

IOT BASED NETWORK MANAGEMENT PORTAL FOR
AUGMENTED REALITY APPLICATIONS

by

Chaithra Radhakrishna, B.E.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Engineering
December 2018

Committee Members:

 George Koutitas, Chair

 Semih Aslan

 William Stapleton

COPYRIGHT

by

Chaithra Radhakrishna

2018

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgement. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Chaithra Radhakrishna, authorize duplication of
this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

 TO LORD GANESHA

To my parents, and family for their continuing support and patience; to all my friends for

their significant advice and time throughout the completion of my thesis.

v

ACKNOWLEDGEMENTS

I would like to sincerely thank my thesis advisor, Dr. George Koutitas for his

devoted motivation and supervision throughout my career at Texas State University. His

guidance helped me complete my thesis successfully.

I would like to take this opportunity to thank X-reality team of Texas state

university for their constant support and guidance throughout my thesis. Their suggestion

and advice helped me understand the technology and gain more knowledge. I would like

to thank members of the committee for their effort and time in reviewing this thesis.

I would like to extend my gratitude towards Prashanth Guha, Karthik

Balasubramanya and everyone else who directly or indirectly helped and motivated me

with my research.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS ... xii

ABSTRACT ... xiii

I. INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Wireless sensor networks .. 2

1.3 Augmented Reality in Education .. 2

1.4 Thesis Outline ... 3
II. LITERATURE SURVEY .. 5

2.1 Educational applications for IOT .. 6

2.2 Network activity with Augmented reality ... 7
III. ZIGBEE STANDARD.. 9

3.1 Introduction to Zigbee ... 9

3.2. Zigbee Architecture .. 10

3.3 Zigbee Network Characteristics .. 12
3.4. Zigbee device types .. 13

3.4.1 Zigbee Coordinator .. 13
3.4.2 Zigbee router ... 13
3.4.3 Zigbee End Device .. 13

3.5 Zigbee Topologies .. 14

3.5.1 Star Topology ... 14

vii

3.5.2 Tree Topology .. 15
3.5.3 Mesh Topology .. 16

3.6 Zigbee Networking Protocols... 16
3.6.1 AODV Routing .. 17
3.6.2 Many to one routing .. 18
3.6.3 Source routing ... 19

3.7 Applications of Zigbee .. 20
IV. HARDWARE AND SOFTWARE DESCRIPTION .. 22

4.1 Introduction ... 22

4.2 Arduino Uno .. 22

4.3 LM35 Temperature Sensor.. 23

4.4 Raspberry pi 3 ... 24

4.5 Digi XBee S2D Module .. 25

4.6 XCTU Application ... 27

4.7 XBee S2D Operating Modes .. 27
4.7.1 Transmit mode (AT) .. 27
4.7.2 Application Programing Interface Operation (API) 28

V. NETWORK MANAGEMENT PORTAL ... 29

5.1 Routing protocol .. 29
5.1.1 Short range source routing based LQI protocol 29
5.1.2 Short range RSSI based routing protocol ... 36

5.2 Data Transmission between Network and Portal .. 37
5.2.1 Transmit data from network to portal .. 37
5.2.2 Transmit data from portal to network .. 40

5.3 Flask web-based Network Management Portal ... 41
5.3.1 Accessing data from SQL Database ... 41
5.3.2 Fetching temperature from sensors .. 41

viii

5.3.3 Fetching RSSI from sensors ... 41
5.3.4 Choosing the desired Network Topology ... 42
5.3.5 Mesh Topology .. 42
5.3.6 Controlling Actuators .. 43

5.4 Handling Errors ... 44

5.5 Integration with Augmented Reality .. 44
VI. EXPERIMENTAL RESULTS ... 47

6.1 LQI with distance (Indoor Environment) .. 47

6.2 Faraday cage .. 48

6.3 LQI when there is obstruction ... 49

6.4 Teaching Network Topology and Routing to Students 50
VII. CONCLUSION AND FUTUREWORK .. 53

APPENDIX SECTION .. 55

REFERENCES ... 80

ix

LIST OF TABLES

Table Page

1. Network Characteristics Comparison ... 12

2. Arduino Specifications.. 23

3. LM35 Specifications ... 23

4. Raspberry pi specifications ... 25

5. ZigBee range ... 25

6. Pin configuration of S2D Module ... 25

7. Management LQI Neighbor table request: (Cluster ID :0X0031) 30

8. Management LQI Response (Cluster ID 8031) .. 30

x

LIST OF FIGURES

Figure Page

1. Internet of Things .. 2

2. System Architecture .. 3

3. Zigbee Architecture .. 10

4. Star Topology.. 14

5. Tree Topology ... 15

6. Mesh Topology ... 16

7. RREQ Packet format... 18

8. RREP Packet Format .. 18

9. Create Source route packet ... 20

10. Medical Applications .. 21

11. Traffic monitoring ... 21

12. Arduino Uno ... 22

13. Interface of LM35 Temperature sensor with Arduino Uno .. 24

14. Raspberry pi 3 Module.. 24

15. Arduino and XBee Interface ... 26

16. Flowchart for LQI based routing protocol .. 32

17. Flowchart for Data transfer from Network to Portal .. 37

18. Sensor network Set-up .. 38

19. MySQL database ... 39

xi

20. Web management portal ... 39

21. Flow chart for data transfer from portal to network ... 40

22. Star command ... 42

23. Mesh command ... 43

24. LED Command ... 43

25. ngrok to host the data to internet from localhost .. 45

26. Hologram Script .. 46

27. Graph of LQI vs distance .. 47

28. Graph-Faraday cage experiment ... 48

29. LQI with obstruction(Wall) .. 49

30. User Interface on Holo-lens .. 51

31. Temperature and RSSI Visualization.. 51

32. Star Network Visualization ... 52

33. Mesh Network Visualization .. 52

xii

LIST OF ABBREVIATIONS

Abbreviation Description

XCTU XBee Configuration and Test Utility

USB Universal Serial Bus

RF Radio Frequency

CSMA Carrier sense multiple access

ZDO Zigbee Device Object

AODV Adhoc on demand distance vector

RREQ Route request

RREP Route Response

API Application Program Interface

LQI Link Quality Indicator

RSSI Received signal strength Interference

WSN Wireless sensor Network

IOT Internet of Things

xiii

ABSTRACT

Internet of Things (IoT) along with the evolution of Wireless sensor networks and

Augmented Reality technologies has opened many avenues in multiple real-world

scenarios that need extensive human interaction. The potent combination of technologies

seamlessly amalgamates real and digital world allowing us to improvise in the field of

education. Zigbee wireless protocol (802.15.4) has been instrumental in achieving low cost

continuous monitoring systems but the ability to demonstrate the network topology

depends solely on the distance separating the various nodes. We improvise the existing

protocol and thus facilitate the nodes to form mesh topology based on pre-defined

parameters but predominantly based on Link Quality Indicator (LQI).

A network management portal is created which gives us the ability to control the type

of desired network topology based on the defined protocol and interact with actuators. This

further integrates with an Augmented Reality application thus providing us with an ability

to control and visualize the topology through the AR interface. A comparative analysis of

the node behavior under different external factors is done and conclusion is made regarding

the sustainability of the proposed model for short range experimentation in educational

applications

1

I. INTRODUCTION

1.1 Overview

Internet of Things (IoT) has been a trending topic in the recent past in communication

and industrial engineering alike. Ever since the evolution of miniature devices, there has

been an increase in the number of smart devices which have become part of our day to day

lives. From toasters to activity trackers, there is an increasing demand for the data

generated by the consumer for a myriad of use cases.

One of the key aspects for why IoT has become a rage is because of the ability of the

devices to communicate with each other. The communication can be achieved in a few

different ways but since most of the devices are small and are placed in remote locations,

they mainly rely on wireless communication. Wireless mesh networks are a common mode

of connection and in some rare cases star networks are utilized.

The essence of Internet of things (IoT) is to make life simple and exciting by

interconnecting the world of a consumer. Sensors are the backbone of an IoT infrastructure

facilitating the interaction between the user and the multiple devices that the user interfaces

with such as laptops, smartphones, fitness trackers and robots. At any given point in time

one of those devices will keep track of factors such as location and activity of a user to

offer the user a personalized world. Effectively the success or failure of IoT depends on

how user-centric the solution can get. It must address the challenges posed in real-life

scenarios and work on ease of access and use. There is an increase in the amount of data a

sensor can process and with an ever-increasing pace of data collection and machine

learning, it is totally relevant for the sensors to match up in terms of what they can offer.

2

Figure 1. Internet of Things[1]

1.2 Wireless sensor networks

Wireless sensor networks (WSNs) are a field of study that has been there for a long

time and we see practical applications in our lives daily and how the technology has

seamlessly integrated itself into our world. Although the technology has a lot to offer, little

work has been done to leverage the same. Sensors form an integral part of WSNs and

capture a myriad of information continuously. The data that is collected is then used to

design and introduce new features to the consumer. We are utilizing sensors, XBee,

Arduino and Raspberry pi to create an IoT network of devices.

1.3 Augmented Reality in Education

Advancement of IoT has increased the expectation of getting real time information

from all the smart devices. When the same is combined with Augmented reality the end

users can be provided with information from real world as well as described in [2]. By

using these technologies, the education sector stands to gain a lot. The learning can be

3

made easier and more involving for the students along with empowering the instructor with

all the tools at their disposal. Augmented reality in education will basically provide more

contextually aware and relevant coursework to the students. To render the multimedia

content which is context aware, the physical devices through IoT interact with the AR

environment.

1.4 Thesis Outline

Figure 2. System Architecture

In this research we are going to integrate WSN into an IoT environment to build a

platform for data access for practical applications using augmented reality. We create a

new LQI based routing that allows us to visualize both star and mesh network when the

routers are all placed at a close distance. The work here will be a backend architecture for

any user interface to access the data collected by various sensors and gives the user to

control the data seen by giving a choice of different options like the type of network

4

topology, sensor nodes the user wishes to access etc. System architecture is shown in

Figure 2

In Chapter 2, literature review based on previous work related to IOT , Wireless

sensor networks and Augmented Reality is explained. Chapter 3 is focused on Zigbee

standards ,topologies and applications of ZigBee .In Chapter 4, the experimental setup and

hardware used in explained in detail along with the interface of hardware’s. In Chapter 5,

Network routing protocol based on LQI and Interaction between portal and network along

with integration with Augmented reality is explained. In Chapter 6, results and simulations

are explained. Finally, Chapter 7 summarizes the overall research and future research

possibilities are mentioned.

5

II. LITERATURE SURVEY

There have been several use-cases and needs to implement different routing

techniques in a star or mesh topology for a sensor network using XBee nodes. Some of the

research that align closely with our study are explored here to understand the body of work.

A comparative study of wireless protocols such as Bluetooth, Wi-Fi, Zigbee and

UWB is made as shown in [3]. It lists the various advantages and disadvantages of each

protocol. In conclusion, ZigBee finds a niche space in networks dealing with small

payloads and scales well due it its minimal energy consumption thus providing longevity.

Wireless sensor networks are characterized by small payloads as they are used to perform

continuous monitoring and the computations are remote.

Khanh et al. explore the benefits of a LQDV routing protocol when tested under a

real environment as opposed to a test setup. They propose the LQDV protocol and explain

how it differs from the traditional AODV protocol in which it uses link metric instead of

the minimum hop count. They also explain a contingency mechanism of waiting for

multiple requests while determining the link metric and using it to form the routing table.

The results from their experiment suggest that LQDV performs better than AODV in a real

environment but could be challenged in the event of a heavy load which is explained in [4].

Payam Porkar et al. implement a routing protocol called NbZbr taking into account

the number of neighbor nodes and their respective distances and is predominantly based

on the theory that the ability to reach a destination is directly proportional to the number

of neighboring nodes a particular node might have. They also indicate that the network

with better connectivity tends to be energy efficient too. They calculate the cost of the

network by considering parameters such as distance, number of nodes and estimate, a

6

parameter derived from hop count. They conclude their results with the argument that

NbZbr is faster and more accurate than other algorithms and also prove to have a low

implementation cost and is shown in [5].

Vachirapol et al do a comparative evaluation of ZigBee mesh networks using XBee

modules. They base their evaluation on key parameters such as RSSI and packet delay. The

experiments were performed in line of sight and non-line of sight cases and evaluated

accordingly. They propose this study to be useful in employing mesh networks in building

wireless sensor networks of mobile robots [6].

Authors explore a ranging technique based on LQI values in XBee sensor networks

described in [7]. Link quality indicator is a metric which measures error values in

modulation of successfully received incoming packets which pass the Cyclic redundancy

check. Due to the external effects of environmental factors acting on the LQI metric, the

authors propose and test a novel approach for LQI ranging. Their method can be divided

into three data processing components namely pre-correction, error compensation and

regression analysis. From their results they demonstrate that the new ranging mechanism

has a high accuracy and can be successfully implemented for localized applications in a

wireless sensor network [7].

2.1 Educational applications for IOT

Reza et al. Explore a key application using a Zigbee mesh network. They utilize a

wireless sensor network to monitor the vitals of a patient and transmit it to a remote station

thus achieving continuous monitoring through real-time measurement [8]. Various routing

protocols are explored before homing in on ZigBee as it proves to be efficient and cost-

effective. An optical heart rate sensor is used to receive heart beat signals which is sampled

7

and digitized by a slave node before being sent to the master node wirelessly. The received

digitized value is transmitted to a PC to be displayed. Although the approach here is uni-

dimensional, a lot of potential can be seen through which WSN in combination with ZigBee

can be of great use in daily applications which utilize remote monitoring as explained in

[8].

Dhiraj et al. implement a monitoring system to track various physiological

parameters such as Blood Pressure, body temperature, blood oxygen level and fall

detection [9]. The sensors report data every minute to a raspberry pi server which can be

accessed from anywhere over an internet connection. The values are monitored for any

abnormal spike which is communicated to the caretaker through SMS. Their work

effectively describes how various sensors form a network to perform a single function with

a seamless integration of Arduino and raspberry pi [9]

Pushkar and Sanghamitra as described in [10] propose a cost-effective irrigation

system. Here sensors to measure water flow, temperature, soil moisture are used in tandem

to produce optimum results. The Realtime values from sensors are compared against a

standard set. This process helps the farmer to harvest a maximum quality yield. Data is

collected by Arduino and linked to a website.

2.2 Network activity with Augmented reality

Kaufmann explores the advancement of augmented reality technology enabling

innovations in learning tools for educational purposes[11]. The research provides greater

insight into the immersive learning in virtual environments. The experiments are centered

around an application designed for mathematics called Construct3D. The platform allows

multiple users to share the same virtual space to create geometrical shapes in a 3D space.

8

He concludes that AR has much to offer and if it grows at the same rate could be an

effective tool in education.

Haramaki and Nishino , in their work stress the importance of topology

visualization during real-time network issues. They propose a system to visualize the

network topology which assists a network administrator to take stock of a network issue

quickly and efficiently and is shown in [12]. The system uses proximity to an access point

and vision-based identification as key parameters to identify network equipment. The

collected data is then parsed to a head mounted display to provide topology information.

9

III. ZIGBEE STANDARD

3.1 Introduction to Zigbee

Zigbee is based on 802.15.4 standards and got the formal consent from IEEE

(Institute of Electrical and Electronics Engineer) in the year 2003 [13]. Zigbee supports

multi-hop mesh networking topology, star and tree topology. Zigbee uses CSMA to

improve the reliability in network [14]. This is because it looks for channel to check if it is

clear and then begins to transmit data. The inbuilt protocol retries the transmission of

packet up to 4 times and if it cannot reach any other node or destination then it informs the

source node that the packet delivery was not successful [13].

 ZigBee is widely used because of its low cost and self- healing capability in mesh

network [13]. If a link in the network fails it automatically looks for other nodes and

reforms the network. Zigbee is also reliable in terms of broadcasting the message to all the

nodes together. It is available in international standard where the module comes as fully

built computer with an MCU and RF module[14]. ZigBee uses AE6-128 for encryption

where the packets cannot be understood by the nodes which does not have the encryption

key and it can also not inject malicious packets into network. It has total of 16 channels in

the 2.4GHz range and is also where each channel is separated by 5MHz [14].

The 2.4GHz in Zigbee is shared with Wi-Fi, Bluetooth and microwave ovens. XBee

uses ZigBee protocol and provides a lot of wireless solutions to industries. It has different

modes to operate so that the battery can be preserved. Chips on the module are integrated

with microcontrollers and other radios [15].

10

3.2. Zigbee Architecture

NETWORK LAYER

MEDIUM ACCESS CONTROL (MAC LAYER)

PHYSICAL LAYER

APPLICATION
FRAMEWORK

ZIGBEE DEVICE
OBJECT

(ZDO)

APPLICATION
SUPPORT

SUBLAYER(APS)

APPLICATION LAYER

ZIGBEE ALLICANCE

IEEE 802.15.4

Figure 3. Zigbee Architecture

Zigbee architecture is divided into mainly two sections as shown in Figure 3:

• IEEE 802.15.4 which mainly consists of Physical (PHY) and MAC (Medium Access

Control) layers covers the lower layers of the stack

• Zigbee alliance consists of ZDO (Zigbee Device Object), APS (Application support

sublayer), Network layer and Security Management covers the upper layers of the

stack.

Physical Layer: Physical layer is used for basic transmission and reception. It also

performs modulation and demodulation for incoming and outgoing signals. It uses Direct

Sequence spread spectrum (DSSS) for simple data transmission by which data is converted

to 32bits and each bit is again modulated for Transmission[16]. Different countries choose

different frequency band for the operation. For example, European Countries operate at a

11

frequency of 868MHz and 868.8MHz, North America and South America work on

frequency band 915MHz and only 2.4Ghz frequency band is used to operate

worldwide[16]. Physical layer is used to measure the Link Quality of the incoming signal

and perform energy detection in the current working channel.

Medium Access Control Layer: MAC layer

MAC layer is located in between the physical layer and Network layer. It is used to handle

point to point communications in a network, retries and acknowledgements are formed by

the MAC Layer [17]. It is used to facilitate network start up and configuration of new

devices.

Network Layer:

Routing and traversing multiple hops in a network are mainly supported by the network

layer. It also facilitates addressing, identifying neighbors, Reception control and joining or

leaving a network[13].

Zigbee Device Object (ZDO):

It provides device and service discovery facilities and provides network management

facilities [13].

Application Layer (APS):

Addressing objects like profiles, clusters and end points are defined by the application layer

[17]. It also responds to any binding requests from the end points and facilitates application

services

12

3.3 Zigbee Network Characteristics
Zigbee is widely used in varied applications. Some of the important characteristics

of Zigbee which makes it more popular compared to other wireless technologies like

Bluetooth and Wi-Fi are [13]:

• Low data rate

• Low Battery Consumption (A single 9V battery can work for many years)

• Cost Effective.

• Zigbee can form its own network automatically.

Table 1. Network Characteristics Comparison[18]

Data

Z-Wave

Bluetooth

ZigBee (802.15.4)

Thread

(802.15.4)

Operating
Frequency

908.42MHz

2.4GHz

2.4GHz, 868MHz

,915MHz

2.4GHz

Data Rate

9600bits/sec
40Kbits/sec

1Mbps

20kbit/sec (868MHz
band) 250kbit/sec

(2.4GHz band)

250Kbps

Range

300ft (Outdoor)

80ft (Indoor)

330ft

80ft

100ft

Network
Topology

Mesh

Mesh

Star, Tree, Mesh

Mesh

Modulation
Techniques

Frequency shift
keying (FSK)

Direct
Sequence

Spread

Direct Sequence
Spread Spectrum

Modulation (DSSS)

O-QPSK

Modulation

Power
Consumption

High

Low

Low power

Low power

Nodes

232

32,000

65,000

250-300

Applications

Home and
Commercial
Automation

Wireless
communicatio

n between

WSN’S

WSN’S

13

3.4. Zigbee device types

To build any wireless sensor network using ZigBee, the following three ZigBee

devices play an important role. They are:

3.4.1 Zigbee Coordinator

Zigbee Coordinator plays an important role which is responsible for forming a

network and managing the network [19]. Coordinator has the information of all the routers

and end-devices connected in the network. Coordinator assigns as 16bit PAN ID for all the

nodes in the network to identify the device. This PAN ID is same across all the devices in

the same network[3]. Coordinator is also responsible to run assist in routing and security

services and many other services and hence it to be powered all the time and cannot go to

sleep/Idle mode. If the PAN ID of the coordinator is pre-configured to 0, it scans and picks

any random available ID for the network. If the PAN ID of the router/ End-device is

configured to 0, then it joins any available network

3.4.2 Zigbee router

Zigbee router can join existing network, form routing and can also have child nodes

and other routers connected to it. Routers are responsible to forward information in a

network if the nodes are far and cannot reach the destination. It can buffer wireless packets

if the end devices are in sleep mode [19]. Routers must always be powered on

3.4.3 Zigbee End Device

Zigbee end devices /child nodes can join any existing network[19] ,They can

transmit and receiving information but cannot relay messages in a network. It does not have

the ability to all other devices to join the network. When there are no data packets to be

14

sent, they enter sleep mode thus reducing power. It needs to always connect to parent

device such as router or coordinator to join the network [13].

3.5 Zigbee Topologies

 Zigbee supports three topologies mainly Star, Tree and Mesh Topology

3.5.1 Star Topology

Figure 4. Star Topology

In a star topology, all the routers and end devices are connected to coordinator

directly as s. Any node that needs to send a packet to any other node should go through

coordinator only. For a network to form a star, all the routers and end devices must be in

the same range of the coordinator as described in [19]. In a star topology the routing of

messages is not broadcasted, hence any node that is not in the communication range will

not receive any packets. Since the coordinator is always responsible and acts as a bridge

between the source and destination although the routers are in the same range, this increases

network latency and redundancy in the network [3]. Failure of any node in the network is

easy to re-configure without disturbing other nodes in the network

C R R

E

E

15

3.5.2 Tree Topology

Figure 5. Tree Topology

Tree network consists of coordinator, routers and end-devices as shown in Figure

5. Coordinator is the main hub and is responsible for the forming of network [13]. It can

either have routers or end devices connected to it. Routers connected can have multiple

child nodes connected it whereas the end devices which act as child nodes cannot have any

other child nodes connected because it cannot relay messages. Routers and coordinators

can be used as intermediate networks for carrying the data from source to destination in

any network. The main disadvantage of a tree network is when a router fails, all the child

nodes/end devices are also disconnected from the network and it doesn’t have the ability

to connect to any other routers in the network [19].

C

R

R E
E

E

E E

16

3.5.3 Mesh Topology

Figure 6. Mesh Topology

Mesh network consists of routers, coordinator and end devices as shown in Figure 6.

The mesh topology of ZigBee is the most flexible due to its self-healing capacity. Self-

healing is when a router or end device in the network fails it can automatically find other

paths and route the packet form source to destination [13]. It is also referred to as multi-

hop, since it can traverse to multiple routes to reach the destination. Zigbee mesh has some

of the complex routing protocols for self-healing capacity. They are AODV routing, Many

to one routing and source routing. Adding or removing a device from the network is very

easy which will not disturb the normal functioning of the network.

3.6 Zigbee Networking Protocols

Performance and functioning of any wireless network can be determined by the routing

protocol. The path that the network takes to transfer data from one node to another through

single or multi-hops is known as routing. The end devices do not have the ability to follow

any routing protocol but then just send a unicast transmission to the parent and the parent

E

C

R

R

R

E E

E

17

makes the decision about the route it needs to take to reach destination. The parent node

make decision about the routing path to reach destination[13].

3.6.1 AODV Routing

In AODV routing each node uses routing table entry to store the information of

next hop and the destination[13]. Routers and coordinator establish routes using a process

called route discovery. The parameters that routers look to determine the next hop are

combination of link quality, range, neighboring nodes and end devices. Each parent node

will have a routing table record. This routing protocol is used in cases where it does not

have more than 40 destinations. [19]

a. Source node sends a route request packet broadcast to all neighboring nodes

b. RREQ packet will have information of source mac address, destination mac address

and path cost field (to measure link quality). A sample RREQ packet format is shown

in Figure 7

c. All the nodes that receive this will update the path cost field

d. The will create an entry in route discovery table.

e. If any intermediate router other than destination receives this packet, it will forward the

packet to destination

f. On receiving the packet, the destination node compares it with the path cost field of the

previously received.

g. The destination node sends the route reply packet to the source node. Sample format

is shown in

h. Figure 8.

i. For every transmission from one node, route request packet is sent.

18

 If there are large networks and if a route request packet is sent for every packet, then

there might be significant Network delays [13].

Source
address

Requisition
ID

Destination
address

Destination
Sequence

Source
Sequence

Hop
count

Figure 7. RREQ Packet format [13]

Source address is the 64-bit mac address of the sending node.

Requisition ID refers to the serial number of the packet, which eventually discards if any

duplicates are found

Destination address is the 64-bit mac address of the receiving node

Destination sequence refers to the recent packet from destination which is seen by source

Source sequence is incremented by 1 whenever a packet is sent

Hop count refers to the no of hops the source packet took to reach the destination

 RREP is a unicast transmission which traverse in the reverse path

Source address Destination
address

Destination
sequence

Hop count Life time

Figure 8. RREP Packet Format [13]

Destination sequence refers to the duration the route is valid

3.6.2 Many to one routing[2]

 Many to one routing can be used along with AODV in a network which has large

number of nodes typically more than 40 [19].

a. Instead of all nodes performing the route discovery, the coordinator sends a single

many to one broadcast transmissions are sent to all routers and forms reverse route on

all devices.

19

b. The destination address is set to the address of the coordinator.

c. Each node receiving this packet creates a reverse routing entry in the many to one

request to create a path back to coordinator.

d. When a node needs to transmit to coordinator and find the many to one request packet,

it will transmit the packet ignoring route discovery.

e. We need to send this many to one routing packet at a certain interval to update the

reverse routes. To enable many to one routing we need to set the AR (Many to one

broadcast time) command to any value other than 0xff.

3.6.3 Source routing

Maximum number of routing table entries in a ZigBee network is 40. To use source

routing the device should be updates with API firmware [13]. Source routing packet format

is shown in Figure 9

a. Source node sends a route record transmission called Create Source Packet(0X21) to

route the packets to the destination.

b. As this packet traverse to multiple hops, the 16bit network address of the hop is

appended to RF payload in the packet.

c. The packet will have information of source mac address, destination mac address and

16bit network address of the hops packet traversed.

d. Source node also transmits a Transmit Request packet(0x10) or Explicit Transmit

Request packet(0x11) to send the data to destination node

e. The destination node receives this data packet as Receive packet or Explicit RX

indicator

20

f. Destination node also sends a routing information reply or acknowledgment to the

source of the route it traversed

g. If any link in the source route is broken then, devices that used that respective route

will also be broken.

h. Source routing should be used along with many to one routing, so that periodic many

to one request will be sent to refresh the route.

 Figure 9. Create Source route packet

3.7 Applications of Zigbee
Some of the applications of ZigBee include:

• Home Automation-It can be used to control some of the appliances at home like

heater , cooler and security surveillance [20].

• Environment control-It can be used in forest , climate and habitat monitoring[21]

• Medical applications - It can be used to monitor patients’ vitals remotely. An

example is shown in Figure 10

21

• Industrial automation[20] – It is efficiently used in manufacturing industries for the

control of equipment’s.

• Traffic control – ZigBee can act as good collision detection device as show in

Figure 11 when two devices on different vehicles come in range within each other,

signals can be sent out of what the driver ahead or behind plans to do.

Figure 10. Medical Applications [22]

Figure 11.Traffic monitoring[23]

22

IV. HARDWARE AND SOFTWARE DESCRIPTION

4.1 Introduction

For this research we are using Arduino Uno, Digi pro S2D XBee Module,

Raspberry pi, LM-35 Temperature sensor, XCTU software to configure XBee to test the

working of modules, and PyCharm to run the server program. The specifications of the

hardware and software are mentioned below:

4.2 Arduino Uno

The Arduino Uno board is a portable microcontroller based on Atmega 328. It can

be programmed with Arduino software and can be used with any computer when plugged

in with Universal serial bus (USB) cable[24]. The open source nature and ease of use makes

it a high demand device. Arduino Uno uses Atmega16u2 programmed as a USB to serial

driver chip compared to other boards which use FTD1 USB to serial driver[24]. Transmit

(TX) and Receive pins (RX) is used for serial data transmission and reception. It uses USB

COM driver’s firmware and does not require external drivers[24]. The hardware

specifications for Arduino is shown in Table 2.

Figure 12. Arduino Uno

23

Table 2. Arduino Specifications [24]

 Board Arduino Uno

Processor ATmegs328

Operating Voltage 5V

CPU Speed 16MHz

Analog Input/output 6/0

Digital Input/output 14/6

SSRAM [kb] 2

Flash [kb] 32

USB Regular

UART 1

4.3 LM35 Temperature Sensor
LM 35 is a precision temperature scale and which has temperature value almost

linearly proportional to the centigrade value. It converts the temperature to proportional

output voltage [25].Due to high output voltage generated by the sensor, it does not require

the output voltage to be amplified. It has a scale factor 0.1V/deg Celsius [25].The sensor

has two inputs and one output. The output of the sensor is connected to the analog input of

Arduino. One input is connected to +5V of Arduino Uno and another input to ground with

specifications shown in Table 3.

Table 3. LM35 Specifications[25]
Output Voltage -55℃ (−1V) to + 150℃(6V)

Supply voltage +5V

Precision ±1℃

Sensitivity 10mV/℃

24

 Figure 13. Interface of LM35 Temperature sensor with Arduino Uno

4.4 Raspberry pi 3

Raspberry pi is a credit card sized computer which is based on Linux operating

system and can run applications like a normal PC. This low cost enough power, memory

and a storage to gather all the data in a single SD card [26]. Raspberry pi is used as a

gateway between IOT network and database. It is programmed in python in Raspberry pi

which in turn acts as a server.

Figure 14. Raspberry pi 3 Module

25

Table 4. Raspberry pi specifications[26]

CPU 4x ARM Cortex- A53, 1.2GHz

RAM 900MHz – 1GB LPDDR2

STORAGE Micro SD

GPIO 40 pin headers

SoC Broadcom BCM2837

Networking 2.4GHz 802.11 wireless, 10/100 Ethernet

4.5 Digi XBee S2D Module

The XBee shield is interfaced with Arduino Uno for wireless transmission of

information using the ZigBee protocol. It is loaded with ZigBee firmware which is used

to support low cost sensor networks. It does not require too much power and can rely on a

single 9V battery for many days as described in [13]. This module can be used in a

command mode or as a USB/Serial replacement. Key advantage of Zigbee is supports mesh

networks. The range can vary based on external interferences. The range is predominantly

dependent on transmitting power [13]. In this research we are focusing on e1liminating the

range and form mesh for educational purposes to be able to visualize real-time data.

Table 5. ZigBee range [19]

Indoor Up to 60 m (200ft)

Outdoor (RF Line of sight range) Up TO 1200m (4000ft)

Table 6. Pin configuration of S2D Module [19]

Pin Name Description

1 GND Ground

2 VCC Power supply

26

Table 6 . Continued

3 DOUT/DIO3 Data out

4 DIN/DIO14 Data in

5 DIO12 GPIO

6 RESET Reset

7 RSSI/PWM Receive signal strength

 8 PWM1 Pulse width modulator

9 Reserved No connection

Arduino Uno is connected to XBee shield to transmit the information from

wirelessly between routers. Program to design protocol and form routing is embedded

inside Arduino IDE software. The TX pin of Arduino is connected to DIN of XBee and

RX pin is connected to DOUT of XBee. Power supply of 3.3V is given from Arduino to

XBee. The connection is as shown in Figure 15.

Figure 15. Arduino and XBee Interface

27

4.6 XCTU Application

XCTU stands for XBee configuration and test utility [19] which provides a

graphical interface to user to interact with the radio modules. It has built in tools and

firmware which helps to test inbuilt features. It also helps user to read and explore firmware

in the device.

This is an easy way to check if the module is working properly and upgrade the latest

firmware from the software. If there is any problem with the module, it can be fixed using

XBee recovery from the software

4.7 XBee S2D Operating Modes

 XBee series2 S2D models mainly operate in two modes such as Transmit (AT

mode), Application program Interface (API)

4.7.1 Transmit mode (AT)

Transparent (AT)mode is the simplest point to point wireless communication.

Destination node receiving this data is sent serially without making any changes.

In transparent mode (AT), the transmitting node radio sends data to the destination node

by setting the DH and DL pin to the address of the destination. Transparent mode is used

in a simple communication between two nodes. When several XBee needs to communicate

at the same time , the command mode would be needed to activate every time a new

destination address needs to be entered. When a device is in AT mode , and it receives

multiple messages from many routers, the source of the device. The source needs to send

extra information of all the routers in the packet information[12]. When a module is

working in AT mode it uses Transmit Request packet to send the data to remote node.

28

Command mode is the mode entered to modify the RF parameters.

4.7.2 Application Programing Interface Operation (API)

API mode can be used when messages need to be transmitted to multiple devices.

In API mode instead of changing addresses in the command mode , the destination address

can be changed in the payload packet [19] . The sender will retry sending the packet for up

to 4 times if there is no acknowledgment received. API mode uses Explicit transmit request

frame to send the information from one node to another[13][19].

There are two modes under API :

API =1 mode without escape characters = It depends on start delimiter and length of the

bytes to differentiate between frames. The frame structure consists of Start

delimiter(0X7E), Length-(1-2) (most and least significant byte) , Frame data(4-n) – API

frame structure and checksum 1 byte as described in[19][13]

API =2 mode with escape characters = It is used to get reliable output noisy conditions

[13] .When the output has 0X7D to escape the characters in a frame and XoRed with 0X20

as described in[19][13].

29

V. NETWORK MANAGEMENT PORTAL

5.1 Routing protocol

In our experiment we try to build XBee mesh routing protocol for single hop and

multi-hop networks when the nodes are placed very close to each other. Each node consists

of a single Arduino Uno with an TX/RX pin and an XBee controller. There are total of 5

routers and a single coordinator to visualize star and mesh networks. The communication

between Arduino and XBee are established using the serial terminals. The setup of XBee

modules can be implemented using the XCTU software. XCTU software also allows us to

monitor transmission and reception of data. In this chapter we focus mainly on source

routing based LQI and RSSI protocol and the interaction between sensor network and

network management portal

5.1.1 Short range source routing based LQI protocol (Mesh Network)

LQI is metric which measures error values in modulation of successfully received

incoming packets. It is calculated by the physical layer and gives information of the link

quality to all the above layers each time when a data is received. LQI is measured in the

range of 0-255 where 255 represents the highest quality of link with reduced packet loss

rate and 0 being the least[27]. It can be measured by broadcasting an Explicit ZDO

command to all the neighboring nodes and the response is stored in a table entry for all the

nodes. To measure the link quality in ZigBee, ZDO commands use explicit transmit

command frame (0x11)[27] . Any byte commands in the ZDO request must use little endian

byte order so that the remote node is able to receive the right command in the desired

format [13]. For the remote node to receive ZDO request, API output(A0) must be set to

true. The ZDO packet used to send the LQI packet request and receive the response is

30

shown in Table 7 and Table 8:

Table 7. Management LQI Neighbor table request: (Cluster ID :0X0031)[28]

Start delimiter 7E

Length 001A

Frame type 11

Frame ID 01

64-bit destination address 0013a20041680ca1

16-bit destination address FFFE

Source endpoint 00

Destination end-point 00

Cluster id 0031

Profile ID 0000

Table 8. Management LQI Response (Cluster ID 8031)[28]

Start delimiter 7E

Length 0017

Frame type (Explicit RX

91

64-bit destination address 0013a20041680ca1

16-bit destination address FFFE

Neighboring device Coordinator

 Receiver on when idle 0x0 – off

 Relationship 0X0 – Neighbor is parent

 Cluster id 8031

Reserved 0

Depth 00 indicated neighbor is

 LQI LQI value

31

• Start Delimiter – Start Delimiter is used to identify the start of a data packet that

differentiates from other packets sent

• Length - Length defines the total length of the packet excluding checksum

• Frame type – Refers to the packet request used to send the packet. For a zdo packet

to be sent we need to use the explicit transmit request(0X91) [28]

• 64-bit destination address – For a unicast transmission 64-bit address of the

destination is set , and for broadcast transmissions it is set to 0x000000000000FFFF

• 16-bit address – It is said to FFFE if the address is unknown or for broadcast

transmissions.[28]

• Source and destination endpoint – Set to 0 for ZDO endpoint[28]

• Cluster id – Is set to the respective ZDO command sent(here it is 0031 and 8031)

• Neighboring device – 0x0 – ZigBee coordinator, 0x1 – ZigBee router ,0x2 –

ZigBee end device ,0x3 – Unknown[28]

• Relationship – Relationship defines if the node is a parent device or a child

device[28]

• Receiver –set to 0

• Receiver on when idle – defines if the node is accepting incoming connections[28].

• Depth – 00 indicates the device is ZigBee coordinator [28]

• LQI – Estimated link quality of neighboring device[28]

32

The flowchart describing on how the data is fetched and transmitted to intermediate routers

or destination is as shown in Figure 16 .

START

SET UP

PACKET
RECEIVED

SCAN FOR LQI

COMPARE LQI
VALUES

ADD HOP TO
PACKET

FETCH
TEMPERATURE

/RSSI

SEND PACKET
TO HOP/

DESTINATION

LOOP END

LOOP START

YES NO

Figure 16. Flowchart for LQI based routing protocol

33

Creation of packet and protocol design is embedded inside the Arduino Uno and

is in serial with XBee routers and is wirelessly transmitted to other routers using Custom

LQI based source routing protocol

1. Set up includes:

• BAUD RATE= 9600- default Baud rate used by XBee modules which initializes the

serial communication with XBee

• Pin configurations to read the output of temperature sensor and LED. Temperature is

read at Analog pin A0 and LED at pin 12 of Arduino.

• Destination/remote address is set to the 64bit address of the coordinator.

• Fetch Mac address and Network address- Mac address and network address are fetched

as soon as the serial connection is established to identify the router connected. Each

router will have a unique 64bit MAC address and 16-bit network address. MAC and

Network address is fetched using AT commands ATSH, ATSL, ATMY.

 ATSH: ATSL is 64bit high and low mac address of the node

 ATMY is16-bit Network address

 Transmission and reception of data will not begin unless the setup is completed.

2. Loop

• Fetch Temperature from the sensor

• Fetch RSSI (Received signal strength Interference) using the ATDB command. RSSI

is the signal strength of the last received packet.

• Scans network for LQI from the neighboring nodes with timeout-1sec

34

• Creates a payload packet which includes sensor information such as temperature, RSSI

and LQI values.

3. Create ZDO request packet:

• Zigbee explicit Transmit request is used to create the ZDO request packet to all the

neighboring nodes.

• Every node sends a response back to the sender every time the request packet is

received with the LQI values appended

4. Handle ZDO response:

• The LQI response is handled by ZD0 response packet where the last value defines the

link quality with the respective router, the ZDO response packet is handled which

contains information of all LQI of all the neighboring routers in the network.

• Response is received and stored in the device table for all the neighboring devices.

5. Compare LQI values:

• Each router will have a table of all the LQI values with neighboring nodes in the

network, where first five values represent the LQI with the neighboring routers and the

last value represent the LQI with the coordinator.

• Each node compares the LQI values in the list and determines the next available hop.

For example, if R1 has LQI list in the following format, it will compare the LQI values

of all the routers except the coordinator

LQI [R1] = [0, 254, 253, 253, 251, 252), In this case R1 send the packet to R2

35

6. Receive packet:

• Source node forwards the data packet to the next hop based on the LQI.

• On receiving the packet, the receiving hop node discards the LQI values of the source

node but then LQI values of all the other nodes in network except the source node is

compared and determines the next hop until it reaches coordinator.

• Since there are continuous fluctuations in the LQI values, the next hop is determined

by comparing the LQI values and sets the max LQI value to be max and forwards the

packet only if the new hop is greater than (max+15) in comparison with the previous

hop

7. Add Hop Packet.

• The intermediate node other than the coordinator receiving the packet from the source

node, appends its 16 -bit network address to the RF data packet to , so that when the

destination node receives the packet it will have information of all the hops the packet

traversed.

8. Packets received by destination node

• A python program is written in the server that is Raspberry pi to handle and read all the

packet received by the coordinator. The coordinator is the central hub and has all the

information of data packets from all the routers. The data decoded from the coordinator

is appended to MySQL database

36

5.1.2 Short range RSSI based routing protocol

RSSI in ZigBee is the received signal strength of the last packet which is dependent

on the power present in the signal[13]. RSSI is measured using ATDB command and can

also be measured by reading the output at pin 7. The source sends a packet to another node

and the receiving node responds with ACK, ZigBee used the ACK packet to determine the

signal strength of the last packet. If a packet has traversed multiple hops, then DB value

has no information about previous hops but just the packet received.

RSSI is measured in dBm and usually represented in negative values. If RSSI has a

greater negative value, the signal is weaker and lesser negative value indicates stronger

signal. The protocol differs from existing ZigBee protocol because it considers just the

RSSI for determining the distance and does not consider range into account.

• Source node sends a packet to all the neighboring nodes.

• Neighboring nodes respond with the ACK packet on receiving the data packet.

• Source nodes calculates the RSSI with that node after receiving the packet

• RSSI values of all the nodes are compared, with the lower negative value chosen to

be next hop.

Since RSSI values are continuously fluctuating and mainly dependent on power in the

Antenna [13], it would reflect high power based on interference and noise. Based on this

analysis, it was found that LQI is better estimation for distance compared to RSSI. Since

LQI changes significantly only with distance , an experiment was conducted to use faraday

cage to reduce the signal strength when the routers are close to each other

37

5.2 Data Transmission between Network and Portal

5.2.1 Transmit data from network to portal

START

COORDINATOR
RECIEVES DATA

DECODES DATA

CREATE
DATABASE

TABLES

APPEND
VALUES TO
DATABASE

FLASK FETCHES
DATA FROM
DATABASE

RENDERS DATA
IN HTML PORTAL

END

Figure 17. Flowchart for Data transfer from Network to Portal

38

1. Coordinator receives data

• A server program is written in python to decode the received frame at the respective

PORT with Baud rate set to 9600

2. Decode received frame

The received RF data is in the format

Rf data format = Temperature/RSSI/LQI values

Coordinator identifies the source mac address to determine the data from respective

routers before updating the database

Once the data packets are received, router status is set to1 if the coordinator receives

packet from that mac address otherwise the router status is set to 0

3. Creates SQL tables for each sensor and appends the packet information received from

the sensors

4. Flask web-management portal that hosts the information from data base to portal

Figure 18 shows the set-up of routers and Figure 19 and Figure 20 shows the sample data

updated in database which in turn is hosted on website.

Figure 18. Sensor network Set-up

39

Figure 19. MySQL database

Figure 20. Web management portal

40

5.2.2 Transmit data from portal to network

Start

TEMP

FLASK FETCHES
TEMP FOR

DESIRED SENSOR
NUMBER

JAVASCRIPT
TO DISPLAY

TEMP

TEMP IS
DISPLAYED

RSSI

FLASK FETCHES
RSSI FOR

DESIRED SENSOR
NUMBER

JAVASCRIPT
TO DISPLAY

RSSI

RSSI IS
DISPLAYED

LED

SEND
LEDTOGGLE

DATA TO
ROUTER

ROUTER
RECIEVES

COMMAND

LED AT PIN 12
BLINKS

STAR

COORDINATOR
BROADCASTS

STAR TO
ROUTERS

ROUTER
RECIEVES

COMMAND
STAR

NEXT HOP IS
COORDINATOR

ROUTING
TABLE

UPDATED

ROUTING
INFO

DISPLAYED

MESH

COORDINATOR
BROADCASTS

MESH TO
ROUTERS

ROUTER
RECIEVES

COMMAND
MESH

SCAN LQI IS
CALLED

CLICK ON
DESIRED

DATA

END

YES

YES

YES

NO

NO

NO

YES

NO

YES

Figure 21. Flow chart for data transfer from portal to network

41

5.3 Flask web-based Network Management Portal

 Flask is a micro-web framework written in python based on Jinja

5.3.1 Accessing data from SQL Database

• Server program running on coordinator shown in Figure 21 decodes and updates

the data in the database as soon as packet is received

• Flask is web-based network management portal that fetches the data from database

and renders data on the HTML page.

5.3.2 Fetching temperature from sensors

• User click on the temperature for the respective sensor

• Flask fetches the data from database through SQL query written.

"SELECT temperature FROM sensor_data" + sensor_number + " order by

sensor_time desc limit 1"

• Where sensor number represents the sensors connected routers 1 – 5.

• Temperature is displayed on the portal in Fahrenheit

5.3.3 Fetching RSSI from sensors

 RSSI is the received signal strength of the last received packet.

• User click on the RSSI for the respective sensor

• Flask fetches the data from database through SQL query written.:

 "SELECT Xbee_RSSI FROM sensor_data" + sensor_number + " order by

sensor_time desc limit 1"

• Where sensor number represents the sensors connected to Router1 – Router5

42

• RSSI is displayed in DBm

5.3.4 Choosing the desired Network Topology
Star Network

• User clicks on star topology in the portal

• Flask identifies the form action /STAR

• Coordinator broadcasts the information to all the routers with respect to 64bit

addresses

 for index, mac_address in enumerate (SensorSHSLAddress)

• Routers receive the command /STAR on Arduino. Sample code is shown in Figure

22

Figure 22. Star command

• Calls the function update routing table where if star = true ignore the LQI routing

protocol and directly connect to coordinator

• Next hop is updated to be coordinator address/remote address

• Data is sent to coordinator

• Routing table is updated and hosted on website

 5.3.5 Mesh Topology
• User clicks on Mesh topology in the portal

• Flask identifies the form action /MESH

43

• Coordinator broadcasts the information to all the routers with respect to 64bit

addresses

 for index, mac_address in enumerate (SensorSHSLAddress)

• Routers receive the command /MESH on Arduino.

Figure 23. Mesh command
• Calls the LQI function

• Updates routing information and sends packet to hop

• Adds 16 -bit network address to the packet

• Data is sent to coordinator, flask retrieves the packet and hosts information on

website

5.3.6 Controlling Actuators
 LED is connected to pin 12 of Arduino board and ground

• User click on the LED Toggle button.

• Flask identifies the form action /LEDTOGGLE/R2 (Example R2)

• Coordinator sends the information to R2 with 64-bit mac address of R2 set to the

destination.

• Router 2 receives LEDTOGGLE command, and calls the LED function

Figure 24. LED Command

44

• If reading ==1, LED at pin 12 blinks

• If reading ==0, LED is turned off.

5.4 Handling Errors

If a node in the network is removed then the destination device does not receive any data

from this node .The server program has a delay of 10 sec to identify if the router is removed.

The routing table of other nodes is automatically re-routed and is updated with new route

to reach the destination device. If the temperature sensor does not transmit any data, the

node waits until it fetches the temperature in order to transmit data and add it to string

payload packet. If RSSI was not fetched, the node prints that the DB command could not

be fetched and prints a value zero in RSSI field for the desired packet.

5.5 Integration with Augmented Reality

Augmented reality is the concept where digital image is overlayed on IOT network for

real time data visualization. The data from the IOT network is integrated with Augmented

Reality from the html page to create a 4D Experience for the user[29] . C sharp is used as

a programming language to design the UI for visualization in Unity software. HoloLens

used inbuilt tool kit from Microsoft. Vuforia is used to overlay digital image over IOT

network in the form of holograms. Fog is the concept used to minimize the latency and

which runs the API consisting of server[29]. IOT and Hologram interaction and how the

network is visualized is as shown below

1. Ngrok is used to get the data from local host to cloud so that AR device will be able

to fetch the data. An example to run ngrok is shown in Figure 25.

45

2. The user wears the HoloLens and then focus on the network so that it identifies the

object.

3. Unity creates a web request and sets the URL as a string argument [30] as shown

in Figure 26.

Figure 25. ngrok to host the data to internet from localhost

4. The data from the server is processed and returned as a string [30].

5. This data is accessed by unity using the link.

For example, https://server address:5000/Sensor data/temperature-

json/number=(Number of the router from 1 to 5)

6. With timeout=1sec , the data is fetched at an interval of 1sec from the server.

Figure below shows the basic UI Design in Unity for the visualization of IOT

Network. Visualization of data network can be seen in Results Section.

https://server/

46

Figure 26. Hologram Script

47

VI. EXPERIMENTAL RESULTS

6.1 LQI with distance (Indoor Environment)

Figure 27. Graph of LQI vs distance

INFERENCE:

In Figure 27 readings were taken by incrementing the distance between router and

coordinator by 1 meter for every 100 samples. From the graph, we can infer that for a

distance up to 4m the LQI values remained consistent and high indicating a good link. As

the distance increased beyond 4m , we see it is deteriorating and is at its lowest when it is

at 10m. The graph also suggests that as the distance increases beyond 5m there are

variations in the LQI values because even though the distance is within the range of

protocol, a lot of external interferences play a part in determining LQI.

0 50 100 150 200 250 300 350 400 450 500

No of samples

120

140

160

180

200

220

240

260

280

300

LQ
I

2m1m 3m 4m 5m 6m 7m 8m 9m 10m

48

6.2 Faraday cage

Figure 28. Graph-Faraday cage experiment

INFERENCE:

In Figure 28 , we see that the LQI remained consistent when the routers were placed

within a 5m range. To observe a significant drop for a short-range communication to effect

topological changes, the router was placed within a faraday cage. The figure shows that for

the first 50 samples the LQI drastically when the router was placed inside the faraday cage

and increased gradually as soon as the router was removed from the faraday cage. When

the router is completely covered by faraday cage the LQI drops to 0 which blocks the signal

completely. The mean value when the node is places inside a Faraday cage is

approximately 180 when compared to the mean value of 246 when the router is placed

outside the faraday cage. Both experiments were performed in the same range between the

coordinator and router at a distance of 1m.

0 50 100 150

No of Samples

100

120

140

160

180

200

220

240

260

LQ
I

MEAN = 176

SD = 35.74

MEAN = 186

SD=36.1842

49

6.3 LQI when there is obstruction

Figure 29. LQI with obstruction(Wall)
INFERENCE:

In this setup readings were taken by keeping the distance between router and

coordinator at 1 meter for all the samples. From the graph, we can infer that when there is

no obstruction between the router and coordinator , there were very little variations in link

quality with a mean value of 247. But when there was an obstacle such as wall in between

the nodes for the same distance, we could see that LQI dropped significantly due to

disturbance although the link quality is still in the communication range of ZigBee and is

considered as a good link for transmission. The x – axis represents the total no of samples

and the y-axis represents the LQI value for each sample reading. Also, up-to 50 samples,

other obstructions like metal plates , steel were places in between the nodes and the

observation was made that there was no change in LQI. The reading was noted down for

both with obstruction and without obstruction.

0 40 80 100

No of samples

120

140

160

180

200

220

240

260

LQ
I

WALL

50

6.4 Teaching Network Topology and Routing to Students

Considering the current educational premise for network topology, there are

existing challenges on how the functioning of a routing protocol can be easily explained in

a discernible way to a network enthusiast. The teaching methods often involve pictorial

and theoretical representations of the routing protocols and how they define the network.

There are gaps in addressing changes in link behavior and detection of link failures and the

pressing need to understand the same as part of a learning process. Although there are ways

and means to simulate the real-world networks in a lab environment, it leaves a lot to be

desired from a mapping perspective.

By leveraging Augmented reality as part of the learning experience, a student will

be exposed to the functioning and the finer technical details of route creation and network

formation process. A visual experience along with the ability to physically affect the

different components and understand the after-effects of the same can be achieved.

Considering our setup for example, if a router is manually disconnected from the network

say by plugging the power cord, the process of a different route being formed by comparing

the already visible LQI values can all be visualized. This kind of experience will do a world

of good to the student in order to understand the routing concepts and network formation

process.

• User wears the holo-lens and sees the UI as shown in Figure 30. The user can

choose the desired network topology for visualization

51

Figure 30. User Interface on Holo-lens

• To visualize the data in real time, change in temperature and signal strength, we

can focus on the temp and RSSI field. The change in temp can also be observed

under different conditions. In order to interact with the actuator, we can click on

the LED Button. A snippet of visualization is shown in Figure 31

Figure 31. Temperature and RSSI Visualization

52

• We can visualize the star topology where all the nodes are directly connected to

coordinator. Data from all the nodes is sent to the Gateway node/Coordinator as

shown in Figure 32

Figure 32. Star Network Visualization

• Mesh Topology is visualized where the routing is based on Link Quality Indicator

which is described in detail in Chapter 5. The destination node is the

coordinator/Gateway which is shown in Figure 33

Figure 33. Mesh Network Visualization

53

VII. CONCLUSION AND FUTUREWORK

A proposal to implement a routing protocol that improvises on the existing ZigBee

protocol to facilitate the creation of mesh networks for nodes within a short range was

implemented using Arduino , Raspberry pi and XBee. Considering the existing challenges

of offering an immersive visual experience to the student, the proposed protocol promises

immense potential in that regard. It helps by providing network management and control

that can be leveraged by augmented reality in academia. A network management portal

was created to interface with AR application and validated for functionality. A comparative

analysis was performed to measure the LQI and RSSI behavior under different

environments and distance. It was observed that RSSI is not a good measurement for

distance estimation because of its continuous fluctuations from other environmental

factors. LQI measurement also showed how the link quality changed only when the

distance was beyond 4m and hence for a closed range results to observe the drop in LQI

we used faraday cage to see drop in LQI to reflect change in routing. This plays a significant

role keeping in mind the effectiveness it provides in a classroom environment where

distance between nodes is key. By the proposed protocol and portal, we can see that IoT of

Wireless sensor networks in coherence with augmented reality can be a huge step in the

evolution of the learning and teaching purpose in the field of education. This can be further

widened to other routing realms and the possibilities are limitless. On the flipside, since

augmented reality applications are growing at a rapid rate, it needs to be disseminated to

satisfy the academic needs accordingly. Also, the cost model should scale for mass

implementation of teaching methods.

54

The future work can be enhanced further by considering other parameters on offer

by the XBee protocol along with LQI and RSSI to make it more efficient. Also, the

behavior needs to be tested under sandboxed environment with no external interference in

order to obtain benchmark data. The interfacing of the network management portal can be

tested for other augmented reality applications as future work and continuing research in

this field. The protocol for routing based on LQI can also be performed in other wireless

technologies like thread or low power Bluetooth devices and a comparison can also be

made. Another drawback which can be addressed as a future work is that the coordinator

is single point of contact , so it can be implemented with having additional coordinator so

that if one gateway node/coordinator for a network fails, the nodes should automatically

identify the secondary gateway node and should start transmitting packets.

An evaluation for RSSI and Zigbee can also be made in a theoretical way in order

to confirm the values that we are getting for the desired packet. Additional parameters can

also be monitored and sent as a payload packet for better visualization and understanding

of various real time data. It would also be interesting to use additional database in case the

single database exceeds memory.

55

APPENDIX SECTION

APPENDIX A

Coordinator – cooordinator.py

from xbee import XBee, ZigBee

import serial

import time, sys, datetime

import MySQLdb

import MySQLdb as mysql

import mysql.connector

from mysql.connector import (connection)

from mysql.connector import errorcode

import json

import flask

from Chai_Mesh_SR import *

from xbee import ZigBee

import serial,time

import threading

#Connecting to MySQL server Using Connector/Python

config = {

 'user': 'chaithra',

 'password': 'chaithra',

 'host': '127.0.0.1',

 'database': 'temperatures',

 'raise_on_warnings': True,

 'buffered':True,

}

PORT = 'COM5'

BAUD_RATE = 9600

56

XBeeCoordinatortable = ["0013a200", "41680BE0", "fffe"]

datadict = {"MAC":"routerstat"}

#ZigBeeSerialData = None

zigbee = None

mutex_zigbee = threading.Lock()

def init_zigbee():

 print("init_zigbee")

 global zigbee, mutex_zigbee

 XBeeSerialData = serial.Serial(PORT, BAUD_RATE, timeout=1)

 zigbee = ZigBee(XBeeSerialData, escaped=True)

 #mutex_zigbee.acquire()

 #try:

 #zigbee = ZigBee(ZigBeeSerialData)

 #finally:

 #mutex_zigbee.release()

def read_from_sensor():

 print("read from sensor")

 # Initialization parameters

 # Coordinator XBee SH : 0x0013a200, XBee SL : 0x41680ca1

 create_db_tables()

 create_db_tables1()

 global zigbee, mutex_zigbee

 receive_num = 1

 latencydelta_temp = [0.0] * 5

 timedelta_temp = [0.0] * 5

 XBeeroutingtables = ''

 #time.sleep(10)

 init_zigbee()

57

 print "Wait for temperature from sensors.."

 while True:

 try:

 mutex_zigbee.acquire()

 data = zigbee.wait_read_frame()

 mutex_zigbee.release()

 if data['id'] in ['route_record_indicator', 'tx_status']:

 continue

 if not data.has_key('rf_data'):

 print "rf_data not in decoded data"

 continue

 decodedData = decodeReceivedFrame(data)

 print 'decodedData is %r' % decodedData

 try:

 json_value = json.loads(decodedData[1])

 except:

 continue

 '''

 source_mac, source_nw = get_source_of_packet(json_value)

 if not source_mac:

 print 'Ignoring packet since source mac not yet identified'

 continue

 decodedData[0] = source_mac

 decodedData[5] = source_nw

 '''

 source_mac = decodedData[0]

 source_nw = decodedData[5]

 for index, mac in enumerate(SensorSHSLAddress):

 if mac == source_mac:

58

 router_nw_address[index] = source_nw

 ind_router = SensorSHSLAddress.index(source_mac)

 if (receive_num <= 6):

 print str('Waiting for read sensor data No. ' + str(receive_num))

 # sensordataclearmysql(config, SensorTablesName)

 elif (receive_num > 6 and receive_num < 12):

 sensordatatemp = sensordatadecode(json_value, source_mac, ind_router)

 temperature_value = 0

 lqi_values =0

 XBeeroutingtables = "ZigBee Mesh Initialization"

 latencydelta = 0

 timedelta = 0

 print 'Initialization parameter No. ' + str(receive_num - 6);

 sensordatainsertmysql(decodedData, config, sensordatatemp,

SensorTablesName, temperature_value,XBeeroutingtables,lqi_values);

 #if receive_num==11:

 #threading.Thread(target=threadloop).start()

 else:

 current_time = int(time.time())

 #prev_routers = device_nw_topo.keys()

 #prev_rssi_values = list(router_rssi_values)

 configure_network(source_mac, current_time)

 print "Nw topo: %r" % device_nw_topo

 sensordatatemp = sensordatadecode(json_value, source_mac, ind_router)

 print str('sensordatadecoded is ' + str(sensordatatemp))

 temperature_value = float(sensordatatemp[1].strip('\x00'))

 router_lqi_list[ind_router] = [int(x) for x in sensordatatemp[4:]]

 lqi_values = [str(x) for x in sensordatatemp[4:]]

 lqi_values =','.join(lqi_values)

 #print("lqi_values",lqi_values)

 route_table = makeroutingtable(decodedData[0], ind_router, router_lqi_list)

59

 #print "routing table for index: " + str(ind_router) + "," + str(route_table)

 #XBeeroutingtables = makeroutingtable_2(decodedData[0], ind_router,

json_value)

 XBeeroutingtables = makeroute(ind_router, route_table)

 latencydelta_timedelta_temp = getlatencytimedelta(latencydelta_temp,

timedelta_temp, decodedData,

 float(sensordatatemp[2]), SensorSHSLAddress)

 latencydelta = float(latencydelta_timedelta_temp[0])

 timedelta = float(latencydelta_timedelta_temp[1])

 sendData(SensorSHSLAddress[ind_router].decode("hex"),

"{\"DT\":\"ACK\"}")

 #new_routers = device_nw_topo.keys()

 #if set(prev_routers) != set(new_routers) or prev_rssi_values !=

router_rssi_values:

 #sendselfInfo(decodedData[0], decodedData[5])

 #sendrouterstatus(decodedData[0])

 #sendrouterandselfstatus()

 setRouterStatusinSQL(lqi_values, source_mac)

 print 'Writing Sensor data to MySQL database...'

 sensordatainsertmysql(decodedData, config,

 sensordatatemp, SensorTablesName, temperature_value,

 XBeeroutingtables,lqi_values)

 if (receive_num <= 10000):

 receive_num += 1

 else:

 receive_num =10000

 # file.close()

 except KeyboardInterrupt:

 pass

60

def setRouterStatusinSQL(lqi_values, mac_address):

 cnx = mysql.connector.connect(**config)

 cursor = cnx.cursor()

 print("mac_address",mac_address)

 if mac_address in device_time_map.keys():

 cursor.execute('''UPDATE ROUTERSTATUSTABLE SET Router_Status = %s ,lqi

= %s WHERE MACADDRESS= %s ''',

 (1,lqi_values, mac_address))

 print lqi_values

 #cursor.execute("""UPDATE ROUTERSTATUSTABLE + SET Router_Status = '1'

+ WHERE MACADDRESS = "mac_address""""");

 # UPDATE db with router status 1 for mac_address

 else:

 # UPDATE into db with router status 0 for mac_address

 cursor.execute('''UPDATE ROUTERSTATUSTABLE SET Router_Status = %s ,lqi

=%s WHERE MACADDRESS= %s ''',

 (0,0, mac_address))

 cnx.commit()

 cnx.close()

def sendData(address, datatosend):

 global zigbee, mutex_zigbee ,delay

 UNKNOWN = '\xff\xfe'

 mutex_zigbee.acquire()

 try:

 if zigbee:

 zigbee.send('tx',dest_addr_long=address, dest_addr=UNKNOWN,

61

data=datatosend)

 finally:

 mutex_zigbee.release()

def create_db_tables():

 cnx = mysql.connector.connect(**config)

 cursor = cnx.cursor()

 for i in range(0, len(SensorTablesName), 1):

 try:

 cursor.execute("SELECT COUNT(*) FROM %s" % SensorTablesName[i])

 dataCount = cursor.fetchone()

 print "table %s already exists, rows:%r" % (SensorTablesName[i], dataCount)

 except mysql.connector.ProgrammingError as e:

 if e.errno == 1146:

 print "%r" % e

 sensor_TABLES = "CREATE TABLE %s (XBee_SH varchar(36) NOT

NULL, XBee_SL varchar(36) NOT NULL, XBee_RSSI_DB varchar(36) NOT NULL,

XBee_Routing_Tables varchar(999) NOT NULL, sensor_time varchar(36) NOT NULL,

temperature varchar(36) NOT NULL, Star_Routing_Table varchar(200) NOT NULL)"

%SensorTablesName[i]

 cursor.execute(sensor_TABLES)

 else:

 print "Unknown error"

 #cursor.execute(sensor_TABLES)

 cnx.commit()

 cursor.close()

 cnx.close()

62

def create_db_tables1():

 cnx = mysql.connector.connect(**config)

 cursor = cnx.cursor()

 try:

 cursor.execute("SELECT COUNT(*) FROM ROUTERSTATUSTABLE")

 except mysql.connector.ProgrammingError as e:

 Router_TABLE = "CREATE TABLE ROUTERSTATUSTABLE(MACADDRESS

varchar(36) NOT NULL, Router_Status varchar(36) NULL,lqi varchar(200) NOT

NULL)"

 cursor.execute(Router_TABLE)

 for mac_address in SensorSHSLAddress:

 cursor.execute("""INSERT INTO ROUTERSTATUSTABLE VALUES

(%s,%s,%s)""",(mac_address,"0","0"))

 cnx.commit()

 cursor.close()

 cnx.close()

def hex(bindata):

 return ''.join('%02x' % ord(byte) for byte in bindata)

Decode Received XBee Frame

def decodeReceivedFrame(data):

 source_addr_long = hex(data['source_addr_long'])

 source_addr = hex(data['source_addr'])

 sensor_data = data['rf_data']

 frametype = data['id']

 frametime = datetime.datetime.now().strftime('%d-%m-%Y %H:%M:%S')

 timedelta = time.time() * 1000

63

 device_mac_names[source_addr_long.lower()] = source_addr.lower()

 return [source_addr_long.lower(), sensor_data, frametype, frametime, timedelta,

source_addr.lower(), data['source_addr_long']]

Decode Sensor data from XBee frame

def sensordatadecode(json_value, source_mac, router_index):

 sensordatatemp = ['','0','0','0']

 if json_value and json_value.get('DT') and json_value.get('DT') == 'PD':

 list_of_rfdata = json_value.get('IN').split(",")

 sensordatatemp = [source_mac]

 sensordatatemp += list_of_rfdata

 return sensordatatemp

def get_source_of_packet(json_value):

 source_index = json_value.get('SI')

 if source_index and source_index != "-1":

 return (SensorSHSLAddress[int(source_index)], json_value.get('SNA'))

 return ('','fffe')

Calculate XBee Latency and Time delta

def getlatencytimedelta(latencydelta_temp, timedelta_temp, decodedData, arduino_delay,

SensorSHSLAddress):

 print "Latency: " + str(latencydelta_temp) + ","+ str(timedelta_temp) + "," +

str(arduino_delay)

 if not decodedData[0]:

 return [0, 0]

 i = SensorSHSLAddress.index(decodedData[0])

 latencydelta = decodedData[4] - latencydelta_temp[i] - arduino_delay

 if latencydelta < 0.0:

 latencydelta = 0.0

 timedelta = latencydelta - timedelta_temp[i]

64

 latencydelta_temp[i] = decodedData[4]

 timedelta_temp[i] = latencydelta

 print "Latency after: " + str(latencydelta_temp) + ","+ str(timedelta_temp) + "," +

str(arduino_delay)

 return [latencydelta, timedelta]

Insert sensor data into the MySQL database

def sensordatainsertmysql(decodedData, config,

 sensordata_decoded, SensorTablesName, temperature_value,

 XBeeroutingtables,lqi_values):

 cnx = mysql.connector.connect(**config)

 cursor = cnx.cursor()

 i = 0

 ind_router = SensorSHSLAddress.index(decodedData[0])

 star_routing_table = router_name[ind_router]

 star_routing_table += '->' + "co-ordinator"

 while (str(decodedData[0][0:16]) != SensorSHSLAddress[i]):

 i += 1

 else:

 add_sensor_count = "INSERT INTO " + SensorTablesName[

 i] + " (XBee_SH, XBee_SL, XBee_RSSI_DB, XBee_Routing_Tables,

sensor_time, temperature,Star_Routing_Table) VALUES (%(XBee_SH)s,

%(XBee_SL)s, %(XBee_RSSI_DB)s, %(XBee_Routing_Tables)s, %(sensor_time)s,

%(temperature)s, %(Star_Routing_Table)s)"

 data_sensor_count = {

 'XBee_SH': str(decodedData[0][0:8]),

 'XBee_SL': str(decodedData[0][8:16]),

 # 'XBee_API_Mode_AP': str(sensordata_decoded[5]),

 # 'XBee_Sleep_Mode_SM': str(sensordata_decoded[6]),

 'XBee_RSSI_DB': str(int(sensordata_decoded[3], 16)),

65

 #'XBee_Baud_Rate_BD': Baud_Rate_BD_Strings

 'XBee_Routing_Tables': XBeeroutingtables,

 'sensor_time': decodedData[3][11:19],

 'temperature': temperature_value,

 'Star_Routing_Table': lqi_values,

 }

 cursor.execute(add_sensor_count, data_sensor_count)

 cnx.commit()

 cursor.close()

 cnx.close()

 print 'Sensor data have been written to MySQL database'

 print '------------------'

Clear MySQL database

def sensordataclearmysql(config, SensorTablesName):

 cnx = mysql.connector.connect(**config)

 cursor = cnx.cursor()

 for i in range(0, len(SensorTablesName), 1):

 cursor.execute("truncate table %s" % (SensorTablesName[i]))

 cnx.commit()

 cursor.close()

 cnx.close()

is_star= False

def star():

 global is_star

 is_star = True

def mesh():

 global is_star

 is_star = False

66

def makeroutingtable(mac_address, router_index, router_lqi):

 route_table = []

 while route_table == [] or route_table[-1] != -1:

 next_hop = -1

 hop_index = router_index

 if route_table:

 hop_index = route_table[-1]

 if is_star:

 route_table.append(next_hop)

 return route_table

def makeroutingtable_2(mac_address, router_index, json_value):

 routing_table = ""

 router_index = SensorSHSLAddress.index(mac_address)

 routing_table += router_name[router_index]

 hops = json_value.get('HP')

 if hops:

 for nw_address in hops:

 try:

 router_index = router_nw_address.index(nw_address)

 routing_table += "->" + router_name[router_index]

 except:

 continue

 routing_table += '->' + "co-ordinator"

 return routing_table

def threadloop():

 prev_routers = []

 while True:

67

 time.sleep(1)

 current_time = int(time.time())

 remove_missing_devices(current_time)

 new_routers = device_nw_topo.keys()

 if set(prev_routers) != set(new_routers):

 sendrouterandselfstatus()

 prev_routers = new_routers

def sendrouterandselfstatus():

 datadict = {}

 datadict['DT'] = 'ST'

 datadict['ST'] = 0

 for index, mac_address in enumerate(SensorSHSLAddress):

 if mac_address in device_time_map.keys():

 datadict['ST'] = datadict['ST'] | (1 << index)

 else:

 datadict['ST'] = datadict['ST'] & (0xFF ^(1 << index))

 #if router_index == index:

 # datadict[str(index)] = router_rssi_values[index]

 for index, mac_address in enumerate(SensorSHSLAddress):

 print("sending router status: to ", mac_address, json.dumps(datadict))

 time.sleep(20/1000);

 sendData(mac_address.decode("hex"), json.dumps(datadict))

68

APPENDIX B

Flask program – flask.py

from flask import Flask

from flask import render_template, jsonify, request ,url_for

from flask_mysqldb import MySQL

import MySQLdb

from flask_table import table, columns

import numpy

import serial , time

from xbee import ZigBee

from flask_assets import Bundle ,Environment

from Chai_Coordinator_SR import sendData, read_from_sensor,star,mesh

from threading import Thread

from time import sleep

from Chai_Mesh_SR import SensorSHSLAddress

print("flask init")

app = Flask(__name__, template_folder='D:\\Courses\\Python\\Python-

courseera\\Chaithra_Thesis\\templates'

 ,static_folder='D:\\Courses\\Python\\Python-courseera\\Chaithra_Thesis\\static')

js = Bundle('api.js','jquery-1.11.3.js','jssor.slider-

25.2.1.min.js','jquery.min.js',output='gen/main_js')

js1

=Bundle('jquery.min.js','bootstrap.min.js','ResponsiveNav.min.js','script.min.js','docs.js','g

oTop.min.js','livereload.js',output='gen/main_js1')

css = Bundle('bootstrap.min.css','responsive.css','master.css','docs.css','flag-

icon.min.css','font-awesome.min.css',

 'cssd.css',output='gen/main_css')

69

assets = Environment(app)

assets.register('main_js',js)

assets.register('main_js1',js1)

assets.register('main_css',css)

@app.route('/sensor-data/temperature-json/')

def temperature_json():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 sensor_number = request.args.get('number')

 cur.execute("SELECT temperature FROM sensor_data" + sensor_number + " order

by sensor_time desc limit 1")

 temp = cur.fetchall()

 i = 0

 if len(temp) > 0:

 for row in temp:

 alltemp.append(row[0])

 cur.close()

 connection.close()

 return jsonify(alltemp)

@app.route('/sensor-data/routingtable-json/')

def routingtable_json():

70

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 sensor_number = request.args.get('number')

 cur.execute("SELECT XBee_Routing_Tables FROM sensor_data" + sensor_number

+ " order by sensor_time desc limit 1")

 temp = cur.fetchall()

 i = 0

 if len(temp) > 0:

 for row in temp:

 alltemp.append(row[0])

 return jsonify(alltemp)

 cur.close()

 connection.close()

@app.route('/sensor-data/rssi-json/')

def rssi_json():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

71

 sensor_number = request.args.get('number')

 cur.execute("SELECT XBee_RSSI_DB FROM sensor_data" + sensor_number + "

order by sensor_time desc limit 1")

 temp = cur.fetchall()

 i = 0

 if len(temp) > 0:

 for row in temp:

 alltemp.append(row[0])

 cur.close()

 connection.close()

 return jsonify(alltemp)

@app.route('/sensor-data/lqi1/')

def lqi1():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT lqi FROM routerstatustable WHERE MACADDRESS =

'0013a20041680ca1'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

72

@app.route('/sensor-data/lqi2/')

def lqi2():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT lqi FROM routerstatustable WHERE MACADDRESS =

'0013a20041481713'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route('/sensor-data/lqi3/')

def lqi3():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT lqi FROM routerstatustable WHERE MACADDRESS =

'0013a20041481719'")

73

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route('/sensor-data/lqi4/')

def lqi4():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT lqi FROM routerstatustable WHERE MACADDRESS =

'0013a200414812f4'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route('/sensor-data/lqi5/')

def lqi5():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

74

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT lqi FROM routerstatustable WHERE MACADDRESS =

'0013a20041481300'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route('/sensor-data/rs1/')

def rs1():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT Router_Status FROM routerstatustable WHERE

MACADDRESS = '0013a20041680ca1'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

75

 return data

@app.route('/sensor-data/rs2/')

def rs2():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT Router_Status FROM routerstatustable WHERE

MACADDRESS = '0013a20041481713'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route('/sensor-data/rs3/')

def rs3():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

76

 cur.execute("SELECT Router_Status FROM routerstatustable WHERE

MACADDRESS = '0013a20041481719'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route('/sensor-data/rs4/')

def rs4():

 alltemp = []

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT Router_Status FROM routerstatustable WHERE

MACADDRESS = '0013a200414812f4'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route('/sensor-data/rs5/')

def rs5():

 alltemp = []

77

 connection = MySQLdb.connect(host='localhost',

 user='chaithra',

 passwd='chaithra',

 db='temperatures'

)

 cur = connection.cursor()

 cur.execute("SELECT Router_Status FROM routerstatustable WHERE

MACADDRESS = '0013a20041481300'")

 temp = cur.fetchone()

 i = 0

 cur.close()

 connection.close()

 data = jsonify(temp)

 return data

@app.route("/R1")

def controlon1():

 WHERE = '\x00\x13\xA2\x00\x41\x68\x0c\xa1'

 sendData(WHERE, '{"DT":"LEDTOGGLE"}')

 return render_template("xreality.html")

@app.route("/R2")

def controlon2():

 WHERE = '\x00\x13\xA2\x00\x41\x48\x17\x13'

 sendData(WHERE, '{"DT":"LEDTOGGLE"}')

 return render_template("xreality.html")

@app.route("/R3")

78

def controlon3():

 WHERE = '\x00\x13\xA2\x00\x41\x48\x17\x19'

 sendData(WHERE, '{"DT":"LEDTOGGLE"}')

 return render_template("xreality.html")

@app.route("/R5")

def controlon5():

 WHERE = '\x00\x13\xA2\x00\x41\x48\x13\x00'

 sendData(WHERE, '{"DT":"LEDTOGGLE"}')

 return render_template("xreality.html")

@app.route("/STAR")

def controlonstar():

 star()

 #for index, mac_address in enumerate(SensorSHSLAddress):

 #time.sleep(20 / 1000);

 return render_template("xreality.html")

@app.route("/MESH")

def controlonmesh():

 mesh()

 #for index, mac_address in enumerate(SensorSHSLAddress):

 # time.sleep(20 / 1000);

 return render_template("xreality.html")

@app.route("/")

def thisfunc():

 return render_template("xreality.html")

if __name__ == "__main__":

79

 #init_zigbee()

 thread = Thread(target=read_from_sensor)

 thread.start()

 #thread.join()

 print "thread for read_from_sensor started"

 app.run(debug=False)

 thread.join()

80

REFERENCES

[1] http://www.logistiikanmaailma.fi/en/logistics/digitalization/internet-of-things-iot/

[2] Lee, K. (2012). Augmented reality in education and training. TechTrends, 56(2),
13-21

[3] Lee, J. S., Su, Y. W., & Shen, C. C. (2007, November). A comparative study of
wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Industrial Electronics
Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE (pp. 46-51).
Ieee

[4] Khanh, H. S., & Kim, M. K. (2015). LQDV Routing Protocol Implementation on
Arduino Platform and Xbee module. In Information Science and Applications (pp.
173-180). Springer, Berlin, Heidelberg

[5] Shokri, M., & Gheisari, M. A New Algorithm for Routing in Zigbee Networks

[6] Mayalarp, V., Limpaswadpaisarn, N., Poombansao, T., & Kittipiyakul, S. (2010,
May). Wireless mesh networking with XBee. In 2nd ECTI-Conference on
Application Research and Development (ECTI-CARD 2010), Pattaya, Chonburi,
Thailand (pp. 10-20).

[7] Yang, T., Yang, Q., & Cheng, L. (2015). Experimental study: a LQI-based
ranging technique in ZigBee sensor networks. International Journal of Sensor
Networks

[8] Filsoof, R., Bodine, A., Gill, B., Makonin, S., & Nicholson, R. (2014, June).
Transmitting patient vitals over a reliable ZigBee mesh network. In Humanitarian
Technology Conference-(IHTC), 2014 IEEE Canada International (pp. 1-5).
IEEE

[9] Sunehra, D., & Ramakrishna, P. (2016, December). Web based patient health

monitoring system using Raspberry Pi. In Contemporary Computing and
Informatics (IC3I), 2016 2nd International Conference on (pp. 568-574). IEEE

[10] Singh, P., & Saikia, S. (2016, December). Arduino-based smart irrigation using

water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi
module. In Humanitarian Technology Conference (R10-HTC), 2016 IEEE Region
10 (pp. 1-4). IEEE

[11] Kaufmann, H. (2003). Collaborative augmented reality in education. Institute of
Software Technology and Interactive Systems, Vienna University of Technology

http://www.logistiikanmaailma.fi/en/logistics/digitalization/internet-of-things-iot/

81

[12] Haramaki, T., & Nishino, H. (2015, November). A Device Identification Method
for AR-Based Network Topology Visualization. In Broadband and Wireless
Computing, Communication and Applications (BWCCA), 2015 10th International
Conference on (pp. 255-262). IEEE

[13] https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf

[14] https://books.google.com/books?hl=en&lr=&id=up8Oa7456I8C&oi=fnd&pg=PP
1&dq=+Gislason,+D.+2008.+ZigBee+Is+Highly+Reliable.+ZIGBEE+WIRELES
S+NETWORKING.+2008+Elsevier+Inc.+on+pp.+4-5.+&ots=IFEw7-
zPDu&sig=YKIkIEcC2GOCEDPVIpOfgY-G9t4#v=onepage&q&f=false

[15] https://en.wikipedia.org/wiki/Zigbee

[16] https://electronicsforu.com/resources/learn-electronics/zigbee-technology-
applications

[17] https://www.digi.com/resources/documentation/Digidocs/90002002/Content/Refe
rence/r_zb_stack.htm?TocPath=zigbee%20networks%7C_____3

[18] https://www.researchgate.net/publication/309669667_A_Comparative_Study_of_
Thread_Against_ZigBee_Z-Wave_Bluetooth_and_Wi-Fi_as_a_Home-
Automation_Networking_Protocol

[19] https://www.digi.com/resources/documentation/digidocs/pdfs/90001500.pdf

[20] https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its-
applications/

[21] Othman, M. F., & Shazali, K. (2012). Wireless sensor network applications: A
study in environment monitoring system. Procedia Engineering, 41, 1204-1210.

[22] Ngoc, T. V. (2008). Medical applications of wireless networks. Washington
University, St. Louis, Student Reports on Recent Advances in Wireless and Mobile
Networking.

[23] https://www.alibaba.com/product-detail/Zigbee-Wireless-Magnetic-Vehicle-
Sensor-and_1634043792.html

[24] https://en.wikipedia.org/wiki/Arduino_Uno

[25] http://www.ti.com/product/LM35

[26] https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/

https://en.wikipedia.org/wiki/Zigbee
https://electronicsforu.com/resources/learn-electronics/zigbee-technology-applications
https://electronicsforu.com/resources/learn-electronics/zigbee-technology-applications
https://www.researchgate.net/publication/309669667_A_Comparative_Study_of_Thread_Against_ZigBee_Z-Wave_Bluetooth_and_Wi-Fi_as_a_Home-Automation_Networking_Protocol
https://www.researchgate.net/publication/309669667_A_Comparative_Study_of_Thread_Against_ZigBee_Z-Wave_Bluetooth_and_Wi-Fi_as_a_Home-Automation_Networking_Protocol
https://www.researchgate.net/publication/309669667_A_Comparative_Study_of_Thread_Against_ZigBee_Z-Wave_Bluetooth_and_Wi-Fi_as_a_Home-Automation_Networking_Protocol
https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its-applications/
https://www.elprocus.com/what-is-zigbee-technology-architecture-and-its-applications/
https://www.alibaba.com/product-detail/Zigbee-Wireless-Magnetic-Vehicle-Sensor-and_1634043792.html
https://www.alibaba.com/product-detail/Zigbee-Wireless-Magnetic-Vehicle-Sensor-and_1634043792.html
https://en.wikipedia.org/wiki/Arduino_Uno
http://www.ti.com/product/LM35
https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/

82

[27] http://docs.digi.com/pages/viewpage.action?pageId=3408008

[28] http://ftp1.digi.com/support/images/APP_NOTE_XBee_ZigBee_Device_Profile.p
df

[29] Koutitas, G., Jabez, J., Grohman, C., Radhakrishna, C., Siddaraju, V., & Jadon, S.
(2018, April). Demo/poster abstract: XReality research lab—Augmented reality
meets Internet of Things. In IEEE INFOCOM 2018-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS)(pp. 1-2). IEEE

[30] https://docs.unity3d.com/Manual/UnityWebRequest-
RetrievingTextBinaryData.html

http://docs.digi.com/pages/viewpage.action?pageId=3408008
http://ftp1.digi.com/support/images/APP_NOTE_XBee_ZigBee_Device_Profile.pdf
http://ftp1.digi.com/support/images/APP_NOTE_XBee_ZigBee_Device_Profile.pdf
https://docs.unity3d.com/Manual/UnityWebRequest-RetrievingTextBinaryData.html
https://docs.unity3d.com/Manual/UnityWebRequest-RetrievingTextBinaryData.html

	ACKNOWLEDGEMENTS
	ACKNOWLEDGEMENTS v
	LIST OF TABLES ix
	LIST OF FIGURES x
	LIST OF ABBREVIATIONS xii
	ABSTRACT xiii
	I. INTRODUCTION 1

	1.1 Overview 1
	1.2 Wireless sensor networks 2
	1.3 Augmented Reality in Education 2
	1.4 Thesis Outline 3
	II. LITERATURE SURVEY 5

	2.1 Educational applications for IOT 6
	2.2 Network activity with Augmented reality 7
	III. ZIGBEE STANDARD 9
	3.1 Introduction to Zigbee 9
	3.2. Zigbee Architecture 10

	3.3 Zigbee Network Characteristics 12
	3.4. Zigbee device types 13
	3.5 Zigbee Topologies 14
	3.5.1 Star Topology 14

	3.6 Zigbee Networking Protocols 16
	3.7 Applications of Zigbee 20
	IV. HARDWARE AND SOFTWARE DESCRIPTION 22

	4.1 Introduction 22
	4.2 Arduino Uno 22
	4.3 LM35 Temperature Sensor 23
	4.4 Raspberry pi 3 24
	4.5 Digi XBee S2D Module 25
	4.6 XCTU Application 27
	4.7 XBee S2D Operating Modes 27
	V. NETWORK MANAGEMENT PORTAL 29

	5.1 Routing protocol 29
	5.2 Data Transmission between Network and Portal 37
	5.3 Flask web-based Network Management Portal 41
	5.4 Handling Errors 44
	5.5 Integration with Augmented Reality 44
	VI. EXPERIMENTAL RESULTS 47

	6.1 LQI with distance (Indoor Environment) 47
	6.2 Faraday cage 48
	6.3 LQI when there is obstruction 49
	6.4 Teaching Network Topology and Routing to Students 50
	VII. CONCLUSION AND FUTUREWORK 53
	APPENDIX SECTION 55
	REFERENCES 80

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	I. INTRODUCTION
	1.1 Overview
	1.2 Wireless sensor networks
	1.3 Augmented Reality in Education
	1.4 Thesis Outline

	II. LITERATURE SURVEY
	2.1 Educational applications for IOT
	2.2 Network activity with Augmented reality

	III. ZIGBEE STANDARD
	3.1 Introduction to Zigbee
	3.2. Zigbee Architecture
	3.3 Zigbee Network Characteristics

	3.4. Zigbee device types
	3.4.1 Zigbee Coordinator
	3.4.2 Zigbee router
	3.4.3 Zigbee End Device

	3.5 Zigbee Topologies
	Zigbee supports three topologies mainly Star, Tree and Mesh Topology
	3.5.1 Star Topology
	3.5.2 Tree Topology
	3.5.3 Mesh Topology
	3.6 Zigbee Networking Protocols
	3.6.1 AODV Routing
	3.6.2 Many to one routing[2]
	3.6.3 Source routing

	3.7 Applications of Zigbee

	IV. HARDWARE AND SOFTWARE DESCRIPTION
	4.1 Introduction
	4.2 Arduino Uno
	4.3 LM35 Temperature Sensor
	4.4 Raspberry pi 3
	4.5 Digi XBee S2D Module
	4.6 XCTU Application
	4.7 XBee S2D Operating Modes
	4.7.1 Transmit mode (AT)
	4.7.2 Application Programing Interface Operation (API)

	V. NETWORK MANAGEMENT PORTAL
	5.1 Routing protocol
	5.1.1 Short range source routing based LQI protocol (Mesh Network)
	5.1.2 Short range RSSI based routing protocol

	5.2 Data Transmission between Network and Portal
	5.2.1 Transmit data from network to portal
	5.2.2 Transmit data from portal to network

	5.3 Flask web-based Network Management Portal
	5.3.1 Accessing data from SQL Database
	5.3.2 Fetching temperature from sensors
	5.3.3 Fetching RSSI from sensors
	5.3.4 Choosing the desired Network Topology
	5.3.5 Mesh Topology
	5.3.6 Controlling Actuators

	5.4 Handling Errors
	5.5 Integration with Augmented Reality

	VI. EXPERIMENTAL RESULTS
	6.1 LQI with distance (Indoor Environment)
	6.2 Faraday cage
	6.3 LQI when there is obstruction
	6.4 Teaching Network Topology and Routing to Students

	VII. CONCLUSION AND FUTUREWORK
	APPENDIX SECTION
	REFERENCES

