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I. INTRODUCTION

This thesis considers an extension of a problem in finite group theory. Fi-

nite group theory is the study of finite sets of objects related to one another by an

associative binary operation i.e. multiplication, addition, or function composition.

Often, these structures represent various forms of symmetries, and one may study

these symmetries using a group. In this thesis, we study a generalization of a group

theoretic analogue to a character theoretic parameter. The original group theoretic

analogue studied by A. Harrison was inspired by a series of publications starting

with N. Snyder’s paper and an extension of Snyder’s parameter was the subject

of C. Durfee’s dissertation [2]. For an in depth explanation of the group theoretic

analogue see A. Harrison [5] and for the original parameter see N. Snyder [10].
In [2], Durfee studied a parameter that was essentially Snyder’s e relative to

a fixed normal subgroup. The parameter was defined as:

Definition. Let N be a normal subgroup of a finite group G. Let � and ✓ be irre-

ducible characters of G and N , respectively, such that ✓ is fixed by the conjugation

action of G and � restricts to a multiple of ✓ on N . Let d = �(1)
✓(1) , and define e by

�G�N � = d(d + e).
Durfee’s parameter e is always a non-negative integer. In her dissertation,

she studies the case where e = 1 and e = 2 and then proceeds to study this param-

eter when the group is either supersolvable or nilpotent. This will give us direction

for our work. Her main result, in her paper [3], was the following:

Theorem 1. Let N be a normal subgroup of a finite group G, where G�N is solv-

able and let � be an irreducible character of N that is G-invariant. Let ✓ be an ir-

reducible character of N that is a multiple of ✓ and let d = �(1)
✓(1) . Write �G ∶ N � =

d(d + e) for some non-negative integer e. If e > 1 and d > e5 − e, then we can find
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groups X and Y such that:

1. N ≤X � Y ≤ G
2. �Y �X � = (d

e

)(d
e

+ 1)
3. Y �X is either a group of order 2 or is a 2-transitive Frobenius group.

There is a close connection between characters and conjugacy classes that of-

ten motivates a problem for one based on a result of the other. Theorems produced

in one line of research often generate similar statements in the other. Due to the

aforementioned research, a group theoretic analog to Durfee’s parameter is studied

in this thesis which was motivated by A. Harrison’s paper [5] and his thesis [4].

Our paper continues where A. Harrison’s paper ended, and we defer to his

paper for the construction of the non-relative parameter [5]. Our approach is to

study the relative parameter corresponding to a fixed minimal normal subgroup N

of a finite group G by placing an upper bound on �G ∶ N � in terms of the relative

parameter. We then classify those groups in which �G ∶ N � achieves equality with

the upper bound. We finish our paper by determining what conditions the relative

parameter would possibly need to ensure a Frobenius group.

Our paper begins with a review of relevant material and we devote the last

chapter to our main results. An understanding of group theory is assumed, although

where possible we try to present all supporting material. For certain results we will

omit proof and send the reader to the appropriate source for proof, because includ-

ing proof would lengthen this document significantly. All conjectures were tested

in GAP (Groups, Algorithms and Programming), and portions of the relevant code

are attached in the appendix. Lastly, our notation will closely follow the notation

used in Isaac’s Finite Group Theory [7] and other notation will be introduced as

needed.
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II. NILPOTENT, P-POWER, & SUPERSOLVABLE GROUPS

Nilpotent groups and p-groups

All groups are assumed to be finite from here on. We begin our discussion

with p-groups and nilpotent groups, the latter of which plays a significant role in

the results of the thesis. While some familiarity with the properties of these groups

is assumed, we will review the relevant properties.

Now, p-groups are not typical of groups in general, but they play a promi-

nent role and are ubiquitous in the study of group theory. This is of course a con-

sequence of Sylow theory. The structure of p-groups is di↵erent when compared

with groups in general, but the number of p-groups is quite large when compared to

the number of groups which are not of prime power order. For example, there are

51 isomorphism types of groups of order 25 and 267 isomorphism types of groups

of order 26. This continues to grow at a large rate. To contrast this, we have that

there are only 175 isomorphism types of groups with order between 25 and 26. So

the amount of p-groups is quite staggering when compared to how many groups ex-

ists when the group order is a product of di↵erent primes.

A fundamental fact about p-groups is that they have nontrivial centers which

intersect normal subgroups non-trivially.

Theorem 2. Let P be a p-group and let N be a non-identity normal subgroup of P .

Then �N ∩Z(P )� > 1. In particular, if P is nontrivial, then �Z(P )� > 1.
Proof. Let P act on N via conjugation. Now, observe that N ∩ Z(P ) is the set of

elements of N that lie in orbits of size 1. By the fundamental counting principle,

every orbit has p-power size. Therefore, each nontrivial orbit has size divisible by p.

Since the set N − (N ∩ Z(P )) is a union of such orbits, we have that �N ∩ Z(P )� ≡
�N � ≡ 0 (mod p).
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Now N ∩ Z(P ) contains the identity element, and so �N ∩ Z(P )� > 0. It

follows that �N ∩ Z(P )� ≥ p > 1, and hence N ∩ Z(P ) is nontrivial as desired. The
final assertion follows by taking N = P

We will now discuss what it means for a group to be nilpotent. A group G is

said to be nilpotent if it has a series defined as follows:

1 = N0 � N1 � N2 � � � Nk−1 � Nk

= G

such that N
j−1 is normal in N

j

and N
j

�N
j−1 is contained in Z(G�N

j−1), for j =
1,2, ..., k. We call this type of series a central series.

These groups admit spectacular properties and provide useful tools for us to

make use of. It is worth observing that subgroups and quotient groups of nilpotent

groups are themselves nilpotent.

Now, given a group G, one can attempt to construct a central series as fol-

lows. Begin by defining Z0 = 1 and Z1 = Z(G). The second center Z2 is defined

to be the unique subgroup such that Z2�Z1 = Z(G�Z1). Continue this process in-

ductively by defining Z
n

such that Z
n

�Z
n−1 = Z(G�Z

n−1). This chain of normal

subgroups:

Z0 ⊆ Z1 ⊆ Z2 ⊆ �
constructed this way is called the upper central series of G. Now, this may or may

not be the central series for G. But if Z
r

= G for some r, then this is in fact a cen-

tral series and G is nilpotent. Conversely, if G is nilpotent then the upper central

series of G is a central series of G [7].

Now, it is simple to show that p-groups are nilpotent, which is indicative of

why we choose to discuss them together. So by studying general nilpotent groups
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we may obtain additional information about p-groups. We make use of a property

regarding nilpotent groups that is similar to Theorem (2).
Theorem 3. If G is a nilpotent group and N � G then N ∩ Z(G) is non-trivial.
Furthermore, if N is a minimal normal subgroup of G then N is of prime order.

We provide proof in the appendix. We now arrive at a useful characteriza-

tion of nilpotent groups.

Theorem 4. Let G be a group. Then the following are equivalent:

1. G is nilpotent.

2. N
G

(H) >H for every proper subgroup H < G.

3. Every maximal subgroup of G is normal.

4. Every Sylow subgroup of G is normal.

5. G is the direct product of its nontrivial Sylow subgroups.

In statement (3), a maximal subgroup M of a group G is a proper subgroup,

such that no proper subgroup K strictly contains M . Now, to prove this, we need a

theorem and a lemma [7].
Theorem 5. (Frattini) Let N be normal in G, and suppose that P ∈ Syl

p

(N).
Then G = N

G

(P )N .

Proof. Let g ∈ G. Since P g ⊆ N it follows that P g ∈ Syl
p

(N). Now, by the Sylow

conjugacy theorem applied in N , we deduce that (P g)n = P , for some element n ∈
N . Since P gn = P , we have gn ∈ N

G

(P ), and so g ∈ N
G

(P )n−1 ⊆ N
G

(P )N . The

result follows.
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Lemma 1. Let O be a collection of normal subgroups of a group G, and assume

the orders of members of O are pairwise coprime. Then the product H = �O of

members of O is direct.

Proof. Certainly �H � ≤ � �X �. Also, by LaGrange’s theorem, �X � divides �H �, for
every member X of O, and since the orders of the members of O are pairwise co-

prime, it follows that� �X � divides �H �. So, we have �H � =� �X �.
To see that H =�O is direct it su�ces to show that:

X ∩�{Y ∈ O �Y ≠X} = 1

for every member X ∈ O. This follows since by the previous paragraph, the order of

�Y for Y ≠X is equal to� �Y �, and this is co-prime to �X �
We are now ready to prove Theorem (4).

Proof. Theorem 4. We will begin by showing (1) implies (2). Let H be a sub-

group of G. Since G is nilpotent, it has a central series, and thus there is some k,

where 0 ≤ k < r, such that N
k

⊆ H but N
k+1 � H. Since the subgroups N

i

form a

central series, we have:

N
k+1�Nk

⊆ Z(G�N
k

) ⊆ N
G�Nk
(H�N

k

) = N
G

(H)�N
k

where equality holds because N
k

⊆H. Now since N
k+1 ⊆ NG

(H), the claim follows.

That (2) implies (3) is immediate, since if M is a maximal subgroup of G

then its normalizer must be G and so M � G.

Now assume (3), we will show (4) by contradiction. Suppose there is a Sy-

low subgroup of G, which is not normal in G. Let P ∈ Syl
p

(G), be such a Sylow
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subgroup. Clearly, N
G

(P ) must be contained in some maximal subgroup M of

G, which by our hypothesis is normal in G. Now by Fratinni, we have that G =
N

G

(P )M ⊆M , and this is a contradiction. Thus P � G.

By Lemma (1), we have that (5) follows from (4). Now, suppose (5). It is
clear that (4) holds, and it follows that (4) also holds for every homomorphic im-

age of G. Now, since (4) implies (5), we see that every homomorphic image of G is

a direct product of p-groups, for various primes p. The center of a direct product is

the direct product of the centers of the factors, and since nontrivial p-groups have

nontrivial centers, it follows that every non-identity homomorphic image of G has a

nontrivial center. So, it follows that if Z
i

⊂ G then Z
i+1�Zi

= Z(G�Z
i

) is nontrivial
and thus Z

i

⊂ Z
i+1. Thus, G must appear as a member of the upper central series,

and since the proper terms of the upper central series are strictly increasing. This

proves the claim.

Supersolvable

This section addresses a weaker group property then when a group is nilpo-

tent, it is termed supersolvable. A group is said to be supersolvable if there exists

normal subgroups N
i

with

1 = N0 ⊆ N1 ⊆ N2 ⊆ � ⊆ Nr−1 ⊆ Nr

= G
and where each N

i

�N
i−1 is cyclic, for 1 ≤ i ≤ r. We have not, and will not dis-

cuss solvable groups in this thesis, but we are inclined to say clearly supersolvable

groups are solvable, and it is routine to check that subgroups and factor groups

of supersolvable groups are supersolvable. The relevant information for solvable

groups can be found in Finite Group Theory [7].
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We can say significantly more about supersolvable groups. In particular, ev-

ery minimal normal subgroup of a supersolvable group G has prime order. Note

that a nontrivial subgroup of a group is termed a minimal normal subgroup if it

is normal and the only normal subgroup properly contained in it is the identity

subgroup. Let N be a minimal normal subgroup of supersolvable group G. Since

all supersolvable groups are solvable then N is an elementary abelian p-group, for

some prime p. So, there exists some i, where 1 ≤ i ≤ r, such that N ∩N
i

= N . By the

minimality of N , we have N ∩N
i−1 = 1. By the homomorphism theorems, we have

N ≅ N
i

�N
i−1. Since G is supersolvable, we may conclude that N is an elementary

abelian p-group which is cyclic. So, by definition of a elementary abelian group,

a generator of N must have order p, where p is some prime. So, we may conclude

that N is of prime order.

Certainly this is not the only property that these groups possess. In fact ev-

ery maximal subgroup of a supersolvable group has prime index. To see this take

a maximal subgroup M of a supersolvable group G. Now, there exists a minimal

normal subgroup N of prime order p. If P is a subgroup of M , then M�P is a max-

imal subgroup of G�P and by induction one would see that M is of prime index in

G. Otherwise, G splits over P and the claim holds. This brings us to the following

theorem which we make use of in one result in the last section.

Theorem 6. If n is a divisor of the order of a supersolvable group G, then G has a

subgroup of order n.

Proof. We will prove the claim by induction, and we will induct on the order of G.

Let G be a supersolvable group of order 1, then the claim holds and so our induc-

tion begins. Let G be a supersolvable group of order m and N a minimal normal

subgroup of G. We have �N � = p, for some prime p. Now, let n be any divisor of the
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order G. We have two cases: either p � n or p � n.
1. Suppose p � n. Then n�p � m�p. Since G�N is supersolvable of order less then

m, then by our inductive hypothesis there exists a subgroup H�N of order

n�p. So by the homomorphism theorems, H is a subgroup of G of order n.

2. Suppose that p � n. Since G�N is supersolvable of order less then m, by our

inductive hypothesis there exists a subgroup H�N of order n. So by the ho-

momorphism theorems, H is a subgroup of G of order pn. Now, since N � H
and �N � is coprime to �H ∶ N �, we have that N is complemented in H by M .

Which gives us that MN =H, and the subgroup we seek is M .

This proves the claim.
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III. DIHEDRAL, QUATERNION, & SEMI-DIHEDRAL GROUPS

The following groups are involved in the conclusion of one of our theorems,

thus we are inclined to discuss some basic properties. Familiarity with these groups

is assumed.

Dihedral Groups

A group D is said to be dihedral if it contains a nontrivial cyclic subgroup C

of index two such that every element of D −C is an involution.

Now, suppose C = < c > is a nontrivial cyclic subgroup of D with index two

and that for all t ∈ D − C we have that t is an involution. (Since �D ∶ C � = 2, it

follows that C is normal in D and D is of even order; further, we may conclude

that dihedral groups have order at least four). Then it follows that every element

of D −C is an involution if and only if ct = c−1.
Let x ∈ C and y ∈ D − C. Then y = at for some element a ∈ C, and we

have xy = xat = xt = x−1. Also, ct is an involution, and the group < ct, t > properly
contains C, and thus is the whole group D. Finally, ct and t are distinct since c ≠ 1.
So any dihedral group must have two generators. Note that it is also true that a

dihedral group is determined, up to isomorphism, by its order.

Now, a dihedral group of order 2n has the following presentation:

D2n = �a, b ∶ an = b2 = 1, b−1ab = a−1�

These groups are well-understood and may be viewed as a semi-direct product of

C
n

�
�

C2, where C
n

is the cyclic group of order n and � ∶ C2 → Aut(C
n

) is the map

that sends the identity element in C2 to the identity in Aut(C
n

), and the remaining

element in C2 to the automorphism c → c−1. Furthermore, (1, t) has the desired
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conjugation action on (c,1).
For more information refer to Finite Group Theory [7]. We present the next

proposition to contrast it with the subsequent sections.

Proposition 1. Let G be dihedral of order 2n, where n > 2. Then we have the

following:

1. The subgroup < a > is of index two.

2. If n is even then Z(G) is cyclic of order 2 and if n is odd then the Z(G) is
trivial.

3. The group G�Z(G) is a dihedral group.

Proof. We will begin by proving (1). Let G be dihedral and a ∈ G such that the

order of a is n. Since the order of a is n, then we have �G ∶ < a > � = 2. This shows
(1).

We now show (2). Let b ∈ G such that the order of b is 2 and let a be as

above. Now, every element of G − < a > can be written as bai for some i, such that

0 ≤ i ≤ 2n−1. Every member of G that can be written this way is not in Z(G); oth-
erwise we would have that the order of a is 2 and this is a contradiction since the

order of a is n. Now, if ai ∈ Z(G), for 0 ≤ i ≤ n − 1, then b−1aib = ai and we have

a2i = 1. From this, we may conclude that n � 2i. If n is even, then we have that n

2 � i,
and it follows that either i = 0 or i = n

2 . If n is odd, then n � i and we have that

i = 0. This shows (2).
We now show (3). If n is odd then Z(G) is trivial and the claim holds. So

suppose that n is even. We have that Z(G) is a subgroup of C. Now, using the

“bar convention”, we know that C is cyclic and that [D ∶ C] = [D ∶ C] = 2. Fur-

thermore, for all b ∈D −C, b ∈D −C, and b
2 = bb = 1. Hence, D is dihedral.
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Semi-Dihedral Groups

The next group we discuss are the semi-dihedral groups, typically denoted as

SD. A group SD is said to be semi-dihedral if it contains a nontrivial cyclic sub-

group C of order n with n divisible by 8 such that C has a unique involution z. It

follows that C has a unique automorphism � such that c� = c−1z, for every gener-

ator c of C, and that the order of � is two. Now, let SD and C be as above. We

may write SD = C� < � >, and we have that half the elements of SD −C have order

2 and the other half have order 4. Furthermore, the elements of order 2 in SD − C
form a single conjugacy class of SD, and similarly for the elements of order 4 [7].

The semi-dihedral groups, denoted SD2n for some natural number n > 3,

have the following presentation:

SD2n = �a, b ∶ a2n−1 = b2 = 1, (ba)2 = a2n−2�

We present a similar proposition as before.

Proposition 2. Let G be semi-sihedral. Then we have the following:

1. The subgroup < a > is of index two in G.

2. The Z(G) is cyclic of order two.

Proof. We will begin by showing (1). Let G be semi-dihedral and a ∈ G, such that

the order of a is 2n−1. Since the order of a is 2n−1, we have �G ∶ < a > � = 2. This

shows (1).
We now show (2). Let b ∈ G such that the order of b is 2 and let a be as

above. Since a2
n−2 = b, then we have that a2

n−2
commutes with all of G. So, it fol-

lows that a2
n−2 ∈ Z(G). Now, if ai ∈ Z(G), for 0 ≤ i ≤ 2n−1, we would have that it

must commute with b. This gives us that b−1aib = ai and we may conclude, by the
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defining relations on G, that a(2n−2−1)i = 1. So, we have 2n−1 � (2n−2 − 1)i. Which

implies that ai is a power of a2
n−1

, so the only power of a in the center is a2
n−2

.

Every member of G − < a >, can be written as bai for some i such that 0 ≤
i ≤ 2n−1. Now, each member of G with this form is not in Z(G); otherwise we have

b2baib = ai, which gives us ai = a2n−2 . This proves (2) and completes the proof.

Generalized-Quaternion Groups

The last type of group we are concerned with are the generalized quaternion

groups. The generalized quaternions are similar to that of the semi-dihedral groups.

To see this, take a semi-dihedral group SD and let B be a subgroup of the cyclic

subgroup C of SD, with the property that �C ∶ B� = 2. Now, the elements of order 4

in SD −C form a coset of B and if we let Q be the union of this coset and B, then

Q is a subgroup of n. This group Q is the generalized quaternion group, typically

denoted as Q2n where n ≥ 3; we will drop the adjective “generalized” from here on

and refer to these groups as quaternion. Note that since all elements of Q −B have

order 4, the involution in B is the unique involution in Q [7].

The quaternion group has the following presentation:

Q2n = �a, b ∶ a2n−2 = b2, a2n−1 = 1, b−1ab = a−1�

Observe that the group structure for the quaternion group is similar to that

of the dihedral and semi-dihedral group and thus is of no surprise that properties of

these groups are related. We present a similar proposition to those as before.

Proposition 3. Let G be generalized quaternion. Then we have the following:

1. The subgroup < a > is of index 2.

13



2. The center of G is cyclic of order 2.

3. The group G�Z(G) is isomorphic to the dihedral group of order 2n−1.

Proof. We will begin by showing (1). Let G be generalized quaternion and a ∈ G,

such that a has order 2n−1. Since the order of a is 2n−1, then we have �G ∶ < a > � = 2.
This proves (1).

We now show (2). Let b ∈ G such that the order of b is 4 and let a be as

above. Since a2
n−2 = b2, then we have that a2

n−2
commutes with all of G. So, it

follows that a2
n−2 ∈ Z(G). Now, no power of a is in Z(G) except for the one pre-

viously mentioned; since if ai ∈ Z(G), for 0 ≤ i ≤ 2n−1, then we would have that

(b−1aib) = ai which gives us that a2i = 1. It follows that 2n−2 � i, which implies that

ai is a power of a2
n−2

.

Every member of G− < a > can be written as bai, where 0 ≤ i ≤ 2n−1, and
none of these members are in Z(G). Since, if an element of this presentation were

in Z(G), we would have a2i = 1. Which is an identical argument as above. This

proves (2).
We now show (3). Using the “bar convention”, the factor group G�Z(G) has

generators a and b such that a2
n−2 = 1, b

2 = 1, and bab
−1 = a −1. Therefore, the

factor G�Z(G) is the homomorphic image of D2n−1 . This completes the proof.

All three of these groups have similar properties. For example, all three

groups have analogous generators, their centers are cyclic of order 2, and all three

have derived subgroups of index 4 (we did not prove this fact; but it can easily be

shown). Furthermore, there are exactly four isomorphism classes of non-abelian

groups of order 2n which contain a cyclic subgroup of index two, three of which we

have just discussed. The three groups we have briefly discussed are also the only

groups of order 2n, up to isomorphism, that have a nilpotency class of n − 1. But,
14



these groups have di↵erences though. For example, half the elements in a dihedral

group have order 2 and half the elements in a generalized quaternion group have

order 4. In fact, there is only one element of order 2 in a quaternion group. It is

the nontrivial element in the center. Also, it is of worth observing that every sub-

group of a quaternion group is cyclic or generalized quaternion. This is the case

since there is a unique subgroup of order 2 in a quaternion group, so every nontriv-

ial subgroup has a unique subgroup of order 2.
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IV. FROBENIUS GROUPS

Frobenius groups play a role in our thesis, so we are inclined to include the

relevant information

We begin with group actions. Let G be a group and ⌦ a nonempty set. Sup-

pose we have a rule that determines an element of ⌦, denoted ! ⋅g, whenever we are

given a point ! ∈ ⌦ and an element g ∈ G. We say this rule defines an action of G

on ⌦ if this rule also satisfies:

1. ! ⋅ 1 = ! for all ! ∈ ⌦ and

2. (! ⋅ g) ⋅ h = ! ⋅ (gh) for all ! ∈ ⌦ and for all g, h ∈ G.

For an example, let G be a group and ⌦ = G and consider conjugation. De-

fine, ! ⋅ g = !g = g−1!g, where ! ∈ ⌦ and g ∈ G. We have that ! ⋅ 1 = !1 = ! and

(! ⋅ g) ⋅h = (!g) ⋅h = (!g)h = !gh = ! ⋅ (gh). Therefore, conjugation does indeed define

an action. Another standard example of an action would be right multiplication,

when we take ⌦ = G.

Now, let N and M be groups and suppose that M acts on N and in addition

(xy) ⋅m = (x ⋅m)(y ⋅m) for all x, y ∈ N and m ∈M . The action of M on N is said to

be Frobenius if nm ≠ n whenever n ∈ N and m ∈M are non-identity elements.

For an example of such an action, consider the dihedral groups of order not

divisible by 4. Take N to be the cyclic group of order n, where n is odd, and M to

be the cyclic group of order 2. Now, suppose M acts on N via inversion, i.e. nm =
n−1. Since, N has odd order, then n = n−1 if and only if n = 1. Thus, the action of

M on N is Frobenius.

Now, a group M is said to be a Frobenius complement if it has a Frobenius

action on some non-identity group N . Similarly, a group N is said to be a Frobe-

nius kernel if it admits a Frobenius action by some non-identity group M . These
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types of groups admit spectacular properties that we omit since we have no need

for them. For our purposes, we need the Frobenius kernel to be abelian, but in gen-

eral this is not the case. In generality though, Frobenius kernels are always nilpo-

tent. Recall the following theorem [7].
Theorem 7. Suppose that M is a Frobenius complement. Then each Sylow sub-

group of M is cyclic or generalized quaternion.

Characterization of Frobenius groups

Given a normal subgroup N of a group G, a subgroup M of G is a comple-

ment for N in G if NM = G and N ∩M = 1. If this situation occurs, we say G is

the semi-direct product of N and M , written as G = N �M . In this situation, we

also say that G is a semi-direct product of M acting on N . We now consider the

semi-direct product of G, where M acts on N ; if M is given the Frobenius action

then what useful information can be determined about G? We take a moment to

mention that when we consider semi-direct products of G, we view N and M as

subgroups of G, where N is normal in G and M is complemented by N in G. The

following theorem answers our previous question [7].

Theorem 8. Let N be a normal subgroup of a group G, and suppose that M is a

complement for N in G. The following are equivalent:

1. The conjugation action of M on N is Frobenius.

2. M ∩M g = 1 for all g ∈ G −M
3. C

G

(m) ⊆M for all non-identity elements m ∈M
4. C

G

(n) ⊆ N for all non-identity elements n ∈ N

17



If both N and M are nontrivial in the above situation then we say G is Frobe-

nius, and that N and M are the Frobenius kernel and Frobenius complement, re-

spectively. To prove Theorem (8), we need the following lemma [7].

Lemma 2. Let N be a subgroup of a group G, and suppose that N ∩ N g = 1 for

all g ∈ G − N . Let X be the subset of G consisting of those elements that are not

conjugate in G to any nonidentity element of N . Then �X � = �G���N �.
Proof. If N = 1, then N has no non-identity elements, and so X = G. So suppose

that �N � > 1, we see that N = N
G

(N) since if Nx = N , then �N ∩ Nx� = �N � >
1, and thus x ∈ N . It follows that N has exactly �G ∶ N � distinct conjugates in
G. Furthermore, since each of these conjugates satisfies the condition we assumed

about N , no two of them can have a non-trivial intersection. The conjugates of N ,

therefore account for a total of �G ∶ N �(�N �−1) non-identity elements of G, and these

are exactly the elements of G that are conjugate to non-identity elements of N . We

conclude that �X � = �G� − �G ∶ N �(�N � − 1) = �G ∶ N �, as required.
Corollary 1. Let N be a normal subgroup of a group G, and suppose that M is a

complement for N in G such that N ∩N g = 1 for all g ∈ G −N . Then N is exactly

the set X from above.

Proof. Since N ∩M = 1, it is also true that N ∩M g = 1 for all g ∈ G, and thus

no element of N can be conjugate to a non identity element of M . It follows that

N ⊆X. By our previous lemma, �X � = �G���M � = �N �, and the result follows.

We are now ready to prove Theorem (8) [7].
Proof. (Theorem 8) We will begin by proving that (1) implies (2). To prove (2),
suppose that �M ∩M g � > 1 for some element g ∈ G. Since G = MN , we have that

g =mn with m ∈M and n ∈ N . Thus, we have M g =Mmn =Mn. Then �Mn∩M � > 1,
18



and so we can choose a non-identity element bn ∈Mn ∩M , where bn ∈M and b ∈M .

So, we have b−1bn ∈ M , and since N � G, we also have b−1bn ∈ N . Then b−1bn ∈
M ∩N = 1, and hence b centralizes n. But the action of M on N is Frobenius by (1)
and b ≠ 1, and so it follows that n = 1. Thus g ∈M and this shows (1).

Now, suppose (2), and let 1 ≠ m ∈ M . If x ∈ C
G

(M), then m ∈ M ∩Mx, and

since this intersection is nontrivial it follows by our hypothesis that m ∈ M . Thus

C
G

(M) ⊆M , and this proves (3).
Next, we show that (3) implies (1). If 1 ≠ m ∈ M , then by (3), we have

C
N

(m) = N ∩C
G

(m) ⊆ N ∩M = 1, and thus the action of M on N is Frobenius.

Now suppose (1) and (2), we aim to prove (4). By (2) and our previous

corollary we have that every element of G outside of N lies in some conjugate of

M , so some non-identity element of C
G

(n) lies in a conjugate of M . For an appro-

priate conjugate a of n, some non-identity element of C
G

(a) lies in M . Since, a ∈ N
and the action of M on N is Frobenius, it follows that a = 1, and thus n = 1. This
proves (4).

Finally, we will show (4) implies (1). Let 1 ≠ n ∈ N , then

C
M

(n) =M ∩C
G

(n)
⊆M ∩N
= 1

and thus the action of M on N is Frobenius.
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V. AN ANALOGUE TO DURFEE’S PARAMETER

We begin the main results of the thesis. This chapter is devoted to a gener-

alization of a group theoretic analog to Durfee’s parameter. Recall, that the group

theoretic analog to Snyder’s parameter has the irreducible character degrees in his

definition replaced by the square roots of conjugacy class sizes [4]. Through this

replacement, we arrive at the following definition:

Definition. Let G be a group. The parameter e is defined as follows:

e =min���C
G

(x)� − 1���G ∶ C
G

(x) ∶ x ∈ G�

We are concerned with a generalization of this parameter which incorporates

a normal subgroup. After an initial definition and an example we will analyze the

properties of this generalized parameter, as well as the range of values this general-

ized parameter can take. The generalized parameter is defined as the following:

Definition. Let G be a group and N a normal subgroup of G. The parameter e
N

is

defined as follows:

e
N

=min
��������
�C

G

(x)��C
N

(x)� − 1�
���� �G��NC

G

(x)� ∶ x ∈ G
�������

For simplicity, we use the notation that Harrison used in his thesis [5]; which

is letting k
N

(x) denote the radicand c
N

(x) denote �C
G

(x) ∶ C
N

(x)�. We also refer to

the “e” parameter as the non-relative parameter and the “e
N

” parameter as the rel-

ative parameter ; since the relative parameter is dependent on the normal subgroup.

We begin by showing that the relative parameter is indeed a generalization
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of the non-relative parameter. Let G be a group and N a normal subgroup of G

and x ∈ G such that e
N

= (c
N

(x) − 1)�k
N

(x). Observe the following:

e
N

= �c
N

(x) − 1��k
N

(x)
= c

N

(x)�k
N

(x) −�k
N

(x)
= c

N

(x) kN(x)�
k
N

(x) −
�
k
N

(x)
= �G ∶ N ��

k
N

(x) −
�
k
N

(x)
�
k
N

(x)�e
N

+�k
N

(x)� = �G ∶ N �

When we let N be the trivial subgroup we have that:

√
k(e

N

+√k) = �G�√
k(e +√k) = �G�

where k is the largest class size. This is, of course, the non-relative parameter by

definition. It is clear that the relative parameter is indeed a generalization of the

non-relative parameter by the above. But, there is a significant di↵erence when

studying the relative parameter to that of when studying the non-relative parame-

ter; it is that e
N

may be zero for certain non-trivial groups and their corresponding

normal subgroups. We provide two examples of this occurring; one when e
N

is zero

and another when e
N

is non-zero, both of which will occur in the same group. Let

G be the cyclic group of order 4, and let N be the whole group. We have trivially

that c
N

(x) = 1, since G is abelian, and we may conclude that e
N

= 0. Now, let N be

any other normal subgroup in G. Since G is an abelian, we have �C
G

(x)� = �G� and
�C

N

(x)� = �N �, for all x ∈ G. Thus, it must be that c
N

(x) = �G ∶ N � which gives us
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that c
N

(x) > 1, and this implies that e
N

is non-zero, since k
N

(x) is clearly always

non-zero.

In fact, for abelian groups calculating the relative parameter is as trivial as

calculating non-relative parameter [4]. To see this, let G be an abelian group and

x ∈ G such that e
N

= (c
N

(x) − 1)�k
N

(x). Since the group is abelian, we have

�C
G

(x)� = �G� and �C
N

(x)� = �N �. We also have NC
G

(x) = NG = G. This gives us

k
N

(x) = 1 and c
N

(x) = �G ∶ N �. So we have the following:

e
N

= (c
N

(x) − 1)�k
N

(x)
= �G ∶ N � − 1

A more interesting example in which e
N

is zero is when G = S3 and N = A3.

Take, x to be the 3-cycle (1 2 3). Then C
G

(x) = A3 and since N = A3, then we have

that C
N

(x) = A3. This gives us cN(x) = 1, and we may conclude that e
N

= 0 for

this normal subgroup of G. We illustrate this second example of when the relative

parameter is zero to demonstrate that the relative parameter can be zero in both

abelian and non-abelian groups. In fact, the relative parameter is zero quite often.

A natural question to ask is “When is relative parameter zero?” To answer

this question we introduce the following definition. Let G be a group with N � G

and x ∈ G. The conjugacy class xG is said to be non-split when xG = xN .

For the remainder of this section we will use the following representation of

k
N

(x) as it is more useful. Observe the following:

k
N

(x) = �G��NC
G

(x)�
= �G�
�N ��CG(x)��N∩CG(x)�
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= �G�
�N ��CG(x)��CN (x)�
= �G ∶ CG

(x)��N ∶ C
N

(x)�
Writing k

N

(x) this way is more useful since we may use the size of the conjugacy

class in which x belongs to.

Thanks to Harrison [4], we have two useful lemmas regarding the behavior of

k
N

(x) and c
N

(x) which simplifies working with the relative parameter.

Lemma 3. Let G be a group with a normal subgroup N . For x ∈ G, we have that

c
N

(x) and k
N

(x) are positive integers. The conjugacy class of x is non-split if and

only if k
N

(x) = 1.
Proof. The first portion of the lemma follows directly from the fact that both c

N

(x)
and k

N

(x) are indices of groups. For the next portion, by above, we have:

k
N

(x) = �G ∶ CG

(x)��N ∶ C
N

(x)�
and thus k

N

(x) = 1 if and only if �xN � = �xG�. But, since xN is contained xG, it must

be the case that xN = xG and thus xG is non-split.

Note that e
N

≥ 0, since c
N

(x) and k
N

(x) are both greater than 1. We digress

though; we can now answer when the relative parameter is zero.

Lemma 4. Let G be a group with a normal subgroup N . The parameter e
N

= 0 if

and only if C
G

(x) ≤ N , for some x ∈ G. In particular, e
N

> 0 if N contains no

centralizers C
G

(x) for any x ∈ G.

Proof. Suppose e
N

= 0. Then there exists an x ∈ G such that (c
N

(x)−1)�k
N

(x) = 0.
Since k

N

(x) ≥ 1, we must have c
N

(x) = 1. Then C
G

(x) = C
N

(x) and C
G

(x) ≤ N .
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Reversing this chain of logic gives the converse.

Now, the previous two lemmas give useful conditions to study the relative

parameter.

We hope to mimic the results from Harrison [4]. As was the case with the

non-relative parameter; we can bound the index of a normal subgroup with the rel-

ative parameter in the exact same fashion.

Theorem 9. Let G be a group with a normal subgroup N and x ∈ G such that e
N

=
(c

N

(x) − 1)�k
N

(x) and e
N

> 0. Then �G ∶ N � ≤ 2(e
N

)2.
Proof. Let G be a group with N � G and x ∈ G such that e

N

= (c
N

(x) − 1)�k
N

(x).
We have the following equality:

e
N

= (c
N

(x) − 1)�k
N

(x)
(e

n

)2 = (c
N

(x) − 1)2 �G ∶ CG

(x)��N ∶ C
N

(x)�
(e

n

)2 = (c
N

(x) − 1)2 �G ∶ N ��C
G

(x) ∶ C
N

(x)�
(e

n

)2 = (cN(x) − 1)2
c
N

(x) �G ∶ N �
(e

n

)2 = (cN(x) − 1)2
c
N

(x) �G ∶ N �
(e

n

)2 c
N

(x)(c
N

(x) − 1)2 = �G ∶ N �

Since cN (x)(cN (x)−1)2 decreases as c
N

(x) increases, we need only look at the min-

imal value of c
N

(x). By hypothesis e
N

is non-zero. So it follows that the minimal

integer value for c
N

(x) is 2, since c
N

(x) is always an integer and larger than 1.
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This gives us the following inequality:

�G ∶ N � ≤ 2(e
N

)2

and completes our proof.

As with the non-relative parameter; using the above theorem we may classify

certain groups that correspond to a particular e
N

. Since the normal subgroup may

vary within a group, the only way in which we may classify groups attaining cer-

tain e
N

e�ciently is by fixing the normal subgroup and then classifying the groups

having this e
N

. To see this we state the following theorem:

Theorem 10. Let G be a group with a minimal normal subgroup N such that �N � =
2 and 1 ≤ e

N

≤ 2. Then one of the following holds:

1. e
N

= 1 if and only if G is cyclic of order 4 or is Klein-4.

2. e
N

= √2 if and only if G is the dihedral group of order 8 or the quaternion

group.

3. e
N

= 2 if and only if G is cyclic of order 6.

Proof. We will begin by proving the statements (1) − (3) individually and will end

the proof by showing that there are no other possible groups with 1 ≤ e
N

≤ 2 under

our conditions. Let G be a group and N be a minimal normal subgroup of G such

that �N � = 2. For the remainder of the proof let x ∈ G such that:

e
N

= (c
N

(x) − 1)�k
N

(x) (1)

Suppose that e
N

= 1. Since e
N

= 1 and �N � = 2, then we have, by (1), that

C
N

(x) = 2 and k
N

(x) = 1. So, by rearranging the terms in k
N

(x), we may conclude
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that �G� = 4. Up to isomorphism, there are two groups of order 4, both of which

have normal subgroups of order 2. Conversely, if G is one of the two groups of or-

der 4, then e
N

= 1, since abelian groups have the property that e
N

= �G ∶ N � − 1.
Now, suppose that e

N

=√2. Since e
N

=√2 and and �N � = 2, then we have, by

(1), that c
N

(x) = 2 and k
N

(x) = 2. As before, by rearranging the terms in k
N

(x),
we may conclude that �G� = 8. Up to isomorphism, we have exactly five groups of

order 8, three of which are abelian and hence have an integer valued e
N

. Thus G

must be dihedral or quaternion of order 8. Conversely, for D8, we have that the

minimal normal subgroup of order 2 in D8 is Z(G) and that any involution realizes

e
N

. Let x ∈ G, be any involution. Now, �C
G

(x)� = 4 and �C
N

(x)� = 2 and since

�G ∶ N � = 4 then k
N

(x) = 2 and we have that e
N

=√2. The case of the quaternions is

identical except the element realizing e
N

is of order 4.

Now, suppose that e
N

= 2. We have two cases either c
N

(x) = 3 and k
N

(x) = 1
or c

N

(x) = 2 and k
N

(x) = 4. Suppose the former, that is c
N

(x) = 3 and k
N

(x) = 1.
By rearranging the terms in k

N

(x), we may conclude that �G� = 6. Up to isomor-

phism, we have two groups of order 6, they are S3 and C6. In S3, there does not ex-

ist any normal subgroup of order 2, so G must be C6. Now suppose that c
N

(x) = 2
and k

N

(x) = 4. By rearranging the terms in k
N

(x), we may conclude that �G� = 8

and we have already consider groups of this order; none of which have an e
N

= 2.

Conversely, suppose that G is C6. Since this group is abelian, we have that �G ∶
N � − 1 = e

N

, so we may conclude that e
N

= 2.
We will now show there are no other groups which attain this parameter un-

der the given assumptions. By our hypothesis and Theorem (9), we only have to

consider groups of even order less than or equal to 8. Furthermore, we need only

consider groups of order 2 since we have already consider all other groups of even

order less than 8. Up to isomorphism, we have only one group of order 2, and it is
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C2. Since this group is abelian, we have that e
N

= 0; this completes our proof.

Of course the natural question to ask is which groups have the index of their

minimal normal subgroups attaining the bound in Theorem (9). By assuming some

additional properties, we may simplify our task greatly.

Theorem 11. (Main) Let G be nilpotent. The following are equivalent.

(a) There exists a minimal normal subgroup N , satisfying the following: If x ∈ G
realizing the relative parameter then e

N

is non-zero, xG is split, and �G ∶ N � =
2(e

N

)2.
(b) The group G is one of the following groups:

• Dihedral of order 2n, where n ≥ 2,
• Quaternion of order 2n, where n ≥ 2,
• Semi-Dihedral of order 2n, where n ≥ 3.

Before we prove our main theorem, we need two additional theorems [11].

Theorem 12. Let G be a group with a non-cyclic subgroup T of order 4 which is

its own centralizer in G. If K is the largest normal subgroup of odd order in G,

then G�K is isomorphic with PSL(3,3), M11, GL(2,3), H(q),PGL(2, q), PSL(2, q)
(q odd), A7, or a 2-group of dihedral or semi-dihedral type.

Theorem 13. Let G be a group with a cyclic subgroup T of order 4 which is its

own centralizer in G. If K is the largest normal subgroup of odd order in G, then

G�K is isomorphic with SL(2,3), SL(2,5), A7, PSL(2,1), PSL(2,9), PGL(2,3),
PGL(2,5), H(9), J , a 2-group of semi-dihedral or generalized quaternion type, a

dihedral group of order 8, or a cyclic group of order 4.
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Proof. (Main) We will begin by showing (a) implies (b). We first determine a

value for c
N

(x). By definition of e
N

, we have the following:

�G ∶ N � = 2(e
N

)2
�G ∶ N � = 2�c

N

(x) − 1�2��k
N

(x)�2
�G ∶ N � = 2�c

N

(x) − 1�2� �G ∶ CG

(x)��N ∶ C
N

(x)��
�G ∶ N � = 2�c

N

(x) − 1�2 �G ∶ N ��C
G

(x) ∶ C
N

(x)�
1 = 2�(c

N

(x))2 − 2c
N

(x) + 1� 1

c
N

(x)
0 = 2(c

N

(x))2 − 5c
N

(x) + 2

Solving for c
N

(x) gives us that c
N

(x) is 2 or 1
2 and, by Lemma (1), we may con-

clude that c
N

(x) = 2.
Now, since G is a nilpotent group, we have by Theorem (3) that N is of

prime order p and hence is cyclic. We aim to show p = 2, we will show this by con-

tradiction. Suppose that p is an odd prime. Let M = NC
G

(x); now N is contained

in the center of the group by the minimality of N and the center, of course, is con-

tained in C
G

(x), so it follows that M = C
G

(x). Observe that �M � = 2p.
Now, let S ∈ Syl2(M). Since every subgroup of a nilpotent group is nilpo-

tent, then by Theorem (4) we have that M is a direct product of S and N . Fur-

thermore, since p is an odd prime, then M is in fact cyclic. Also, S = < s > and the

order of s is two. Since M = S ×N then we can write x as sn, for some n ∈ N . So

we have that C
G

(s) = C
G

(sn) = M and by replacing x with s we may assume that

the order of x is 2. We may do this replacement since n ∈ Z(G).
Now, let Q ∈ Syl2(G) such that x ∈ Q; since x is an involution and �M � = 2p

and p is odd, then clearly C
Q

(x) = < x >. By the Fundamental Theorem of Abelian
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groups we have that Q = < x >. Now, since Q is an abelian Sylow subgroup we have

that it must be contained in the center. This is the case since G may be written

as a direct product of its Sylow subgroups and so we have that every member of Q

commutes component-wise; hence Q is contained in Z(G). This is a contradiction

since, by hypothesis, xG is split.

Before proceeding, we make the observation that �Z(G)� = 2. By the argu-

ment above we have that p = 2, so �C
G

(x)� = 4. Consider the following chain of

subgroups:

N ≤ Z(G) ≤ C
G

(x)
Either Z(G) is N or C

G

(x). If the Z(G) where equal to C
G

(x), then the conjugacy

class of x would be non-split which contradicts our hypothesis. So Z(G) = N and

�Z(G)� = 2.
The fact that G is a 2-group follows immediately from the order of the cen-

ter and G being nilpotent. To see this observe that G is a direct product of its Sy-

low subgroups, and thus Z(G) is the direct product of the centers of the Sylow sub-

groups. By Theorem (2) and �Z(G)� = 2, it must be that G is a 2-group.

Now, we have that �C
G

(x)� = 4; up to isomorphism, we have that C
G

(x) is
either cyclic of order 4 or Klein-4. Also, we clearly have that C

G

(x) is its own cen-

tralizer in G. If C
G

(x) is cyclic of order 4, then by Theorem (13) and G being a

2-group, we have G must either be semi-dihedral, quaternion, or dihedral of order

8. Else, C
G

(x) is Klein-4 and so by Theorem (12) and G being a 2-group, we have

that G is dihedral. Observe that G can not be cyclic of order 4 since xG is split.

We now show the converse and will do so by cases. In each of the three cases

the minimal normal subgroup we seek is Z(G) and we will denote it as N in all

three cases. Note that for each of the above groups G we have C
N

(x) = N , for every
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x ∈ G. We now have our first case.

1. Suppose that G is dihedral of order 2n where n ≥ 3, and a ∈ G is the element

such that �G ∶< a > � = 2 . Now, it is clear that no centralizer is contained in

Z(G) since �Z(G)� = 2; hence e
N

is non-zero. We have that Z(G) = �1, a2n−2�.
Let x be any involution not contained in the center of G. Now, the conjugacy

class of x is split since the normal subgroup we selected was the center and

x ∉ Z(G). Furthermore, we have that C
G

(x) = �1, x, a2n−2 , xa2n−2�. To see this

suppose that some other ai centralizes x, where 1 < i < 2n and i ≠ 2n−2. Now,
observe the following:

xai = aix
x−1aix = ai

a−i = ai

and this implies that ai = a2n−2 , which is a contradiction. Now, suppose some

other involution centralizes x, we may write the involution as xai, where 1 <
i < 2n and i ≠ 2n−2. Observe the following:

x(xai) = (aix)x
x−1aix = ai

a−i = ai

Which is the same contradiction as before; hence �C
G

(x)� = 4. We have the

following:

2n−1 = 2n−1
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2n−1 = 2(2n−2)
2n−1 = 2�2 − 1�2�2n

4
�

2n−1 = 2� �CG

(x)��C
N

(x)� − 1�
2�
���� �G��C

G

(x)��
2

2n−1 = 2� �CG

(x)��C
N

(x)� − 1�
2�
���� �G��NC

G

(x)��
2

2n−1 = 2�c
N

(x) − 1�2��k
N

(x))2
�G ∶ N � = 2(e

N

)2

Which proves the case when G is dihedral.

2. Now, suppose G is quaternion of order order 2n where n ≥ 3, and a ∈ G is

the element such that �G ∶< a > � = 2. Now, it is clear that no centralizer is

contained in Z(G); hence e
N

is non-zero. We also have that Z(G) = �1, a2n−2�.
Let x ∈ G such that the order of x is four. Now, we have that xG is split since

the normal subgroup we selected was the center and x ∉ Z(G). Furthermore,

we have that C
G

(x) = �1, x, a2n−2 , xa2n−2�. To see this suppose that some other

element ai centralizes x, where 1 < i < 2n and i ≠ 2n−2. Now, observe the

following:

xai = aix
x−1aix = ai

a−i = ai

and this means that ai = a2
n−2

, which is a contradiction. Now, suppose some

other element of order 4 centralizes x, we may write this element as xai, where
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1 < i < 2n and i ≠ 2n−2. Observe the following:

x(xai) = (aix)x
x−1aix = ai

a−i = ai

Which is the same contradiction as before; hence �C
G

(x)� = 4. We have the

following:

2n−1 = 2n−1
2n−1 = 2(2n−2)
2n−1 = 2�2 − 1�2�2n

4
�

2n−1 = 2� �CG

(x)��C
N

(x)� − 1�
2�
���� �G��C

G

(x)��
2

2n−1 = 2� �CG

(x)��C
N

(x)� − 1�
2�
���� �G��NC

G

(x)��
2

2n−1 = 2�c
N

(x) − 1�2��k
N

(x))2
�G ∶ N � = 2(e

N

)2

Which proves the case when G is quaternion.

3. This case that G is semi-dihedral is identical to that of the dihedral group,

with the obvious changes.

This shows that (b) implies (a) and completes the proof.

We have an immediate corollary.

Corollary 2. Let G be a nilpotent group with a minimal normal subgroup N . There
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is no x ∈ G realizing e
N

where c
N

(x) = 2 and k
N

(x) = 2m, such that m is a square-

free product of odd primes.

Proof. We will prove the claim by contradiction. Let G be a nilpotent group with

a minimal normal subgroup N and x ∈ G realizing e
N

as above. By hypothesis, we

have that c
N

(x) = 2. So, by rearranging terms in k
N

(x), we have �G ∶ N � = 4m.

Now, by substituting e
N

into �G ∶ N �, we arrive at the following equality:

�G ∶ N � = 2(e
N

)2

By Theorem (11), we have that G is a 2-group, and so m is even, which is a contra-

diction.

To contrast the di↵erence of our main theorem with that of Harrison’s, ob-

serve that when the group order achieved equality with the upper bound in the

non-relative parameter we concluded that the group must be a dihedral group of

order not divisible by 4 i.e. a Frobenius group. But the conclusion of our theorem

gives groups that are not Frobenius. So it is of interest to pursue which conditions

on the relative parameter are required to conclude that the group is Frobenius.

Before doing so we introduce some new notation. We may view the rela-

tive parameter inside of a subgroup M of a group G. We define this new parameter

identically to that of the relative parameter.

Definition. Let G be a group and M a subgroup of G with N � M . The parameter

e
N,M

is defined as:

e
N,M

=min
��������
�C

M

(x)��C
N

(x)� − 1�
���� �M ��NC

M

(x)� ∶ x ∈M
�������

33



We denote
�C

M

(x)��C
N

(x)� as cMN (x) and �M ��NC
M

(x)� as kM

N

(x), whenever conve-
nient. Observe that when M = G, we recover the relative parameter. We provide a

partial answer to which conditions may be necessary to ensure the groups is Frobe-

nius when working with the relative parameter.

Theorem 14. Let G be a supersolvable group with a trivial center and suppose that

p is the smallest prime dividing �G�. Furthermore, let G have the property that its

Sylow p-subgroups are maximal. Then, e
N,P

= �P ∶ N �−1 for all minimal normal sub-

groups N contained in the Sylow p-subgroups P of G if and only if G is Frobenius

with abelian kernel of prime order q and cyclic complement P .

Proof. Let x ∈ P realizing e
N,P

. By hypothesis, we have that e
N,P

= �P ∶ N �−1. Now,
we claim P is abelianf; we will prove this by contradiction. Suppose that P is non-

abelian and let y ∈ P −Z(P ). Since P is a p-group and N � P , then by Theorem (2)
we have N ∩ Z(P ) is non-trivial. By the minimality of N , we may conclude that N

is a subgroup of Z(P ). Clearly, �C
N

(y)� = �N �. Observe the following:

�C
P

(y)� < �P �
�C

P

(y)��N � < �P ��N ���C
P

(y)�
�N � − 1��C

P

(y)� <
��P �
�N � − 1��P �

�
��C

P

(y)�
�N � − 1��C

P

(y)��
��P � < �

��P �
�N � − 1��P ��

��P �
�C

P

(y)��N �
���� �P ��C

P

(y)� −
���� �P ��C

P

(y)� < �P ��N � − 1
��CP

(y)��N � − 1�
���� �P ��C

P

(y)� < �P ∶ N � − 1
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� �CP

(y)��C
N

(y)� − 1�
���� �P ��NC

P

(y)� < �P ∶ N � − 1
� �CP

(y)��C
N

(y)� − 1�
���� �P ��NC

P

(y)� < eN,P

which is, of course, a contradiction to the fact that e
N,P

is minimal. Thus, we may

conclude that P is abelian.

Now, by Theorem (6), there exists a subgroup M whose order is co-prime to

�G ∶ P �. Note that since G is supersolvable, then �M � = q, for some prime q. Since

P is abelian, we may conclude that M � G; otherwise we would have that a mem-

ber of M is contained in some Sylow p-subgroup of G. Since M � G, then G is the

semi-direct product of P acting on N . Now, if G were not Frobenius then there

would exist a p ∈ P − 1, such that C
G

(p) � P . But since M is of prime order, every

member of M commutes with p and since P is abelian, then p must also commute

with all of P , contradicting our trivial center. Hence, G is Frobenius and by Theo-

rem (7), we may conclude that P is cyclic.

The converse of the statement follows directly since P is an abelian sub-

group. This completes the proof.

An example of a group satisfying the above conditions is S3. This group

has a trivial center and every Sylow 2-subgroup P is cyclic and maximal, all of

which are generated by the 2-cycles, and the only minimal normal subgroup con-

tained inside of the Sylow 2-subgroups is themselves. Since P is abelian, we have

�P ∶ N � − 1 = e
N

. So we have that G is Frobenius with complement C2 and kernel

C3. Another example would be the general a�ne group of degree one over the field

of five elements.

Now, there is strong evidence computationally via GAP to support that su-
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persolvability is not needed and that we only need the group to be solvable. But

the condition of solvability is necessary to ensure that G splits over some subgroup.

In particular, G would spilt over a Hall-⇡ subgroup (which we have not discussed in

this document). Also, assuming certain conditions on the relative parameter regard-

ing the normal subgroups contained in a maximal subgroup is necessary to ensure

that the Frobenius complement and kernel are self-centralizing and in determining

when the center of the group is trivial.

Conjecture. Let G be a finite solvable group and suppose that p is the smallest

prime dividing �G�. Then, e
N,P

= �P ∶ N � − 1 for all minimal normal subgroups N

contained in the Sylow p-subgroups P of G if and only if G is Frobenius with cyclic

complement that is a Sylow p-subgroup and abelian kernel.
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APPENDIX

In this appendix we provide proof for Theorem (3), as well as categorize those groups

who have a corresponding e value between 2 and 3. We also provide some corollar-

ies to Harrison’s results in his original thesis [4].

Theorem. If G is a nilpotent group and N � G, then N ∩ Z(G) is non trivial.

Furthermore, if N is a minimal normal subgroup of G then N is of prime order.

Proof. Let G be a nilpotent group with N � G. Consider the upper central series

of G. By definition of the upper central series, there exists some i, where 1 ≤ i ≤ r,
such that N ∩ Z

i

is trivial and that N ∩ Z
i+1 is non-trivial. We have the following

chain of containment:

[G,N ∩Z
i+1] ⊆ [G,N] ∩ [G,Z

i+1]
⊆ N ∩Z

i

= 1

which means that [G,N ∩ Z
i+1] is in fact trivial. This implies that that N ∩ Z

i+1 is

contained in Z(G) ∩N , which proves the first claim.

Let N be a minimal normal subgroup of G. Since N � G, then N ∩ Z(G)
is non-trivial and by the minimality of N , we may conclude that N is contained in

Z(G). Since any subgroup of Z(G) is normal in G, then the only possibility for a

minimal subgroup is a cyclic group of prime order.
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Theorem 15. Let G be the direct product of H and K, where H and K are groups.

Then we have:

e
G

= �H ��K � − hk√
hk

where h and k are the largest conjugacy classes in H and K, respectively.

Proof. Let G = H × K, where H and K are groups, and let h and k denote the

largest conjugacy classes in H and K, respectively. We have that the largest conju-

gacy class in G is of size hk and �G� = �H ��K �. By definition we have the following

equality:

�H ��K � = hk +�(e
G

)(hk)
Solving for e

G

gives the result.

Theorem 16. Let G be a group such that 2 < e < 3. Then one of the following

holds:

1. e =√5 if and only if G is the dihedral group of order 10.

2. e =√7 if and only if G is the dihedral group of order 14.

Proof. We will begin by proving the statements (1) and (2) individually and will

end the proof by showing that there are no other possible groups with 2 < e < 3. For
the remainder of the proof, let x ∈ G, such that:

e = (�C(x)� − 1)��G ∶ C(x)�

We will begin by showing (1). Suppose, that e =√5. We have, by hypothesis,

that �C(x)� = 2 and �G ∶ C
G

(x)� = 5, thus �G� = 10. Up to isomorphism, we have

38



one non-abelian group and one abelian group of order 10, these two groups are the

dihedral group and the cyclic group respectively. Since the �C(x)� < 10, then G

must be the dihedral group. Conversely, the size of the largest conjugacy class in

D10 is 5 and the corresponding member of D10 that minimizes the parameter is any

involution.

We now show (2). Suppose that e = √7. We have, by assumption, that

x�C(x)� = 2 and �G ∶ C
G

(x)� = 7, and so we may conclude that �G� = 14. As be-

fore, we have up to isomorphism only one non-abelian group and one abelian group

of order 14, this is the dihedral group and the cyclic group, respectively. Since the

�C(x)� < 14, then G must be the dihedral group. Conversely, the size of the largest

conjugacy class in D14 is 7 and the corresponding member of D14 that minimizes

the parameter is any involution.

We will now show that these are the only values of e, in which 2 < e < 3. Let
k denote the largest conjugacy class of G. By Harrison, we have that �G� ≤ 2e2. The
largest possible order G could have is 18. Before continuing, observe that there are

no non-abelian groups of order 2 − 5, 7, 9, 11, 13, 15, and 17. Every abelian group

with order varying through the aforementioned orders all results in a e that does

not satisfy our conditions except for C4 and Klein-4. Now, D8 and Q8 both give a

e = 3√2, which is larger than three. Also, there is one abelian and one non-abelian

group of order 10 and 14, both of which we have already considered.

We have only three groups of order 12 which are non-abelian. These groups

are D6, A4, and Dic(12). Where the size of the largest conjugacy class in each of

these groups is 3, 4, and 3, respectively. All three groups have an e that does not

satisfy our conditions.

We now consider the non-abelian groups of order 16. Up to isomorphism,

we have 9 non-abelian groups. The size of the largest conjugacy class in all of these
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groups is 2 or 4. Calculating the e with either value gives a parameter larger than

three.

Theorem 17. There is no group G with e =√2m, where m is a square free product

of odd primes.

Proof. We will prove the claim by contradiction. Suppose there exists a group G

with e =√2m, where m is a square free product of odd primes. Now, by definition,

we have the following equality:

�G� = k +√2mk, (2)

where k is the size of the largest conjugacy class in G.

By Harrison, we have �G� ≤ 2e2; by assumption it follows that �G� ≤ 4m. We

now have the following:

k +√2mk ≤ 4m

Solving the inequality for k, gives us that k ∈ [0,2m].
For (2) to evaluate to an integer, k must be a product of an odd power of 2

and a odd power of all the prime factors of m. We are inclined to say clearly there

is no such integer less than 2m satisfying this condition except for 0. Thus, we have

two solutions, either k = 0 or k = 2m. Now since k is the size of a conjugacy class, it

must be that k = 2m. This gives:

�G� = 4m
= 2(√2m)2
= 2e2
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Which is a contradiction to Harrison.

Theorem 18. Let G be a group such that the smallest prime dividing �G� is p and

p2 does not divide �G�. Then �G� = p(p − 1)2 e2 if and only if G is Frobenius with com-

plement C
p

. In particular, if G is Frobenius with complement C
p

and abelian kernel

M , then e
N

= (p − 1)
�

k�N � .
Proof. The bi-conditional statement can be found in Harrison [4]. We will prove

the second claim; suppose G is Frobenius with complement C
p

and abelian kernel

M . Let N � G. Furthermore, we may assume that N ⊆ M . Let x ∈ G such that

e
N

= (c
N

(x) − 1)�k
N

(x). Note that �G� = pk, and that the smallest �C
G

(x)� could be

is p. We have two cases; either x ∈ M or x ∈ C
p

. Suppose that x ∈ M ; then we have

c
N

(x) = �M ∶ N � and k
N

(x) = �G ∶M �. This gives us:

e
N

= (c
N

(x) − 1)�k
N

(x)
= (�M ∶ N � − 1)��G ∶M �

Now, suppose that x ∈ C
p

; then we have c
N

(x) = p and k
N

(x) = �M ∶ N �. This
gives us:

e
N

= (p − 1)��M ∶ N �

Note that e
N

= (p − 1)��M ∶ N � = (p − 1)� k�N � . We now show that e
N

= (p − 1)� k�N �
is the true minimum. Let � = �M ∶ N �. Since p is the smallest prime dividing �G�, we
have that p < �. Now observe the following:

� − p
p�
< � − p
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1

p
− 1

�
< � − p

p + 1

p
< � + 1

�(p − 1)2
p

< (� − 1)2
�

(p − 1)�� < (� − 1)√p
(p − 1)��M ∶ N � < (�M ∶ N � − 1)√p
(p − 1)

�
k�N � < (�M ∶ N � − 1)

��G ∶M �

Which proves the claim.
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We include various functions which can be implemented in GAP. All of these

functions are part of a larger piece of code that was implemented to study various

properties regarding the relative parameter. The function calculates the relative

parameter for all normal subgroups of a given group.

CalcRP := function(n,m)

local G,y,N,e,x,C,CN,b,i,I,j,l;

i:=1;

G:= SmallGroup(n,m);

y:=NormalSubgroups(G);

e:=Elements(G);

l:=[Size(G)];

for i in [1..Size(y)] do

N:=y[i];

for j in [1..Size(G)] do

x:=e[j];

C:=Centralizer(G,x);

CN:=Centralizer(N,x);

I:=Intersection(N,C);

b:=((Size(C)/Size(CN)) - 1)*((Size(C)/Size(CN)) - 1)*

( (Size(G)/( (Size(N)*Size(C))/Size(I)))) ;

l[j]:=b;

od;

Print("Your relative parameter is the square root of ", b,"

with normal subgroup is N[",i,"]", "\n");

od;
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return 0;

end;

This function determines when a group is Frobenius.

IsFrobenius := function(m,n)

local G,cc,hh,i,x,y,e;

e:=0;

i:=2;

G:=SmallGroup(m,n);

cc:=Size(List(ConjugacyClasses(G)));

hh:=NormalSubgroups(G);

while i < Size(hh) do

x:= Size(List(ConjugacyClasses(FactorGroup(G, hh[i]))));

y:= (Size(List(ConjugacyClasses(hh[i]))) -1)/Index(G,hh[i]);

if cc = x+y then

Print("Your group is frobenius, with kernel ", hh[i], "\n");

Print("with size ", Order(hh[i]), "\n");

e:=1;

fi;

i:=i+1;

od;

if e =0 then

Print("Your group is not frobenius!", "\n");

fi;

return 0;

end;
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This function determines the relative parameter for a minimal normal sub-

group for all groups whose order is less then a given non-relative parameter.

CalcRPonIntervals := function(p)

local G,nn,N,e,x,C,CN,I,b,i,j,k,l,w,u;

j:=4;

w:=p*p;

while j<= (2*w+1) do

l:=1;

k:=NumberSmallGroups(j);

while l<=k do

G := SmallGroup(j,l);

nn := NormalSubgroups(G);

N := nn[1];

e := Elements(G);

u:=1000;

for i in [1..Size(e)] do

x:=e[i];

C:=Centralizer(G,x);

CN:=Centralizer(N,x);

I:=Intersection(N,C);

b:=( (Size(C)/Size(CN)) - 1)*((Size(C)/Size(CN)) - 1)*

((Size(G)/( (Size(N)*Size(C))/Size(I))) );

u:=Minimum(u,b);

od;

Print("Your Group is SmallGroup(", j, ",",l,")","\n");
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Print("Your bound is the square root of ", u,"\n");

Print("The index of the Normal Subgroup is ", Index(G,N),"\n");

l:=l+1;

od;

j:=j+1;

od;

return 0;

end;

This function ignores p-groups when calculating relative parameters on an

interval.

Check := function(k)

local i;

for i in [1..NumberSmallGroups(k)] do

if IsPrimePowerInt(k) = false then

if IsAbelian(SmallGroup(k,i)) = false then

GiveMe(SmallGroup(k,i));

fi;

fi;

if IsPrimePowerInt(k) = true and GcdInt(k,2)>2 then

if IsAbelian(SmallGroup(k,i)) = false then

GiveMe(SmallGroup(k,i));

fi;

fi;

if IsPrime(k) = true then

GiveMe(SmallGroup(k,i));
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fi;

Print("This is SmallGroup(",k,",",i,")","\n","\n");

od;

return 0;

end;
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