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SUPERLINEAR EQUATIONS AND A UNIFORM
ANTI-MAXIMUM PRINCIPLE FOR THE MULTI-LAPLACIAN

OPERATOR

EUGENIO MASSA

Abstract. In the first part of this paper, we study a nonlinear equation with

the multi-Laplacian operator, where the nonlinearity intersects all but the first
eigenvalue. It is proved that under certain conditions, involving in particular
a relation between the spatial dimension and the order of the problem, this

equation is solvable for arbitrary forcing terms. The proof uses a generalized
Mountain Pass theorem. In the second part, we analyze the relationship be-
tween the validity of the above result, the first nontrivial curve of the Fuč́ık

spectrum, and a uniform anti-maximum principle for the considered operator.

1. Introduction

The main theme of this paper are the following superlinear equations with the
multi-Laplacian operator:

(−∆)mu = λu + g(x, u) + h(x) in Ω

∂u

∂n
=

∂∆u

∂n
= · · · = ∂∆m−1u

∂n
= 0 on ∂Ω

(1.1)

and
(−∆)mu = λu + g(x, u) + h(x) in Ω

u = ∆u · · · = ∆m−1u = 0 on ∂Ω
(1.2)

with Ω ⊆ RN a bounded smooth domain (say of class C∞), h ∈ L2(Ω) and

g ∈ C0(Ω× R) , lim
s→−∞

g(x, s)
s

= 0, lim
s→+∞

g(x, s)
s

= +∞ (1.3)

uniformly with respect to x ∈ Ω.
We will assume for these problems the following hypotheses on the order of the

operator and the dimension of the set Ω:

N < 2m , so that Hm(Ω) ⊆ C0(Ω) ; (1.4)

N < 2(m− 1) , so that Hm(Ω) ⊆ C1(Ω) ; (1.5)

in particular (1.4) will be assumed for problem (1.1) and (1.5) for problem (1.2).
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Some hypotheses on the growth at infinity of the nonlinearity g will be needed in
order to obtain the PS condition for the functional associated to the above problems:
Defining G(x, s) =

∫ s

0
g(x, ξ)dξ, we require

∃ θ ∈
(
0,

1
2
)
, s0 > 0 such that 0 < G(x, s) ≤ θsg(x, s) ∀s > s0 . (1.6)

Moreover, for λ equal to the first eigenvalue of the operator, we will assume the
nonresonance condition

g(x, s) > 0, lim
s→−∞

g(x, s) = 0 (1.7)

uniformly with respect to x ∈ Ω.
We will refer to the boundary conditions in (1.1) as the case (N) and to those in

(1.2) as the case (D); moreover, we will usually write the results for the case (N)
and when needed remark in parentheses what is different for the case (D).

In the following we will denote by 0 ≤ λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ . . . the
eigenvalues of −∆ in H1(Ω) (resp. in H1

0 (Ω) when considering the case (D)) and
with {φk}k=1,2,.. the corresponding eigenfunctions, which will be taken orthogonal
and normalized with ‖φk‖L2 = 1 and φ1 > 0 .

The main result of the paper is the following.

Theorem 1.1. Under hypotheses (1.4) (resp. (1.5)), (1.3) and (1.6), there exists
γ > λm

1 such that if λ ∈ (λm
1 , γ), then there exists a solution of problem (1.1) (resp.

(1.2)) for all h ∈ L2(Ω).
Moreover, if λ = λm

1 and in addition hypothesis (1.7) holds, then there exists a
solution for h ∈ L2(Ω) if and only if

∫
Ω

hφ1 < 0.

Remark 1.2. The hypotheses (1.3) and (1.6) are satisfied for example by the
function g(x, s) = es, which satisfies also (1.7).

Theorem (1.1) is proved in section (3), except for the technical PS condition,
which is proved in section (5). The proof uses a generalized Mountain Pass theorem:
we prove the existence of a linking structure for the functional associated to the
problems (1.1) and (1.2), by building a suitable set on which it is simple to estimate
both the nonlinearity g and the principal part of the functional and which divides
the function space into two components containing respectively φ1 and −φ1.

The value γ in theorem (1.1) is obtained by the following variational character-
ization

γ = inf
{∫

Ω
|∇mu|2∫
Ω

u2
with u ∈ Hm

∗ (Ω)\{0} and sup
x∈Ω

u(x)
φ1(x)

= 0
}

(1.8)

(see section (2) for the definition of the space Hm
∗ (Ω)).

In the second part of the paper (section (4)) we show, by variational techniques,
the existence of a connection between the above value γ, the first nontrivial curve
of the Fuč́ık spectrum and a uniform anti-maximum principle (uAMP for short) for
the operators in problem (1.1) and (1.2).

In brief, the uAMP is a reversing sign property of the operator ((−∆)m − λ):
it holds when, for λ in a certain interval, a positive forcing term produces a neg-
ative solution (see in section (4) for more details about the uAMP and the Fuč́ık
spectrum).

The result is given in theorem (4.2); in particular we show that, under hypoth-
esis (1.4) (resp. (1.5)) the uAMP holds in (λm

1 , γ] and γ also coincides with the
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asymptote of the first nontrivial curve of the Fuč́ık spectrum. On the other hand,
when (1.4) (resp. (1.5)) is not satisfied, no uAMP holds and the asymptote of the
first nontrivial curve of the Fuč́ık spectrum coincides with λm

1 .
Since γ is characterized variationally, the above connection also provides a char-

acterization for the limit of validity of the uAMP.

1.1. Related results. Theorem (1.1) (and the techniques used in its proof) is in
the same spirit as the results in [8] and in [13]: these results were obtained for the
Laplacian operator in an interval and only allowed conditions of the type (N) (that
is the Neumann problem); actually in the case (N) hypothesis (1.4) with m = 1
implies N = 1 and so theorem (1.1) corresponds to the result in [8], while in the
case (D) hypothesis (1.5) may be satisfied only for m ≥ 2.

In [8] and [13] the value γ was obtained both variationally and explicitly; here
we obtain the characterization in (1.8) for the general case and we will be able to
calculate it only for the one dimensional fourth order case (see the propositions
(3.9) and (3.10)).

The anti-maximum and uniform anti-maximum principles are largely treated in
[3, 7, 1] for Laplacian and p-Laplacian operators; in the latter two the authors
proved, respectively for the Laplacian and the p-Laplacian, the strict relationship
of these properties with the behavior of the first nontrivial curve of the Fuč́ık
spectrum; in particular they obtained, as we do here for the higher order problem,
that in those cases in which the asymptote of this curve is bounded away from the
first eigenvalue, the uAMP holds indeed between this eigenvalue and the asymptote,
while it does not hold when the asymptote and the eigenvalue coincide. In fact,
the techniques we use here are inspired from these two papers, and for m = 1 our
result corresponds to that in [7].

Results concerning the AMP and uAMP for higher order operators with bound-
ary conditions like in (1.2) (and more general ones) have recently been found in
[4, 5, 10]. In particular it is obtained in [4, 5] that the uAMP holds under hy-
pothesis (1.5), while in [10] it is proved that hypothesis (1.5) is indeed necessary
for the uAMP to hold. In [4], boundary conditions of mixed type (Robin) are also
considered, obtaining the uAMP under hypothesis (1.4).

We remark that in these papers about higher order operators, there is no estimate
of the upper limit of validity of the uAMP, so that the variational characterization
we obtain here looks to be an interesting result by itself.

2. Variational formulation of the problem

In this work we consider the differential operator (−∆)m; in dealing with it, we
will use the notation ∇2hu = ∆hu and ∇2h+1u = ∇(∆hu).

We will look for weak solutions in the space Hm(Ω): let BN (resp. BD) be the
operator that maps u to the vector of the traces on ∂Ω of the derivatives of order
strictly lower than m which are imposed in problem (1.1) (resp. (1.2)): then the
problem in variational form reads

u ∈ Hm
∗ (Ω) such that∫

Ω

∇mu∇mv − λ

∫
Ω

uv −
∫

Ω

g(x, u)v −
∫

Ω

hv = 0 for all v ∈ Hm
∗ (Ω) ,

(2.1)

where
Hm
∗ (Ω) = {u ∈ Hm(Ω) such that B∗u = 0} , (2.2)
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and with B∗ we denoted BN or BD when considering respectively (1.1) or (1.2).
Observe that for m = 1 the above spaces reduce to H1

N (Ω) = H1(Ω) and H1
D(Ω) =

H1
0 (Ω).
To find a solution of problem (1.1) (resp. (1.2)) we will look for critical points

of the C1 functional

F : Hm
∗ (Ω) → R : u 7→ F (u) =

1
2

∫
Ω

|∇mu|2− λ

2

∫
Ω

u2−
∫

Ω

G(x, u)−
∫

Ω

hu . (2.3)

Some useful lemmas. We give here some results about the properties of the
spaces we will work with. The proofs will not be reported here, but can be found
in [12].

Remark that these results are consequence of the particular sets of the chosen
boundary conditions, in particular of the fact that one may see the differential
operator as the mth power of the Laplacian with Neumann or Dirichlet boundary
conditions.

Lemma 2.1. The norm ‖u‖ = (‖∇mu‖2
L2 + ‖u‖2

L2)1/2 is an equivalent norm for
Hm
∗ (Ω).

Lemma 2.2. The eigenvalues of the operators in (1.1) (resp (1.2)) are the mth

power of those of the Laplacian with Neumann (resp. Dirichlet) boundary condi-
tions, while the eigenfunctions are the same of those cases.

Moreover, the eigenfunctions are orthogonal also in the Hm scalar product and
they form a basis for it.

Finally, we still have a variational characterization of the first eigenvalue:

λm
1 = inf

{ ∫
Ω

|∇mu|2 : u ∈ Hm
∗ (Ω); ‖u‖L2 = 1

}
. (2.4)

3. The main result

In this section we will show the existence of a mountain pass structure for the
functional (2.3) in order to prove the existence of a solution for problems (1.1) and
(1.2), for suitable values of the parameter λ. The technique we use is inspired from
[8] and [13], where the case m = N = 1 was considered.

Given u ∈ Hm
∗ (Ω) with m satisfying hypothesis (1.4) (resp. (1.5)), we define:

σ(u) = sup
x∈Ω

u(x)
φ1(x)

. (3.1)

Remark 3.1. In the case (N), φ1 is a constant function and so σ(u) = supx∈Ω[u(x)],
which is finite by the inclusion Hm(Ω) ⊆ C0(Ω).

In the case (D), φ1 is the first eigenfunction of the Laplacian, which is known
to have the property that infx∈∂Ω

∂φ1
∂nint

(x) > 0; this property and the inclusion
Hm(Ω) ⊆ C1(Ω) implies that σ(u) is finite also in this case.

Then we define

E =
{
u ∈ Hm

∗ (Ω) :
∫

Ω

uφ1 = 0
}

, (3.2)

S0 = {u ∈ Hm
∗ (Ω) : σ(u) = 0} , (3.3)

γ = inf
{∫

Ω
|∇mu|2∫
Ω

u2
with u ∈ S0\{0}

}
. (3.4)
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First we will prove some properties of the above definitions:

Lemma 3.2. The function σ : Hm
∗ (Ω) → R : u 7→ σ(u) is continuous.

Proof. In the case (N) we have, by the hypothesis (1.4),

|σ(u)− σ(v)| ≤ ‖u− v‖L∞(Ω) ≤ C‖u− v‖Hm
N (Ω) . (3.5)

In the case (D), we have

|σ(u)− σ(v)| ≤
∥∥u− v

φ1

∥∥
L∞(Ω)

. (3.6)

To estimate the last norm, we may exploit the fact that φ1 ∈ C1(Ω), vanishes
(just) on the smooth boundary ∂Ω, and η = infξ∈∂Ω

∂φ1
∂nint

(ξ) > 0: this allows to
compute the ratio in (3.6) near to the boundary using l’Hôpital’s rule, and so to
estimate with the C1 norm of u − v and then, by hypothesis (1.5), with the Hm

norm:

|σ(u)− σ(v)| ≤
∥∥u− v

φ1

∥∥
L∞(Ω)

≤ C1‖u− v‖C1(Ω) ≤ C2‖u− v‖Hm
D (Ω) . (3.7)

�

Lemma 3.3. The set S0 is homeomorphic to E, moreover S0 divides Hm
∗ (Ω) into

two components containing respectively {tφ1 : t > 0} and {tφ1 : t < 0}.

Proof. The map M : E → S0 : u 7→ u − σ(u)φ1 is continuous by the previous
lemma and has the orthogonal projection on E as its inverse, so it is a homeomor-
phism. Moreover, it is clear by the definitions that Hm

∗ (Ω) is divided into the two
components {u ∈ Hm

∗ (Ω) : σ(u) > 0} and {u ∈ Hm
∗ (Ω) : σ(u) < 0}. �

Lemma 3.4. Let γ be given by (3.4). Then γ > λm
1 and it is attained, that is there

exists u ∈ S0\{0} such that γ =
∫
Ω |∇

mu|2∫
Ω u2 .

Proof. Let us take a minimizing sequence {un} ⊆ S0\{0}: by the homogeneity of
the definition of γ and S0 we may assume ‖un‖L2 = 1; since

∫
Ω
|∇mun|2 → γ, un is

bounded in Hm
∗ and we can extract a subsequence such that un → u weakly in Hm

∗
and strongly in L2 and in C0(Ω) (resp. in C1(Ω)) by hypothesis (1.4) (resp. (1.5)).

The strong convergences implies that σ(u) = 0 and ‖u‖L2 = 1 and so u ∈ S0\{0}.
Then

∫
Ω
|∇mu|2 ≥ γ by the definition of γ, but by the weak convergence this implies∫

Ω
|∇mu|2 = γ and so u realizes the value γ.
Finally γ ≥ λm

1 by the variational characterization of λm
1 and if, by contradiction,

γ = λm
1 , then the minimizer would be a multiple of φ1, which is a contradiction

since span{φ1} ∩ S0 = {0}. �

Now, we proceed to prove the existence of the linking structure for the functional
(2.3). Since h ∈ L2 and using hypothesis (1.3) we can find, for δ,M > 0, constants
C1(δ, h), C2(δ, g) and C3(M, g) as follows:∣∣ ∫

Ω

hu
∣∣ ≤ δ

4
‖u‖2

L2 + C1(δ, h) , (3.8)∣∣ ∫
Ω

G(x,−u−)
∣∣ ≤ δ

4
‖u‖2

L2 + C2(δ, g) , (3.9)∫
Ω

G(x, u+) ≥ M

2
‖u+‖2

L2 − C3(M, g) . (3.10)
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Lemma 3.5. limρ→+∞ F (ρφ1) = −∞.

Proof. Remembering that φ1 > 0 in Ω we estimate

F (ρφ1)
ρ2

=
1
2

∫
Ω

|∇mφ1|2 −
λ

2

∫
Ω

φ2
1 −

∫
Ω

G(x, ρφ1)
ρ2

−
∫

Ω

hφ1

ρ

≤ λm
1 − λ

2

∫
Ω

φ2
1 −

(M

2

∫
Ω

φ2
1 −

C3(M, g)
ρ2

)
+

(δ

2

∫
Ω

φ2
1 +

C1(δ, h)
ρ2

)
≤ λm

1 − λ−M + δ

2
+

C1(δ, h) + C3(M, g)
ρ2

;

then by choosing M > λm
1 − λ + δ the lemma is proved. �

Lemma 3.6. limρ→+∞ F (−ρφ1) = −∞, provided (i) or (ii) holds:

(i) λ > λm
1

(ii) λ = λm
1 ,

∫
Ω

hφ1 < 0 and hypothesis (1.7) holds.

Proof. Estimating as before we now get for λ > λm
1

F (−ρφ1)
ρ2

=
1
2

∫
Ω

|∇mφ1|2 −
λ

2

∫
Ω

φ2
1 −

∫
Ω

G(x,−ρφ1)
ρ2

−
∫

Ω

−hρφ1

ρ2

≤ λm
1 − λ

2

∫
Ω

φ2
1 +

(δ

4

∫
Ω

φ2
1 +

C2(δ, g)
ρ2

)
+

(δ

4

∫
Ω

φ2
1 +

C1(δ, h)
ρ2

)
≤ λm

1 − λ + δ

2
+

C1(δ, h) + C2(δ, g)
ρ2

;

then by choosing δ < λ− λm
1 the first part of the lemma is proved.

For λ = λm
1 we need a finer estimate: since lims→−∞ g(x, s) = 0 we may estimate:

for any ε > 0 there exists Cε such that
|g(x, s)| ≤ ε + Cε

|s−1|2 and |G(x, s)| ≤ ε|s|+ Cε

|s−1| , ∀s ≤ 0.

Then ∣∣ ∫
Ω

G(x,−ρφ1)
ρ

∣∣ ≤ ∫
Ω

εφ1 +
Cε

ρ(1 + ρφ1)
≤

(
ε +

Cε

ρ

)
CΩ (3.11)

and so

lim sup
ρ→+∞

∣∣ ∫
Ω

G(x,−ρφ1)
ρ

∣∣ ≤ ε CΩ (3.12)

for any choice of ε and hence the limit is zero. Then we conclude

lim
ρ→+∞

F (−ρφ1)
ρ

= ρ
λm

1 − λ

2
+

∫
Ω

hφ1 (3.13)

that for λ = λm
1 and

∫
Ω

hφ1 < 0 implies that this last limit is negative and so the
second part of the lemma is proved too. �

Lemma 3.7. For λ < γ, F |S0 is bounded from below.

Proof. For u ∈ S0 we have u(x) ≤ 0 and
∫
Ω
|∇mu|2 ≥ γ‖u‖2

L2 , then we may
estimate:
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F (u) =
1
2

∫
Ω

|∇mu|2 − λ

2

∫
Ω

u2 −
∫

Ω

G(x, u)−
∫

Ω

hu

≥ γ − λ

2
‖u‖2

L2 −
(δ

4

∫
Ω

u2 + C2(δ, g)
)
−

(δ

4

∫
Ω

u2 + C1(δ, h)
)

≥ γ − λ− δ

2

∫
Ω

u2 − C2(δ, g)− C1(δ, h)

and so it is enough to choose δ < γ − λ to obtain F (u) ≥ −C2(δ, g)−C1(δ, h). �

In section (5) we will prove the following lemma.

Lemma 3.8. Under hypotheses (1.4) (resp. (1.5)), (1.3) and (1.6), with h ∈ L2(Ω),
the functional (2.3) defined in Hm

N (Ω) (resp. in Hm
D (Ω)) satisfies the PS condition

for λ ∈ (λm
1 , γ). Moreover under hypothesis (1.7) and

∫
Ω

hφ1 < 0 it satisfies the
PS condition also for λ = λm

1 .

Then we may conclude the following.

Proof of theorem (1.1). The previous lemmas allow us to apply the generalized
mountain pass theorem to get a solution of problem (1.1) and (1.2).

In fact, define

f = inf
γ∈ΓR

sup
u∈γ([0,1])

F (u) (3.14)

where

ΓR = {γ ∈ C0([0, 1],Hm
∗ (Ω)) s.t. γ(0) = −Rφ1 and γ(1) = Rφ1} : (3.15)

provided R is large enough to have F (±Rφ1) < −C2(δ, g)−C1(δ, h) where δ is the
value fixed in the proof of lemma (3.7), one may apply the deformation lemma and
then prove that f is a free critical value for F .

In particular, the condition
∫
Ω

hφ1 < 0 for λ = λm
1 is necessary: considering the

variational equation with the test function φ1 one gets∫
Ω

∇mu∇mφ1 − λm
1

∫
Ω

uφ1 −
∫

Ω

g(x, u)φ1 −
∫

Ω

hφ1 = 0, (3.16)

that is −
∫
Ω

g(x, u)φ1 −
∫
Ω

hφ1 = 0 which, by hypothesis (1.7), implies
∫
Ω

hφ1 <
0. �

The fourth order one dimensional case. In dimension 1 and with m = 2 we
can find the minimizing functions of (3.4), and then the value of γ; we will proceed
in a way similar to [13]. Let Ω = (0, 1): we start by considering the case (N):
• Claim: the minimizer of (3.4) satisfies u(x) < 0 ∀x ∈ (0, 1).

Proof of the claim. In dimension 1 we have that H2
N (0, 1) ⊆ C1([0, 1]), so if u(x0) =

0 with x0 ∈ (0, 1), since u ∈ S0, then x0 is a maximum and so u′(x0) = 0; this
implies that ul(x) = u(x0x) and ur(x) = u(1− (1− x0)(1− x)) with x ∈ (0, 1) are
both in H2

N and also in S0; we claim that one of the two realizes a lower value than
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∫ 1
0 |u

′′|2∫ 1
0 u2 . The claim follows from∫ 1

0

u2
l =

1
x0

∫ x0

0

u2 ,

∫ 1

0

u2
r =

1
1− x0

∫ 1

x0

u2 ,∫ 1

0

|u′′l |2 = x3
0

∫ x0

0

|u′′|2 ,

∫ 1

0

|u′′r |2 = (1− x0)3
∫ 1

x0

|u′′|2

and the inequality
a + b

c + d
≥ min

{a

c
,
b

d

}
, (3.17)

valid for reals a, b, c, d > 0. �

• The previous claim implies that the minimizer needs to reach zero in the boundary
of (0, 1); by symmetry, we may look for a minimizer with u(1) = 0. In particular
we consider the problem

δ = inf
{∫ 1

0
|u′′|2∫ 1

0
u2

with u ∈ H2
N (0, 1)\{0} and u(1) = 0

}
: (3.18)

if we show that the minimizer of (3.18) is in S0\{0} then it is also the minimizer
we are looking for and so δ = γ.
• By standard calculations the minimizer of (3.18) needs to satisfy the eigenvalue
problem

u′′′′ = δu in (0, 1)

u′(0) = u′′′(0) = 0

u(1) = u′(1) = 0 ;

(3.19)

setting q4 = δ with q > 0, the solutions of (3.19) are of the form

A cos(qx) + B sin(qx) + C sinh(qx) + D cosh(qx) ; (3.20)

from u′(0) = u′′′(0) = 0 we get B = C = 0 and forcing the remaining conditions
we get

A

D
= −cosh(q)

cos(q)
=

sinh(q)
sin(q)

. (3.21)

To have the minimal value of δ we get the first positive solution of tanh(q) =
− tan(q): this will be in (π

2 , π), so sin(q) > 0 and the resulting minimizer is

ũ = A
(
cos(qx) + cosh(qx)

sin(q)
sinh(q)

)
: A < 0 . (3.22)

We observe that, by the choice of q, ũ does not change sign and then ũ ∈ S0, as
required.

We conclude following statement.

Proposition 3.9. In the case (N), with m = 2 and Ω = (0, 1), we have γ = q4

where q is the first positive solution of tanh(q) = − tan(q); moreover ũ in (3.22) is
a minimizer for (3.4). An approximate value for γ is 0.32π4 (q = 0.753π).
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In the case (D) one may repeat the same argument: one obtains u(x) < 0 ∀x ∈
(0, 1), from this fact deduces that u′ = 0 in 0 or in 1 since u ∈ S0, and then one
considers the problem (by symmetry we suppose u′(1) = 0)

δ = inf
{∫ 1

0
|u′′|2∫ 1

0
u2

with u ∈ H2
D(0, 1)\{0} and u′(1) = 0

}
, (3.23)

which corresponds to the eigenvalue problem

u′′′′ = δu in (0, 1)

u(0) = u′′(0) = 0

u(1) = u′(1) = 0 ;

(3.24)

imposing the boundary conditions to (3.20) we obtain A = D = 0 and

B

C
= − sinh(q)

sin(q)
= −cosh(q)

cos(q)
, (3.25)

so we get the first positive solution of tanh(q) = tan(q), which will be in (π, 3π
2 ), so

cos(q) < 0 and the resulting minimizer is

ũ = B
(
sin(qx)− sinh(qx)

cos(q)
cosh(q)

)
: B < 0 . (3.26)

Again ũ does not change sign and then ũ ∈ S0\{0}.
Then we conclude the following statement.

Proposition 3.10. In the case (D), with m = 2 and Ω = (0, 1), we have γ = q4

where q is the first positive solution of tanh(q) = tan(q); moreover ũ in (3.26) is a
minimizer for (3.4). An approximate value for γ is 2.44π4 (q = 1.2499π).

In figure (1), we plot the shape of the minimizers ũ for the case (N) (on the left)
and the case (D) (on the right). Remark that in both cases γ ∈ (λ2

1, λ
2
2), that is

(0, π4) in the case (N) and (π4, 16π4) in the case (D).

Figure 1. Minimizers of (3.4) in the fourth order one dimensional
case (case (N) and case (D)).
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4. Uniform anti-maximum principle, Fuč́ık spectrum and the value γ

In this section we will show that the hypothesis (1.4) (resp. (1.5)), which by the
way guarantees the wellposedness of the definition of γ in (3.4) and the fact that
it is larger than λm

1 , also guarantees (and is in fact necessary for) a uniform anti-
maximum principle as well as the existence of a gap between the first eigenvalue
(λm

1 ) and the first nontrivial curve of the Fuč́ık spectrum, for the operator (−∆)m

in Hm
∗ (Ω).

Introduction to the matter. The anti-maximum and uniform anti-maximum
principles are largely treated in [3, 7, 1] for Laplacian and p-Laplacian operators;
going to our case, let B̃∗ represent the boundary conditions in problem (1.1) (resp.
(1.2)) and consider the problem

(−∆)mu = λu + h in Ω

B̃∗u = 0 on ∂Ω :
(4.1)

the uniform anti-maximum principle (uAMP) is said to hold in (λm
1 , δ] if for λ ∈

(λm
1 , δ], h ∈ L2(Ω) and h ≥ 0 a.e. one gets u ≤ 0 a.e; a less demanding property

is the (non-uniform) AMP, that is when the above property holds for a δh > λm
1

which is no more independent of the given h.
Observe that conversely, for λ < λm

1 , one has the usual maximum principle, that
is h ≥ 0 a.e. implies u ≥ 0 a.e.

The notion of Fuč́ık spectrum was introduced in [9] and [6] for the Laplacian
operator; for the operators we are considering it may be defined as the set Σ ⊆ R2

of points (λ+, λ−) for which there exists a non trivial solution of the problem

(−∆)mu = λ+u+ − λ−u− in Ω

B̃∗u = 0 on ∂Ω ,
(4.2)

where u+(x) = max{0, u(x)} and u−(x) = max{0,−u(x)}.
It is simple to prove that the lines {λ+ = λm

1 } and {λ− = λm
1 } are in Σ and

that any other point in Σ lies in the quadrant {λ± > λm
1 } but not in the squares

{λ± ∈ (λm
k , λm

k+1)}k=1,2,....
In [7, 2], the first nontrivial curve was characterized variationally respectively

for the Laplacian and p-Laplacian operator; in [11], the author gave a variational
characterization of additional parts of the Fuč́ık spectrum for the Laplacian operator
which, for the first nontrivial curve, is very similar to the one in [2].

Since the space Hm
∗ (Ω) equipped with the norm

(
‖∇mu‖2

L2 + ‖u‖2
L2

)1/2 has

the same functional properties as H1
∗ (Ω) with the norm

(
‖∇u‖2

L2 + ‖u‖2
L2

)1/2, the
characterization in [11] may be applied also to problem (4.2).

We recall here briefly an adaption to the multi-Laplacian case of that result. The
idea is to find, for ε > 0 small enough, a critical point of the functional

Jε(u) =
∫

Ω

|∇mu|2 − (λm
1 + ε)

∫
Ω

u2 (4.3)

constrained to the set

Qr =
{
u ∈ Hm

∗ (Ω) such that
∫

Ω

(u+)2 + r(u−)2 = 1
}

(4.4)
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with r ∈ (0, 1]. In order to do this one considers the class of maps

Γr = {γ : [−1, 1] → Qr continuous such that γ(−1) =
−φ1√

r
and γ(1) = φ1} (4.5)

and defines
dε,r = inf

γ∈Γr

sup
u∈γ([−1,1])

Jε(u) ; (4.6)

proceeding as in [11] one gets, by a standard “Linking Theorem”, that

Proposition 4.1. Provided λm
1 + ε < λm

2 , the level dε,r > 0 is a critical value
for Jε(u) constrained to Qr. Moreover the critical points associated to this critical
value are non trivial solutions of the Fuč́ık problem (4.2) with coefficients (λ+, λ−),
where λ+ = λm

1 + ε + dε,r and λ− = λm
1 + ε + rdε,r.

4.1. Main result. First observe that we may extend the definition of γ in (3.4)
to the case in which the hypothesis (1.4) (resp. (1.5)) does not hold, by simply
replacing the supremum with essential supremum, that is

γ = inf
{∫

Ω
|∇mu|2∫
Ω

u2
with u ∈ Hm

∗ (Ω)\{0} and ess sup
x∈Ω

u(x)
φ1(x)

= 0
}

. (4.7)

In this case we may assert that γ ≥ λm
1 by the variational characterization of the

first eigenvalue in (2.4), but observe that maybe the inf is not attained. Then we
define the following values:

δ =

{
sup{t ∈ R : uAMP holds in (λm

1 , t]} if uAMP holds for some t > λm
1

λm
1 otherwise,

(4.8)

λ̄ = inf{λ− > λm
1 such that(λ+, λ−) ∈ Σ and λ± > λm

1 } . (4.9)
We will obtain the following statement.

Theorem 4.2. If hypothesis (1.4) (resp. (1.5)) holds, then

δ = λ̄ = γ > λm
1 . (4.10)

If hypothesis (1.4) (resp. (1.5)) does not hold, then

δ = λ̄ = γ = λm
1 . (4.11)

Proof of theorem (4.2). First we will need the following lemma.

Lemma 4.3. Under hypothesis (1.4) (resp. (1.5)), if u is a minimizer for γ, let
ũ : Ω → R be the function u

φ1
extended up to the boundary, then ũ vanishes in one

single point in Ω.

Proof. First observe that hypothesis (1.4) (resp. (1.5)) indeed guarantees that u
φ1

may be extended up to the boundary; we will denote in the proof by T the operator
that maps a function v ∈ Hm

∗ in the extension to Ω of v/φ1.
Let now Tu vanish in x0 ∈ Ω and Vx0 = {v ∈ S0 : (Tv)(x0) = 0} (recall the

definition of S0 in (3.3)). Then u is a minimizer also in this class for the same
value γ, and so we claim that

∫
Ω
∇mu∇mv − γ

∫
Ω

uv ≥ 0 for any v ∈ Vx0 ; indeed
u + tv ∈ Vx0 for any t ≥ 0 and so

∫
Ω
|∇m(u + tv)|2 ≥ γ

∫
Ω
(u + tv)2, from which one

gets by standard calculations the claim.
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Given any x1 ∈ Ω\{x0} and Vx1 defined in an analogous way, one can always
find functions v1 ∈ Vx1 and v0 ∈ Vx0 , such that v0 + v1 = −φ1; if, for the sake of
contradiction, (Tu)(x1) = 0, one would have∫

Ω

∇mu∇m(v1 + v2)− γ

∫
Ω

u(v1 + v2) ≥ 0 , (4.12)

that is ∫
Ω

∇mu∇m(−φ1)− γ

∫
Ω

u(−φ1) = (λm
1 − γ)

∫
Ω

u(−φ1) ≥ 0 , (4.13)

which gives rise to a contradiction since λm
1 < γ and u ≤ 0 but not identically

zero. �

Now we prove the following three lemmas, which will imply (4.10).

Lemma 4.4. Under hypothesis (1.4) (resp. (1.5)), the uniform anti-maximum
principle holds for λ ∈ (λm

1 , γ]. This implies

γ ≤ δ . (4.14)

Moreover if h ≥ 0 a.e and h 6≡ 0, then the solution u of (4.1) is such that u 6∈ S0,
that is σ(u) < 0.

Proof. Suppose h ≥ 0 a.e, λ ∈ (λm
1 , γ) and assume for sake of contradiction that u

is a solution of (4.1) with u > 0 in some set of positive measure: we have∫
Ω

∇mu∇mv = λ

∫
Ω

uv +
∫

Ω

hv for any v ∈ Hm
∗ . (4.15)

With v = φ1 we get

0 = (λ− λm
1 )

∫
Ω

uφ1 +
∫

Ω

hφ1 (4.16)

which, since the second term is not negative, implies u < 0 in some set of positive
measure, that is u changes sign. Moreover we have∫

Ω

∇mφ1∇mv = λm
1

∫
Ω

φ1v = λ

∫
Ω

φ1v − (λ− λm
1 )

∫
Ω

φ1v . (4.17)

Subtracting (4.17) multiplied by a constant c from (4.15) and rearranging the terms
we get∫

Ω

∇m(u−cφ1)∇mv = λ

∫
Ω

(u−cφ1)v+(λ−λm
1 )

∫
Ω

cφ1v+
∫

Ω

hv ∀v ∈ Hm
∗ , (4.18)

which, choosing v = (u− cφ1), gives∫
Ω

(∇m(u− cφ1))
2−λ

∫
Ω

(u−cφ1)2−(λ−λm
1 )

∫
Ω

cφ1(u−cφ1)−
∫

Ω

h(u−cφ1) = 0 .

(4.19)
Now let c = σ(u): this gives, since (u− cφ1) ∈ S0,

0 ≥ (γ − λ)
∫

Ω

(u− cφ1)2 − (λ− λm
1 )

∫
Ω

cφ1(u− cφ1)−
∫

Ω

h(u− cφ1) ; (4.20)

however u− cφ1 ≤ 0, h ≥ 0, φ1 ≥ 0 and since u > 0 in some set of positive measure
σ(u) > 0; then λ ∈ (λm

1 , γ) implies that each term in the right hand side is not
negative and so u − cφ1 ≡ 0, which implies u ∈ span{φ1}: contradiction since we
proved that u changes sign.
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Now that we proved u ≤ 0, assume that h ≥ 0, h 6≡ 0 and suppose for the sake
of contradiction that σ(u) = 0: then equation (4.20) becomes∫

Ω

hu ≥ (γ − λ)
∫

Ω

u2 , (4.21)

giving a contradiction since equation (4.16) implies u 6≡ 0 and then the right hand
side is strictly positive while the left hand side is non positive.

For the case λ = γ we may do the same and observe that the inequality in (4.20)
and (4.21) is strict unless (u − cφ1) is a minimizer for γ: if this is the case, then
the contradiction comes since

∫
Ω

h(u− cφ1) < 0 by lemma (4.3). �

Lemma 4.5. If (λ+, λ−) ∈ Σ with λ± > λm
1 , then uAMP does not hold for λ = λ−.

This implies δ ≤ λ̄.

Proof. Let (λ+, λ−) ∈ Σ with λ± > λm
1 and u be the corresponding non trivial

solution of problem (4.2). It is known that u needs to change sign, actually testing
the Fuč́ık equation against φ1 one gets (λm

1 − λ+)
∫
Ω

u+φ1 = (λm
1 − λ−)

∫
Ω

u−φ1.
The function u may be seen as the solution of (−∆)mu = λ−u + h where h =

(λ+−λ−)u+ ∈ L2(Ω), but since we have seen that u changes sign while h does not,
the uAMP cannot hold for λ = λ−. �

Lemma 4.6. For any ε > 0 there exists a point (λ+, λ−) ∈ Σ with λ± > λm
1 and

λ− ≤ γ + 2ε. This implies λ̄ ≤ γ.

Proof. Let u ∈ Hm
∗ (Ω)\{0} be such that

∫
Ω |∇

mu|2∫
Ω u2 < γ+ε and ess supx∈Ω

u(x)
φ1(x) = 0,

then consider

γ̃ : [−1, 1] → Hm
∗ (Ω) : t 7→ vt = tφ1 + (1− |t|)u : (4.22)

this is a path going from −φ1 to φ1 which does not pass through the origin: pro-
jecting this path radially onto Qr for some r ∈ (0, 1] (see (4.4)), and considering
the definition in (4.6) we get

rdε,r ≤ max
t∈[−1,1]

rJε(vt)
‖v+

t ‖2
L2 + r‖v−t ‖2

L2

; (4.23)

observe also that, by the choice made for u, vt ≤ 0 if and only if t ≤ 0.
Let now t(r) be such that the maximum in (4.23) is assumed in vt(r), consider

any sequence rn → 0+ and let tn = t(rn): up to a subsequence we have

tn → t0 ∈ [−1, 1] ,

vtn → vt0 strongly in Hm(Ω),

rndε,rn
→ D ∈ [0,+∞] ;

we assume for the moment D > 0. From (4.23) we get

Jε(vtn) ≥
(
‖v+

tn
‖2

L2/rn + ‖v−tn
‖2

L2

)
rndε,rn , (4.24)

that is

‖∇mvtn‖2
L2 − (λm

1 + ε)‖vtn‖2
L2 ≥

(
‖v+

tn
‖2

L2/rn + ‖v−tn
‖2

L2

)
rndε,rn ; (4.25)

since vtn → vt0 , the left hand side is bounded and then we obtain ‖v+
tn
‖L2 → 0

which implies t0 ≤ 0 and D < ∞. Then taking the limit in (4.25) gives

‖∇mvt0‖2
L2 ≥ ‖vt0‖2

L2 (D + λm
1 + ε) ; (4.26)
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using (4.22) and exploiting the properties of φ1 this reads

t20λ
m
1 + (1− |t0|)2

∫
Ω

|∇mu|2 + 2t0(1− |t0|)λm
1

∫
Ω

uφ1

≥
(

t20 + (1− |t0|)2
∫

Ω

u2 + 2t0(1− |t0|)
∫

Ω

uφ1

)
(D + λm

1 + ε) .

(4.27)

If t0 = −1, (4.27) gives λm
1 ≥ D + λm

1 + ε, contradiction; otherwise collect as

(1− |t0|)2
( ∫

Ω

|∇mu|2 − (D + λm
1 + ε)

∫
Ω

u2
)
≥ (D + ε)

(
t20 + 2t0(1− |t0|)

∫
Ω

uφ1

)
and observe that the right hand side is not negative (actually t0(1−|t0|)

∫
Ω

uφ1 ≥ 0)

and then we get
∫
Ω |∇

mu|2∫
Ω u2 ≥ D + λm

1 + ε which implies, by the choice of u, that
λm

1 +ε+D < γ +ε. Then we conclude, since D = limn→∞ rndε,rn , that there exists
a point (λ+, λ−) ∈ Σ with λ± > λm

1 and λ− < λm
1 + 2ε + D < γ + 2ε.

Finally recall that we assumed during the proof D > 0; but in the case D = 0
one still gets the result since this implies the existence of a point (λ+, λ−) ∈ Σ with
λ± > λm

1 and λ− < λm
1 + 2ε ≤ γ + 2ε (use (2.4) for the last inequality). �

At this point we have, by the lemmas (3.4), (4.4), (4.5) and (4.6), that under
hypothesis (1.4) (resp. (1.5)) the chain of inequalities λm

1 < γ ≤ δ ≤ λ̄ ≤ γ holds,
implying (4.10) of theorem (4.2).

The following two lemmas will complete the proof of theorem (4.2), giving (4.11).

Lemma 4.7. In the case (D) with N = 2m− 2, one has γ ≤ δ.

Proof. Let u be the solution of (4.1): since h ∈ L2, by standard regularity theory
u ∈ H2m(Ω) ⊆ C1(Ω) and then σ(u) = ess supx∈Ω

u(x)
φ1(x) < ∞.

This allows us to repeat the proof of lemma (4.4). In fact, the same result may
be achieved whenever N < 4m− 2 for case (D) and N < 4m for case (N), but this
will be proved in more generality in lemma (4.9). �

Corollary 4.8. In the hypotheses of lemma (4.7), in fact γ = λm
1 .

Proof. Since we know from [10] that the uAMP does not hold in the hypotheses of
lemma (4.7), then λm

1 = δ ≥ γ; but by the variational characterization of λm
1 in

(2.4) we have also λm
1 ≤ γ. �

Lemma 4.9. If hypothesis (1.4) (resp. (1.5)) does not hold, then for any ε > 0

there exists u ∈ Hm
∗ (Ω) such that

∫
Ω |∇

mu|2∫
Ω u2 < λm

1 + ε and ess supx∈Ω
u(x)
φ1(x) = 0.

This implies
γ = λm

1 . (4.28)

Proof. In the case (D) with N = 2m− 2, the result follows from the definition of γ
and the corollary (4.8). For N ≥ 2m (the argument works both for the case (N) and
(D)), let the domain ω be such that Ω ⊆ Ω and ũ ∈ Hm

0 (ω) such that ‖ũ‖Hm = 1
and ess sup ũ = +∞ (this is indeed possible since Hm

0 (ω) 6⊆ L∞(ω) for N ≥ 2m).
Having fixed ε∗ > 0, since C∞0 is dense in Hm

0 , we may find û ∈ C∞0 (ω) such that
‖û‖Hm < 1 + ε∗ and ess supx∈ω

û(x)
φ1(x) > 2(ε∗)−1; by rescaling and extending by 0

on Ω\ω the function û, we redefine it such that ‖û‖Hm < ε∗ and ess sup û(x)
φ1(x) = 1.
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Now consider the function u = −φ1 + û:

ess sup
x∈Ω

u(x)
φ1(x)

= ess sup
x∈Ω

(
−1 +

û(x)
φ1(x)

)
= 0 ,∫

Ω

|∇mu|2 = λm
1

∫
Ω

|φ1|2 +
∫

Ω

|∇mû|2 − 2λm
1

∫
Ω

φ1û ≤ λm
1 + (ε∗)2 + 2λm

1 ε∗ ,∫
Ω

u2 =
∫

Ω

φ2
1 +

∫
Ω

û2 − 2
∫

Ω

φ1û ≥ 1− (ε∗)2 − 2ε∗ ;

then by choosing ε∗ small enough we may make the ratio
∫
Ω |∇

mu|2∫
Ω u2 < λm

1 + ε for

any ε > 0 as small as desired, with ess supx∈Ω
u(x)
φ1(x) = 0. This gives γ ≤ λm

1 , and
again the variational characterization of λm

1 in (2.4) gives γ ≥ λm
1 .

In the more difficult case N = 2m−1 (for the case (D)) we have Hm(Ω) ⊆ C0(Ω)
but Hm(Ω) 6⊆ C0,α(Ω) for α ∈ (1/2, 1]: we will exploit this and the behavior of φ1

at the boundary to obtain the function û which will prove the claim as above.
First observe that by the regularity of ∂Ω we may always fix a point xc ∈ ∂Ω,

denote by ν the internal normal at xc and build a family {βt}t∈(0,T ] of balls βt =
B(xc +2tν, t) such that βt ⊆ Ω for any t ∈ (0, T ]; without loss of generality suppose
T=1.

Having fixed ε∗ > 0 small enough, let B1 be the unit ball and u ∈ C∞0 (B1) be
such that ‖u‖Hm ≤ ε∗ and supx∈B1

u(x)
φ1(x) = k ∈ (0, 1), then denote by ut ∈ Hm

0 (Ω)
the function

ut =

{
tαu(x−(xc+2tν)

t ) for x ∈ βt

0 for x 6∈ βt

(4.29)

with arbitrary α ∈ (1/2, 1).
By the choice of u we have (−φ1 + u1) < 0 in Ω; however since supx∈Ω ut(x) =

tα supx∈B1
u(x) and φ1|βt

< Ct for a suitable constant C, there exists a δ ∈ (0, 1)
such that supx∈Ω[−φ1(x)+uδ(x)] > 0 and then by continuity there exists τ ∈ (δ, 1)
such that

sup
x∈Ω

[−φ1(x) + uτ (x)] = 0, that is sup
x∈Ω

uτ (x)
φ1(x)

= 1 . (4.30)

Now let us estimate the norms of the uτ : by standard computation ‖uτ‖L2 =
τα+N/2‖u‖L2 and ‖∇muτ‖L2 = τα+N/2−m‖∇mu‖L2 ; then

‖uτ‖Hm ≤ τα+N/2−m‖u‖Hm (4.31)

and since α + N/2 −m > 0 we get ‖uτ‖Hm ≤ ε∗ and so the function uτ is indeed
the û we were looking for. �

Proof of theorem (4.2). As anticipated above, the lemmas (3.4), (4.4), (4.5) and
(4.6) give, under hypothesis (1.4) (resp. (1.5)), the chain of inequalities λm

1 < γ ≤
δ ≤ λ̄ ≤ γ which implies (4.10). When hypothesis (1.4) (resp. (1.5)) does not hold,
from the lemmas (4.5), (4.6) one gets δ ≤ λ̄ ≤ γ; then lemma (4.9) gives γ = λm

1

and so implies (4.11) (observe that δ, λ̄ ≥ λm
1 by their definition). �

5. Proof of the PS condition for functional (2.3)

In this section we prove lemma (3.8); the proof will be adapted from that in [8].
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First note that from hypothesis (1.3) one can always make the estimates:
for any ε > 0, s̄ ∈ R and M ∈ R, there exist CM , Cε ∈ R (of course depending also
on s̄) such that

g(x, s) ≥ Ms− CM for s > s̄ , (5.1)

|g(x, s)| ≤ ε(−s) + Cε for s ≤ s̄ . (5.2)

Let now {un} ⊆ Hm
∗ (Ω) be a PS sequence, i.e. there exist T > 0 and εn → 0+ such

that

|F (un)| =
∣∣∣∣12

∫
Ω

|∇mun|2 −
λ

2

∫
Ω

|un|2 −
∫

Ω

G(x, un)−
∫

Ω

hun

∣∣∣∣ ≤ T , (5.3)

|〈F ′(un), v〉| =
∣∣∣∣∫

Ω

∇mun∇mv − λ

∫
Ω

unv −
∫

Ω

g(x, un)v −
∫

Ω

hv

∣∣∣∣
≤ εn‖v‖Hm , ∀v ∈ Hm

∗ .

1. Suppose un is not bounded, then we can assume ‖un‖Hm ≥ 1, ‖un‖Hm → +∞
and define zn = un

‖un‖Hm
, so that zn is a bounded sequence in Hm

∗ and we can select
a subsequence such that zn → z0 weakly in Hm

∗ and strongly in L2(Ω) and C0(Ω)
(resp. C1(Ω)).
2. Claim: z0 ≤ 0.

Proof of the claim. Let Ω+ = {x ∈ Ω : z0(x) > 0} and v ∈ C∞0 (Ω+) with v ≥ 0
so that zp = z+

0 v = z0v ∈ Hm
∗ (Ω). By considering, for arbitrary v as above,∣∣∣ 〈F ′(un),zp〉

‖un‖Hm

∣∣∣ we get∫
Ω

g(x, un)zp

‖un‖Hm

≤
∣∣ ∫

Ω

∇mzn∇mzp

∣∣+λ
∣∣ ∫

Ω

znzp

∣∣+∣∣ ∫
Ω

hzp

‖un‖Hm

∣∣+ εn‖zp‖Hm

‖un‖Hm

. (5.4)

Now for any x̄ such that zp(x̄) > 0, we have that un(x̄) > 0 for n big enough and
then we can use the estimate (5.1) to obtain

g(x̄, un)
‖un‖Hm

≥ Mzn(x̄)− CM

‖un‖Hm

; (5.5)

by first taking lim inf and then exploiting the arbitrariness of M we get

lim
n→+∞

g(x̄, un)
‖un‖Hm

= +∞ . (5.6)

Joining equations (5.1) and (5.2) with s̄ = 0 and divided by ‖un‖Hm we get

g(x, un)
‖un‖Hm

≥ −ε|zn| −
max{CM , Cε}
‖un‖Hm

; (5.7)

since zn is uniformly bounded by its C0 convergence and ‖un‖Hm ≥ 1, this implies
that the functions g(x,un)

‖un‖Hm
are bounded below uniformly so that we can use Fatou’s

Lemma and get from (5.4) and supposing zp 6≡ 0

+∞ =
∫

Ω

lim
n→+∞

g(x, un)zp

‖un‖Hm

≤ lim inf
n→+∞

∫
Ω

g(x, un)zp

‖un‖Hm

≤ lim inf
n→+∞

(∣∣ ∫
Ω

∇mzn∇mzp

∣∣ + λ
∣∣ ∫

Ω

znzp

∣∣ +
∣∣ ∫

Ω

hzp

‖un‖Hm

∣∣ +
εn‖zp‖Hm

‖un‖Hm

)
,

(5.8)
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but the right hand side can be estimated since the first two terms are bounded by
(1 + λ)‖zn‖Hm‖zp‖Hm ≤ (1 + λ)‖zp‖Hm and the last two clearly go to zero; then
equation (5.8) gives rise to a contradiction unless z0 ≤ 0. �

3. Claim:

lim sup
n→+∞

∫
Ω

g(x, un)zn

‖un‖Hm

≤ 0 . (5.9)

Proof of the claim. By considering |2F (un)− 〈F ′(un), un〉| we get:∫
un>s0

g(x, un)un − 2G(x, un)

≤
∫

un≤s0

2G(x, un)− g(x, un)un +
∣∣ ∫

Ω

hun

∣∣ + 2T + εn‖un‖Hm .

(5.10)

The right hand side may be estimated as follows:
• we use estimate (5.2) (once integrated and once multiplied by un) to get a

constant Dε such that∫
un≤s0

2G(x, un)−g(x, un)un ≤
∫

Ω

(εu2
n +D̃ε|un|) ≤ ε‖un‖2

L2 +Dε‖un‖L2 ; (5.11)

•
∣∣ ∫ 1

0
hun

∣∣ ≤ ‖h‖L2‖un‖L2 ≤ ‖h‖L2‖un‖Hm .
For the left hand side we use hypothesis (1.6) to obtain

(1− 2θ)
∫

un>s0

g(x, un)un ≤
∫

un>s0

g(x, un)un − 2G(x, un) (5.12)

and then, since (1− 2θ) > 0, joining all estimates from (5.10) to (5.12), we get∫
un>s0

g(x, un)un ≤
1

1− 2θ
(Aε‖un‖Hm + ε‖un‖2

L2 + 2T ) . (5.13)

Finally, dividing by ‖un‖2
Hm and estimating for un ≤ s0 as in (5.11), we get (re-

defining the constants)∫
Ω

g(x, un)zn

‖un‖Hm

≤ C
(
ε
‖un‖2

L2

‖un‖2
Hm

+
Aε

‖un‖Hm

+
T

‖un‖2
Hm

)
: (5.14)

by first taking lim sup and then exploiting the arbitrariness of ε one obtains the
claim. �

4. Claim:

lim sup
n→+∞

∫
Ω

|∇mzn|2 ≤ lim
n→+∞

λ

∫
Ω

z2
n = λ

∫
Ω

z2
0 . (5.15)

Proof of the claim. By considering
∣∣∣ 〈F ′(un),zn〉

‖un‖Hm

∣∣∣ we get:∫
Ω

|∇mzn|2 ≤ λ

∫
Ω

z2
n +

∫
Ω

g(x, un)zn

‖un‖Hm

+
∣∣ ∫

Ω

hzn

‖un‖Hm

∣∣ +
εn‖zn‖Hm

‖un‖Hm

,

where, taking lim sup and using equation (5.9), all the terms in the right hand side
go to zero except the first that converges to λ‖z0‖2

L2 . �

5. Claim: if λ ∈ (λm
1 , γ) then z0 = 0.
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Proof of the claim. We will first prove that z0 ∈ S0 (see the definition in (3.3)):
suppose for the sake of contradiction that supx∈Ω

z0(x)
φ1(x) < 0. Since zn → z0 in

C0(Ω) in the case (N) and in C1(Ω) in the case (D), we have that zn

φ1
< 1

2
z0
φ1

< 0 for
n > n̄ and then un < 0 in Ω for n > n̄. This allows us to use the estimate (5.2) to
obtain that ∣∣ g(x, un)

‖un‖Hm

∣∣ ≤ ε|zn(x)|+ Cε

‖un‖Hm

; (5.16)

by first taking lim sup and then exploiting the arbitrariness of ε we get

lim
n→+∞

∣∣ g(x, un)
‖un‖Hm

∣∣ = 0 . (5.17)

By considering
∣∣ 〈F ′(un),φ1〉

‖un‖Hm

∣∣ we get∣∣(λm
1 − λ)

∫
Ω

znφ1

∣∣ ≤ ∣∣ ∫
Ω

g(x, un)φ1

‖un‖Hm

∣∣ +
∣∣ ∫

Ω

hφ1

‖un‖Hm

∣∣ +
εn‖φ1‖Hm

‖un‖Hm

. (5.18)

Since equation (5.16) also tells that the functions in the sequence are dominated
(for n > n̄) by maxx∈Ω |z0|+1+Cε=1, we can use dominated convergence to assert
that

lim
n→+∞

∣∣ ∫
Ω

g(x, un)φ1

‖un‖Hm

∣∣ ≤ lim
n→+∞

∫
Ω

∣∣ g(x, un)
‖un‖Hm

∣∣φ1 =
∫

Ω

lim
n→+∞

∣∣ g(x, un)
‖un‖Hm

∣∣φ1 = 0 .

(5.19)
Now we may take limit in equation (5.18), to get

(λm
1 − λ)

∫
Ω

z0φ1 = 0 . (5.20)

This, with λ 6= λm
1 , gives

∫
Ω

z0φ1 = 0 which, since z0 ≤ 0, would imply z0 ≡ 0: we
conclude that z0 ∈ S0 as claimed. Finally, this implies

∫
Ω
|∇mz0|2 ≥ γ

∫
Ω

z2
0 by the

definition of γ, which contradicts equation (5.15) unless z0 = 0 since otherwise, by
the weak convergence,∫

Ω

|∇mz0|2 ≤ lim inf
n→+∞

∫
Ω

|∇mzn|2 ≤ λ

∫
Ω

z2
0 < γ

∫
Ω

z2
0 . (5.21)

�

6. Claim: if λ = λm
1 ,

∫
Ω

hφ1 < 0 and hypothesis (1.7) holds, then z0 = 0.

Proof of the claim. Equation (5.15) and the weak convergence of zn to z0 implies∫
Ω

|∇mz0|2 ≤ lim inf
n→+∞

∫
Ω

|∇mzn|2 ≤ λm
1

∫
Ω

z2
0 , (5.22)

which implies that z0 ∈ span{φ1}, that is z0 = −ρφ1 for some ρ ≥ 0. By considering
|〈F ′(un), φ1〉| with λ = λm

1 we get∣∣ ∫
Ω

g(x, un)φ1 +
∫

Ω

hφ1

∣∣ ≤ εn‖φ1‖Hm . (5.23)

Taking lim sup gives

lim sup
n→+∞

∫
Ω

g(x, un)φ1 = −
∫

Ω

hφ1 > 0 , (5.24)
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but this implies z0 = −ρφ1 ≡ 0 since otherwise

un(x) = zn(x)‖un‖Hm ≤ −ρ

2
φ1(x)‖un‖Hm → −∞ ∀x ∈ Ω (5.25)

and so, by hypothesis (1.7), the limit in the left hand side of (5.24) would be
zero. �

7. Claim: un is bounded.

Proof of the claim. The result follows since equation (5.15) now gives the contra-
diction 1 = ‖∇mzn‖2

L2 + ‖zn‖2
L2 → 0. �

The PS condition follows now with standard calculations from the boundedness
of un.
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