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ABSTRACT 

There has been a growing research interest in pursuing green and low carbon 

production systems, but only few if any quantitative approaches or systematic tools 

are available in literature. This research aims to fill this gap by synthesizing onsite 

renewable energy with the production-inventory model to attain net-zero carbon 

manufacturing operation. Meanwhile, modern industrial robotics manufacturing 

process is studied and analyzed to minimize the energy usage. We strive to address 

two fundamental questions. First, is it economically viable to integrate onsite wind 

and solar generation into large manufacturing facilities? Second, is it technically 

feasible to achieve a net-zero energy production-inventory system based on 

intermittent power? To that end, we synthesize the renewables generation 

technologies with multi-period, production-inventory system to create a multi-stage 

optimization model. We optimize the generation capacity, the production quantity, and 

the stock level in each period such that the aggregate energy and non-energy cost is 

minimized. Our model is tested in ten different locations with a wide range of wind 

speed and weather profile. The results show that virtually any manufacturing facility 

around the world can realize 100 percent renewable energy penetration at an 

affordable cost. 
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CHAPTER I 

INTRODUCTION 

Background 

By converting solar energy into living tissue over millions of years ago, plants 

were buried to produce coal, oil and natural gas, which have been found valuable for 

manufacturing from them such as textiles, plastics and various kind of petrochemical 

products. When the use of fossil fuels are burnt, greenhouse gases are released. 

Industry’s use of traditional energy source has been blamed for the contributor of 

global warming, not to mention human activities of emitting carbon dioxide. 

Meanwhile, the world population is rising in recent years with the increasing energy 

use, which requires the increased usage of all kinds of energy. New technology and 

manufacturing process for renewable energy sources is now or will be an important 

factor in sustaining the civilization, while providing the necessities of life, especially 

for renewable energy. 

Hazardous chemicals escape in the hydrological cycle through anthropogenic 

activities. Variant air pollutant from industrial facilities and other activities may cause 

adverse effects on the environment as shown in Figure 1. Environment PollutionToxic 

substances are found in the general circulation and deposit to different tissues when 

human enter and contact with different pollutants via inhalation and ingestion (Kampa 

et al. 2008). Human health effects can range from respiratory system, cardiovascular 

system to nervous system. In this case, a total new format of energy source is 

desirable to be applied to human daily life to reduce the effects because of the 



2 

traditional energy source. 

Figure 1. Environment Pollution 

Taking action unilaterally by claiming that some countries should limit  emission 

levels is not always helpful for controlling the process of global warming. Meanwhile, 

it is difficult to predict the complex relationship between greenhouse gas and global 

temperature due to the processes of the climate system since the nature variability 

transfer heat by winds, currents and hydrological cycle. The link between resource use 

and productivity need to be re-built for the whole society to take use of scientific and 

technological know-how in developing a whole new production process. 

Three main factors such as environment, resources and pollution are the problems 

the humanity faces, while the manufacturing industry is one of the main roots of all 

this kind of environmental pollution mentioned. It is an important topic for 

manufacturers to minimize the environmental impact of the manufacturing industry. 

With the increasing need of coal, oil, gas and other non-renewable natural resources, 
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it is or soon will be feasible to supply all the need of energy from renewable natural 

source. Those kind of cleaner energy is not only inexhaustible, but also non-polluting 

that attract attention to the reasonable use of renewable energy.  

Most of the energy is utilized now via combustion processes from coal, natural 

gas and waste which generate greenhouse gases. With the urgent need of protection of 

natural environment, there has been renewed focus on influence of the green 

technology and manufacturing. Environmental strategy is moving from being an 

environmental strategy for environmental and green strategy. Meanwhile, 

manufacturers can improve the real action of protecting the environment while 

achieving big economic impact at the same time (Omer et al. 2008 and Deif et al. 

2011). Technically, green manufacturing by minimizing negative environmental 

impacts, conserving energy and resources, is defined as a concrete embodiment of the 

sustainable development of human society in the modern manufacturing industry, 

which can be lower raw material gains, increase production efficiency and reduce 

environmental safety expenses. Two important factors include in the idea of green 

manufacturing: pollution prevention and product stewardship (Lieberman et al. 1988 

and Porter et al. 1995). Pollution prevention reduces the usage of resources and the 

amount of waste generated. While product stewardship can design products and 

process with more caution on the surrounding environment, companies are also 

allowed to use the reputation of “green” to gain competitive advantage (Hart et al. 

1995). Currently, conventional energy constitutes 80 percentage of global energy 

consumption. From Figure 2 and 3, we can see that the world solar and wind energy 
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has great potential for further usage. More renewable energy should be integrated into 

manufacturing process to reduce the influence on our planet.  

 

Figure 2. Surface Downward Solar Radiation (W/𝐦𝟐)  

 

Figure 3. Annual Wind Speed (m/s) on Top of 100 m 

Even though much studies can be potential focus: 1) Green manufacturing: reduce 

material waste and improve the production processes, 2) Cloud computing: extremely 

high speed and real-time feedback computation capability for manufacturing machines, 

3) Big data analysis: provide efficient control method based on remote libraries of 

object data, trajectories and images, 4) Robotic assembly analysis for automation: 

enhance the assembly efficiency to decrease energy usage.  
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Green Manufacturing 

Contradict to people’s original view on green manufacturing, manufacturers will 

be paid off by the costs saved in systems using fewer resources and less wastes in the 

process as well as the product. Green manufacturing also can reduce production cost 

and obtain more time to improve the production processes by reducing material 

wastes and energy consumption as shown in Figure 4. Moreover, green manufacturing 

deals with problems of environmental sustainability by reducing the hazardous 

emissions, eliminating wasteful resources consumption and recycling, which are 

examples of sustainable green manufacturing activities (Adams 2001, Darnall et al. 

2008 and McDonough et al. 2003).  

 

Figure 4. Advantages of Green Manufacturing 

There are still a number of important factors for the manufacturing industry 
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moving toward to green operation practices. Aware of the significant environmental 

problems of industrial wastes and emissions, governmental agencies take initiatives 

toward to the environmental impact control and restoration by making as serious of 

policies, regulations, and laws, which has achieved significant progress in advancing 

the environmental performance of industrial production activities (Sawhney et al. 

2007). Under the pressure of the laws and policies, the manufacturer is driven to 

design and implement green manufacturing processes. 

 With the rapid development of global economic, it requires that manufacturers 

break the boundaries of administrative regions and organizations, incorporate into the 

global industrial supply chain. The resources are utilized more effectively if the 

commercial operations are divided with more proportions. Many advanced 

manufacturing models and technologies have been proposed. Agile manufacturing is 

used to understand the commercial environment and become flexible, cost effective 

and productive with consistent high quality (Sharifi et al. 2001). A networked remote 

manufacturing system is described for remote operation and monitoring system as an 

advanced user interface (Mitsuishi and Nagao, 1999). To assess the impact of global 

manufacturing, a model is set up to show that product, material and key supply chain 

parameters are three important factors (Kara et al. 2010). Digital manufacturing has 

been considered to reduce product development times and cost, integrate knowledge, 

decentralize manufacturing parts and products in different production sites and make 

manufacturers focus on the core competences (Chryssolouris et al. 2009). Product-

service systems enable the machine producers to design the integrated services in an 
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optimal way to increase the sustainable competitiveness of engineering and plant 

design (Meier et al. 2010). Grid technology in manufacturing is chosen to be applied 

to product design, technology integration and resource reallocation and scheduling 

(Tao et al. 2011). Although all the mentioned methods or models have made great 

contributions to the development of advanced manufacturing system, how to reduce 

the production waste, enhance resource utilization, adapt to the external environment 

change and has sustainable resource supply mechanism are still not effectively solved.  

Meanwhile, some new technologies have applied in various fields, such as cloud 

computing, web service, human interaction systems and so forth. There technologies 

are able to address the above bottlenecks in next generation manufacturing 

enterprises.  

Cloud Computing 

Cloud computing treats everything as a service which can be precisely defined 

and designed as needed in which cloud providers, enterprise requirements and user 

expectations are the three key factors (Xu et al. 2012). Computing application 

distribute among servers which are connected and accessible by Internet. Inspired by 

cloud computing, manufacturing industry utilized the benefits of cloud computing 

which supports the areas of IT and new business models to arrange the choice of 

different operation modes, operation management of the services and embedded 

access of manufacturing equipment and resources based on exiting Internet-based 

manufacturing. Its purpose it to realize the full sharing and high utilization, provide 

on-demand use of manufacturing resources. The National Institute of Standards and 
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Technology (NIST) offers the following definition for cloud computing (Mell et al. 

2011):  

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction.” 

A typical cloud manufacturing service platform requires interaction between three 

groups: the user, application providers and physical resource providers (Wu et al. 

2013). Users who do not have the ability, have the need to manufacture products, or 

those who have the capabilities but stand to gain the advantage by utilizing cloud 

manufacturing. Application providers should set up the cloud manufacturing 

environment and receive user requirement for the real manufacturing industry 

process. When the data are received and created by the cloud based applications, the 

physical resource providers, who own and operate manufacturing equipment, 

automatically begin to make the finalized product according to the user requirements.  

Some key technologies are involved in the cloud manufacturing (Ning et al. 

2011). Cloud technology utilizes a serious of hardware, software and operation system 

to enable cloud manufacturing providing service to user. Resource scheduling 

technology is in control of the distribution and scheduling of capability. To build up a 

safe, stable and perfect architecture, security technology is also a key factor since the 

cloud manufacturing platform need to exchange large amount of data. Standardization 

is included for cloud manufacturing since it is reasonable to treat every cloud’s 
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interface type and certificate management standard, which make the arrangement of 

physical resource easier.  

Cloud manufacturing is a network-based manufacturing platform combing 

information technology and manufacturing needs. By using cloud computing which 

makes data, application and resources on Internet dynamic and scalable, 

manufacturing resource virtualization and service-oriented manufacturing capacity 

can be further exploited for cloud manufacturing. In the cloud manufacturing 

environment, cloud computing links the users with needs to resource providers to 

fulfill the needs while meeting the requirement of cost, quality objectives of users. It 

is increasingly becoming research hotspots for cloud manufacturing and the way of 

utilizing cloud computing. 

 With the development of technology, the Internet is introduced into robotics 

and automation systems. Many technological evolutions and developmental trends 

have been made possible due to the ubiquity of Internet, especially cloud computing 

and personal computer, which influence how robotics and automation are deployed. 

The Internet and personal computer provider new ways for manufacturers integrate 

resources and data, and at the same time, lower the cost of production.  It is 

increasingly used by companies for exchanging information with distributed uses 

through Internet. In reality, much research is still needed to implement this field.  

 Cloud manufacturing needs every parts to work together to make the best use 

of the various manufacturing resources. As for the robotics and automation, it is 

complex because of diversified customer requirement. Meanwhile, an industrial robot 
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consist of various mechanical and electronic components. During a robotic assembly 

process, the assembly environment is constantly changing and the dimension and 

geometry of parts could vary from different batches and different suppliers. These 

variations will increase the assembly cycle time and lower the manufacturing 

throughput; moreover, assembly failure rate will arise if the assembly process 

parameters do not change. Because the assembly processes typically have many 

stages and different control strategies such as hopping and searching, it is almost 

impossible to construct a physical model to optimize the process parameters. 

Sometimes, the whole assembly line has to be stopped in order to tune the process 

parameters such that the assembly system can adapt to the variations. The process 

parameters of high precision robotic assembly process have to be tuned in order to 

deal with part variations and system uncertainties. The changes of structural 

modifications make tremendous impact on the assembly process for robotics.  

 The dynamic status of cloud manufacturing process requires robot compete the 

typical lifecycle of products, such as design, fabrication and assembly. The robotics 

and automation follows the steps of customer requirement and need. For example, a 

customer orders robot productions through the Internet. The order is immediately sent 

to the manufacturing database. According to the information of cloud computing 

gathered, the manufacturer develops details design and starts to transport different 

parts to the assembly line with the fastest speed according to carefully arranged 

schedule. When all the parts and components are received in time, the robots on site 

begin to assembly the parts together and adjust to the energy stored in the grid as 
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shown in Figure 5. All of the processes mentioned above are automated process and 

done by cloud manufacturing. 

 Efficient management of the resource and organization continues through the 

production process across the product lifecycles. Information feedback is also 

extremely important to reduce production time and waste of resources. The 

manufacturer should be able to monitor and control the production process at any time 

in case of emergency events. As for cloud manufacturing system itself, it should not 

only have the ability to quickly start and change working status due to new demands, 

but also relocate the position and facilities (Carter et al. 2010, Framsyn et al. 2003), 

which make it easily and quickly reuse manufacturing capacity. When a complete 

manufacturing process is in process, the manufacturing parts transported to the 

production site. After completing the tasks, the robots are sent back to home site, or to 

another location for new operations. 

 

Figure 5. Cloud Manufacturing Process 

 The interfaces between industrial robots and users is different depending on 
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the knowledge of the users’ knowledge of robots control. Programmers and the robots 

should understand each other when describing the same concepts. It is easy to 

program a robot to a specific position. However, robots have to adapt to the new 

environment based on sensing the information of unknown environment. In other 

words, the robot should generate its own description, make judges and have the ability 

to learn. It is necessary to use machine learning for robot to learn the variations via 

feature abstraction. For the assembly process, it is complex and has so many 

variations, it is almost impossible to derive a physical model to describe the relation 

between the assembly process and its process parameters. A viable approach is to 

identify the model indirectly using the observed system input and output and then 

explore the system performance using its process parameters. 

Big Data Analysis 

As advanced analytics technique, big data analysis comprises two aspects: data 

collection and mining, and how the two combine to create new way of manufacturing. 

For modern manufacturing, it has numerous sensors, control units, human factors, and 

power management, etc. Analysis on this kind of huge data will reduce total 

production cost, increase energy efficiency and mitigate environment impacts. Big 

data analysis is a new trend of research both in industry and academia. We can make 

better predictions and smarter decisions to change traditional ideas about the value of 

experience, and the practice of management. Based on data-driven decisions, it is 

helpful for manufacturing automation and facilities management. Once the machine 

control units move to cloud, the method of manufacturing is totally changed. With 
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machines’ head in the cloud, workers could track not only what the status is, but also 

where the malfunctions take place; how to distribute the assembly line; how to 

calculate the order; and how to involve humans to work with machines.  

Renewable Energy for Manufacturing 

With the increasing demand for energy, the electric grid is confronting a grand 

challenge in keeping the pace with the economic growth. Power grid is affected and 

changed with time by the loads, customers’ need and so on. Electricity still cannot be 

effectively stored in bulk form. Once generated, it must be distributed and used 

immediately. Manufacturing industries are a part of large electricity users. While 

meeting the growing need of manufacturing process, utilities have to shed the peak 

loads and balance electricity use against the large variations across the year.  

Renewable energy is involved with natural phenomena such as wind, sunlight and 

geothermal heat, as the International Energy Agency defines by Party Irew (2002): 

“Renewable energy is derived from natural processes that are replenished 

constantly. In its various forms, it derives directly from the sun, or from heat 

generated deep within the earth. Included in the definition is electricity and heat 

generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and 

biofuels and hydrogen derived from renewable resources.”  

Renewable energy replaces conventional fuels like coal and oil and makes up of 

15% global final energy consumptions (Lund 2007). There is no doubt that the market 

will be large, but facing the challenge of lowering the cost and being more 

convenient, sustained growth is still needed.  Wind turbines have become cheaper, 
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more efficient and reliable and lower investment risk with matured industry. As for e 

solar energy power markets, the total capacity is still smaller than that of wind power 

market. Meanwhile, the efficiency of converting solar energy to electricity is still low 

and it requires policy support to overcome all the shortcomings (Gross et al. 2003). 

Wave and tidal stream energy devices installed worldwide are mainly for 

demonstration projects. The overall cost reduction potential of biomass combustion 

technology are to commercialize high efficiency generating plants and to secure 

sustainable supplies of relatively low cost fuels. 

Robotic Automation for Assembly 

With new energy saving technologies applied in industrial manufacturing, energy 

efficiency is greatly increased per unit price of energy services. However, energy 

consumption in the medium to long term still decreases for modern industrial 

manufacturing process. As shown in Figure 6, a modern assembly line involves many 

industrial robotics. Traditionally, these robots are specially programmed and repeated 

with the same assembly/welding parameters. However, once the assembly 

environment changes and parts variation exceeds the expectation, the whole assembly 

line has to be stopped for adjusting the parameters of certain robots. It takes time and 

wastes electric energy. In this case, a more advanced manufacturing process has to be 

developed to further improve the process so as to increase energy efficiency. 
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 Figure 6. Assembly Line (The New York Times 2012) 

A high precision robotic assembly process requires a robot to perform assemblies 

in which the assembly clearance is better than the repeatability of robot. Figure  

shows the steps about how the industrial robot performs the assembly process. A 

searching method is used to find the exact position of the work piece. After the part is 

engaged with the work piece, it is inserted into the work piece using a certain 

insertion force. During insertion, the tool orientation will change according to the 

orientation of the work piece to avoid jam. Several parameters need to be tuned in the 

assembly process, such as search force, search speed, search radius and insertion 

force. The assembly process performance will degrade if these parameters are not 

adjusted correctly to adapt to the variations.  
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Figure 7. A Robotic System to Perform a High Precision Peg-In-Hole Assembly 

Process 

Typically, the parts could be manufactured in different batches and by different 

suppliers. Hence the clearance, geometry and dimension of the parts could be 

different which will increase assembly cycle time and cause assembly failure. To deal 

with these variations, the process parameters have to be optimized. Therefore, the 

relationship between an assembly process and its process parameters has to be 

explored. As we can see, if one of these robots stops working due to system 

malfunctions and configuration mistakes, the whole system has to stop and need a 

professional engineer to tune the robot and put it back to work. If robots’ heads in the 

cloud, it would be much easier for workers to discover glitches of robot condition and 

utilize modern automated control system to fix the problem before any damages 

happen. Just as James Kuffner at Google in 2010 summarized and concluded: “No 

robot is an island”. 

Origination of Thesis 

Even though many research efforts have been done, few has relation with 

renewable energy, not to mention how to integrate product inventory system under 

intermittent power. This research aims to assist manufacturing firms in designing an 
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onsite generation system to achieve net-zero carbon environmental performance at 

minimum cost. We propose a grid-connected DG system consisting of WT, solar PV, 

and substation to achieve three objectives: 1) minimizing levelized cost of energy, 2) 

realizing net-zero carbon emission, and 3) facilitating the execution of demand 

responses. We tackle this design problem in three steps. First, a stochastic 

programming model is formulated to minimize the DG costs subject to the GEC 

requirement. Second, we propose a simulation-based optimization algorithm to search 

for the optimal sizing of WT and PV units considering uncertain load. Third, we 

design an automated online learning process to decrease machine idle time and 

increase energy usage efficiency. Lastly, the proposed DG system is tested in ten 

different cities of the world under a wide range of wind speeds and weather 

conditions. To test our theory, we built a prototype in the lab setting. Further 

description will be analyzed in the experimental parts.  
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CHAPTER II 

LITERATURE REVIEW 

Renewable Energy for Industrial Applications 

Driven by a growing world population, energy use has become a critical concern 

in the last decades. As one of the cleanest energy, solar energy is abundant, and its use 

does not add to global warming. It does not have emissions of greenhouse and toxic 

gasses, does not increase the transmission lines from electricity grids. On the contrary, 

it increase regional/national energy independence, diversify generation portfolio, 

enhance the security of energy supply, and accelerates of rural electrification in 

developing countries. Usually, PV systems convert energy in the photons of sunlight 

into electricity into two groups: stand alone and grid connected systems. Grid 

connected systems are systems connected with utility grid. When there is not enough 

energy from the solar panels, the manufacturing facility will import the energy from 

the public grid. If more energy is generated by the PV systems, the energy will be feed 

into the public grid. On the other hand, standalone systems are the systems which are 

only connected to the manufacturing facility’s grid to power the working stations 

(Libo et al. 2007, Joung et al. 2006). Many remote and isolated industrial applications 

use solar electricity for a long time such like traffic lights, most of which are 

standalone systems. Telecommunication industries use storage battery powered by 

solar energy to assure the continuity of the system. They also apply solar electricity to 

reduce peak temperature in un-insulated outdoor cabinets which contains telephone 

equipment. Water desalination industries utilize solar energy to desalinate sea water, 
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which is economically and technically more competitive than conventional diesel 

engine powered reverse osmosis alternatives. Apple Inc. works with local partners to 

develop renewable energy to power the data centers for the good of the planet.  

Studies have been proposed to implement green manufacturing issues on 

technical and managerial. Circular supply chain served as a management code of 

green manufacturing generated and took environmental, economic and social benefits 

into consideration (Du et al. 2010). Different factors involved in the green 

manufacturing process have been conducted to be under control for supply chain, 

indicating that material, process, packaging, working environment and waste system 

are the main factors that have direct influence on green manufacturing  

(Udomleartprasert et al. 2004). A multi attribute model called Performance Value 

Analysis is presented to overcome the intangible benefits which offers better 

advantages over the non-green manufacturing system (Sangwan 2006), etc. These 

successful studies promotes the development of green manufacturing 

To reduce the power demand during the peak periods. “Just-for-Peak” buffer 

inventory is set up during peak period without sacrificing system throughput for 

manufacturing systems (Fernandez et al. 2013). A model is build up for load 

management in process industries to determine the industry response (Ashok 2006). 

The Time-of-Use (TOU) based electricity demand response problems is proposed to 

minimize the total electricity consumption and cost by shifting use according to the 

status of power grid. However, all of the methods mentioned above do not concern the 

fact of integration of renewable energy.  
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Even though technologies have experienced the most rapid development, it is 

obvious of two main challenges of renewable energy. One is how to integrate the 

electricity generated of renewable energy into existing energy system (Lund 2006). 

The other is about the transportation of the energy. Moreover, since the population of 

the world is increasing, which motivates the people to increase the utilization of 

renewable energy. Fossil fuels should be controlled and managed, and renewable 

energy need to ready to play a role for the industrial applications. Some energy 

policies like Feed-in tariff , renewable portfolio standard and incentives are 

implemented by many countries around the world (Solangi et al. 2011) including tax 

exemption, subsidies, formation incentives and others.  

Sustainable manufacturing operations have been discussed in literature, 

including energy conservation, dynamic electricity pricing and renewable energy 

integration. Though all these methods strive to improve the economic or the 

environmental performance, their approaches to manufacturing sustainability are quite 

different. In this section we revisit the modeling techniques and the design methods 

for green manufacturing systems. For strategic discussions on green manufacturing 

and sustainable operations, readers are referred to the studies (Kleindorfer et al. 2005) 

The idea of energy conservation is to increase the machine efficiency or 

reduce the tool idle time so that less electricity is consumed during the production.  

Mouzon et al. (2007) minimize the energy consumption and the total completion time 

by controlling the on and off of underutilized machines. Considering an aggregate 

production environment, Choi et al. (2014) develop a linear programing model to 
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minimize a weighted objective function comprised of energy use, inventory holding 

and backorder costs subject to resource constraints. Lin et al. (2013) use a Markov 

decision model to minimize the energy consumption in a multi-machine, multi-buffer 

production environment by shortening machines’ idle time.  Chen et al. (2013) 

minimize the energy consumption of a serial assembly line through effective 

scheduling of machine startup and shutdown procedures. Though in nearly every 

industrial enterprise, there are many profitable energy conservation opportunities, the 

hindrance to reaping the potential benefits is the lack of an internal management 

framework in which to find, value, and execute these projects. Besides, energy 

conservation alone cannot achieve superior environmental performance (e.g. zero 

carbon emissions) unless external renewable energy sources are injected into the 

manufacturing process. 

The third research line advocates the integration of renewable energy into the 

manufacturing facilities through onsite or distributed generation scheme.  Taboada et 

al. (2012) propose an onsite, grid-tied PV system to power a 15-MW wafer fab in 

conjunction with a substation. Up to 10,000 tons of carbons could be avoided when 

the PV capacity reaches one-third of the mean load based on five U.S. fab facilities 

through numerical experiments.  By incorporating solar PV and WT to power a large 

industrial facility, S. Villarreal et al. (2013) expand the onsite renewable energy 

portfolio. The results show that if the local wind speed is above 4.8 m/s and the yearly 

overcast days are less than 35%, onsite generation becomes cost-effective.  By taking 

into account the onsite renewable power as well as energy storage, Moon et al. (2014) 
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optimize a multi-process, multi-machine manufacturing scheduling problem. These 

researches show that it is possible to lower the carbon footprint of manufacturing 

processes. In this research, we take one step further to power a net-zero carbon 

production facility bound by uncertain load curtailments under demand response 

contract. 

High Precision Robotic Assembly 

In a modern manufacturing process, the changes in assembly environment, the 

variability of dimensions and geometries of the parts, and other uncertain variables 

generate unpredictable location errors which make conventional position-based tactics 

unsuccessful. Both assembly failure rate and cycle time will increase if the process 

parameters are not adjusted accordingly against the variations. Sometimes a whole 

assembly station has to be stopped for days in order to tune several key process 

parameters. For assembly processes requiring high precision and tight tolerance 

criteria, an automatic parameters optimization algorithm or online high precision 

robotic assembly process is essential as it mitigates the variation effect, assures 

assembly performance and lowers the production cost. 

In traditional robotic assembly application, the passive compliance device or the 

Remote Center Compliance has been utilized to reduce the contact force, to prevent 

tools and parts from being damaged, and to compensate for vibration, clearance and 

positioning errors due to machine inaccuracy (Meyer et al. 2006). However, passive 

compliance devices need to be specifically designed and tailored for parts with 

different dimensions and geometries. 
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For high precision robotic assembly process, robotic assembly parameter 

optimization based on force control technology has received much attention both in 

the industry and the academic communities. Robotic assembly using force control is 

able to shorten the cycle time, reduce the contact force, and lower the risk of 

jamming, wedging and galling (Brogardh, 2007). In addition, the requirements on the 

accuracy of fixtures and grippers can be significantly relaxed (Ostring, 2002). 

However, the force control method requires extra supports such as software package 

and force sensor, which cause the robot control system more complex and expensive. 

Several methods have been proposed to optimize the assembly parameters. Logic-

branching is proposed to find the optimum solutions of the states after the system is 

initialized (Vaaler et al. 1991). As a model-free algorithm, genetic algorithm (GA) is 

applied to randomly search for the optimal or near optimal assembly process 

parameters (Marvel et al. 2009). Artificial Neural Network (ANN) is adopted to 

improve the performance of assembly parameter optimization without conducting any 

experiment (Marvel et al. 2011).  Design of Experiment (DOE) based method offers a 

systematic approach to optimizing the assembly process parameters (Zhang et al. 

2011). After 2430 experiments are performed for one optimization iteration, the most 

sensitive parameters are identified and properly tuned to ensure the adaption to the 

environmental changes. Even though these aforementioned methods are quite 

promising in optimizing the process parameters, it is rather challenging to implement 

these methods in real-world applications because of the low efficiency, high cost and 

long computing time. 
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For online robotic parameter optimization process involved with many assembly 

stages such as cylindrical, radial and multi-stage insertions, it is impossible to 

construct a physical model. Some off-line optimization algorithms like DOE search 

for global optimal parameters for complex assembly process based on existing 

experimental results. A model-driven algorithm is more preferable in terms of 

improving the parameter optimization efficiency by finding the optimal assembly 

process parameters online. 

In this research, a support vector regression (SVR) enabled algorithm is proposed 

to solve the online parameter optimization problem without stopping the assembly 

station.  A typical peg-in-hole assembly process is used to demonstrate the 

performance of the proposed algorithm in a laboratory setting. Compared with the 

traditional methods, both the efficiency and accuracy are significantly improved based 

on the SVR enabled algorithm. 

Production-Inventory Systems Studies 

 To design production-inventory systems considering elastic electricity pricing 

or demand response contracts. Ierapetritou et al. (2002) construct a two-stage 

stochastic programming model to plant operation modes, optimize the production rate, 

and inventory level for an air separation company subject to real-time electricity rate.  

Mitra et al. (2012) develop a deterministic formulation which is able to efficiently 

handle the transient plant behavior by considering the seasonality of electricity tariffs. 

Karwan et al. (2007) solve a similar problem using simulation-based optimization 

through a rolling horizon method. Fernandez et al. (2013) propose to pro-actively 



 

25 

 

build work-in-process units to avoid the power usage during the periods of peak 

electricity prices Instead of using stochastic models.  By minimizing time-of-use 

electricity cost under pre-determined production rates, Wang et al. (2013) adopt a 

systems approach to production scheduling.  Chao et al. (2008) determine the optimal 

production policy for a single-machine manufacturing system when random load 

curtailments take place under demand response contract. In this thesis, we 

incorporates the demand response program into the design and operation of the DG 

system to fill the energy shortage resulted from load curtailment requests.     

Production-inventory models under uncertainties have been extensively 

investigated in operations management literature Yano et al. (1995) and Mula et al. 

(2006).  Federgruen et al. (1984) design a scholastic centralized production-inventory 

program that fulfills the random demands from several locations by minimizing the 

expected holding and backorder costs. (Lee, 1988) develop a back-track dynamic 

programing method to find the optimality of a serial production system that minimizes 

operating, holding, and backorder costs subject to random yield.  Kira et al. (1997) 

propose a hierarchical method to optimize a multi-period, multi-product production 

scheduling problem under a finite set of demands based on stochastic linear 

programming. More recently, Higle et al. (2011) propose a stochastic optimization 

model to schedule the production operation considering both supply and demand 

uncertainty via Markov decision process. Extant product-inventory models are shown 

to be effective in dealing with uncertainties arising from demand, production, yield, 

and supply. To lower the environmental impacts, it is imperative to incorporate the 
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renewable energy into the production-inventory decision to achieve the superior 

environmental performance. 
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CHAPTER III 

COST ANALYSIS OF ONSITE GENERATION SYSTEM 

We design an onsite DG system consisting of multiple distributed energy 

resources (DER), namely WT units, solar PV, to power a large manufacturing facility. 

These DER units function as the primary energy sources, and the substation mitigates 

the uncertainty of renewable energy generation by WT units and solar PV. The energy 

gap is intended to be filled by drawing the electricity from the power grid if the 

aggregate power of the DG is below the demand of the manufacturing enterprise. On 

the other hand, if the DG system produces surplus solar electricity, it can be fed into 

the main utility grid via net metering or feed-in tariff scheme. As return, the customer 

is able to generate energy revenue by selling the net metering energy back to the 

utility grid.  

Onsite Wind and Solar Generation System 

We choose WT and solar PV as the DER units to construct the onsite DG 

system to power manufacturing facility because of the technical maturity and 

scalability shown in Figure 8. Since the power output of WT and PV is intermittent, 

energy reliability plays the key role in designing and operating the DG system. The 

risk of energy shortage can be mitigated by increasing the generation capacities of 

WT and PV. However, this is not a practical approach as it requires huge upfront 

capital investments.  
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Figure 8. A Grid-Connected Distributed Generation System (Li et al. 2015) 

A trade-off must be seriously considered between the capacity cost and the 

risk of power shortage. Given all the situation, the following components mainly 

constitute the lifecycle cost of a DG system: carbon credits or subsidies, initial capital, 

operation and maintenance (O&M), utility bills, and net metering revenue. Indeed the 

last two components, utility bills and net metering revenue, are the incomes for the 

manufacturer. It is either because of the renewable energy incentives provided by 

governments or utility companies saved due to renewable energy. Therefore, we 

perform a detailed analysis on different cost components below. Unless specified, the 

unit for power is megawatt (MW), and the unit for energy is megawatt-hour (MWh). 

Load Profile of Industrial Facilities 

In this research, we take the electricity load of a wafer fab as an example to 

characterize the energy usage of semiconductor manufacturers. The results can be 

extended to other industries such as automobile manufacturing, chemical and oil 

refinery, plastic, and cloud computing and data centers. It is worth mentioning that the 

load profile of wafer fab differs from residential consumers because a manufacturing 
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facility typically runs in 24/7 mode. Energy consumption comprised of 12-month data 

is obtained from our industry partner in Texas, USA. The electricity demand curve is 

depicted for a period of 12 months from January to December in 2010 in Figure 9. 

The actual data value has been normalized for privacy, yet the seasonality and the 

monthly dissimilarity are preserved. 

 

       Figure 9. Wafer Fab Load Profile                 Figure 10. Normality Test  

(Pictures originally from Li et al. 2015) 

The load profile shows that there exists a strong cyclical pattern coupled with 

short-term variations. The eletricity demand between later January and early April is 

about the lowest around 8.8 MW. It ramps up from April and reaches the highest 

point at 10.4 MW in September before decreasing to 9.3 MW in later November. The 

load profile indicates that the time between June and October is the busiest season 

because the facility is running in full scale in order to meet the customer demand. 

Figure 10 shows the results of the probability test on the annual load data which 

indicates that the hourly demand can fit a normal distribution with mean of 9.587 MW 

and standard deviation of 0.54 MW at 95% confidence level. 

Two design strategies are often used to handle the load variability for planning 

a DG system: the worst-case design and the distribution-based design. In worst-case 
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design, the peak load is used to control the generation capacity such that the hourly 

demand and the environmental criteria are satisfied. The design based on the worst-

case scenario is relatively straightforward, while it may result in over investment. In 

distribution-based design, seasonal or temporal load variations are decomposed into a 

set of probability functions in daily, weekly or monthly basis. Then the seasonality 

behavior is translated into a chance constraint in which the probability that the power 

is less than the load is controlled by the so-called loss-of-load probability criterion. It 

is worth emphasizing that the performance of a grid-connected DG system is usually 

measured by its long-term energy yield. Transient load variation is not the main 

concerns as short-term energy gap can be filled by drawing the electricity from the 

main grid. 

The distribution-based design avoids overinvestment in capacity while 

maintaining the necessary level of energy reliability. In this research, we adopt this 

kind of design approach by decomposing the load variation into multiple normal 

distribution functions in monthly basis. We compute the mean and the standard 

deviation (Stdev) of the facility load based on the 12-month data in Figure 8, and the 

results are summarized in Table 1. 

Table 1. Mean and Standard Deviation of Monthly Power Load 

Month January February March April May June 

Mean (MW) 9.267 8.846 8.853 8.930 9.397 9.588 

Stdev (MW) 0.232 0.221 0.221 0.223 0.235 0.240 

Month July August September October November December 

Mean (MW) 10.068 9.983 10.334 10.237 10.093 9.448 

Stdev (MW) 0.252 0.250 0.258 0.256 0.252 0.236 
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Installation, Maintenance and Carbon Credits 

Installation cost represents the major of upfront DG investment. Let Pc=[P1
c, 

P2
c,…, Pg

c] be the power capacity of generation type i for i=1, 2, …, g.  For example, 

P1
c and P2

c could be the capacity of WT generators and PV panels, respectively. Then 

the annualized DG installation cost can be estimated as: 
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where ai is the capacity cost per MW for generating type i. Note that 

]1)1/[(])1([),(  nn rrrrn  is the capital recovery factor where n is the number 

of years of paying off the loan, and r is the annual interest rate. 

Although the resources of wind and solar generation are free, the O&M cost 

has to do with two things: 1) leasing the land to lay up WT, PV, and other accessory 

equipment; and 2) the maintenance and the repair of WT and PV because of system 

degradation and failures. We use Pit be the actual power output of generation type i at 

hour t. The annual O&M cost of the DG system can be estimated as: 
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where bi is the O&M cost per MWh of generation type i, and h is the calendar hours 

in a year with h=8,760 hours. It is worth stating that the meaning of the value Pit 

differs from Pi
c in that the former is the instantaneous power which changes over 

time, while the latter is the generation capacity which is a fixed value. 

Various incentive programs have been proposed by governments around the 

world to motivate the investment and adoption of wind and solar energy. Carbon 
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credits and equipment subsidies are among the most popular incentive schemes. 

Equipment subsidies can be treated as one-time cost saving to renewable energy 

investor. The amount of carbon credits rely on the actual renewable energy generated. 

Let Ccr be the total carbon credits received by the manufacturer in one year:  


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,                     (3) 

where ci represents the carbon credits per MWh for generation type i. Equation (3) is 

quite general in the sense that if the incentive program for energy type i expires, we 

simply set ci=0; on the other hand, if ci<0, it means a penalty cost is imposed on 

generation technology i due to the emission of greenhouse gases, such as fossil fuel 

based generators.   

Annual Production Loss 

Typically, large manufacturing enterprises sign a specific demand response 

(DR) contract with the local utility company. They agreed to curtail the load during 

the peak hours for residential users. In return, the manufacturer is able to enjoy a 

reduced electricity fee or receive a lump-sum payment (Baldick et al. 2006). In this 

research, we mainly focus on the interruptible/curtailable demand response program 

since it is widely agreed by manufacturing industries. The manufacturer has to turn 

off some machines to meet the load reduction level when a contingency call is 

received. Let Cdr be the annual production losses incurred in all contingent events, 

then 
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where Lt is the load reduction level in MW at time t. Here {Lt}
+=Lt if Lt>0, or {Lt}

+=0 

if Lt=0. Note that  is the production loss per MWh curtailment ($/MWh).  

Annual Utility Cost 

A large portion of electricity bills paid to the utility company, are saved as a 

result of adopting onsite DG system. However, it is still necessary to draw the 

electricity from the main grid when the load exceeds the DG output. By considering 

DR events and DG output, the annual utility cost can be estimated as 
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note that  is the discounted utility price ($/MWh) due to the DR participation, and Dt 

is the facility’s electricity demand in time t.  

Feed-in Tariffs 

The produced and injected solar energy into the grid has the same economic 

value of the energy sold to the customers. Feed-in Tariffs were a protocol for the 

exchange of the electric energy generated. Feed-in Tariffs permit the manufacturer to 

return surplus renewable energy to the main utility grid when the DG output exceeds 

the load requirement. This specific situation occurs when the wind blows hard, the 

solar radiation is strong, or the facility enters the low production season. The annual 

income from the feed-in Tariffs can be estimated as 
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Where  is the revenue rate ($/MWh) each time one MWh electricity is fed 

into the electricity grid. In net metering, the meter’s reading increases when electricity 
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is drawn from the grid, and decreases if renewable energy is fed into the grid. Hence 

we have =.  

Interruptible/Curtailable Demand Response 

Interruptable/curtailable demand response (I/C DR) program is the most 

widely used load curtailment contract in manufacturing industry. Customers agree to 

curtail the load upon request in exchange of the monetary reward or a discounted 

electricity rate. In a pay-as-you-go scheme, the utility company pays a penalty to the 

customer for each contingency call. In a pay-in-advance scheme, the utility offers a 

discounted electricity price to the participants during the contract period. This 

research assumes the manufacturer accepts the pay-in-advance policy and is willing to 

curtail the load upon request.  

The maximum and the minimum curtailment duration, denoted as Tmax and 

Tmin respectively, usually are written in the contract. In general, we have 1≤Tmin≤Tmax 

8 hours for a typical I&C DR program (Aalami et al. 2010).  However, the 

manufacturer does not have the advance knowledge about the curtailment duration 

until being called. Let T be the random duration of a curtailment event, and be its 

realization. T can be treated as a uniform random variable with the following 

probability density function: 
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The curtailment level may differ in each contingency call, yet the maximum 

amount of reduction usually does not exceed 20 percent of the facility’s mean load 
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(Aalami et al. 2010). We use the discrete probability model to characterize the 

variation of curtailment levels. Let lj for j=1, 2, …, q represent the actual realization 

of curtailment levels, and l1<l2< <lq. The probability mass function can be expressed 

        
jjt plL  }Pr{ ,     for j=1, 2, …, q                (8) 

where Lt is the random variable representing the load curtailment level in time t. 

Obviously, the sum of pj for all j should be equal to unity.  

Though the total curtailments usually does not exceed ten times a year, the 

actual start time of a curtailment is not known to the manufacturer until being called 

30-60 minutes in advance. Let N be the number of curtailment during the course of a 

year. The occurrence of I/C DR events can be modeled as a Poisson process as 

follows 
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where  is the curtailment request rate. For instance, if the average curtailments in a 

year is five, then =5 calls/year. Based the value of , we can simulate the number of 

DR events and the start time of each event. The curtailment level usually does not 

exceed 20% of the factory’s nominal load, and the average duration of a curtailment is 

eight hours.  

Annualized Cost for DG System 

By aggregating the cost components in equations (1)-(5) and (7), the 

annualized cost of the DG system is given as follows 
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In equation (9),  is the length (or the number of hours) of each production 

period, ej is the energy consumed in making one unit of product j for j=1,2, …, m, and 

xj is the amount of product j produced during . Here    is the operator that takes the 

smallest upper integer of the non-negative value. For instance, if t/=4.3, then  /t  

is qual to 5.  

Production-Inventory Model with Net-Zero Carbon Emission 

The main concerns with the adoption of onsite DG system include the upfront 

investment and the power intermittency. To deal with such problems, we propose a 

renewables-based, multi-period, production-inventory planning model to explore the 

technological and financial feasibility. The model aims to achieve two objectives: 1) 

minimizing the overall production cost comprised of energy and non-energy 

expenses; and 2) realizing net-zero carbon manufacturing operation goal by attaining 

the 100 percent GEC target. Such production-inventory decision, denoted as Problem 

P1, can be formulated as a mixed integer stochastic programming model as follows: 

Problem P1: 

Minimize:  
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Subject to: 
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xjk, yjk, zjk are non-negative integers, and P1
c, P2

c, …, Pg
c0.               (18) 

Problem P1 is a stochastic programming model owing to the random wind and 

solar power. Note that xjk, yjk, and zjk are integer decision variables on behalf of the 

production quantity, inventory level and backorders of product j in period k, 

respectively. In addition, Pi
c is the decision variable acting as the power capacity of 

generation technology i. The objective function (12) is to minimize the annual 

production cost comprised of energy and non-energy expenses. In particular, the first 

three summations are the standard costs of production, inventory holding, and 

backorders. Here cjk, hjk, and bjk, respectively, represents the unit cost of 

material/labor, holding, and backorder of product j in period k. The term CDG(x, Pc) is 

the energy cost given in equation (10). Constraints (13) and (14) are the basic 

production-demand balance equations where djk represents the demand of product j in 

period k. Constraint (15) defines the capacity limits of the facility, where rjs is the 

amount of resource s for producing one unit of product j, and wsk is the total available 

capacity for s in period k.  Constraint (16) is the chance constraint stipulating the loss-

of-load probability (LOLP) criterion of the DG system. Note that  is the acceptable 

LOLP, and PG is the main grid power. To meet the net-zero carbon emission, 

constraint (17) states that the electricity consumption in a year should not exceed the 
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total renewables generation from the DG system. 

Translation into a Three-Stage Decision Model 

In fact, Problem P1 is a mixed inter stochastic programming model, and this 

type of problem in general is difficult to solve. Below we propose a three-stage 

optimization strategy to search for the optimal x, y, z, and Pc. The overall cost is the 

sum of f2(x, y, z) in stage 2 and f3(P
c; x) in stage 3. 
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xjk, yjk, zjk are non-negative integers.                                        (23) 
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 Other constraints are the same as P2-1. 
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  P1
c, P2

c, …, Pg
c0.                    (29) 

For the above three stages problems, we are intend to solve each stage step by 

step. In stage 1, assuming electricity provided is abundant; we optimize the 

production quantity, the stock level, and the backorders to minimize the non-energy 

cost of the production system. In stage 2, the demand response events are inserted into 

the solution obtained from Stage 1, and re-solve the production-inventory model by 

integrating the load curtailment constraint. This constraint captures two scenarios: if 

DR occurs at t, the total power load is confined to Dt-Lt. If there is no DR, the load 

could be as + denoted as grid PG. Note that Dt is the power consumption without 

load curtailments.In stage 3, we recomputed Dt based on the new solution from Stage 

2, and minimize the energy cost by optimizing the capacity of WT and solar PV 

subject to power-load balance and net-zero carbon criteria. 

Figure 11 shows a 3-stage decision-making process which minimizes the non-
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energy and energy cost sequentially in conjunction with the uncertain occurrences of 

DR requests. For Problems P2-1 and P2-2 which are linear integer programming 

models, they can be easily solved using off-the-shelf solvers or existing optimization 

tools. In Stage 3, given the optimal xjk derived from P2-2, we search for optimal 

power capacity of WT and PV installation size to meet the energy requirements in 

each period of each week. The output power of WT and PV units is random and time-

varying, so we propose a simulation based optimization algorithm to tackle Problem 

P2-3. The following three stage decision-making flow chart is presented:  

 

 

Figure 11. Flow Chart for Three-Stage Decision Model 
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If any of the stopping criteria is met, the presented algorithm is terminated and 

the result is reported as the final output. Otherwise, xk and its simulated objective 

function value are added to the set of points available to build a new metamodel, and 

the main iteration will be repeated again. This proposed algorithm has been 

empirically shown to converge in a moderate number of iterations even in the 

presence of several variables using global optimization test functions (Villarreal et al. 

2013).  

The primary objective goal of Problem P1 is to determine the solar PV and 

WT capacities, namely x={x1,  x2, …, xm} and Pc={P1
c, P2

c, …, Pm
c}, such that the 

system cost in Equation (12) is minimized. If xi for i=3, 4,…, m are known, the 

capacity is also known. Hence, the actual number of decision variables is smaller than 

2m. The simulation-based optimization is applied to determine the attractive DG 

solution for three different US fab sites in the following section. 

Simulation-Based Optimization Algorithm 

The algorithm firstly starts with an initial design of experiments from which 

an incumbent solution is obtained. At each iteration a metamodel is obtained using the 

available set of points and is used to generate a new attractive point where a 

simulation is performed. A metamodel can be defined as a model created with data 

generated through another model. An example of the former is a regression equation 

and an example of the latter is a computer model. For updating purposes, the 

simulated value of the new point is compared with the incumbent. A series of stopping 

criteria are evaluated and the new point is added to the existing data pool and a new 
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iteration should begin if none is met. Otherwise, the iteration stops. 

Since Problem P1 contains random generated variables Pit, Dt and Lt, a search 

algorithm based on deterministic approach usually is not effective or cannot be 

directly used to solve the stochastic programming model. Simulation-based 

optimization is effective to find a good solution that is hopefully near the true, yet 

unknown, optimal solution. This algorithm has been empirically shown to converge in 

a moderate number of iterations (Floudas and Pardalos 1992, Karwan and Keblis 

2007). Therefore, we adopt this optimization technique to seek the optimal solution 

for Pc. Since there are only two decision variables, P1
c for WT and P2

c for PV, in the 

DG system, the optimization procedure can be implemented by combing the 

enumeration with the simulation.  

Figure 12 depicts the flow chart of the optimization procedure. First, initial 

values are assigned to P1
c, P2

c, P1
max, P2

max, and P. These values can be easily 

determined based on the mean load of the facility. Second, at time t renewable energy 

output from WT and PV is calculated according to simulated wind speed and weather 

patterns using equations (30) and (38). Based on equation (12), the DG power is 

compared with the hourly load to determine whether energy should be imported from 

or exported to the main grid. When t reaches 8,760 hours, objective function (12) and 

constraint (13) are assessed to determine whether current values of P1
c and P2

c meet 

the emission criterion or not. If criterion is met, the current P1
c and P2

c are treated as a 

candidate solution, and the LCOE is computed as well. By increasing P1
c and P2

c 

sequentially, a series of generation scenarios are obtained along with different LCOE. 
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Finally, the capacity mix of WT and PV that results in the minimum LCOE and zero-

carbon emissions is chosen as the optimal solution. In order to obtain a robust design, 

for a given pair of P1
c and P2, the simulation is repeated for 20 years and the average 

cost is taken as the expected LCOE.  

 

Figure 12. Simulation-based Optimization Algorithm 

Wind Power Generation Model 
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where, Pm is the rated power or the WT capacity. Note that vc is the cut-in speed, vr is 

the rated speed, and vs is the cut-off speed. Figure 13 shows WT operates in one of the 

following states: 1) stationary without power generation when v<vc; 2) non-linear 

power generation when vc≤v≤vr; 3) constant power output when vr≤v≤vs; and 4) 

shutdown if v>vs in order to protect motors. It has been shown that wind speed in a 

particular area can be fit with either Weibull or normal distributions (Weekes and 

Tomlin 2014, Karki et al 2006). The two-parameter cumulative Weibull distribution 

function for wind power generation is given as 
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where cw and dw are the scale and the shape parameters, respectively.  Equation (30) 

allows us to simulate the hourly wind speed based on the value of cw and dw that can 

be estimated from historical wind data.  

 

Figure 13. Wind Power Generation 
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Solar PV Generation Model 

In theory, the output power of a PV system can be precisely predicted under 

the clear sky condition. The power intermittency has to do with the random behavior 

of the weather (e.g. partial cloud, cloud). Factors that have the main influences on the 

PV generation is summarized in Table 2. Note that the unit of the angles is radians 

unless specially indicated.   

Table 2. Key Parameters in Solar PV Energy Production 

No. Factor Symbol Explanation 

1 calendar day d d{1, 2, …, 365} 

2 local hours t t=1, 2, …, 24 

3 solar hour (rad) t related to the local hour 

4 weather condition in hour h Wt random variable between [0, 1] 

5 PV size (m2) As PV module area 

6 PV  efficiency s between 10-20% 

7 PV temperature (oC) To operating temperature 

8 latitude (rad)  depends on location 

9 PV azimuth angle (rad)  if facing south, =0 

10 PV tilt angle (rad)  between PV and ground 

According to Figure 14, we present a three-step procedure to calculate the hourly 

PV energy production based on the early studies in Cai et al. (2010) and Taboada et al. 

(2012). These steps are summarized as follows: 

Step 1: Compute the sunrise and sunset time for day d{1, 2, …, 365} 

   cos( ) cos( ) tan( ) tan ,rise set                                  (32) 
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With  

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)284(2
sin40928.0

d
                        (33) 

where  is the solar declination angle, rise and set are the sunrise and the sunset 

angles in day d perceived from the PV panel. There is no power output for PV when 

<rise or >set, i.e. before sunrise and after subset. 

Step 2: Computing the total amount of solar irradiance incident on the PV surface at a 

particular time of a day 
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where It is the solar irradiance (W/m2) received by the PV at time t on day d. Here  

is the solar zenith angle which is given by equation (34), and t is the solar hour angle 

determined by the local clock time t. For instance t=-/2 at 6am in the morning, and 

it increases 15 degrees every hour until reaching t=/2 at 6pm in the evening. To 

maximize the energy throughput, PV panels located in the north hemisphere shall be 

oriented towards the south (i.e. =0), then equation (35) can be simplified as  

t cos)cos(cos)sin(sincos               (37) 

Step 3: Under weather uncertainty, the actual power output of a PV system at time t, 

denoted as Pt in watts (W), now can be estimated as 

 )25(005.01  otsstt TIAWP  ,                           (38) 

where Wt is a random variable representing the stochastic weather condition at time t 
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of day d, and varies between 0 and 1 to mimic an overcasting, partially cloudy, or 

clear day (Lave and Kleissl 2011). Note that A as the panel size (in m2), To as the PV 

operating temperature (oC) at time t, and  as the PV efficiency.  

 

 

Figure 14. Working Principle of Solar PV during the Day 
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CHAPTER IV 

SUPPORT VECTOR REGRESSION ENABLED ALGORITHM 

Model-free algorithms such as GA, ANN and DOE often randomly search for 

optimal parameters based on experimental results. Such low efficient algorithms can 

only be implemented off-line. To increase the parameter optimization efficiency, a 

model based method is proposed to solve the modeling and parameter optimization 

problems based on the observed system input and output, and improve the 

manufacturing performance online. 

SVR was first introduced by Vapnik, Steven Golowich, and Alex Smola in 1997 

(Vapnik et al. 1997). The rapid development of SVR in statistical learning theory has 

motivated the researchers applying SVR to various fields. For now, it is widely used 

for wind speed prediction (SalcedoSanz et al. 2011), motherboard shipments 

forecasting (Wang et al. 2014), flood stage forecasting (Yu et al. 2006), and others. 

Therefore, we choose SVR to investigate the relationship between the assembly 

performance and its process parameters. 

Support Vector Regression for Assembly Parameter Optimization 

Given a set of assembly data 1 1 2 2{( , ),( , ),..., ( , )}n nx y x y x y , each 
n

ix R is the 

input vector and has the corresponding cycle time iy R  for i = 1, 2,...,l, where n 

corresponds to the size of the training data set. The main objective of SV   

regression is to find a function ( )f x that has the deviation  from the output cycle 

time for iy  the assembly data, and is as flat as possible at the same time. To achieve 

this objective, SVR maps the input data into a high dimensional feature space via a 
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nonlinear mapping and performs a linear regression in this feature space, i.e., 

 ( ) ? ( )Tf b  x w x   (39) 

Where ( ) x  is called the feature; b is the bias term and w is the weight vector in 

the primal weight space. Flatness in (1) means that w should be as small as possible. 

We use Vapnik's  -insensitive loss function (Drucker, 1997) defined as: 
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Which means there exists a loss function that is capable of approximating all 

pairs ( , )i iyx  with   precision. Our goal is to find the value of w and b such that the 

following regularized risk functional is minimized: 
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Where constant C>0 determines the tradeoff between the flatness of f and the 

amount of deviations larger than  are tolerated. 

The following minimization problem is formulated by introducing the slack 

variables i and *

i : 
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A standard dualization method utilizing Lagrange multipliers is used to extend 

SVR. A Lagrange function is constructed by combining the objective function with 

the associated constraints. It can be shown that this function has a saddle point with 

respect to the primal and dual variables at the solution (Smola et al. 2004).   
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Here L is the Langrangian and i , *

i , i , *

i are dual variables satisfying positivity 

constraints, i.e. (*) (*), 0i i   . We refer to *

i  and i  by (*)

i .The partial derivatives of 

L should satisfy the following conditions where the dual variables vanish at the 

optimality: 
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By eliminating the dual variables, the dual form of the nonlinear SVR can be 

expressed as: 
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The minimization function has the following form: 
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Where the kernel function ( , )ik x x  is the inner product of the nonlinear mapping 



 

51 

 

 ( , ) ( )?( )
i ik  x x x x     (50) 

In a sense, the number of Supports Vectors with no vanishing coefficients 

conduces to the complexity of the function's representation. 

Variable b can be computed based on Karush-Kuhn-Tucker (KKT) condition 

(Lasserre et al. 2001), which implies that the product of the Lagrange multipliers and 

constrains has to be equal to zero. 
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      Where ( ) 0i iC     and * *( ) 0i iC    . For all samples inside the tube , 

* 0i i   . Then the variable b can be calculated as following: 
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The number of Supports Vectors (SVs) with nonvanishing coefficients conduces to the 

complexity of a function's representation by SVs. 

Hyperparameters optimization 

Some common kernels are shown in Table 3. Among the four kernels, Gaussian 

Radial Basis Function kernel (RBF) can nonlinearly map the samples into a high 

dimension of space and has fewer hyper parameters which reduce the influence on the 

complexity of model selection than the Polynomial kernel. Therefore, we choose RBF 

in this research, which is commonly used as the kernel for regression. 
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Table 3. Covariance Functions 

Name Equation 

Linear  ( , ) ?i j i jk x x x x  

Polynomial ( ( , ) ( ?) d

i j i jk c   x x x x  

Sigmoid ( ( , ) tanh ( ?) i j i jk c   x x x x  

Radial Basis Function 
2

( , ) exp( )i j i jk   x x x x  

The nonlinear SVR with Gaussian RBF kernel includes three hyper parameters: 

the constant value C, the radius of the insensitive tube   and the kernel parameter  . 

These are independent parameters and the different combinations of the parameters 

will lead to different SVR models with different specialty.  A large C value means a 

greater penalty of errors, which makes the learning machine process more complex. 

However, a smaller C tolerates excessive errors with poor estimation. If C goes to 

infinity, SVR would not tolerate any error and result in a complex model; if C goes to 

zero, a large amount of errors are allowed and the model would be less complex 

(Xuegong et al. 2000). The parameter   is also an important hyper parameter since it 

governs the accuracy and complexity of the approximation function because a smaller 

  results in a complex supervised learning machine process. 

Several methods have been proposed to optimize this process. Manual search and 

particle swarm optimization are introduced based on user's prior knowledge and/or 

expertise, which are obviously not appropriate for non-expert users and have the 

chance to find the local optimum. Grid search is reliable in low dimensional spaces 

and suffers from the curse of dimensionality. Random search, which is independently 
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drawn from a uniform density, has all the practical advantages of grid search while it 

obtains a large improvement in efficiency in high-dimensional search spaces. 

In this work, we use grid search to locate the range of the optimal parameter 

variations without any prior knowledge. Then random search integrated with cross 

validation is utilized to find the best combination of hyper parameters for the SVR 

model (RS-SVR). For comparison, a finer grid search after using a coarse grid is 

conducted on the neighborhood to find the best hyper parameters with the highest 

cross validation rate to model the complex assembly process (GS-SVR). To reduce the 

calculation complexity of the learning machine, we first set a real value for the 

constant value C and then use grid search together with random search to select the 

best combination for   and  . 

The constant value C can be chosen to be equal to the range of output values of 

training data (Mattera et al. 1999). However, such a selection of C is quite sensitive to 

possible outliers (in the training data), so the following prescription is proposed: 

 max( 3 , 3 )y yC y y      (53) 

where y  is the mean of the output of training data;  
y  is the corresponding standard 

deviation. 

SVR Enabled Algorithm 

An online robotic assembly process is a high-dimensional, continuous, nonlinear 

process which must be monitored and controlled in a real-time manner. To that end, 

the system is expect to make quick response to any performance variations. To solve 

this type of complex problems, it is imperative to make a dynamical trade-off between 
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exploration and exploitation (Lifeng et al. 2011). We jointly use exploration and 

exploitation processes to carry out system modeling and parameter optimization. The 

drawback is that the optimization process can be easily trapped in local minimum if 

both processes are not properly adjusted. Hence in the proposed algorithm, 

exploration and exploitation should be balanced to facilitate the simultaneous online 

modeling and optimization. Meanwhile, a switching criterion is also necessary to 

alleviate the computational complexity of SVR. 

Exploration and Exploitation 

In this research, we utilize SVR enabled algorithm to iteratively model a complex 

system and optimize the system performance. In each iteration, new samples are 

added into the existing data pool and the SVR model is also updated based on the 

aggregate data. Then the new SVR model will be used to search for the global 

optimum by minimizing a function for which a specific location is chose for 

sampling. This function is called acquisition function. The purpose of acquisition 

function is to guide the search for the optimum controls of the new sample points. It 

directly affects the model quality and the optimal solution. Therefore, it plays a 

pivotal role in the SVR enabled algorithm during the optimization process because the 

combination of the acquisition function and SVR allows for a trade-off between 

exploration and exploitation to search for the optima. 

If the optimal parameters found by SVR are returned with a longer assembly 

cycle time than what is required, the proposed algorithm can automatically re-search 

for the entire sampling space to enrich the information for the SVR model until the 
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global optimal parameters are found. To deal with such problems, we propose to use 

 -Greedy acquisition function: 

    
1...

( ) rand(1)

arg max min ( )i
i N

y
AC

d otherwise






  

x
x

x x
  (54) 

According to the acquisition function, the new candidate is generated by using 

 * arg min ACx x , where   is the performance index updated online according to 

the hyper parameters and system performance; ( )id x x is the distance between two 

sets of parameters x and ix ; xy  is the predicted cycle time with a certain assembly 

parameters x. During the iteration, if rand(1)  , the new candidate is optimized by 

utilizing the current model for exploitation process of the process parameters; 

otherwise, the exploration process is activated to refine the model by exploring the 

sample space. 

Adaptive Optimization Process 

The performance of the robotic assembly is often measured by the assembly cycle 

time and FTT rate.  The FTT rate and the average cycle time can be computed upon 

the completion of several assembly tasks. If both measurements satisfy the pre-

specified criteria, the production process begins; otherwise, the assembly process 

model continues to be updated until the required criteria are satisfied. To reduce the 

computational complexity, the optimization process should be terminated once the 

model becomes stable and the optimal parameters are found. The production activities 

are executed repeatedly with the obtained optimal assembly process parameters. If the 

system performance decreases, the optimization process should be triggered to re-

optimize the process parameters until it meets the stopping criteria. 
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To lower the assembly failure rate, prior information about the cycle time 

variance is required. However, for different batches or assembly processes, such 

information usually is different to obtain. Technically assembly failures are inevitable 

because of environmental changes during assembly processes, which makes the 

recorded cycle time for modeling unreal. Nevertheless, existing methods like DOE 

eliminate these data set even though that information is useful for modeling and 

optimization of assembly process. Hence we proposed a switching criteria to control 

the parameter optimization process: 
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where   is the switching parameter; 1k  and 2k  are two constants controlling the 

optimization process;  3k  is the threshold that determines whether a model has already 

converged;  *

tC  is the best cycle time so far and tC  is the current cycle time; t  is the 

acceptable FTT rate defined by the user which is calculated until the system is in 

production process. Otherwise, t  is set to 1 during the optimization process.  

1 0/k k kH H H H    is the normalized change of hyper parameters, where kH  is 

the hyper parameters  at iteration k. If a model converges, 0  . If 1  , the 

switching parameter   is set to 1 to  explore the optimal solution in the sample space; 

When   and cycle time satisfy the given criteria required by assembly process,   is 

set to 0 to begin productive process using optimized assembly process parameters. T 

he production process is continuously monitored by  , cycle time and FTT rate. If 

the performance degrades,   is set to 0.5 to restart the optimization process; 
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otherwise   is set to   for balancing the exploration and exploitation processes. 
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CHAPTER V 

ZERO-CARBON EMISSION ANALYSIS 

Background information 

We investigate whether a net-zero carbon production system can be realized 

through onsite wind-solar generation in different regions of the world. In particular, 

ten cities from different regions around the world are selected to represent the 

diversity of wind profiles and weather patterns. Data associated with the latitude, the 

mean and the standard deviation of wind speed, and the percentage of sunny, partially 

cloudy and overcast days are summarized in Table 4 which is repossessed through 

National Climate Date Center (NCDC 2014) and Weather Underground (WU 2014), 

correspondingly. Only one city is located in the southern hemisphere, and the rest are 

from the northern hemisphere. The latitude of these cities varies from 18.25 to 51.63 

degrees, covering the majority areas of the human beings residence. Cities like 

Wellington possesses large wind profile but with less sunny days. Cities like Sanya 

and Phoenix have the largest number of sunny days but with moderate or small wind 

power. Other cities such as Shanghai and Munich receive moderate sunshine as well 

as medium wind power. These wind and climate data allows us to simulate hourly 

wind speed y and the daily weather factor Wt, which is further used to predict the WT 

and PV output based on Equations (29) and (37).  We search for the optimal xjk, yjk, zjk, 

P1
c, and P2

c in each location such that the 100% GEC goal is achieved while the 

annual production-inventory cost is minimized. 
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Table 4. Wind Speed Profile and Weather Pattern of Testing Cities 

 

No 

 

City 

 

Country 

Latitude 

(degree) 

AWS   

(m/s) 
SWS 

(m/s) 

Sunny 

(days) 

PC 

(days) 

Overcast 

(days) 

1 
Rio 

Gallegos 
Argentina 51.63 7.16 1.07 144 84 137 

2 Shanghai China 31.20 4.43 1.85 181 41 140 

3 Sanya China 18.25 6.51 3.11 235 42 88 

4 Munich Germany 48.13 5.14 1.04 65 110 190 

5 Tokyo Japan 35.68 5.22 0.40 179 22 164 

6 Wellington 
New 

Zealand 
41.29 8.05 1.21 79 100 186 

7 Phoenix USA 33.30 2.78 0.32 211 85 70 

8 Boston USA 42.36 5.68 0.56 168 64 133 

9 Honolulu USA 21.30 5.09 0.50 169 39 157 

10 New York USA 40.71 5.30 0.60 107 102 156 

Note: AWS=average wind speed, SWS=standard deviation of wind speed, PC=partially 

cloudy 

The proposed DG system is comprised of WT generators and solar PV panels. 

The WT’s cut-in, rated and cut-off wind speeds are vc=2, vr=10, and vs=25 m/s, 

respectively. The efficiency of PV module is =0.15, and the average operating 

temperature is To=45 oC. We assume that the pay-off period of WT and PV equipment 

is n=20 years, and the annual interest rate is r=0.05. For the DR program, it is 

assumed that contingency calls follow the distribution of Poisson process with =5 

events/year. The maximum curtailment duration for one event is 8 hours, and the 
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curtailment level is 20 percentage of the mean load. Parameters and cost items related 

to WT and PV units are listed in Table 5, and these values are derived based on extant 

literature (Fingersh et al. 2006, Timilsina et al. 2012). These values are estimated 

based on existing literature with the best effort to reflect the real-world situations as 

closely as possible (Fingersh et al. 2006, Freris and Infield 2008).   

In this section, we carried out a comprehensive numerical experiment to test 

the zero-carbon production-inventory decision model proposed in Problem P2. 

Certain parameters such as carbon credits and production losses may vary with 

regions or business sectors. Hence the lower and upper limits are presented to capture 

the possible range of these parameters.  
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Table 5. Cost Parameters and Related Data for WT and PV 

Notation Meaning Value 

a1 Capacity cost of WT ($/MW) 1.5×106 

a2 Capacity cost of PV ($/MW) 3.5×106 

b1 O&M cost of WT ($/MWh) 5 

b2 O&M cost of solar PV ($/MWh) 2 

c1 Carbon credits of WT ($/MWh) 0, 10 

c2 Carbon credits of solar PV ($/MWh) 0, 20 

T DG system loan payment period (years) 20 

 Annual interest rate 0.05 

 production loss in DR ($/MWh) 104, 105 

 price of grid electricity ($/MWh) 60 

q net metering rate ($/MWh) 60 

 load  curtailment occurrence rate  (calls/year) 5 

s PV efficiency 0.15 

To PV operating temperature (oC) 45 

 loss-of-load-probability criterion 0.001 

vc, vr, vs cut-in, rated and cut-off wind speeds (m/s) 2.5, 10, 25 

We summarizes the necessary parameters pertaining to the multi-period, 

production-inventory planning model in Table 6. The virtual production facility 

belongs to industry sectors that are heavily dependent on electricity as their primary 

energy source (e.g. semiconductor production, plastics, vehicle manufacturing, and 

chemical processing). In this example, we assume the manufacturing facility is 
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capable of making two product types (Product 1 and Product 2), and the planning 

horizon is 52 weeks (or one year) with one week per period. Besides the energy and 

materials consumption, other resources involved include the labors and machines. The 

demand for products 1 and 2 of each period follows the normal distribution with 

(µ1=1,000, 1=150 ) and (µ2=600, 2=60), respectively. 

Table 6. Non-Energy Cost and Parameters for Production-Inventory System 

Notation Meaning Value 

j index for product type, we consider two product types j=1, 2 

k index for production period, we consider 52 weeks k=1, 2,…, 52 

 number of hours in a production period (hours) 168 

djk demand for product j in period k 

normally 

distributed 

cjk material and labor cost of making product j in period k ($) 

c1k=500, 

c2k=700 

hjk unit holding cost for product j in period k ($/period) 

h1k=100, 

h2k=140 

bjk backorder cost for product j in period k ($/item) 

b1k=1000, 

b2k=1400 

rjs 

non-energy resource s involved for making one unit of 

product j, where s=1 for labor and s=2 for machine 

r11=4, r21=6, 

r12=10, r22=20, 

wsk capacity limit for resource s in period k (hours) 

w1k=9000, 

w2k=2500 

ej 

amount of energy consumed for making one unit of product 

j (MWh/item) 

e1=0.9, e2=1.2 
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Firstly, we compute the production-inventory system without carbon credits, 

and the production losses are equal to100,000 $/MWh. Based on the data in Tables 2 

and 3, we compute the installation capacity of WT and PV in each location, and the 

results are listed in the following tables. At the meantime, we also compute the 

levelized cost of energy (LCOE) at each location, LCOE is defined as follows 

                                                 

1 1

(P )
,

c

DG

gh

it

t i

C
LCOE

P
 




             (56) 

where CDG(Pc) is given in Equation (8), and the dominator represents the annual 

renewable energy generated by the onsite DG system. 

The monthly load profile of the virtual manufacturing facility follows the 

normal distribution with the mean and the standard deviation shown in Table 1. Based 

on Problem P1, we search the optimal WT and PV combination such that the facility 

achieves net-zero carbon emission performance with the minimum LCOE. The 

simulation-based optimization algorithm is used to solve the proposed scholastic 

programming model, and the detailed search method is implemented using Matlab. 

We further classify the DG planning into four cases based on different carbon credit 

policies and operating modes (see Table 7). For Case 1, it serves as the benchmark 

analysis with no carbon credits to wind and solar energy. In Cases 2 and 3, carbon 

credits are taken granted to WT and PV, respectively. In Case 4, we assume the 

facility only operates 12 hours a day from 7am to 7pm. We are intend to investigate 

whether solar PV is preferred over WT when a facility consumes the energy only in 

daytime.  
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Table 7. Carbon Credits and Operating Mode of Manufacturing Facility 

Case Operating 

Mode 

Carbon credit of 

WT ($/MWh) 

Carbon credit 

of PV ($/MWh) 

Pricing 

Policy 

Utility Rate 

($/MWh) 

1 24/7 0 0 fixed 70 

2 24/7 35 0 fixed 70 

3 24/7 0 35 fixed 70 

4 24/7 0 0 TOU 35 and 70 

5 24/7 0 0 POU 70 and 105 

6 12/7 0 0  fixed 70 

Results Analysis 

In Case 1, we search for the optimal installation capacity of WT and PV that 

minimizes the LCOE in each city, and the results are summarized in Table 8. Three 

interesting observations are made according to these data. First, all locations except 

Phoenix are in favor of WT installation. Cities such as Sanya, Wellington and Rio 

Gallegos are able to achieve a cost-effective DG installation capability with LCOE of 

$48/MWh, $52/MWh and $60/MWh without carbon credits. These values are 30%, 

26% and 14% lower than the utility rate of $70/MWh. This is largely due to the higher 

average wind speed in these sites coupled with low equipment cost of WT. Phoenix is 

the only city dominated by PV installation due to the strong sun shine with extremely 

lower wind speed. The LCOE in Phoenix reaches as high as $198/MWh because of 

the high equipment cost of PV. Manufacturers can also achieve net-zero carbon 

emission in cities where average wind speed between 4~6 m/s, yet the LCOE rises up 

by 35-72% compared with the normal utility rate. Notice that the relative cost 

difference (RCD) in Cases 1 is defined as RCD=(LOCE-70)/70. We also compare the 
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LCOE with the projected utility price after 20 years. It is estimated as $126/MWh 

assuming 3% annual increase. The result shows that the LCOE in other cities is less 

than the projected rate except for Phoenix. Obviously onsite generation allows 

manufacturers to increase cost independence from the volatile electricity market.  

In Case 2, we minimize the LCOE of the DG system assuming that a carbon 

credit of $35/MWh because of WT installation. Likewise, in Case 3, we optimize the 

onsite DG system assuming that a carbon credit of $35/MWh is granted to PV 

installation. Table 9 presents the optimum resolution to WT and PV capacity and the 

LCOE for each city. It is thought-provoking to found that the installation of WT and 

PV in corresponding city remains almost the same by comparing Cases 2 and 3 with 

Case 1, indicating that carbon credit has a limited influence on the DG configuration. 

Nevertheless, carbon credit reduces the LCOE in locations where the subsidized 

generation technology is adopted. This example also shows that carbon credits alone 

may fail to stimulate onsite renewable integration unless it is aligned with the local 

wind speed and weather condition.  
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Table 8. Optimal WT and PV Capacity for Ten Cities in Case 1 

No. 
City 

WT 

(MW) 

PV 

(MW) 

LCOE 

($/MWh) 
RCD 

(%) 

Cost 

difference 

after 20 years 

($/MWh) 

1 Rio Gallegos 24.0 2.0 60 -14 -66 

2 Shanghai 70.1 1.4 120 72 -6 

3 Sanya 19.7 1.5 52 -26 -74 

4 Munich 62.3 1.4 115 64 -11 

5 Tokyo 66.0 1.0 115 65 -11 

6 Wellington 17.0 1.5 48 -31 -78 

7 Phoenix 1.3 49.2 198 184 72 

8 Boston 50.4 1.4 94 35 -32 

9 Honolulu 69.8 1.2 118 69 -8 

10 New York 61.7 1.3 112 61 -14 

 

       Table 9. Optimal WT and PV Capacity in Cases 2 and 3 with Carbon Credits 

    Case 2 Case 3 

No. City 
WT 

(MW) 

PV 

(MW) 

LCOE 

($/MWh) 

RCD 

(%) 

WT 

(MW) 

PV 

(MW) 

LCOE 

($/MWh) 

RCD 

(%) 

1 
Rio 

Gallegos 24.0 2.0 24 -66 24.0 1.8 66 -6 

2 Shanghai 70.5 1.5 84 21 69.9 1.7 116 66 

3 Sanya 19.5 1.9 19 -72 19.6 2.0 52 -26 

4 Munich 61.9 1.6 84 19 62.3 1.7 108 54 

5 Tokyo 65.9 1.0 84 21 66.0 1.0 107 53 

6 Wellington 17.0 1.5 17 -75 17.0 1.5 46 -35 

7 Phoenix 1.8 48.7 197 181 1.0 49.3 160 129 

8 Boston 50.3 1.5 63 -11 50.3 1.0 93 33 

9 Honolulu 70.1 1.0 86 22 69.9 1.1 128 83 

10 New York 61.9 1.1 75 7 61.8 1.2 106 51 
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In Cases 4 and 5, we reduce the LCOE of each city under TOU and POU 

pricing schemes. The results are plotted in Figure 15 in conjunction with Case 1 for 

comparison. Under the TOU policy, the utility company charges the manufacturer on 

the electricity based on when the energy is consumed. The rate is $70/MWh from 

7AM and 7PM, and reduced by 50% from 7PM to 7AM. Technically TOU can 

incentivize large industrial consumers to shave the load curve by shifting the demand 

to the off-peak hours. Interestingly, if the primary onsite generation is WT units, our 

numerical example shows that TOU does not bring significant cost saving to a 

manufacturer. However, Phoenix (City 7) dominated by PV installation does benefit 

from the TOU policy as the LCOE is reduced by $36/MWh compared to its cost in 

Case 1.  This is because the facility in Phoenix used to pay a flat electricity rate across 

24 hours, now can reduce the payment by 50% in the night when PV power is not 

available. For cities dominated by wind power, the majority of the electricity in the 

night is supplied from WT. Thus TOU has little influences on the LCOE of these 

locations.  

 

Figure 15. LCOE Comparisons (from left to right: Cases 1, 4, and 5) 
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In POU of Case 5, the utility’s electricity price increases step-wise in 

accordance to the amount of the power drawn from the grid. A regular price which is 

$70/MWh is imposed whenever the power load is below a certain level, say P1. If the 

load to the grid is P2 larger than P1, a higher price is imposed on the extra portion that 

exceeds P1. We set a quite stringent criterion in Case 5: as long as the load to the grid 

exceeds 20% of the mean load which is 9.587 MW, the rate is increased to 

$105/MWh. It is quite surprising that cities dominated with WT installation, the 

incremental cost resulted from POU policy is almost negligible. However, the LCOE 

in Phoenix increases and reaches $215/MWh, or $17 higher than its baseline. This is 

because in Phoenix almost all the electricity to power the facility in the night must 

rely on the utility grid as there is no PV generation after the Sun sets down. 

Table 10. Comparisons between Case 1 and Case 6 in Different Operating Modes 

   Case 1  Case 6 

No. City WT 

(MW) 

PV 

(MW) 

LCOE 

($/MWh) 

WT 

(MW) 

PV 

(MW) 

LCOE 

($/MWh) 

1 Rio Gallegos 24.0 2.0 60 12.0 1.0 64 

2 Shanghai 70.1 1.4 120 35.2 1.0 119 

3 Sanya 19.7 1.5 52 9.7 1.4 51 

4 Munich 62.3 1.4 115 31.1 1.1 116 

5 Tokyo 66.0 1.0 115 33.0 1.0 113 

6 Wellington 17.0 1.5 48 8.0 1.2 74 

7 Phoenix 1.3 49.2 198 1.5 24.8 199 

8 Boston 50.4 1.4 94 25.0 1.0 99 

9 Honolulu 69.8 1.2 118 35.0 1.0 125 

10 New York 61.7 1.3 112 30.6 1.3 112 

In Case 6, we optimize the capacity of WT and PV assuming the 

manufacturing facility operates only 12 hours a day from 7AM to 7PM. Since the 

mean energy consumption is reduced by 50 percent compared to the 24/7 mode, the 
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capacity of WT and PV units in each location is only a half of the corresponding 

installation in Case 1 (see Table 8). This result seems contradictory because the 

facility consumes the electricity in the daytime, and more PV installation would be 

anticipated due to the availability of sun shine. This is true if the DG system is 

designed and operates in an islanding mode with no connection to the grid. However 

in a grid-connected DG system, it is the levelized cost of energy, not necessary the sun 

availability, eventually determines the generating type and capacity. This is because 

the DG system can import the electricity from the grid during the daytime, and return 

the energy to the grid in the night when the load is small. Whether a manufacturer 

decides to install WT or PV as the onsite generator is not dependent on the facility’s 

operating model. Rather it is more related to the local wind speed and sunny days. 

PV Capacity Cost vs. Penetration Rate 

 We are also interested in how the cost of PV equipment influences its 

penetration in the onsite energy portfolio. To answer this question, we sequentially 

reduce the PV capacity cost from $4×106/MW to $0.5×106/MW, and solve the DG 

planning model to obtain a set of optimal renewables capacity mix. It is anticipated 

that the PV penetration rate will increase with its reduced capacity cost. The 

penetration rate is defined as the PV capacity over the total DG capacity which is the 

sum of WT and PV units.  We choose Shanghai and Munich as the candidate locations 

to analyze the PV penetration rate because both cities have moderate wind speed and 

weather condition. Figure 16 depicts the PV penetration rate versus its capacity cost 

for both cities. The PV penetration rate in Phoenix is also included for the purpose of 
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comparison.  If the cost of PV is reduced to $2×106/MW, it can compete with wind 

energy in locations like Shanghai where the number of overcast days is 38 percent in 

a year. For locations where the overcast days exceed 50 percent in a year, the cost of 

the PV must be reduced to $1×106/MW in order to penetrate into the DG portfolio. If 

the PV cost can drop to $0.5×106/MW, it will displace the wind energy market in 

Shanghai, Munich, and other cities.  

 

Figure 16. PV Penetration Rate vs. Capacity Cost 
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CHAPTER VI 

INDUSTRIAL ROBOTIC ASSEMBLY EXPERIMENTAL RESULT 

Industrial High Precision Robotic Assembly  

Experiments on a high precision valve body assembly process, a typically peg-in-

hole assembly process, are carried out to demonstrate the proposed method. The 

clearance between the peg and the hole is only 40 m  which exceeds the motion 

accuracy of the industrial robot. The experimental system as shown in Figure 17 is 

consisted of an ABB IRB140 robot with a single cabinet IRC5 controller, an ATI 

Gamma force sensor fitted with the robot end effector. The value body is fixed on the 

steel table. 

 

Figure 17. Experimental System 

An external computer is connected to the robot controller via Ethernet link for 

real-time data communication. The two-way connection is able to send assembly 

parameters from the host PC to the controller, and to return real-time feedback data 
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from the controller to the PC. The ABB force control package is used to perform the 

assembly process. A robot program (ABB robot programming language, RAPID) has 

been developed to carry out the assembly process parameterization. Another RAPID 

program downloaded in the controller is to communicate with the external computer 

and generate robot force control parameters. A SVR enabled algorithm interacts with 

the force control assembly production program to switch the value of assembly related 

parameters from optimization to production and collect the experimental data. 

Experiments with different offsets are performed according to the assembly 

parameters for small and large work piece locations, respectively. The robot tool starts 

from a random position, contacts with the surface of the work piece and moves along 

a pattern. Once the tool approaches the vicinity of the hole, the tool can move 

forward. The movement is monitored by the force sensor and the search process 

terminates if the searching attempt fails. 

The assembly process consists of force guided spiral search and force controlled 

linear move. There are four process parameters involved in the assembly process: 

search force (SF), search speed (SS), insertion force (IF) and search radius (SR). As 

listed in TABLE 1, four sets of experiments are performed for comparison purpose. 

SVR #1 refers to three parameters and each parameter has three values; SVR #2 refers 

to three parameters and each parameter has more than three values; SVR #3 refers to 

three parameters of different range and each parameter has more than three values. In 

Table 11, the parameters are defined using the format (Minimum Value: Interval: 

Maximum Value). The noise of the system is shown in Table 12, which is a random 
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uniform number between the minimum and maximum values. 

Table 11. Parameter Configurations 

Method SS(mm/s) SF(N) IF(N) SR(mm) 

SVR #1 [250:50:350] [5:15:35] [50:25:100] 2 

SVR #2 [250:10:350] [5:0.5:35] [50:5:100] 2 

SVR #3 [200:10:300] [10:0.5:40] [25:5:75] 2 

DOE [250:50:350] [5:15:35] [50:25:100] 2 

Table 12. System Noise of Online Assembly Process 

x (mm) y (mm) q1 q2 q3 

1.5  1.5  0.001  0.003  0.001  

The parameters in the algorithm are chosen as 1 0.9k  , 2 0.7k  , 3 0.05k  , 

0.99t  . From Equation (54), we know that the model will be converged when 1k  

and 3k  are close to 1 and 0, respectively. Either α and current cycle time or FTT rate, 

which satisfies the given criteria, will keep the system in production process.  The 

process parameter optimization should be restarted if the shortest cycle time recorded 

is less than 70% of the current cycle time and FTT rate under 99%. As for the 

hyperparameter of SVR, we choose   between 0 and 5, and 
5 5[2 ,2 ]  . 

In the DOE method, multiple values are chosen to test the parameter 

combinations in order to overcome the variations. The combination resulting in the 

minimum cycle time and variation is treated as the optimal parameters. Quite often a 

cross-functional team by quality engineers, software programmers and machine 

operators is needed to perform this kind of DOE optimization task. Compared with 

DOE methods, SVR enabled algorithm is capable of finding a set of optimal assembly 

parameters automatically in a few iterations without human intervention. 
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DOE Solutions 

The analysis of the data shows that, insertion force is the least influential 

parameter in the assembly process. For the robotic assembly process, it is desirable to 

reduce the mean cycle time and its variance. After collecting the needed data set using 

DOE method, the best parameter values recommended by DOE are [300, 35, 75] in 

Figure 18(d). The corresponding mean cycle time is 3.26s and the standard deviation 

is 0.19s . 

Results of SVR Enabled Algorithm 

The experiments based on SVR were performed online to automatically improve 

the system performance according to the real-time feedback information. Observed 

changes resulting in better performance are given with more attention, while changes 

resulted in worse performance are largely ignored. Compared to the SVR #1 

configuration, SVR #2 and SVR #3 divide each parameter into more levels. Thus the 

underlying relationship between the parameters and the cycle time can be represented 

more precisely. Due to the variations and noise of the assembly process, the derived 

SVR models in all experiments are not the same. That is why SVR #2 and SVR #3 

experiments converge to two different sets of parameters [300, 30.5, 75] and [300, 30, 

75]. However, the discrepancy is very small owing to the model similarity. 
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(a)                                                               (b) 

 

(c)                                                              (d) 

Figure 18. Experiment Results: a) SVR #1. b) SVR #2. c) SVR #3. d) DOE 

The three SVR experiments with different configuration are plotted in Figure 

18(a), 18(b) and 18(c), respectively. We can see that the initial model is unstable with 

little useful information. Since this is a continuous self-learning process, the modeling 

process has a variety of control capabilities, including altering the assembly 

parameters, switching to the optimization stage to quickly capture the changes of parts 

and fixtures, and returning to the normal production after parameter adjustment. The 

proposed method applies SVR enabled parameter optimization in the production to 
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automatically adapt to the variations in robotic force control assembly and optimize 

the productivity of the assembly system without disrupting the production. When 

converging to a minimal point after several iterations, the system still maintains 

production process under a stable condition. 

Each experiment can be divided into two stages:  optimization and production. 

The optimization stage requires 7 to 10 assembly tasks. The algorithm explores the 

parameter space, constructs the underlying SVR model and finds the optimal process 

parameters online. With more data sets available, the model is updated step by step. 

Once the optimal parameters are found, the system switches to the production stage to 

perform the assembly work using the identified optimal parameters. 

Discussion 

The optimal assembly parameters, the cycle time (mean and variance) and the 

number of experiments are listed in Table 13. From Table 13, the number of 

experiments to identify the optimal assembly parameters is largely reduced by using 

SVR enabled algorithm. 

Table 13. Comparison of Experimental Results 

Method Optimal µ(s) 𝜎(𝑠) 

Number of 

Experiments 

SVR #1 [300, 30 ,75] 3.15 0.17 9 

SVR #2 [300, 30.5 ,75] 3.20 0.15 7 

SVR #3 [300, 32.5 ,75] 3.18 0.13 7 

DOE [300, 35 ,75] 3.26 0.19 810 

By comparing the DOE results with that of SVR, it is noted that the SVR enabled 
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algorithm is able to find the same optimal parameters in only about 10 experiments 

instead of 810 experiments. 

For the DOE method, the assembly parameters cannot be chosen arbitrarily, so 

the real optimal parameters may not be found. Because the SVR enabled algorithm 

can explore the interesting area in detail without worrying about the complexity, it can 

identify the optimal parameters more precisely and achieve better cycle time than 

DOE based method. Therefore, the SVR is more efficient than the DOE method. 

The parameter variations of optimization and production processes of SVR #1 are 

as shown in Figure 12. Even though the assembly process is influenced by 

environmental noise, parts variations and locating variations shown (see Figure 19(a) 

to 19(e)), the process is quite robust in the sense that it finds the optimal parameters 

and adapts itself to the changing environment. Figure 19(f) and 19(g) are the hyper 

parameters changes of SVR model before they converge to finish the optimization 

process. When the SVR enabled algorithm finds the optimal assembly parameters, the 

switching parameter   is set to zero to start the production process shown in Figure 

19(h). 
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Figure 19. Parameter Variation of SVR 1: a) Random X-Offset of the robot arm axis 6 from the 

hole position; b) Random Y-Offset of the robot arm axis 6 from the hole position;  c) Random X-

Axis rotation of the robot arm axis 6; d) Random Y-Axis rotation of the robot arm axis 6; e) 

Random Z-Axis rotation of the robot arm axis 6; f) Changes of SVR hyper parameter   step by 

step, finally converged to 1.3139; g) Changes of SVR hyper parameter    step by step, finally 

converged to 0.0961; h) Switching parameter   
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Figure 20. FTT Rate 

A special case is examined and the analysis is shown in Figure 20. When the 

assembly system enters production loop, a piece of sheet steel is placed in front of the 

hole to block the normal production process with the purpose of restarting the 

optimization process. Though the peg-in-hole process quitted in the first four 

assembly processes, the system is able to proceed normally with the identified 

parameters until the FTT rate drops below 99%. Then    is set to 0.5 to restart the 

optimization process.  After several search iterations for optimization, the system is 

stabilized and enters production loop again when   is set to zero. 

DOE methods were chosen and tuned carefully after performing a series of 

experiments, to obtain the optimal process parameters. The DOE with 33 27  sets of 

parameters were performed offline for comparison.  Experiments were repeated 30 
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times for each set of parameter combination, so there are totally 810 experiments 

being conducted to minimize the interference from system noise and environmental 

changes. 
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CHAPTER VII 

PRODUCT-INVENTORY EXPERIMENTAL RESULT 

According to the optimized demand response, we solve the production-

inventory model by incorporating the proposed load curtailment constraint. In this 

case, we recomputed the new PI result based on the new solution. Our focus is on the 

multi-product multi-period under a minimum cost policy, where the production 

quantity, inventory level and backorders are close linked with each period, however, 

the total cost is minimized on the whole basis.  Two products are produced by only 

one facility. We also assume that the planning horizon is 52 with one week per period. 

The experimental result without power response is shown in Table 14. 

Table 14. PI Results without Power Response 

Week Product 1 Product 2 

 

Production 

quantity 

Inventory 

level 
Backorders 

Production 

quantity 

Inventory 

level 
Backorders 

1 1353 0 18 489 0 143 

2 1094 0 0 662 0 191 

3 877 0 0 655 0 0 

4 1030 0 0 652 0 0 

5 849 0 0 619 0 0 

6 908 0 0 522 0 0 

7 901 0 0 574 0 0 

8 875 0 0 755 134 0 

9 1057 0 0 681 0 0 

10 833 0 0 787 21 0 

11 1100 0 0 658 160 0 

12 1119 0 0 645 23 0 

13 1156 0 0 621 0 0 
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Table 14. Continued 

Week Product 1  Product 2  

 

Production 

quantity 

Inventory 

level 
Backorders 

Production 

quantity 

Inventory 

level 
Backorders 

14 997 0 0 620 24 0 

15 1094 1 0 662 43 0 

16 1269 0 0 545 0 0 

17 1008 0 0 677 84 0 

18 1094 121 0 662 57 0 

19 1145 0 0 628 0 0 

20 624 0 0 685 0 0 

21 932 0 0 687 47 0 

22 1365 0 0 481 0 0 

23 929 0 0 643 0 0 

24 916 0 0 698 0 0 

25 816 0 0 646 17 0 

26 1119 0 0 645 0 0 

27 684 0 0 644 0 0 

28 880 0 0 582 0 0 

29 1085 0 0 618 0 0 

30 1000 0 0 553 0 0 

31 1094 0 0 653 0 0 

32 1019 0 0 531 0 0 

33 1102 0 0 536 0 0 

34 807 0 0 551 0 0 

35 1033 0 0 423 0 0 

36 765 0 0 686 0 0 

37 1117 0 0 620 0 0 

38 953 0 0 578 23 0 

39 1098 0 0 659 0 0 

40 919 0 0 497 0 0 

41 1049 0 0 594 0 0 

42 1158 0 0 586 0 0 
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Table 14. Continued 

Week Product 1 Product 2 

 

Production 

quantity 

Inventory 

level 
Backorders 

Production 

quantity 

Inventory 

level 
Backorders 

43 703 0 0 619 0 0 

44 720 0 0 619 0 0 

45 725 0 0 548 0 0 

46 1127 0 0 598 0 0 

47 1061 0 0 590 0 0 

48 895 0 0 729 91 0 

49 1225 0 0 575 0 0 

50 1021 0 0 667 0 0 

51 762 0 0 548 0 0 

52 847 0 0 605 0 0 

According to Table 10, the production quantity for each period is different in 

order to satisfy the constraints. As a consequence, the manufacturing facility would 

rather bear high level of inventory and backorders in order to lower the cost. For the 

next stage, we recalculate the PI problem according to the power response. Even 

though the inventory level and backorders may change as a result, the total production 

quantity remains the same. The proposed product inventory result with power 

response is generated in Table 15. 

Table 15. PI Results with Power Response 

Week Product 1 Product 2 

 

Production 

quantity 
Inventory level Backorders 

Production 

quantity 

Inventory 

level 
Backorders 

1 1353 0 18 489 0 143 

2 1094 0 0 662 0 191 

3 915 38 0 655 0 0 

4 1010 18 0 652 0 0 

5 831 0 0 619 0 0 
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Table 15. Continued  

Week  Product 1   Product 2  

 
Production 

quantity 

Inventory 

level 
Backorders 

Production 

quantity 

Inventory 

level 
Backorders 

6 908 0 0 522 0 0 

7 901 0 0 574 0 0 

8 875 0 0 755 134 0 

9 1057 0 0 681 0 0 

10 833 0 0 787 21 0 

11 1100 0 0 658 160 0 

12 1119 0 0 645 23 0 

13 1156 0 0 621 0 0 

14 997 0 0 620 24 0 

15 1093 1 0 662 43 0 

16 1269 0 0 545 0 0 

17 1008 0 0 677 84 0 

18 1094 121 0 662 57 0 

19 1145 0 0 628 0 0 

20 624 0 0 685 0 0 

21 932 0 0 687 47 0 

22 1365 0 0 481 0 0 

23 929 0 0 643 0 0 

24 916 0 0 698 0 0 

25 816 0 0 655 26 0 

26 1134 15 0 636 0 0 

27 669 0 0 644 0 0 

28 880 0 0 582 0 0 

29 1085 0 0 618 0 0 

30 1021 21 0 553 0 0 

31 1073 0 0 653 0 0 

32 1019 0 0 531 0 0 

33 1102 0 0 536 0 0 

34 807 0 0 551 0 0 



 

85 

 

Table 15. Continued  

Week  Product 2   Product 2  

 

Production 

quantity 

Inventory 

level 
Backorders 

Production 

quantity 

Inventory 

level 
Backorders 

35 1033 0 0 423 0 0 

36 765 0 0 686 0 0 

37 1117 0 0 620 0 0 

38 953 0 0 578 23 0 

39 1098 0 0 659 0 0 

40 919 0 0 497 0 0 

41 1049 0 0 594 0 0 

42 1158 0 0 586 0 0 

43 703 0 0 619 0 0 

44 720 0 0 619 0 0 

45 743 18 0 548 0 0 

46 1109 0 0 598 0 0 

47 1061 0 0 590 0 0 

48 895 0 0 743 105 0 

49 1245 20 0 561 0 0 

50 1001 0 0 667 0 0 

51 762 0 0 548 0 0 

52 847 0 0 605 0 0 

 

 By comparing Tables 7 and 8, we compare the difference in Figure 21, from 

which we can see that the production quantity for two product remains the level of 

51309 and 32008, while the inventory level was changed as 122 to 252 and 724 to 747. 

Due to higher cost for backorders, the number keeps the same without any changes.  
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Figure 21. Comparison of Experimental Results 

In this step, we solve the proposed product inventory problem to minimize the total 

cost for manufacturing facility.  
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

This research fills the gap between the onsite renewable energy sources and 

energy saving technologies and how they are fused and integrated into the multi-period, 

production-inventory planning model to realize zero-carbon emission goal for cloud 

manufacturing. In addition to power intermittency, our model also accommodates the 

random load curtailments resulted from manufacturer’s participation in demand 

response programs.  

Contribution 

To decrease electricity usage, an online SVR enabled algorithm is proposed to 

optimize the process parameters for high precision robotic assembly systems. To 

demonstrate the effectiveness, we tested the proposed method on a peg-in-hole 

assembly station in a laboratory setting. The result show that a robot equipped with 

support vector regression enabled algorithm possesses a strong adaptive capability in 

uncertain production environments. In short, the SVR enabled algorithm is able to 

adjust the optimal process parameters online without interrupting the production 

continuity. Hence, the assembly cycle time is reduced and high FTT rate is guaranteed. 

These desirable features are obtained as a result of balancing the interactions between 

exploration and the exploitation. 

We also propose a three-stage optimization algorithm to search for the 

production quantity, the stock level, the backorders, and the generation capacity of wind 

turbines and solar panels such that the annual production cost is minimized. Different 
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regions around the world with a variety of climate conditions are used to test the 

renewables-based production system. We also test out multi-product multi-period 

product inventory system through rigorous experimental and statistical methods. Albeit 

the intermittency of wind and solar generation, the results show that it is technically 

feasible and economically affordable to operate a net-zero carbon production-inventory 

system via onsite generation scheme.  

Future Work 

Future investigations in this area are identified as: 1) use real-world 

manufacturing data to further verify the proposed method; 2) apply the online algorithm 

to optimize multi-stage robotic assembly processes, such as cylindrical insertion for 

transmission torque converter assembly; 3) extend the production inventory model for 

multiple manufacturing factories; 4) include more technologies into the model such as 

battery storage in industrial applications and vehicle-to-grid service to stabilize the 

power grid.  
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