platforms are expected to support 64-bit instructions, but getting 

computational work done in the layers of an Edge computing system is not bound by the 

same convention. 32-bit MCUs are in regular usage and many companies still make 8-bit 

devices (Microchip, 2021). This reality should be considered at design time to enable and 

effectively implement a portable software component. Efficiently building software 

designed around a truly diverse set of hardware will require the existence of more tools 

like PortAuthority. Tools that report on the fundamental output of a computational device 

and not just in reference to other siloed products. Binary translation is a function 

workaround, not a final production solution for multi-platform development.  
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Commercial Architecture Change 

Groves from IBM rightly suggested that computer architectures will always be 

significantly influenced by the underlying trends and capabilities of computer 

technologies (Groves, 2010). This has applied not only as computers transitioned from 

electromechanical relays to vacuum tubes to transistors to integrated circuits but could 

also include aspects like software. Since that writing, it has been observed that even long-

established hardware concepts like Moore’s Law are no longer as relevant (Hennessy and 

Patterson, 2018). Whereas previously the key hardware technologies that affected 

computer architectures were those related to density and speed of digital switches, 

perhaps the access time of digital storage, hardware today is starting to look very domain 

specific. Large processor transitions like Apple silicon can just as easily be politically or 

cost motivated as they are by true innovation. Today the focus of Groves’ statement shifts 

more towards trends than capabilities. In the past notable transitions were based on 

obvious technical enhancements like register size (8-bit, 16-bit, 32-bit, 64-bit). However, 

with Apple silicon, the public interest was around bespoke enhancements to an existing 

processor architecture widely available to a variety of companies. For this reason, while 

heralded as uniquely high performing at the time devices with similar performance have 

quickly come to market. 

 If a corporation’s proprietary software can be considered a significant factor in the 

transition from one CPU architecture to another, this leaves independent developers in a 

tight spot. These individuals are motivated by an entirely different set of economic, 

artistic, or personal concerns. For example, in the current environment developers might 

be disproportionately affected by foundational architecture improvements targeted at a 
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retail Apple product like Final Cut Pro. This realization means that software engineers 

need to be ready to pivot hardware at a moment’s notice as near anything can force a 

transition.  

This has been true in the video game industry throughout its history. The timeline 

of industry transitions can be viewed through home console generations. These periods of 

time outline cost competitive hardware from different organizations and adequately 

demonstrate the diversity that can exist in a computing field simultaneously. Developers 

in this industry are often faced with market concerns that are deeply divided from the 

business interest of the available partner gaming platforms. A recent prior generation saw 

Microsoft ship a console with a cost reduced PowerPC core derived from Sony’s Cell 

processor. At that time the three biggest consoles shared enough common architecture to 

create applications using the lowest common denominator. The result was that the special 

features of each would largely be ignored (Shippy and Phipps, 2009). In contrast, 

contemporary games are often ported from x86 to less powerful ARM devices in order to 

capture the widest market available in the current console generation. Hardware 

transitions have happened at a quicker pace in the games industry when compared with 

the PC market. Entire console generations are complete within 5 or 6 years and the 

technology changes can stretch from almost non-existent to radical. 

Conditions are right for architecture transitions to start happening faster in 

broader areas of the computing industry. The portability of standardized high-level 

languages makes this less chaotic than in the distant past but still burdensome. The 

content in this section bares special meaning to the author of PortAuthority who sees a 



 

66 

clear gap and the need for tools that transcend commercial architecture transitions like 

instruction profilers.  

 

 

Figure 10: A Simple 3-Stage Edge Computing System. 

 

Edge Computing 

While there are many reasons to stay engaged with cross-platform development, 

perhaps the most demonstrative today of the power of PortAuthority analysis is Edge 

computing. Edge computing has clear benefits inside IoT systems that follow the pattern 

demonstrated in Figure 10. Specific applications include those for smart cities, Industry 

4.0, and home automation. Cloud based video game streaming is another research area 
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where computation, specifically rendering, at the edge of a network has shown significant 

promise (Yates et al., 2017). Other compelling reasons to utilize Edge computing include 

the desire for complete offline capability. There are several consumers and geographical 

regions where having a fully connected system may not be wanted or possible. Safety for 

instance can be compromised by the overuse of network communication. Given these 

constraints one option is to gather and process more data near or on the generating device 

suggesting the use of Edge computing. These systems can be composed of several 

heterogeneously architected devices operating simultaneously to perform a single task. 

While cloud servers are currently the primary actors in IoT computation today, it is not 

the case that other Edge devices have little or no computational ability. Smart phones are 

a ubiquitous Edge computing device and excellent examples of performance on the Edge. 

The phone market now expects dual aperture cameras, biometric sensors, and high-

resolution video to be available on most individuals. In turn, device makers are beginning 

to broaden their product offering to include relatively powerful devices even when 

directly compared to consumer PCs.  

 

System Profilers 
 

Figure 10 illustrates a basic, heterogenous system where it is possible to improve 

application performance using Edge computing as an alternative. In this research where 

possible the term system has been reserved for this style of multi-element application. 

Single computers within each system are referred to as targets or platforms. This example 

is a simple three-layer system containing a management server, input sensors, and 

smaller, mid-tier compute elements that connect the two. In the model each layer is 
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expected to be occupied by less hardware as the model progresses from the bottom to the 

top. Within this system you should expect the server to be connected via a traditional 

wired network. For this discussion, the next layer would be linked with a standard 

wireless protocol. The bottom elements by contrast can be thought of as directly 

connected to the middle layer edge devices. Specific speeds and technology for the 

network are less important when describing this scenario as proper Edge computing 

should benefit any combination.  

As data is generated within this system, communication between the bottom and 

middle layer devices is expected to be near instant. Migrating data up from the mobile 

edge devices however requires enough time that the server’s ability to process the 

information in real time is limited. The immediate opportunity to improve throughput in 

this system statically, without hardware changes, relies on processing as much data as 

possible on the edge devices receiving the input. Using these available compute resources 

reduces the burden on the application by eliminating transfers to the server, processing on 

the server and return trips to the mobile edge devices. None of these intermediate 

operations benefit the global task and are considered overhead. Implementing an Edge 

computing scheme in this instance would improve the system’s ability to scale.  

The bottom most elements in the figure could implemented as microcontrollers. 

For many system profilers this could represent a development problem as most profiling 

utilities require multitasking support and some also require access to a filesystem to 

generate intermediate files or test reports. This is not true of PortAuthority as 

demonstrated by its support of AVR processors.  By design AVR microcontrollers run a 

single program directly on bare metal. Any requirements of an operating system or 
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filesystem are built directly into each application and flashed onto the unit’s non-volatile 

memory. While excellent for embedded deployments, this limits debug access to the 

target. Conventional source level debugging is only available on these devices by way of 

a JTAG interface and a separate hardware controller. With PortAuthority however, it is 

possible to use emulation to gather executed instruction data via a remote gdb stub. As 

discussed, with a reasonably accurate list of executed instructions performance metrics 

evaluated via mapping to become possible instantly for any target. Provided users can 

create the desired micro profiling data, other discussed metrics are possible to obtain even 

for this much less complex architecture. For example, energy usage can be determined 

using physical metering on AVR via projects like PowMeter shield for the Arduino Nano 

(Pandauino, 2019). Real time software performance is also estimable here as instructions 

take well known numbers of clock cycles to execute (usually one). Using PortAuthority, 

most of the profiling work could be done on an established platform and extended here 

where conventional debugging will never be possible by design. 

To reiterate, it is difficult enough to find tools and languages that span all 

platforms used as part of complex Edge systems. Consider also that portability is 

invisible when running an application and that that makes the potential for easily 

distributing work from the cloud non-trivial to discern. Mooney’s guideline mentioned 

above, Think Portable, lacks some of the direct prescription of the others. He suggests not 

an increase in, but constant awareness of how your changes impact the portability of the 

design. Even if you use best practices to express portability in software, the vagueness of 

that standard can be limiting. The critical thinking skills involved require experience and 

training as well as vigilance from an engineer. Tools for dynamic analysis, performance 
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profiling and the like can be made available cross-platform, but the ability to use them 

still requires the user’s code base to compile for each individual platform of interest. 

Even though development software many run on multiple operating systems, it can still 

fail to effectively aid co-design for heterogenous development teams. Many IDEs do 

include simulators and emulators to address co-design tasks, but they lack the ability to 

predict beyond functional correctness on other platforms. Few if any analysis tools are 

targeted towards heterogenous platform co-design like PortAuthority. The lack of 

automation in this debug process severely limits a developer’s ability to remain aware of 

the portability impacts of changes they are making to their code.  
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X. FUTURE WORK AND DISCUSSION 
 

The work in this research has proven itself through a few peer reviewed 

publications, but the PortAuthority tool itself is still primitive. There are many areas of 

improvement, but it is thought to be at a stage where information can be made widely 

available, and where others might be willing to join in the development.  

Some of the immediate enhancements for the future have already been mentioned. 

The need for better call stack tracing with register patching is obvious. Considerable 

improvements here would allow coverage and memory usage estimation to be used with 

sampled analysis and reduce the dependency on instruction backfilling. Existing DWARF 

call frame data from various projects could be investigated in order to help with this task. 

While this research acknowledges the value of this information, PortAuthority does not 

use it as it is not guaranteed to be available. However, patterns buried in the DWARF 

data could allow for deeper and more rich call stack tracing. This change would make 

parts of the tool more tailored for specific supported architectures but not at the cost of 

the almost fully generic method available today. It could be viewed as an enhancement 

for select boards instead of a change for all. 

Another point of interest is the greater use of intrinsic functions to gain tighter 

control over a sampling interval. In the latest build, PortAuthority will only use intrinsic 

controls for instruction counts on x86-64. Specifically fence opcodes and the __rdtsc call 

are used in the implementation. This improvement has allowed consistent, controlled 

samples of around 4 milliseconds, but it is worth exploring even smaller intervals. When 

profiling directly using an AARCH64 based target, as of now there is no equivalent 

intrinsic. The consequence of non-intrinsic operation is that the sampling interval must 
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grow substantially in order to return a consistent result using stock C++11 based timers. 

There are some registers of interest available on AARCH64, like the Performance 

Monitors Cycle Count Register (PMCCNTR_EL0), but the proper way to access these 

data has not been resolved. The problem might be avoided all together with a custom 

processor element designed to record executed instructions. While worth mentioning, that 

task is far beyond the capability of the author. 

Of course, there is also a persistent desire to add more instruction metrics to 

PortAuthority. Simultaneous analysis of instruction data is core to the philosophy of the 

application so a new set of analyzers should not adversely affect profiling time. The most 

logical crop of metrics to explore next is combinatorial metrics. These would be 

instruction level performance metrics derived from multiple existing data points. 

Realistic CPU performance is an example of something that may be possible. Cache 

utilization is an existing instruction metric that is directly connected with reduced 

program execution time. Combining the worst-case performance evaluation of an 

instruction via micro profiling with memory usage information found through instruction 

mapping it should be possible to derive a CPU performance estimate closer to real world 

than one derived from a single metric.  

Even though PortAuthority is a command line application, with a few new output 

options its data could be readily consumable by a conventional IDE. Something 

straightforward like a warning when an inquired metric reaches a defined threshold 

would be a good start. When properly formatted, command line can be interpreted by 

built-in regular expression engines within popular development environments. Modifying 

Port Authority’s output behavior would help tap into existing user experiences for those 
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familiar with an environment’s features. Some work has been done with PortAuthority to 

leverage established parsing tools within the Visual Studio Code IDE (Ford and Zong, 

2021). These tools are designed to parse GCC output warnings from the command line 

and point back to the location within source code where the problem occurred. While 

preliminary work has been done in this specific IDE, there are many extensible IDEs 

available where the concepts tested would apply. For added effect information could also 

be displayed using ANSI escape codes to colorize the terminal output. 

On a related note, a near future goal would be to find an appropriate software 

project and integrate the PortAuthority tool with a team at design time. This experience 

should allow for better evaluations of feature enhancements and hopefully more bug 

fixes. Ultimately it would be nice to have PortAuthority alongside a project for a few 

development cycles in order to create a post-mortem analysis. The feedback expected on 

the tool includes topics from usability to value. Everything learned here could be 

reincorporated back into future versions of PortAuthority. 

Also worth investigating are other methods for instruction prediction. As shown 

in Table 5, the most common 2-gram match used for PUSH-MOV instructions occurs 

45% of the time. Afterwards there is a steep taper across the frequency of the other 

AARCH64 choices. Within the research corpus there are 2-gram matches with perfect 1:1 

translation between the two architectures, however the regular best returns are lower than 

50% and paired with several less used combinations like the values in Table 5. While the 

current method has yielded positive results, the process would be improved by bettering 

these numbers and lowering the number of 2-gram combinations. One possible 

improvement would be to consider the previous state when selecting an appropriate pair 
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instead of the raw probability. A second pass that accounts for previous instructions may 

improve this piece of PortAuthority. 

There is a reoccurring feature request to make generated PortAuthority binaries 

conventionally executable. Unfortunately, no obvious path to create a fully working, 

automatically ported application exists. It is possible to build an ELF file that will run in 

a limited capacity from the generated list of instructions, though with considerable 

caveats. For one, no method has been devised to break up the monotonous block of 

instructions resulting from the code generation process into something more akin to 

standard functions. The only known way to process the ELF is linearly top to bottom with 

no branches or jumps. Structurally the entire executable path becomes like an unrolled 

loop in the resulting binary. Additionally, the output of the code is nonsense. The ELF 

will run uninitialized and lacking proper data, variables, etc. As a bag of instructions used 

for the purposes of instruction profiling the “compiled” content here works fine. In 

comparison to a standard binary, it will be large, unreadable, unmodifiable and produce 

worthless results. These limitations make the value of such a binary questionable for most 

tasks, however it would make a great experimental control group and demo if the 

additional work was made to have these false ELF files execute normally. 

The procedure to produce a false ELF was first described in a related work (Ford 

et al., 2021). Before a significant refactor, PortAuthority could only read and operate on 

ELF files. To get estimation data during this phase of the program’s development the 

researcher used objcopy to inject raw binary data into incomplete ELF files using the 

update-section option. This tactic allows developers to override the text section from a 

basic C program with generated instruction data. The file is still not executable on its own 
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due to limitations patching faults caused by ABI non-compliance, branch endpoint 

changes, and stack corruption. Next, a virtual machine called the Flat VM is used to 

facilitate execution. The Flat VM contains shared micro profiling data from the core of 

PortAuthority. For each clock of the virtual machine, it increments by one instruction and 

applies the appropriate estimation metric like the single stepped PortAuthority workflow. 

With improved instruction generation this requirement could be omitted. 

Most of the previous method’s steps can be retained when creating a properly 

executable binary. The largest difference takes place during instruction generation. The 

goal is to mimic the Flat VM while only relying on the ISA. Greater knowledge and 

tailoring of instructions will be required at code generation time to pull this off. Most 

instructions can operate on a single unchanging state and not cause breaking runtime 

errors. For example, the mov instruction. If this operates on two registers, it is likely that 

by finding registers that are not a part of the ABI and then using those as part of every 

generated call will succeed unilaterally. Other instructions, like those that access 

memory, would need very specific updates in order to keep execution flowing strictly 

from the current address to the instruction at the next address from beginning to end. 

Access to many sections of memory is often limited by the application runtime. Each 

instruction that accesses memory would need to be patched dynamically in order to 

ensure it touches an area that will not trigger exceptions by the CPU. Another obvious 

problem is with branch instructions. These would need to be patched to always route to 

the instruction one address ahead of the current location. Other issues are expected, but 

each should be addressable within the context of the ISA provided generated instructions 

are emitted with a greater level of detail. 
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The final piece of near future PortAuthority work is related to interpreted 

language support. There is a path for ELF files to give targeted debug information based 

on lines in the developer’s source. It is based on elective DWARF information being 

compiled into the program. If the profiler is injected into earlier phases of a project, it 

should be possible to reduce some of the data austerity PortAuthority is designed to 

content with and make a mixed conventional/instruction-based tool that gives even higher 

quality insight on a code bases’ relatively portability. Extending this feature to interpreted 

languages is more difficult however because there is no obvious connection from the 

runtime to the developer’s application source. In preparation for this research 

PortAuthority was tested on code written in Python, PHP, and JavaScript. This technique 

could also be used for other languages like C#. When launched, PortAuthority was able 

attach to their respective interpreters and report on the relative nature of each program but 

correlating runtime behavior to source changes was overly difficult. In early tests, trivial 

examples could be fully described using the PH7 PHP interpreter. The Hermes JavaScript 

engine was also trialed. There needs to be additional research into a glue layer. This 

feature would require some implementation per language, and that work was found to be 

outside the scope of this project.   



 

77 

XI. CONCLUSION 

This work has been difficult and requires a set of knowledge and skills not widely 

available. Working at the machine and assembly language levels to describe in detail 

actions beyond functional programming is non-trivial. Instruction profiling becomes 

essential only when developers find themselves without the comforts of years of 

instrumentation and tailoring for established platforms. PortAuthority is a tool for the 

harshest environments.  

Some would believe that this work is fully unnecessary. While its value may be 

limited for short spans of time during a dominant platform’s heyday, a remnant of 

developers will always need something like PortAuthority. The success of instruction 

profiling will be determined by whether there is constant improvement on the design 

during the off season. Rushing to complete a tool like this as the need arises ignores the 

inherent challenges. To tie back into the future work discussion an unexpected but perfect 

use case for a beta version of PortAuthority must be present amid the current chip 

shortage. Thousands of manufacturers are scrambling to build their products around 

silicon supply chains that no longer exist. Only companies with the capability to 

reengineer their hardware and quickly port their software have a path to continue forward 

during this unprecedented time. With PortAuthority, it is possible to study an existing 

piece of software from a supply chain-stricken product and give reasonable direction as 

to what could be substituted. 

Capability with high powered silicon is a requirement, but the long tail of value 

for PortAuthority may be in the static technology marketplace. MOS 6502 style 

processors used in the earliest PCs are still widely used in embedded products. Code 
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analysis and substitutions can be more easily solved in this category and the volumes of 

new units still produced are significant. Based on availability or for cost savings many 

product owners might consider backporting. How far back could the PortAuthority 

method effectively be backported? The 6502 is likely too far, because the architecture’s 

owner has not progressed the compiler to modern standards. Other owners, like those for 

the AVR architecture, have made a conformant compiler available for their 8-bit CPUs. 

At a minimum PortAuthority requires an ELF binary meeting the Unix System 4.0 

standard. Temporally this puts the foundation around the year 1987 during the inaugural 

release of GCC which targeted devices like the Motorola 68000. The ELF binary design 

has had far more viability than any of the compliant CPU architectures and for now still 

seem less volatile. That is the basis for the decision to make ELF the operational core of 

PortAuthority. There has been consideration given to mainstream software platforms like 

Windows and OSX that do not natively use the ELF executable format. While it may not 

be possible to run PortAuthority to profile directly on these platforms, it is possible to 

drive the profiler using micro profiling data recorded under those operating systems. The 

Clang compiler used in this research equally targets ELF and the specific formats of these 

vendors, so there is a bit of flexibility even outside the preferred ELF requirement 

mentioned here. The relative work to parse instructions from Windows executable or 

Mach-O files is possible but with compiler equality unnecessary. 

It’s certainly unfair to talk about viability without threats to viability. The first 

would be a sudden rise in non-assembly language-based platforms. There are boards 

designed to immediately run interpreted languages like Python. In the past similar efforts 

like Jazelle, branded Java native processors, found only limited success but markets can 
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change. As they exist today, these products run small VMs and are driven by processors 

that still rely on instructions. However, hardware could be written to work on the Python 

language directly and in that area of the market PortAuthority as designed would be much 

less useful. A similar problem occurs with Quantum computing. OpenQASM and other 

assembly languages for these processing elements bear little resemblance to those for von 

Neuman or Harvard architectures (McCaskey and Nguyen 2021). Again, in this space the 

work happening inside PortAuthority would need to be thought about much differently. 

This project has typically been thought about as something that promotes 

operation on existing or upcoming hardware, but it could also be used to help design 

hardware from scratch. Assuming the fictional hardware stays within the lanes described 

by the previous paragraph, a user could extract the operations most required by their 

applications and graft those requirements on to a new, yet unspecified design. This takes 

the previous point on co-design to the next level. Taken to the extreme, a version of this 

tool could be used to generate ideas for an ASIC that could increase algorithmic 

performance.  

Ambitions aside, as the tool works today it is suggested that PortAuthority run on 

the strongest hardware in a supported fleet. Instruction profiling is CPU intensive, and the 

best hope to reduce that burden, sampling, has proven difficult to calibrate. Sampling is a 

feature that was introduced later in the development of PortAuthority so thoughts on how 

to achieve the best balance of speed and accuracy are comparatively immature. The aim 

of this researcher is to push for improvements in cross-platform development, not to 

provide a perfect solution. To say the PortAuthority process is easier than a conventional 

process would be wrong, though complimentary feels right. If this project promotes 
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others to attack portability during software development in an equally creative fashion, it 

will have met its intended return. Perhaps that is a challenge to anyone to show better 

simultaneous, multi-platform, debug information to a developer. Researchers need to get 

others thinking about this problem in a different way to truly innovate. Promote being the 

operative word; to further, advance, raise.   

The predominant open question on instruction profiling is what other metrics are 

possible? It’s unclear, but theoretically the data for most anything should be baked into 

the executable. Even non-direct CPU metrics like network bandwidth should be possible. 

If accepted that this information should be resident in a compiled program, then the 

question is more how to efficiently and accurately mine it.  
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