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EXISTENCE OF SUBHARMONIC SOLUTIONS
TO A HYSTERESIS SYSTEM

WITH SINUSOIDAL EXTERNAL INFLUENCE
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Communicated by Vicentiu Radulescu

Abstract. We consider a system of ordinary differential equations with non-
linearity describing relay hysteresis under sinusoidal external influence. Theo-

rems on sufficient conditions for the existence of subharmonic solutions to the

system being investigated are established.

1. Introduction and statement of problem

Dynamics of ordinary differential equation systems with discontinuous right-
hand sides exposed to external influence is of undoubted interest. The history
of such investigations started long ago (see, for example, [13]). Stable modes in
relay systems are examined by iterative methods in [15]. The latest results on the
solutions to second-order differential equations with discontinuous right-hand side
are published in [1, 4, 5, 6, 7, 10, 14, 18, 19, 22]; the periodic solutions are considered
in [4, 6, 7, 10, 14, 22]. Applied problems for these equations are discussed in [16, 20].
The existence of periodic solutions to Hamiltonian systems with periodic influences
is proved in [3]. Lavrent’ev’s problem on separated flows in the case of non-periodic
external influence is analyzed in [20]. The ordinary differential equation of second-
order with superlinear convex nonlinearity is investigated in [21]. Problems related
to control of elliptic type distributed systems with discontinuous nonlinearity are
approached in [17]. The systems of ordinary differential equations with nonlinearity
of non-ideal relay type and external continuous influence are studied in [8, 9, 25,
26, 27]. This work proceeds the researches above.

We consider the automatic control system of the form

Ẋ = AX +BF (σ) + kBf(t), σ = (Γ, X). (1.1)

Here X ∈ Ed (Ed is d-dimensional Euclidean space); A is a real-valued (d × d)
matrix; B and Γ are real-valued (d × 1) matrices; k ∈ R; f(t) = sin(ωt + ϕ),
ω, ϕ ∈ R; (Γ, X) means the scalar product of vectors Γ and X. Ambiguous function
F is defined by the relations: F (σ) = m2 while σ > l1 and F (σ) = m1 while σ < l2,
where m1 < m2, l1 < l2 (mi, li ∈ R, i = 1, 2).
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Hence function F (σ) describes an asymmetric relay hysteresis loop being tra-
versed counterclockwise in plane (σ, F (σ)). Nonlinearities of this kind are often
used in applications (see, e.g., [11, 12, 24]).

Unlike [15], in this paper we do not suppose that system (1.1) is strong positive
and matrix A of the system is Hurwitz. In [4, 14], nonlinearity F corresponds to
the special case when −m1 = m2 and l1 = l2 = 0.

We pose the problem that is to find out the conditions on the parameters of
the relay hysteresis system under which there exist the periodic modes similar to
the dominant-lock mode or the subharmonic-lock mode [23]. The analogy consists
only in the locking process, as it is not necessary for the autonomous system under
considered assumptions to have the self-oscillating mode or even a periodic solution.

We shall say that a solution of system (1.1) is called subharmonic if the period
of the forced oscillation be multiple to the period of the external influence.

Thus in this paper we consider the problem on the existence of the subharmonic
solutions to the hysteresis systems of form (1.1) with sinusoidal external influence.

2. Approach to the problem

First we present an approach to solving the problem for system (1.1). To con-
struct the forced oscillations of system (1.1), we use the general solution of the
system in the Cauchy form

X(t) = eAtX(0) +
∫ t

0

eA(t−τ)(BF (σ) + kBf(τ))dτ. (2.1)

Moreover, we assume that there is t = TB such that X(0) = X(TB). Then it
follows from the solution of (2.1) that initial vector X0 = X(0) can be defined by
the following expression:

X0 =
(
E − eATB

)−1
∫ TB

0

eA(TB−τ)B(F (σ) + kf(τ))dτ. (2.2)

Therefore, using (2.1) and (2.2), we can formally define TB-periodic solution of
(1.1) as follows:

X(t) = eAt
(
E − eATB

)−1
∫ TB

0

eA(TB−τ)B(F (σ(τ)) + kf(τ))dτ

+
∫ t

0

eA(t−τ)B(F (σ(τ)) + kf(τ))dτ.
(2.3)

Notice that in this case we need to know the properties of functions σ(t) and f(t).
We use (2.3) to construct the transcendental equations with respect to the pa-

rameters of the periodic solution, which describes the forced oscillations of the
system with the relay hysteresis given by function F (σ).

Let points X1 and X2 belong to the periodic trajectory and (Γ, X1) = l1,
(Γ, X2) = l2. In time TB the image point returns to the initial position. Then
we have

X1 = eAτ1X2 +
∫ τ1

0

eA(τ1−τ)B(m2 + kf(τ))dτ,

X2 = eA(TB−τ1)X1 +
∫ TB

τ1

eA(TB−τ)B(m1 + kf(τ))dτ,
(2.4)
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where τ1 is the time it takes the image point to transit from X2 to X1, τ2 is the
time for return transition from X1 to X2. Note that τ2 = TB − τ1.

From (2.4), we have

X1 =
(
E − eATB

)−1
(
eAτ1

∫ TB

τ1

eA(TB−τ)B(m1 + kf(τ))dτ

+
∫ τ1

0

eA(τ1−τ)B(m2 + kf(τ))dτ
)

=
(
E − eATB

)−1
Q1

(2.5)

and similarly

X2 =
(
E − eATB

)−1
(
eA(TB−τ1)

∫ τ1

0

eA(τ1−τ)B(m2 + kf(τ))dτ

+
∫ TB

τ1

eA(TB−τ)B(m1 + kf(τ))dτ
)

=
(
E − eATB

)−1
Q2.

(2.6)

Using the switching conditions and equalities (2.5), (2.6), we construct the tran-
scendental equations for seeking τ1 and τ2, namely,

l1 = (Γ,
(
E − eATB

)−1
Q1),

l2 = (Γ,
(
E − eATB

)−1
Q2).

(2.7)

Let there exist parameters of system (1.1) such that equations (2.7) is solvable
for τ1 > 0, τ2 > 0, where τ1 + τ2 = TB . Also, let the solutions of (2.7) satisfy
system (2.4), where X1 and X2 are defined by (2.5) and (2.6) respectively. Then it
is possible to state that the problem at issue is solved.

Let us remark that the solutions of system (2.7) can be a countable set. Whence
system (1.1), generally speaking, can have a lot of subharmonic solutions.

3. Real nonzero distinct roots for d = 2

Let us write down equations (2.7) for the case when d = 2 and characteristic
equation |A− λE| = 0 has two real nonzero distinct roots λ1 and λ2. We perform
the nonsingular linear transformation of system (1.1) with the matrix of the special

form [9, 25, 26, 27]. In this case, we have B =
(

1
1

)
,

eAt =
(
eλ1t 0

0 eλ2t

)
,
(
E − eATB

)−1 =
(

(1− eλ1TB )−1 0
0 (1− eλ2TB )−1

)
.

After the transformation, here we return to the original notations for the matrices.

Let Qi =
(
qi1
qi2

)
, where i = 1, 2. Component q11 is defined by the equation

q11 =
m1

λ1
eλ1τ1

(
−1 + eλ1(TB−τ1)

)
+ keλ1(TB+τ1)

( −λ1

λ2
1 + ω2

e−λ1TB sin(ωTB + ϕ)

− ω

λ2
1 + ω2

e−λ1TB cos(ωTB + ϕ)− −λ1

λ2
1 + ω2

e−λ1τ1 sin(ωτ1 + ϕ)

+
ω

λ2
1 + ω2

e−λ1τ1 cos(ωτ1 + ϕ)
)
− m2

λ1

(
1− eλ1τ1

)
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+ keλ1τ1
( −λ1

λ2
1 + ω2

e−λ1τ1 sin(ωτ1 + ϕ)− ω

λ2
1 + ω2

e−λ1τ1 cos(ωτ1 + ϕ)

− −λ1

λ2
1 + ω2

sinϕ+
ω

λ2
1 + ω2

cosϕ
)
.

Component q12 is defined by the similar equality

q12 =
m1

λ2
eλ2τ1

(
−1 + eλ2(TB−τ1)

)
+ keλ2(TB+τ1)

( −λ2

λ2
2 + ω2

e−λ2TB sin(ωTB + ϕ)

− ω

λ2
2 + ω2

e−λ2TB cos(ωTB + ϕ)− −λ2

λ2
2 + ω2

e−λ2τ1 sin(ωτ1 + ϕ)

+
ω

λ2
2 + ω2

e−λ2τ1 cos(ωτ1 + ϕ)
)
− m2

λ2

(
1− eλ2τ1

)
+ keλ2τ1

( −λ2

λ2
2 + ω2

e−λ2τ1 sin(ωτ1 + ϕ)− ω

λ2
2 + ω2

e−λ2τ1 cos(ωτ1 + ϕ)

− −λ2

λ2
2 + ω2

sinϕ+
ω

λ2
2 + ω2

cosϕ
)
.

Now, using the coefficients of the original system, we write down the first transcen-
dental equation of (2.7) for γ1 = 0. We can afford these additional assumptions
owing to the choice of the linear transformation for the original system. Further,
we are looking for the subharmonic solutions.

Here and elsewhere γi (i = 1, 2) are the components of vector Γ =
(
γ1

γ2

)
. We

emphasize especially that vector Γ is obtained as a consequence of applying this
transformation. From here we obtain

l1
γ2

(
1− eλ2TB

)
=

1
λ2

(m2 −m1)eλ2τ1 +
m1

λ2
eλ2TB − m2

λ2
+ k

(
eλ2TB − 1

)
×
( λ2

λ2
2 + ω2

sin(ωτ1 + ϕ) +
ω

λ2
2 + ω2

cos(ωτ1 + ϕ)
)
.

(3.1)

The second equation for τ2 can be obtained by similar way. Values τ1 and τ2
are related by τ2 = TB − τ1, where TB is the period of forced oscillations that,
in particular, may be equal to the period of function f(t). First we write out
components q21 and q22 of vector Q2,

q21 = −m2

λ1
eλ1(TB−τ1)

(
1− eλ1τ1

)
+ keλ1TB

( −λ1

λ2
1 + ω2

e−λ1τ1 sin(ωτ1 + ϕ)

− ω

λ2
1 + ω2

e−λ1τ1 cos(ωτ1 + ϕ)− −λ1

λ2
1 + ω2

sinϕ+
ω

λ2
1 + ω2

cosϕ
)

+
m1

λ1

(
−1 + eλ1(TB−τ1)

)
+ keλ1τ1

( −λ1

λ2
1 + ω2

e−λ1TB sin(ωTB + ϕ)

− ω

λ2
1 + ω2

e−λ1TB cos(ωTB + ϕ)− −λ1

λ2
1 + ω2

e−λ1τ1 sin(ωτ1 + ϕ)

+
ω

λ2
1 + ω2

e−λ1τ1 cos(ωτ1 + ϕ)
)

and

q22 = −m2

λ2
eλ2(TB−τ1)

(
1− eλ2τ1

)
+ keλ2TB

( −λ2

λ2
2 + ω2

e−λ2τ1 sin(ωτ1 + ϕ)
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− ω

λ2
2 + ω2

e−λ2τ1 cos(ωτ1 + ϕ)− −λ2

λ2
2 + ω2

sinϕ+
ω

λ2
2 + ω2

cosϕ
)

+
m1

λ2

(
−1 + eλ2(TB−τ1)

)
+ keλ2τ1

( −λ2

λ2
2 + ω2

e−λ2TB sin(ωTB + ϕ)

− ω

λ2
2 + ω2

e−λ2TB cos(ωTB + ϕ)− −λ2

λ2
2 + ω2

e−λ2τ1 sin(ωτ1 + ϕ)

+
ω

λ2
2 + ω2

e−λ2τ1 cos(ωτ1 + ϕ)
)
.

Then the second transcendental equation of (2.7) takes the form

l2
γ2

(
1− eλ2TB

)
=

1
λ2

(m1 −m2)eλ2(TB−τ1) +
m2

λ2
eλ2TB − m1

λ2

+ k
(

1− eλ2(TB−τ1)
)( λ2

λ2
2 + ω2

sin(ωτ1 + ϕ) +
ω

λ2
2 + ω2

cos(ωτ1 + ϕ)
)

+ k
(
eλ2TB − eλ2(τ1−TB)

)( λ2

λ2
2 + ω2

sinϕ+
ω

λ2
2 + ω2

cosϕ
)
.

(3.2)

Next we solve equation (3.1) with respect to the expression in its right side in
brackets

k

(
λ2

λ2
2 + ω2

sin(ωτ1 + ϕ) +
ω

λ2
2 + ω2

cos(ωτ1 + ϕ)
)

=
(
eλ2TB − 1

)−1
( l1
γ2

(
1− eλ2TB

)
− 1
λ2

(m2 −m1)eλ2τ1

− m1

λ2
eλ2TB +

m2

λ2

)
.

(3.3)

Exactly the same expression is in the fourth term of equation (3.2). We substitute
expression (3.3) in equation (3.2), then denote y = eλ2τ1 (assuming that τ1 > 0)
and group the coefficients at y2, y1 and y0 respectively. We have

ay2 + by + c = 0, (3.4)

where coefficients a, b and c are determined by the following equations:

a =
m2 −m1

λ2 (eλ2TB − 1)
− k

eλ2TB

√
λ2

2 + ω2
sin(ϕ+ δ),

b =
keλ2TB√
λ2

2 + ω2
sin(ϕ+ δ) +

l2
γ2

(
1− eλ2TB

)
−
(m2

λ2
eλ2TB − m1

λ2

)
+
l1
γ2

+
1

λ2 (eλ2TB − 1)
(
m1e

λ2TB −m2

)
− eλ2TB (m2 −m1)

(eλ2TB − 1)λ2
,

c = − 1
λ2
eλ2TB (m1 −m2)− l1

γ2
eλ2TB +

eλ2TB

eλ2TB − 1

(m2

λ2
− m1

λ2
eλ2TB

)
,

(3.5)

where δ = arctan(ω/λ2). If the period of the external influence defined by function
f(t) is known, then we also consider value TB in (3.5) as known. This follows from
the agreement to search the subharmonic solutions. We suppose that TB = nT ,
where n ∈ N and T is the period of function f(t). To determine y as positive solution
of equation (3.4), we also assume that a = a(TB), b = b(TB) and c = c(TB). In
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particular, solving equation (3.4), where TB = T , it is necessary to keep in mind
that we are only interested in solutions y such that τ1 = λ−1

2 lny < T . In addition,
roots of equation (3.4), i.e. y1,2 = −b±

√
b2−4ac
2a , should be real. So, we have to

impose the condition on the coefficients of equation (3.4)

b2 − 4ac ≥ 0. (3.6)

Inequality (3.6) is a condition that determines the existence domains for solu-
tion τ1 and, consequently, for the periodic solutions of the original system in its
multidimensional parameter space. Remind that we are interested in the positive
solution τ1 satisfying the condition 0 < τ1 < TB . Therefore, if λ2 > 0, then at least
one of roots y1 or y2 should be greater than unity. If λ2 < 0, then at least one
of the same roots should be greater than zero and less than unity. In short, when
condition (3.6) is valid, the following conditions should also hold:

if λ2 > 0, then at least one of roots satisfies yi > 1,
if λ2 < 0, then at least one of roots satisfies 0 < yi < 1.

(3.7)

If root τ1 is found, then by given TB , one can find τ2. This means that sufficient
conditions (3.6) and (3.7) for parameters a, b and c of equation (3.4) and, conse-
quently, for the parameters of the original system, guarantee the existence of a
periodic mode (cyclic behavior). After substituting TB = nT and τ1 in (2.5) or
(2.6), we obtain uniquely the switching points of periodic solutions in the phase
plane, namely, point X1 that belongs to switching line σ = l1 or respectively point
X2 that belongs to σ = l2.

After replacing TB by nT , the solution of equation (3.4) is associated with search-
ing the periodic modes similar to the dominant-lock or subharmonic-lock ones.

Next we formulate the results obtained above as a theorem on the sufficient
condition for the existence of periodic solutions to (1.1).

Theorem 3.1. Let by a nonsingular transformation, the initial automatic control

system be reduced to the form of system (1.1), where matrix A =
(
λ1 0
0 λ2

)
, vector

B =
(

1
1

)
, f(t) = sin(ωt+ϕ), function F (σ) describes relay hysteresis, σ = (Γ, X),

Γ =
(
γ1

γ2

)
and γ1 = 0. Let conditions (3.6),(3.7) hold and equation (3.4) be solvable

for τ1 > 0. Then the initial automatic control system has at least one TB-periodic
solution, where TB = nT , n ∈ N, T is the period of function f(t).

If the discriminant of equation (3.4) equals zero, then there exists one root y of
(3.4). If either y > 1 for λ2 > 0 or y < 1 for λ2 < 0, then it means that there
exists a unique solution τ1 and, therefore, after substituting τ1 in (2.5) and (2.6),
we obtain switching points X1 and X2 of the periodic solution. Thus the following
theorem holds.

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied. Then the number
of roots yi of equation (3.4) determines the number of periodic solutions of (1.1) if
conditions (3.6) and (3.7) hold. System (1.1) can not have more than two periodic
solutions for d = 2.

We can formulate a statement similar to Theorem 3.1 for the case when γ1 6= 0
and γ2 = 0. Condition γ1 = 0 (or γ2 = 0) allows one to reduce the system of
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transcendental algebraic equations for searching τ1 and τ2, where TB = τ1 + τ2
is given, to the simple quadratic equation that should have the roots satisfying
condition (3.7). In the general case, it is impossible to obtain analytically the
solution of (2.7) even for two-dimensional system (1.1). However, for γ1 = 0 these
equations permit one to set conditions on the existence of the periodic solutions
describing the forced oscillations such that the frequency equals the frequency of
the external influence or is 1/n part of this frequency.

4. Real nonzero multiple roots for d = 2

Let us consider the case when the roots of the characteristic equation are real
nonzero multiple. Suppose that the initial automatic system is reduced to the

system with matrix A =
(
λ 0
1 λ

)
, vector B =

(
1
0

)
[2], and, as before, f(t) =

sin(ωt+ ϕ). Let γ2 = 0. Next we write down system (2.7). We get the matrix(
E − eATB

)−1 =

( (
1− eλTB

)−1 0
teλTB

(
1− eλTB

)−2 (
1− eλTB

)−1

)
.

The first component of vector Q1 has the form

q11 = eλ(TB+τ1)

∫ TB

τ1

e−λτ (m1 + k sin(ωτ + ϕ))dτ

+ eλτ1
∫ τ1

0

e−λτ (m2 + k sin(ωτ + ϕ))dτ,

and its second component is defined as follows:

q22 = eλ(TB+τ1)

∫ TB

τ1

(
(TB + τ1)e−λτ (m1 + k sin(ωτ + ϕ))

− τe−λτ (m1 + k sin(ωτ + ϕ))
)
dτ

+ eλτ1
∫ τ1

0

(
τ1e
−λτ (m2 + k sin(ωτ + ϕ))− τe−λτ (m2 + k sin(ωτ + ϕ))

)
dτ.

This means that for γ2 = 0 the first equation of (2.7) takes the form

l1 = γ1

(
1− eλTB

)−1
q11 . (4.1)

After the canonical transformation under the condition TB = nT , n ∈ N, equa-
tion (4.1) can be rewritten as

l1
γ1

(
1− eλTB

)
=

1
λ

(m2 −m1)eλτ1 +
m1

λ
eλTB − m2

λ
+ k

(
eλTB − 1

)
×
( λ

λ2 + ω2
sin(ωτ1 + ϕ) +

ω

λ2 + ω2
cos(ωτ1 + ϕ)

)
.

(4.2)

Note that equation (4.2) differs from equation (3.1) only the denotation of the
eigenvalue, namely, λ2 is replaced by λ. Now let us consider the second equation
of (2.7). We have the first component of vector Q2,

q21 = eλTB

∫ τ1

0

e−λτ (m2 + k sin(ωτ + ϕ))dτ

+ eλTB

∫ TB

τ1

e−λτ (m1 + k sin(ωτ + ϕ))dτ
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and the second component of vector Q2,

q22 = eλTB

∫ τ1

0

(
TBe

−λτ (m2 + k sin(ωτ + ϕ))− τe−λτ (m2 + k sin(ωτ + ϕ))
)
dτ

+ eλTB

∫ TB

τ1

(
TBe

−λτ (m1 + k sin(ωτ + ϕ))− τe−λτ (m1 + k sin(ωτ + ϕ))
)
dτ.

Then taking into account the form of vector Γ, we obtain the second equation
of (2.7) as follows:

l2
γ1

(
1− eλTB

)
=

1
λ

(m1 −m2)eλ(TB−τ1) +
m2

λ
eλTB − m1

λ

+ k
(

1− eλ(TB−τ1)
)( λ

λ2 + ω2
sin(ωτ1 + ϕ) +

ω

λ2 + ω2
cos(ωτ1 + ϕ)

)
+ k

(
eλTB − eλ(τ1−TB)

)( λ

λ2 + ω2
sinϕ+

ω

λ2 + ω2
cosϕ

)
.

(4.3)

Therefore, equation (4.3) differs from equation (3.2) by replacing λ2 to λ. Then
the equation of form (3.4) can be obtained from the system of transcendental equa-
tions (4.2), (4.3) if λ2 is replaced by λ in formulas (3.5) for defining coefficients
a = a(TB), b = b(TB), and c = c(TB). In this case, δ is replaced by arctan(ω/λ) in
the formulas for defining a = a(TB) and b = b(TB). It is also necessary to replace
the root of the characteristic equation λ2 by λ under (3.6) and (3.7). Then if (3.6)
holds, we require the following:

if λ > 0, then at least one of roots satisfies yi > 1,
if λ < 0, then at least one of roots satisfies yi < 1.

(4.4)

We now formulate an analogue of Theorem 3.1 on the sufficient condition for the
existence of periodic solutions to (1.1).

Theorem 4.1. Let by a nonsingular linear transformation, the initial automatic
control system be reduced to the form

ẋ1 = λx1 + F (σ) + k sin(ωt+ ϕ),
ẋ2 = x1 + λx2.

Here function F (σ) describes relay hysteresis, σ = (Γ, X), where Γ =
(
γ1

γ2

)
and

γ2 = 0. Let conditions (3.6), (4.4) hold and equation (3.4) be solvable for τ1 > 0.
Then the initial automatic control system has at least one TB-periodic solution,
where TB = nT , n ∈ N, T is the period of function f(t) = sin(ωt+ ϕ).

Thus, in the case of the Jordan block, condition γ2 = 0 makes it also possible
to reduce the problem on existence of periodic solutions to the problem on resolv-
ability of the algebraic equation obtained for the case of two distinct roots of the
characteristic equation.
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