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ABSTRACT 
 

Tamarisk (Tamarix ramosissima), commonly known as saltcedar, is an invasive 

plant that has displaced numerous native riparian species in the southwestern US. 

Mapping Tamarix populations is essential for developing effective eradication programs. 

Innovative remote sensing technologies such as unmanned autonomous vehicles (UAV), 

can provide high spatial resolution imagery for assessing vegetative distributions. UAV 

are able to collect images at affordable rates, flexible schedules, and at no risk to the 

pilot; therefore, an economic comparison of UAV to satellite and piloted aircraft was 

assessed.  Additionally, an assessment of the accuracy for identifying Tamarix using 

UAV remote sensing was evaluated. UAV imagery was obtained over 8.8 km
2
 of riparian 

corridor at the Matador Wildlife Management Area to identify Tamarix distribution. An 

unsupervised classification method was utilized to assess spatial surface features by 

analyzing spectral characteristics. An accuracy assessment of the feature classes was 

performed to evaluate the overall classification accuracy of the imagery. The accuracy 

assessment concluded an overall Kappa statistic of 0.62, with a Kappa statistic of 0.21 for 

Tamarix. Therefore, the classification accuracy is found to be moderate (0.40 > K < 0.79) 

for surface features and poor (K < 0.40) for Tamarix. Low accuracy for Tamarix was 

attributed to use of only RGB imagery (i.e., no NIR) and the unsupervised classification 

application.  The results of this study indicate that UAV-based remote sensing is able to 

produce high resolution images, moderately accurate in identifying surface features, and 



 

xi 
 

cost-effective. Challenges and considerations for increasing Tamarix classification 

accuracy are addressed in future research recommendations.  
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CHAPTER I 

Introduction 

Background 

Land cover contains immense environmental information, which is valuable for 

evaluating land use, determining abiotic and biotic relationships, managing resources, 

monitoring changes, and developing effective management policies. The need to collect 

information about and monitor land cover change arose as the need for environmental 

planning and management increased. In the past, land cover was primarily mapped using 

field-based surveys; however, this method can be very costly and time consuming.  Using 

remotely sensed datasets and the spectral data collected by satellite and sub-orbital 

sensors have revolutionized land cover mapping at the local, regional, and global scales.  

To date, the suite of research and applications on remotely sensed datasets to map land 

cover comprises a variety of topics including monitoring wildlife habitat (Manier et al., 

2011), ecosystem productivity (Liu et al., 1997), ecosystem services (Egoh et al., 2008), 

hydrologic impacts (Nie et al., 2011), and invasive species management (Kettenring et 

al., 2011).  

Common remote sensing platforms to map land cover include satellite (Cohen and 

Goward, 2004) and piloted aircraft (Giri, 2012).  Choosing the aerial platform and sensor 

that is appropriate for a particular application is dependent on the type of information and 

the level of detail desired.  If a high level of map classification detail is required, satellites 

can be used to obtain high spatial resolution imagery (0.6-4.0 m). However, this option 

can be costly (Klemas, 2011), particularly if repeat acquisitions are required to monitor 

land cover change over short temporal durations. Additionally, satellite availability can 
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be an issue if the sensor is not able to obtain imagery within a specific time relevant to 

vegetation phenology.   

Using a piloted aircraft to collect imagery of an area is often a preferable 

approach for an application that requires a detailed classification of surface features, such 

as identifying specific plant species across a heterogeneous landscape. Piloted aircrafts 

provide increased flexibility in terms of scheduling for image acquisition than satellite 

platforms; however, they still pose challenges with regard to deployment, costs, and risk 

to human life (Rango et al., 2009). 

An emerging alternative to traditional satellite and piloted aircraft image 

acquisitions is the implementation of unmanned autonomous vehicle (UAV) systems.  

UAV systems consist of a manual or remote-controlled aerial platform that is capable of 

acquiring imagery of surroundings with an on-board camera (Jensen et al., 2008). The 

applications of UAV systems vary considerably from recreational and military use to 

natural resource management.  

In terms of land cover mapping, the timing of image acquisition can be crucial to 

obtain the necessary information for research. UAVs can be deployed more readily than 

piloted aircraft, especially since many systems do not require a runway for deployment. 

In terms of cost effectiveness, many UAVs use a rechargeable battery (Quaritsch et al., 

2011), which is a more affordable and sustainable option than piloted, fueled aircrafts. 

Additionally, due to the size and materials of a UAV, maintenance costs are significantly 

lower than for satellites or piloted aircrafts. Since high spatial, low spectral resolution 

satellite images are expensive (Klemas, 2011), and piloted aircrafts possess inherent risk, 

high maintenance costs, and inflexibility, UAVs offer a platform that is effective, 



 

3 
 

affordable, safe and flexible for a variety of land cover mapping applications that require 

temporally-specific, high spatial resolution image datasets.     

A specific land cover application that may benefit from UAV-based image 

acquisitions is the mapping and monitoring of invasive species. Invasive species 

generally distribute in a patchwork pattern throughout the landscape, thus a high 

resolution remote sensing system is ideal for detecting fragmented vegetation patches.  

One such invasive in Texas is Saltcedar (Tamarix ramosissima).  Tamarix is native to 

southern Europe, eastern Asia and northern Africa. In the early 1800s, Tamarix was 

introduced into the U.S. to prevent soil erosion along riparian communities and as an 

ornamental plant.  

Since then, Tamarix has spread to become a noxious weed in the U.S. due to its 

phreatophytic and halophytic nature, as well as undesirable food source for wildlife 

(North Dakota Department of Agriculture, 2012). One Tamarix plant can transpire over 

757 liters of water per day, therefore, significantly reducing or depleting water flow along 

drainages (North Dakota Department of Agriculture, 2012). Native plants are unable to 

re-establish an area because of the increased salinity exuded from Tamarix’s leaves. 

Tamarix can spread by seed (one plant can produce up to 600,000 seeds annually) or 

vegetative re-growth from the root system. Tamarix is challenging and costly to control 

once established and requires early detection, prevention, monitoring and local 

eradication, thus monitoring Tamarix populations is essential for creating an effective 

management plan (North Dakota Department of Agriculture, 2012).  

Mapping Tamarix to identify location and areas of infestation has become a high 

priority for natural resource researchers and managers (Evangelista et al., 2009). The 
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ecological impact Tamarix has on native plant populations as well as hydrologic regimes 

is of major concern, thus verifying a need to map this species.  Based on the phenological 

cycle of Tamarix, temporal resolution is important to ensure the data collected will 

consist of unique spectral signatures compared to other vegetation present on the 

landscape (Everitt et al., 2006). To accurately map Tamarix, a high spatial resolution, 

multispectral, image acquisition during leaf senescence would be ideal. A UAV system 

would potentially provide the most efficient, affordable, and adequate method for 

obtaining such imagery. 

Problem Statement  

A specific area in Texas that has experienced negative consequences of Tamarix 

spread is the Matador Wildlife Management Area (MWMA).  Within the MWMA, 

Tamarix has spread aggressively, specifically along riparian corridors by forming thickets 

(Charles and Dukes, 2007). Since the climate of the MWMA is a semi-arid savanna, 

water availability is limited and therefore threatened by phreatophytic Tamarix. The rapid 

growth rate and halophytic nature of Tamarix reduces habitat for other native riparian 

plants, such as Populus deltoides and Salix spp. (Nagler et al., 2011).  

The MWMA has a goal to develop a monitoring, management, and eradication 

plan for Tamarix; therefore, a highly detailed vegetation map would be a useful 

operational dataset for the plan. A map identifying Tamarix would serve as a guide to 

those implementing targeted eradication efforts within the MWMA.  
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Research Objectives 

The overall goals of this research are to produce an UAV image-derived 

vegetation map of a riparian corridor along the Pease River at the MWMA and assess the 

cost-effectiveness of implementing the UAV system. To achieve these goals, the 

following research objectives are listed below.    

1) Obtain and process UAV-based imagery; 

2) Classify imagery to map Tamarix presence; 

3) Assess accuracy of classification; and 

4) Evaluate and compare costs of UAV, satellite, and piloted aircrafts.  

Objective 1 addresses obtaining UAV imagery and associated image processing. 

Objective 2 involves the classification of the imagery produced from Objective 1 in order 

to identify vegetation, specifically Tamarix. Objective 3 consists of an accuracy 

assessment of the classified imagery compared to in situ observations.  Objective 4 

calculates and compares the costs of UAV, satellite, and piloted aircraft platforms for 

obtaining remotely sensed data.  

Justification 

UAV-based remote sensing provides flexible scheduling to correspond with plant 

phenology, results in ultra-high spatial resolution, and the onboard sensor is able to 

provide sufficient spectral resolution to map vegetation at the species level.  Producing an 

accurate map of Tamarix location, presence, and abundance at the MWMA will be useful 

information for future monitoring and eradication efforts by MWMA managers.    
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CHAPTER II 

Literature Review 

Overview of Remote Sensing for Land Cover Classification 

Remote sensing takes the saying “a picture is worth a thousand words” to new 

heights. Remote sensing is an interdisciplinary science that consists of the use of a sensor 

platform (e.g., satellite, piloted aircraft, or UAV) that collects information of the target 

resource from a remote distance.  Remote sensing technology has been developing since 

the 1800s when the infrared and visible wavelengths were discovered (Campbell, 2002). 

Photography was developed around 1840 (Friedman and Ross, 2003) and the first aerial 

images were taken from a hot air balloon in the 1850s (Campbell, 2002). By the early 

1900s, applications using knowledge of wavelength-specific electromagnetic radiation 

(EMR) were developed and aerial images were being taken from kites and other aerial 

platforms. In 1908, Wilbur Wright flew the first aircraft to take a photograph (Geist, 

2006). From that point, technology rapidly progressed. Digital image processing resulted 

in sensor advancements in approximately 1980, including hyperspectral sensor 

development. Around this same time, new generation satellites were launched into orbit 

(Campbell, 2005). Finally, the miniaturization of remote sensing systems (platforms and 

sensors) led to some of the first uses of UAV image acquisitions around 1980 

(Eisenbeiss, 2004).  

 Passive remote sensing systems collect spectral information by recording the 

quantity of EMR emitted by the sun that is reflected within defined wavelength intervals 

(e.g., blue [450-515 nm], green [525-605 nm], red [640-690 nm], or near-infrared [750-

1,300 nm]; Jensen, 2005) of the electromagnetic spectrum. Each wavelength of EMR has 
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a relatively unique interaction with different surface features, and so remotely sensed data 

can be used to identify various surface features, and vegetation in particular. Mapping 

land cover is essential for resource management (Friedl et al., 2010) as land cover data 

(derived from imagery) provide useful information about the environment on local and 

global scales, which is important for sustainable land management, water quality and 

quantity, as well as ecosystem health.  

Advantages of UAV Remote Sensing for Natural Resource Management 

UAV popularity for natural resource management has been rising due to a 

reduction in sensor size, greater availability, as well as faster and low-altitude 

deployment. There are a variety of emerging applications of UAV remote sensing for 

natural resource management and ecological research. Remote sensing via UAV is a 

sound approach for obtaining information at low-altitudes, particularly for plant 

community distributions. Booth et al., (2003) concluded that UAV systems are effective 

economically, scientifically, and provide increased efficiency. Since ground-based 

monitoring of landscapes is time consuming and resource intensive, remote sensing can 

be an alternative solution to accurately assess an ecological state or change.  According to 

Kettenring et al. (2011), UAV remote sensing for acquiring high-spatial resolution 

imagery can offer valuable information as to the rate of invasion and location of invasive 

(wetland) species. 

The advantages of UAV over using piloted aircrafts for remote sensing and 

rangeland monitoring include: improved safety, low cost, more flexible flight plans, and 

closer proximity to target (Hardin and Hardin, 2010). Five centimeters (cm) UAV sensor 

image resolution may be used to measure gap and patch size of canopy type, and 
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vegetation ground cover as well as bare soil (Rango et al., 2006). Less than one cm 

image resolution may be used for ground truth or reference data (Rango et al., 2006). 

UAV image acquisition is an effective means of obtaining remotely sensed data for 

repeatable studies, such as data that are obtained for the same site on different days at the 

same relative time (Laliberte et al., 2010). Lightweight UAV have the potential to be 

used by rangeland consultants, resource management agencies, and private land 

managers in order to acquire affordable data for making resource management 

assessments (Rango et al., 2006). 

UAV based remote sensing platforms have been used not only to inventory 

natural resources, such as agriculture, vegetation, hydrology, but also to map natural 

disasters. Digital imagery obtained from a UAV sensor has been found to be accurate for 

producing a Digital Terrain Model from the imagery, which is useful for systems 

managing natural disasters (Udin et al., 2012). Mapping floods, for instance, can be 

dangerous and challenging if performed through ground surveying and costs associated 

with satellite and piloted aircraft remote sensing for mapping floods may be too 

expensive. UAV based remote sensing systems offer an affordable, flexible means for 

acquiring flood map data that can be useful for determining pay compensation of an area 

that has been flooded (Lee et al., 2013).  

Utilizing UAV systems to monitor controlled or wild fires poses an important 

developing application for natural resource management. UAV based remote sensing 

systems are feasible for monitoring forest fires because of the close proximity to the 

ground (compared to satellites) and the flexibility of deployment (compared to piloted 

aircrafts). Using UAV based systems can assist fire-fighting operations in monitoring 
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fires from safe locations and developing plans for controlling fires as well as develop 

routes of evacuation (Merino et al., 2011). 

Remote Sensing Considerations to Identify Tamarix 

Remote sensing has been employed for decades to map and monitor invasive 

plant species such as Tamarix (Everitt et al., 2006). The characteristics of Tamarix’s 

spectral reflectance have been described in various studies to identify riparian infestations 

using normal color aerial photography (Everitt et al., 2006). The timing of remote sensing 

Tamarix is crucial to accurately identify and classify the plant among other plant species. 

During leaf-out season in mid-April, Tamarix reflects a similar spectral response as 

plants such as mesquite (Prosopis spp.). Tamarix begins the defoliation process in early 

fall and total litter fall occurs by late December, therefore, to collect data that distinguish 

Tamarix from other vegetation depends on the season of the year (Yang et al., 2013).  

The phenological cycle of plants influences spectral characteristics depending on 

the phase of the cycle due to changes in pigment production. If the images are taken 

during a phase of the phenological cycle when the plant of interest is exhibiting unique 

spectral characteristics to that of other plants within the study area, then a single-date 

image may suffice for identifying that particular species. The phenological cycle of 

individual plants is affected by genetic and environmental factors (e.g., weather, climate, 

temperature, and nutrient availability). Members of the same species may vary 

individually in their development through the phenological cycle, which may necessitate 

multi-temporal imagery (Koch et al., 2007).   

The timing of image acquisition is critical for providing useful imagery that can 

be used to map specific vegetation species. In an effort to predict optimal timing for 
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acquiring imagery to classify vegetation, a time-series of conventional color satellite 

images have been utilized in previous research. Research has concluded that fall is the 

ideal time in Texas for identifying Tamarix based on the unique spectral response 

produced by the yellow-orange leaves prior to defoliation. Satellite images were acquired 

in the lower Arkansas River in Colorado for six months of the year (April – October). 

The images were classified to identify Tamarix and other vegetation. September and 

October were found to produce the most specific and accurate classification for Tamarix 

(Evangelista et al., 2009). Thus, single-date imagery should be obtained between 

September and October in Texas in order to maximize Tamarix detectability.  

Utilizing single-date imagery may not be sufficient in addressing all research 

objectives; therefore, multi-temporal imagery is often necessary. In a study performed by 

Everitt et al. (2007), multi-temporal imagery was acquired in order to assess the 

biological control of Tamarix. The Tamarix population was exposed to the leaf beetle 

(Diorhabda elongata) on various occasions in 2004 and aerial images were acquired 

using a piloted aircraft on three separate dates: August and September, 2005 and August 

2006. A supervised classification was performed on all three images to classify the 

surface features (i.e., vegetation type). The overall accuracy of the classification was 

95%, which indicates that sensors on aerial vehicles are an accurate system for collecting 

vegetative composition data. Multi-temporal remotely sensed data were also found to be 

useful for assessing and monitoring the effect D. elongata had on Tamarix (Everitt et al., 

2007).  Further, in another study, Evangelista et al., (2009), successfully used time series 

Landsat 7 ETM+ satellite data with the Maxent model to map Tamarix in Colorado.    
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UAV-specific Research to Map Plant Species 

High spatial resolution remotely sensed data are valuable in detecting invasive 

species throughout a landscape (Ge et al., 2005). Invasive species generally distribute in a 

patchwork pattern throughout the landscape, thus a high resolution remote sensing 

system, such as an UAV with a high resolution sensor, is ideal for collecting spatial data 

(Ge et al., 2005). An aerial image can be accurately classified to identify vegetation types 

and detecting changes over time, both of which are vital for monitoring ecological 

changes and invasive species progression (Kettenring et al., 2011).    

The high-spatial resolution of UAV based remote sensing systems (sensor with 

high-spatial resolution capabilities) is useful for accurately locating or mapping invasive 

plant species (Kettenring et al., 2011). In a study conducted at Bear River Migratory Bird 

Refuge in Utah, a UAV based sensor system was deployed to geographically and 

spectrally analyze 130 km
2
 for Phragmites australi expansion. The images acquired 

consisted of RGB and NIR spectral wavelengths with a spatial resolution of 25 cm. The 

images were classified to identify the vegetation using a multi-class relevance vector 

machine. The overall classification was 95% accurate. These results indicate that UAV 

remote sensing systems can provide accurate results for mapping vegetation in general 

and specific plant species, such as invasives. 

Invasive, non-native plant species are challenging for natural resource managers 

to monitor.  However, high spatial resolution images, such as those acquired by UAV 

systems, can provide a viable source of information to classifying vegetation and 

detecting change over time. Previous research has determined the spectral, spatial, and 

temporal (e.g., single-date or multi-temporal) factors influencing data acquisition. Sensor 
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capabilities vary among UAV platforms, therefore, determining the resolution needs to 

address research objectives and identifying the appropriate sensor and UAV platform is 

essential. At this point, image classification of Tamarix has been successful using satellite 

and aerial imagery, however, the use of image data from UAV systems for classifying 

Tamarix have not been explored.  
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CHAPTER III 

Data and Methodology 

 

Study Area 

 

The MWMA includes 114 km
2
 and is located in the Rolling Plains (Figure 1). The 

Texas Parks and Wildlife Department (TPWD) purchased the MWMA in 1959 to 

research and manage the wildlife as well as allow public use of the land. Hunting, fishing, 

bird watching, hiking, camping and nature study are some of the public use activities that 

draw tourists to this area.  

 

 

 

 

 

 

 

 

Figure 1. Matador Wildlife Management and UAV flight paths. 

(Map Courtesy of Kristina Tolman, 2013) 

 

This area of the Rolling Plains consists of mesas, red hued canyons and badlands 

where most of the region is semiarid rangeland and sub-humid grassland. The natural 

vegetative composition includes escarpment bluffs with juniper-scrub oak-midgrass 
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savanna (Griffith et al., 2007). The landscape is dominated by shinnery oak (Quercus 

havardii) rangeland and mesquite uplands with gravelly hills accompanied by a mesquite 

mix and red berry juniper (Juniperus pinchotii; Texas Parks and Wildlife Department, 

2012). Native plant species, such as, sand sagebrush (Artemisia filifolia), willow (Salix 

spp.), and cottonwood (Populus spp.) are being displaced by invasive Tamarix (Griffith 

et al., 2007).  

Geospatial Data Collection 

Imagery was acquired for the MWMA in the Fall of 2012 using an AggieAir 

UAV platform (Figure 2). Refer to Table 3 for a summary of the individual flight dates 

and parameters. Images were acquired during October in order to capture Tamarix during 

senescence while the plants exhibited unique spectral characteristics relative to the other 

plants on the landscape.   

Figure 2. External view of the AggieAir Unmanned Autonomous Vehicle.  

(Photo courtesy of the Meadows Center for Water and the Environment, 2012) 
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The AggieAir UAV is a fixed wing aircraft composed of Styrofoam, which 

houses an onboard computer and remote sensor system. The onboard computer system 

(Figure 3) or bay contains the sensors: two digital Canon cameras. One of the Canon 

cameras measures spectral wavelengths between 400 – 700 nm (RGB wavelength 

intervals) and the other camera measures spectral wavelengths between 700 – 1,300 nm 

(NIR wavelength intervals). 

 

 

 

 

 

 

 

 

Figure 3. Internal view of the AggieAir Unmanned Autonomous Vehicle’s components. 

(Photo courtesy of the Meadows Center for Water and the Environment, 2012) 

 

The flight plans were configured using Google Pro (refer to Figure 1 for flight 

locations). Paparazzi software (Brisset et al., 2006) was used to collect the real-time data 

of the UAV and the imagery data. The MWMA flight plan consisted of five flight paths 

over a riparian community along the Middle Pease River to map the distribution of 

Tamarix. Even though five flight paths acquired imagery, only flight path two was used 

in this study.  
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In Situ Data Collection 

In situ data were collected in February of 2013. Numerous variables were 

measured in a random sampling manner to collect in situ data at GPS locations. The 

variables recorded at each in situ data location included: surface feature type (i.e., bare 

ground or vegetation), plant species (if applicable), tree height (if applicable), diameter at 

breast height (DBH; if applicable), photo of GPS point/surface feature, 360° videos made 

at approximately 50 locations, and any additional comments. Photos and videos of the in 

situ data locations were created to provide reference data for the classification and 

accuracy assessment process. Additionally, each in situ data location was georeferenced 

using a Trimble GeoXH GeoExplorer 2008 series Global Positioning System receiver. 

Other landscape features were recorded and measured, such as: forbs, shrubs, rock/soil, 

and roads. A total of 88 in situ data locations were recorded for flight path two (Figure 4).  

 

Figure 4. Matador Wildlife Management Area in situ data flight paths 1-5. 

(Map created by Kristina Tolman, 2012) 
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The in situ data were collected in order to assist the analyst in the classification 

process as well as the validation of the accuracy assessment. There were a variety of 

surface features and vegetative species collected for the in situ data locations in order to 

best represent the heterogeneous landscape. This data were valuable as a visual reference 

for the analyst to determine which pixels represented which surface features on the 

ground.  

Geospatial Data Processing 

The individual flight paths resulted in a series of images that needed to be 

mosaicked to a single image for classification.  EnsoMOSAIC, a proprietary mosaicking 

program from Finland developed by MosaicMill, was used to perform this task. Files 

required for processing are the: raw imagery, camera calibration, GPS file, and ground 

control points that are typically extracted from reference imagery. EnsoMOSAIC 

performs a series of alternating steps that shift between assigning tie points to link images 

and converging tie points to reduce error (Figure 5). The initial automatic aerial 

triangulation (AAT) generates tie points for every image based on overlapping features. 

After the initial AAT, the bundle block adjustment (BBA) converges tie points and 

checks the image orientation.  This process is repeated until the final BBA.  Coordinate 

locations are selected based on features found within reference NAIP imagery from 

TNRIS, Google Earth, as well as the UAV imagery. Additional BBA iterations are often 

needed to adjust points and reduce the level of error.  Upon completion, a digital 

elevation model (DEM) is created and used as an input for the mosaicked image. The 

final spatial resolution of the mosaic is based on the altitude the UAV was flown.  All 
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aerial orthorectified images were projected and assigned the WGS 1984 UTM Zone 14N 

coordinate system.  

 

Figure 5. Organizational flow chart for the processes involved for generating 

mosaics with EnsoMOSAIC software. (Developed by Kristina Tolman, 2013) 

Build Pyramid Layers

Automatic Aerial Triangulation (AAT)

Initial 5-5 

Bundle Block Adjustment (BBA) 

*remove erroneous  tie points

AAT Intermediate 4-4, 3-3, 2-2

BBA

AAT Intermediate 1-1, 0-0

AAT Final 0-0

BBA

Add Ground Control Points

Derive DEM

Create Mosaic 



 

19 
 

Statistical/Analysis Procedures 

Data Classification 

The RGB and NIR mosaicked imagery did not line-up with one another for flight 

path two, which caused surface features between the RGB and NIR to not overlap 

correctly and result in a blurred image; therefore, only the RGB imagery was used in this 

study. Prior to classification, water features were removed from the image by digitizing a 

shapefile of water features in ArcGIS and using it as a mask to exclude water bodies 

(Figure 6). It was necessary to remove water features because Tamarix was exhibiting 

similar spectral signatures to that of water, which was confusing the unsupervised 

classification algorithm and thus the resultant output. Classifying the water features was 

not needed, since identifying water features was not an objective of this research.  

 

Figure 6. Blue, green red image with water bodies excluded. 
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Several external variables influence vegetation spectral response such as sun 

angle, atmospheric constituents, and the attitude of the UAV during flight. Significant 

spectral variation was observed in adjacent mosaicked images in flight path two (Figure 

7). The two adjacent mosaicked images displayed in the inset map in Figure 7, exhibit a 

divisional line circled in yellow. This line is created because the mosaicked image on the 

left has slightly different (darker) radiometric characteristics than the image on the right 

(lighter). This variation between the adjacent mosaicked images was most likely due to 

clouds blocking direct sun exposure to surface features, sun intensity (time of day) at the 

time each image was obtained, or the direction of the aircraft during image acquisition 

leading to one of the images having direct sun exposure (image to the left) to that of the 

adjacent one (image to the right).  

  

Figure 7. Blue, green red mosaicked image variation. 
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To mitigate illumination issues and varying image brightness along the flight 

path, the RGB image with the masked water bodies was subset in ERDAS Imagine into 

radiometrically-similar sections (i.e., separate sections of the image mosaic that did not 

exhibit brightness variation due to external factors).  The clipped sections were 

determined by optical evaluation of the spectral consistency within the image. A total of 

three subset images (clipped sections) were created for the classification process (Figure 

8). In Figure 8, the subset images were overlaid on the original RGB imagery.  

Figure 8. Blue, green, red subset images. a) Subset 1. b) Subset 2. c) Subset 3.  

d) Combination of subsets used for classification. 

 

Once the entire image was clipped into spectrally similar sections, each section 

was then classified in ERDAS Imagine using the Iterative Self-Organizing Data Analysis 

Technique Algorithm (ISODATA). ISODATA is an unsupervised classification process 

for identifying land cover features, whereby the computer system identifies clusters of 

pixels with analogous spectral characteristics. Pixels with similar spectral characteristics 

a. b. 

c. d. 
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are assigned to a class based on modified k-means clustering, which is constructed using 

pixel vector characteristics and their proximity in multispectral space.  

 ISODATA is an iterative process and therefore passes through the entire remote 

sensing dataset repeatedly until the specified results are achieved. The first pass through 

the data is analyzed; however, ISODATA does not assign the initial mean vectors, 

instead, there is an initial arbitrary assignment of clusters throughout the n-dimensional 

vectors that run along certain feature space points. The feature space region of a cluster is 

defined using the values of the criteria below. Once the first iteration of comparing each 

candidate pixel to each cluster mean and assigning pixels to a cluster with a mean closest 

in Euclidean Distance (distance between two points) is complete, the second to Mth 

iterations are calculated. During the second to Mth iterations, a new mean is calculated 

for each cluster based on the exact spectral position of pixels that are assigned to the 

respective cluster. This process repeats the comparison of each candidate pixel with new 

cluster means and assigns them to the closest cluster mean.  This method may be more 

thorough than a supervised classification method since every pixel is analyzed and 

designated to a spectrally-similar cluster.  

ISODATA parameters to classify the three image subsets are as follows (Table 1). 

The clustering options were set to “Initialize from Statistics” and 30 clusters were 

specified to differentiate between distinct surface features while also allowing for spectral 

variability within the same land cover type. The maximum iterations were set to 50 for 

the maximum number of times the ISODATA algorithm re-clusters the data. The 

maximum standard deviation was set to 5.0. The Convergence Threshold was set to 0.95 

in order to specify that 95% or more of the pixels do not change clusters between 
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iterations. ISODATA stopped processing when the 50
th

 iteration was reached. The output 

clusters of the unsupervised classification were evaluated by referring to the in situ data 

to determine which surface features the pixel groupings represented: Bare ground, 

Vegetation, Shadows/Null, Tamarix, or Tamarix Mix. The “Vegetation” class contains all 

vegetation except for Tamarix.  The “Tamarix Mix” class includes Tamarix and other 

vegetation pixels. Due to the morphology of Tamarix, pixels near, under, and around the 

plant contribute to the spectral response contained in the pixel, thus the "Tamarix Mix" 

class was included to account for the variation.   

Table 1. ISODATA criteria and values.  

ISODATA Criteria Value 

number of classes 30 

convergence threshold 0.95 

maximum iterations 50 

minimum percentage of members in a cluster 0.01 

maximum standard deviation 5.0 

maximum merges 1.0 

minimum distance between cluster means 4.0 

 

Accuracy Assessment 

To evaluate the classification output of land cover data for the MWMA imagery, 

an accuracy assessment was performed to determine how well the classified map 

corresponded to field-based observations. The in situ data were used in the accuracy 

assessment as a visual reference for whether the classes in the unsupervised classification 

output were correct or not.  The in situ data were not collected prior to the production of 

the validation stratified random sampling of the accuracy assessment, therefore, the in 

situ data were used as a visual reference instead of coinciding reference points in 

validation of the accuracy assessment. 
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A validation sample size, or number of observations required for the accuracy 

assessment, was based on a binomial probability with an expected accuracy of 80% and 

allowable error of 5%.  

Equation 1:                                              z
2
 (p) (q) 

                                                      N =   _________    = 256       

 

    E
2 

 

where: z = 2, which denotes a confidence level of 95%; p = expected accuracy or 0.80; q 

= 1.0 – p; and E = allowable error or 0.05. The 256 validation points obtained from 

Equation 1 were distributed throughout the original imagery using a stratified random 

sampling technique with no minimum points per class. The in situ data were then 

referenced to determine what each validation point represented on the ground. The 

validation points and in situ data locations did not have the same GPS location; therefore, 

the in situ data were used as a visual reference for validation of the classification. 

Overall classification accuracy, as well as producer and user accuracies for 

individual classes were calculated. The error matrix was produced by the accuracy 

assessment tool. Overall accuracy was determined by dividing the total number of 

correctly classified pixels by the total number of pixels used for the accuracy assessment 

(Table 2). In addition, the Kappa Coefficient of Agreement (K) was calculated as well. 

Producer accuracy, a measure of how well the area is classified, was calculated by 

dividing the total number of correct pixels in a category by the class column total. User 

accuracy, a measure of the reliability of the classified pixel on the map representing that 

category on the ground, was calculated by dividing the total number of correct pixels in a 

category divided by the row total for that class.   
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Table 2. Example of an error matrix between two classes (A and B). (RS/GIS 

Laboratories, 2003) 

 Reference Data  

Classified Data A B Row Total: 

A 9 2 11 

B 3 7 10 

Column Total: 12 9 21 

 

Kappa analysis is considered a discrete multivariate statistical method used to 

quantify categorical class agreement and is considered robust because Kappa (K) 

accounts for agreement occurring by chance alone.  K is calculated by measuring the 

accuracy or agreement among the reference data and the remotely sensed classification 

map (Equation 2). The measure of agreement is determined by the major diagonal and the 

chance agreement specified by column and row totals and their corresponding products.  

The equation for calculating K is as follows: 

Equation 2: 

                               K 

 

where r represents the number of rows or land-cover classes in the matrix, N represents 

the total number of observations, xii represents the number of observations in column i 

and row i, and x+i and xi+ represent the marginal totals for column i and row i. A Kappa 

statistic ranges from 0 – 1.0; < 0.40 (i.e., 40%) exhibits a poor agreement, 0.40-0.79 (i.e., 

40-79%) signifies a moderate agreement, and > 0.80 (i.e., 80%) exhibits a strong 

agreement between the classification and reference data (Jensen, 2005).   
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Cost Comparison Analysis 

The costs for AggieAir flight/image acquisition as well as image processing were 

calculated and compared to the calculated costs of satellite and piloted aircraft. The 

available pricing for satellite, piloted aircraft, and UAV platforms varies on the research 

objective as well as the platform and sensor capabilities. To account for the variation in 

remote sensing platform and sensor pricing, the AggieAir UAV prices were converted 

accordingly to the costs of comparison, such as comparing image acquisition among 

satellites and the AggieAir UAV. If the platform and sensor being compared to the 

AggieAir UAV included post-processing costs, then AggieAir UAV post-processing 

pricing was included within the comparisons.  
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CHAPTER IV 

Results 

Objective 1 - Obtain and Process UAV-based Imagery 

A total of five flight paths were flown at the MWMA in October 2012 (Figure 1), 

resulting in a total of 1,448 images. The raw images had a spatial resolution of 18 cm 

(from October 2, 2012) and 12 cm (from October 5, 2012; Table 3). After mosaicking the 

images together, the resulting images had a spatial resolution of 21 cm (from October 2, 

2012) and 20 cm (from October 5, 2012; Table 3).  Due to variation of altitude from wind 

turbulence, the mosaic resolution is lower than the raw imagery. During flight, the wind 

influences the attitude of the plane; therefore, the resolution of the final mosaic is 

restricted to the lowest resolution of the imagery obtained.  Thus, if the raw images have 

an approximate resolution of 18cm, then the final mosaic may be set to 20cm to account 

for variation during image acquisition. In order to address research objectives 2 and 3, 

only flight path two was used (Figure 9).  

Table 3. Matador Wildlife Management Area flight information. 

Flight 

Dates 

Altitude 

(m) 

 

Resolution 

(cm) 

Mosaic 

Resolution 

(cm) 

Time of 

Day Flown 

Number of 

Images Acquired 

October 

2, 2012 

650  18.0  21.0  9:30 am – 

3:15 pm 

1276 

October 

5, 2012 

450  12.0  20.0  9:30 am – 

10:00 am 

172 
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Figure 9.  True color image mosaic for flight path two along the Pease River in the 

Matador Wildlife Management Area. 

 

Flight path two was used to evaluate a protocol for classifying Tamarix via UAV 

derived remote sensing data since the altitude of the plane (dependent on weather 

conditions) produced high quality imagery; the flight path encompassed the largest area, 

and was representative of varying surface features throughout the MWMA landscape. 

Flight path two consisted of 8.8 km
2
, with a length of 11 kilometers and a swath of 0.80 

kilometers (Figure 9).  

Objective 2 - Classify Imagery to Map Tamarix 

 An analysis of the spectral response of the feature classes was performed to 

determine how Tamarix spectral response differs from other surface features. The 

spectral profile indicated that the greatest variation in vegetation types was evident in the 

green band. However, Tamarix and water were spectrally similar in the green band. 

Therefore, all water bodies were masked from the image prior to classification (Figure 

10).  
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Figure 10. Spectral profiles of blue, green red bands for various surface features 

sampled in the Matador Wildlife Management Area. 

 

Figure 11 provides an overview and inset graphic of the classified vegetation map 

for flight path two in the MWMA.  Based on the classification results, 8.23% of the area 

was classified as Shadows/Null, 9.74% as Tamarix, 15.82% as Tamarix Mix, 59.07% as 

Vegetation, and 7.14% as Bare ground. These results do not allow the separation of the 

Tamarix Mix class into Tamarix and other vegetation in order to determine the total 

percent area of Tamarix and other vegetation. Considering the Tamarix Mix class 

includes Tamarix as well as other vegetation, the amount of Tamarix within flight path 

two is most likely higher than 9.74%.  
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Figure 11. Final classification output from UAV-derived true color imagery.   

 

Objective 3 - Accuracy Assessment of Classified Imagery 

Three separate accuracy assessments were performed, one for each subset 

unsupervised classification output (Table 4 and Appendix A). Overall classification 

accuracy for classified images one, two, and three were 79%, 79%, and 82 percent, 

respectively (Table 4).  The overall Kappa Statistic (K) was 0.62 (Table 4), which 

indicates poor agreement between the classification and the true surface features (0.80 > 

K < 0.40).  

Table 4. Accuracy assessment results. 

Subset Image Overall Accuracy (%) Overall Kappa Statistic 

1 79.3 0.67 

2 78.9 0.55 

3 82.0   0.64 

Average: 80.1 0.62 
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Individual class accuracies were also calculated. The producer’s accuracy 

measures how well an area has been classified by determining which pixels are not 

assigned to the class they belong. The Vegetation class exhibited the highest producer’s 

accuracy of 89% (Table 5), followed by Shadow/Null (84%), Bare ground (81%), 

Tamarix (50%), and Tamarix Mix (41%). The Tamarix Mix class had the greatest 

number of pixels that were not assigned to the class they belong (i.e., an error of 

omission). The low producer’s accuracy for Tamarix Mix is mostly attributable to the fact 

that the Tamarix Mix class did contain some vegetation pixels that were not a Tamarix 

Mix pixel and were therefore referenced as “Vegetation” during the accuracy assessment, 

instead of Tamarix Mix.   

The user’s accuracy measures how well the map represents the surface features by 

determining which pixels are assigned to the wrong class (i.e., an error of commission). 

The Bare ground class exhibited the highest user’s accuracy of 90%, which is interpreted 

as Bare ground being represented most accurately in the classification (Table 5). The 

second most accurately represented class is Vegetation (88%), followed by Shadow/Null 

(83%), Tamarix Mix (62%), and Tamarix (25%). The Tamarix class had the most pixels 

that were assigned to the wrong class. This may be attributed to the similarities of 

spectral characteristics found among Tamarix and other vegetation. Some dry grasses 

near bare ground (clay-iron rich soil with a prominent visible red wavelength reflectance) 

exhibited similar spectral characteristics to Tamarix and were therefore grouped with the 

Tamarix class during the unsupervised classification process.  
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Kappa statistic values for each class are reported in Table 5 as well.  Two classes 

resulted in a strong agreement between the classification and the true surface feature (K > 

0.80): Shadow/Null and Bare ground. Tamarix resulted in a poor agreement (K< 0.40). 

Table 5. Class average producer and user accuracy for subset images 1-3. 

Subset 

Image 

Number 

Class Average Kappa 

(k) 

Producer Accuracy 

(%) 

User Accuracy 

(%) 

Subset 1 Shadow/Null 0.70 72.2 72.2 

Tamarix 0.50 82.8 55.8 

Tamarix Mix 0.74 51.9 79.4 

Vegetation 0.68 89.4 85.8 

Bare ground 0.92 80.0 92.3 

Subset 2 Shadow/Null 0.94 85.7 94.7 

Tamarix 0.10 50.0 11.1 

Tamarix Mix 0.22 40.7 30.6 

Vegetation 0.63 84.1 90.3 

Bare ground 0.80 76.5 81.3 

Subset 3 Shadow/Null 0.82 93.8 83.3 

Tamarix 0.04 16.7 6.7 

Tamarix Mix 0.73 29.4 76.9 

Vegetation 0.59 93.0 86.4 

Bare ground 0.96 86.2 96.2 

All Subsets 

Combined 

and 

Averaged  

Shadow/Null 0.82 83.9 83.4 

Tamarix 0.21 49.8 24.5 

Tamarix Mix 0.56 40.7 62.3 

Vegetation 0.63 88.8 87.5 

Bare ground 0.89 80.9 89.9 

 

Objective 4 - Cost Comparison 

The total AggieAir UAV costs for collecting and processing the imagery at the 

MWMA were determined by assessing the following factors: 

                           UAV Flight Cost:                        $120/hour 

                           UAV Flight Crew Cost:              $30/hour/person 

                           Post-flight Image Mosaicking:    $33/hour 

                           Post-flight Image Classification: $14/hour 
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The MWMA UAV image collection consisted of 2.5 hours of UAV flight, 40 hours for 

each person of the UAV flight crew (three people total), 80 hours for post-flight image 

mosaicking, and 160 hours for post-flight image classification. Therefore, the total cost 

for obtaining and processing the imagery at the MWMA is: 

(120 x 2.5) + (30 x 40 x 3) + (33 x 80) + (14 x 160) = $8,780.00 

The cost for just obtaining the imagery is calculated as follows: 

(120 x 2.5) + (30 x 40 x 3) = $3,900.00 

Even though only flight path two was used in this study, the UAV costs are for collecting 

imagery for flights 1-5. Therefore, all of the flight paths recorded at MWMA are included 

in the cost. To be able to compare the UAV among satellite and piloted aircraft, the cost 

was converted to USD/km
2
. The total area recorded was 32.2 km

2
 (7,954 acres; Table 6). 

Table 6. Flight paths and total square kilometers recorded. 

Flight km
2
 

1 8.9 

2 8.8 

3 9.4 

4 3.2 

5 1.9 

Total: 32.2
 

 

Taking into account the total cost to obtain and post-process imagery from 

MWMA using the UAV and the total square kilometers, the total cost per square 

kilometer was calculated to be $272.67/km
2
: 

                                           $8,780.00 

__________   =  $272.67 / km
2 

                                           

                                           32.2 km
2
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The total cost for acquiring imagery alone, minus the post-processing costs, relative to 

the km
2
 was calculated to be $121.19/km

2
: 

                                                       $3,900.00 

                                                     __________  =  $121.19 / km
2 

                                                        

                                                       32.2 km
2
 

 

In order to adequately compare pricing for image acquisition among varying 

platforms, the costs were converted to USD/km
2
. Satellite and piloted aircraft pricing 

were compared to the AggieAir UAV platform (Table 7). There are substantial 

differences in the pricing among different platforms for acquiring aerial imagery due to 

the basic maintenance and operating expenses as well as sensor capabilities. The costs for 

acquiring imagery using satellite, piloted aircraft, and UAV range from $0-383.39/km
2
 

(Porter et al., 2006). The most affordable rate is using the satellite platform, Landsat TM, 

which is at no cost; however, the spatial resolution is the lowest (30 m) of all platforms 

presented in Table 7 (Porter et al., 2006). Landsat is available at no cost for image 

acquisition because it is tax-payer subsidized (U.S. Geological Survey, 2014). The 

second most affordable platform is the IKONOS satellite, which costs $30.00/km
2
 and 

has a much higher spatial resolution (1-4 m) to that of Landsat TM (Table 7; Porter et al., 

2006). The costs for satellite acquired imagery are the most affordable rates, although, at 

the expense of spatial resolution. For research objectives that require a higher spatial 

resolution than 30 m or even 3.0 m, a piloted aircraft may be more appropriate than using 

a satellite platform.  

Piloted aircraft present the most expensive costs for acquiring aerial imagery, 

although, they are capable of acquiring significantly higher spatial resolution than some 

satellite platforms. The high costs for piloted aircrafts is attributed to paying the pilot, 
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insurance, licensures, fuel, as well as costly maintenance and operational expenses. The 

most affordable piloted aircraft was found to be AISA (Table 7; Porter et al., 2006), with 

a rate of $175/km
2
 and a spatial resolution of 2.3 m. The most expensive ($383.39 km

2
) 

piloted aircraft is the CASI (Mumby et al., 1999), which has the lowest spatial resolution 

(3.0 m; Table 7). The ADS40 has the highest spatial resolution of 0.3 m and is not the 

most expensive or affordable piloted aircraft platform (Table 7). A spatial resolution of 

0.3 m provides significantly greater detail than a 2.0 m or lower spatial resolution. 

However, a higher spatial resolution than even the ADS40 piloted aircraft can be 

acquired using an UAV platform (as used in this study).  

The AggieAir UAV platform and sensor used in this study was able to produce an 

ultra-high spatial resolution of 0.12 m and 0.18 m for the aerial images acquired (Table 

3). This is the highest spatial resolution of all platforms and cost less than all of the 

piloted aircrafts that were reviewed (Table 7). Even though satellite acquired imagery is 

the most cost-effective, the spatial resolutions are considerably lower than the UAV 

platform and sensor. The Landsat TM platform is able to acquire imagery in the Mid-IR 

and thermal wavelengths, which would increase the cost since this technology is more 

expensive. The UAV costs $121.19/km
2
, which relative to the spatial resolution, appears 

to be the most affordable option for acquiring particularly high spatial resolution.  
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Table 7. Platform image acquisition pricing. (Porter et al., 2006; U.S. Geological Survey, 

2014; and Mumby et al., 1999). 

 

Platform 
Spatial Resolution 

(m) 
USD / km

2
 Bands/Channels 

Satellite – IKONOS 1-4 30.00 RGB and NIR 

Satellite – Landsat TM 30 0.00 
RGB, NIR, Mid-IR, 

and Thermal 

Piloted Aircraft - AISA 2.3 175.00 RGB and NIR 

Piloted Aircraft – 

ADS40 
0.3 330.00 RGB and NIR 

Piloted Aircraft – CASI 3.0 383.39 RGB 

AggieAir UAV 0.12-0.21 121.19 RGB and NIR 
*Satellite – IKONOS, Satellite – Landsat TM, Piloted Aircraft – AISA, Piloted Aircraft – ADS40 data 

provided by Porter et al., 2006 and U.S. Geological Survey, 2014 

* Piloted Aircraft – CASI data provided by Mumby et al., 1999. 

*AggieAir UAV data provided by the MCWE, 2012. 
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CHAPTER V 

Discussion 

Challenges Associated with Acquiring and Processing UAV-based Imagery 

Many aspects of UAV based remotely sensed image acquisition are important, 

such as considering sensor capabilities, when to fly and how often; however, it is highly 

contingent on weather as well as work accommodations (scheduling for all personnel). 

Wind is a variable that can influence the quality of the collected imagery. Due to the 

phenological cycle of Tamarix, the time of which to collect aerial imagery was limited to 

October. In order to obtain quality imagery given the time constraints for collecting data, 

the UAV was flown before and after solar noon for some of the image acquisition to 

avoid high winds; therefore, shadows resulted throughout the imagery. To avoid shadows 

in future research, the UAV should be flown near to solar noon. Although, when the 

UAV is flown near to solar noon, uncontrollable variables still may influence results of 

the remotely sensed data such as, cloud cover. A flight near solar noon on a sunny day 

versus an overcast day will result in varying spectral reflectance values.  

Spectral characteristics of specific surface features can vary throughout an image 

due to differences in the solar radiance of which is influenced by cloud cover, the time of 

day the imagery was obtained, incidence angle of the wavelength, intensity, atmospheric 

composition, and polarization (MicroImages, 2012). Two potential avenues for resolving 

these issues include: Performing a radiometric correction of the image (discussed further 

on page 41); and acquiring multi-temporal imagery. Multi-temporal imagery may resolve 

issues of identifying surface features based on varying spectral characteristics. 

Additionally, members of a plant species in a population (i.e., plant species) may have 
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spectral variation due to physiological characteristics, such as plant height, pigment, and 

leaf water content. In this case, multi-temporal imagery may be necessary in order to 

account for spectral variations among one species (Civco et al., 2008). 

Leaf senescence is a temporal variable that can significantly increase the accuracy 

of classifying Tamarix. Tamarix was undergoing leaf senescence at the time the data 

were collected. Most of the Tamarix population’s leaves had changed from green to 

yellow-orange, however, some plants had not changed yet, and some plants were only 

partially senesced (Figure 12). Therefore, Tamarix plants that had not changed yet were 

likely grouped into the general “vegetation” class in the classification. Using multi-

temporal data would assist with correcting errors in classification due to variations in leaf 

senescence.   

      

    Figure 12. Tamarix leaf color variation.  

The in situ data used in the classification and accuracy assessment validation 

process for this research were unable to be collected during the time the images were 
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obtained. Since the in situ data were collected during the winter when the plants were 

senesced, there may have been some discrepancies in the in situ data with live and dead 

plants. A dead plant would have been leafless during image acquisition, which may have 

lead those pixels to be inappropriately classified or validated incorrectly during the 

accuracy assessment. Collecting in situ data when the plants were senescing (at the time 

of image acquisition) would have provided information as to whether a plant was living 

or dead (based on whether leaves were present or not), thus allowing more accurate 

reference data for the classification and accuracy assessment validation than were 

collected in this study. Also, there may have been some discrepancies in the classification 

since the leaf coverage was not able to be recorded due to the time of the year the in situ 

data were collected (February). Leaf coverage would be useful reference data for the 

classification and accuracy assessment especially considering the significant variation 

among Tamarix senescence (Figure 12). Leaf coverage as well as leaf spectral signatures 

in other seasons (multi-temporal imagery) would be valuable in increasing the accuracy 

of mapping Tamarix. For future research, the in situ data would ideally be collected 

during the time the images were acquired.  

The physiology of Tamarix with leaf-off allows for pixels near and around the 

plant in the imagery to “blend” with the pixels of Tamarix causing unique spectral 

characteristics of mixed Tamarix and bare ground as well as Tamarix and other 

vegetation. Obtaining multi-temporal data would be a solution to this issue, since the 

seasons with leaf-on would not allow as much vegetation near the plant to influence its 

spectral reflectance then the vegetation could be more accurately classified.   
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Image Classification and Accuracy Assessment Considerations 

Since the RGB and NIR mosaicked imagery did not overlap properly, only the 

RGB imagery was used in this study which limited the accuracy of the classification. The 

amount of NIR reflectance from plant foliage is dependent on the anatomy, water, and 

nutrient content of the plant, which results in a unique spectral response among varying 

plant species and even the variation among members of the same species. The image 

classification of this study would have benefited from the use of NIR, specifically for 

identifying specific plant species such as Tamarix, thus resulting in a more accurate 

classification than what resulted from the sole use of RGB wavelengths. 

The ISODATA algorithm did prove to be an accurate method for classifying 

certain surface features, however Tamarix was not accurately classified with this method. 

This algorithm analyzed every pixel within the image acquired for flight path two and 

grouped the pixels into spectrally similar classes. A supervised classification would have 

also been another potential classification method, which consists of the analyst creating 

training data for spectrally similar pixel groupings and every pixel being analyzed and 

grouped based on the assigned training data. Even though Tamarix was the only specific 

plant species that was identified, there is potential to identify other plant species. In order 

to classify additional plant species with an unsupervised classification method, a greater 

maximum iteration value should be set in order to increase the likeliness of reaching a 

0.95 convergence threshold combined with more in situ data collection. Additionally, 

since the maximum iterations for ISODATA were set to 50 in this study, the convergence 

threshold of 0.95 may have never been achieved, which would lead to errors in pixel 

groupings and resulted in lower classification accuracy. There were many challenges 
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faced in the unsupervised classification process, which enabled the analyst to identify 

solutions to these problems for future research inquiries similar to this study.  

To minimize confusion within the classification process for future research of this 

type, first evaluate the spectral profile of surface features that are to be classified. 

Evaluating the spectral profile is a quick tool for determining which classes may 

spectrally overlap and thus cause confusion within the classification. If the surface 

feature of interest is spectrally overlapping with another feature, perhaps consider 

removing or masking the feature that is overlapping the feature of interest. 

Initial unsupervised classifications of flight path two exemplified the spectral 

variation of adjacent mosaicked images provided in Figure 11. Spectral variation is 

attributed to an assortment of factors: sun angle, sun intensity, atmospheric constituents, 

weather (i.e., cloud cover), attitude of aircraft, and flight line angle relative to time of 

day. During image acquisition for flight path two, the UAV flight path began collecting 

imagery in the Northwest portion of the flight path. The UAV flew southeast along the 

Pease River and then turned 180º at the bottom southeast portion of the flight path and 

continued northwest to the aircraft deployment location. The imagery acquired during the 

initial southwest route was captured before the return flight, thus each set of images were 

acquired at minimally different times. Even a minimal difference in the timing of image 

acquisition can lead to spectral inconsistency throughout the resultant mosaicked image 

due to sun angle, sun intensity, and cloud cover. The comparison among multi-temporal 

imagery of a given area would assist in accounting for spectral variations throughout 

mosaicked images.  
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Another method to account for atmospheric constituent interference and spectral 

variation throughout the mosaicked images is to perform a radiometric correction. A 

radiometric correction normalizes the spectral signatures in order to improve radiometric 

accuracies. This technique is useful when comparing images from different dates in order 

to normalize them for comparison to one another, primarily by accounting for differences 

in atmospheric constituents and varying sun/sensor angles. However, depending on the 

research objectives, this may not be an appropriate option. In order to normalize the 

spectral variation of adjacent mosaicked images in flight path two, a radiometric 

correction could have been used. Since using an UAV is an emerging approach to 

classify vegetation, a radiometric correction was not performed in order to evaluate the 

raw data and determine appropriate methodologies for this platform relative to these 

specific research objectives.  

A total of 88 in situ data locations for flight path two were collected, although, 

more reference data were needed for visualization during the validation of the 

classification (accuracy assessment) of flight path two. In retrospect, at least 256 in situ 

data locations should have been collected for flight path two in order to correlate to the 

validation sample size of 256. Also, the in situ data were not collected at the same time 

the imagery was obtained which created challenges for the analyst in identifying surface 

features. The MWMA has experienced many wild fires as well as prescribed fires, so 

some trees were dead; however, the in situ data were collected in the winter when the 

trees were leaf-less, so it was difficult to tell during the in situ data collection which were 

living and dead. 
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For future research in monitoring the biocontrol of the saltcedar beetle, in situ 

data need to be collected for numerous plants that are infested with the beetle as well as 

plants with no beetle exposure. Also, multi-temporal imagery would assist with better 

monitoring the effects of the saltcedar beetle as opposed to single-date imagery.  

The accuracy assessment results from this study suggest that the UAV platform 

and sensor as well as classification methods in this study produced a strong to moderately 

accurate method for obtaining natural resource data/imagery and associated land cover 

classification, despite the low classification accuracy for Tamarix. The overall 

classification accuracy of this UAV based remote sensing system is lower compared to 

other studies that have used piloted aircraft (Everitt et al., 2007) or satellite (Evangelista 

et al., 2009) platforms, which is most likely due to the differences in sensor capabilities, 

classification methods, and temporal resolution. A study found an 83% accuracy using a 

piloted aircraft as the platform and an ISODATA algorithm to identify Tamarix 

(Narumalani et al., 2013). A study performed by Yang et al. (2013), performed multiple 

accuracy assessments of satellite images taken on different dates and found accuracies of 

60-91% for identifying Tamarix. Perhaps, the poor accuracy value for the Tamarix is 

attributed to the conventional classification algorithms used in ERDAS Imagine as seen 

in Kettenring et al. (2011) or issues associated with sensor resolutions (spectral and 

spatial), temporal resolution, multiple subset imagery, varying sun angle, or image 

acquisition vs. in situ data collection of Tamarix.  

The overall classification accuracy for this research using AggieAir UAV 

platform and Canon camera sensors did result in 80% accuracy, indicating that the 

sensors and classification method are an accurate method for mapping certain surface 
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features. The overall kappa statistic of 0.62 signifies that the accuracy assessment 

resulted in a moderate agreement of the classification among the true surface features.  

Moreover, the average kappa statistic for Tamarix resulted in 0.21, which is a poor 

agreement; therefore, Tamarix was not accurately identified with the methods used in this 

research. The sensor capabilities, in situ data collection, classification methods, and 

single-date image acquisition are the major factors that most likely contributed to the low 

classification accuracy of Tamarix. 

The error matrix produced from the accuracy assessment provided insight to the 

overall accuracy and what changes could have been made to increase the accuracy of the 

unsupervised classification throughout the accuracy assessment process. The error matrix 

provides the analyst with understanding pertaining to each class and the associated 

inaccuracies. This information is useful for determining which classes specifically were 

evaluated accurately or inaccurately. There were errors in one of the bare ground classes 

being evaluated as vegetation, when there is a strong possibility the pixels were small, 

sparse plants. Pixels of this nature were challenging to evaluate in the classification and 

validate in the accuracy assessment due to the color of the pixel being affected by bare 

ground behind the small, sparse plant.  

The cost comparison exemplified that the AggieAir UAV is the most affordable 

platform for acquiring aerial imagery at a high spatial resolution to that of satellites and 

piloted aircrafts for this study. Weighing the 80% accuracy of using UAV technology for 

identifying surface features with the costs associated with purchasing such imagery, does 

portray this technology to be cost-effective and able to produce accurate results. When 

taking into consideration the factors that could potentially increase the accuracy 
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combined with the costs, this technology proves to be an accurate method for identifying 

surface features, and potentially invasive species.  

Cost Comparison Considerations 

However, the cost comparison does have some limitations. Comparing UAV, 

satellite and piloted aircraft costs are challenging and does not entail all of the factors that 

weigh-in on pricing. This research only compared spatial and spectral resolutions as well 

as USD/ km
2 

per platform, whereas, other factors in comparing the cost should be 

considered such as, radiometric resolution and temporal resolution. For instance, the 

radiometric resolution will vary among sensors, and radiometric resolution needs depend 

on research objectives; therefore, there are challenges in placing a price or value on 

differences in the radiometric resolutions of sensors. Also, temporal resolution can be 

highly dependent on research objectives and there are significant variations in costs 

associated with the timing of image acquisition among varying platforms. Such as, a 

satellite may not orbit the study area during the time needed to acquire imagery. In regard 

to piloted aircrafts, the aircraft may not be available during the time for image acquisition 

or may increase the cost relative to convenience and scheduling of the aircraft and pilot. 

A challenge arises in considering costs of the temporal resolutions of varying platforms 

and how to compare them to one another. Additional costs that should be taken into 

consideration for a full comparison of remote sensing platforms include: deployment, 

maintenance, fueling, repair (materials), and updating (updating computer systems, 

software, cameras, etc.). This research does provide a basic cost comparison to portray 

the image acquisition costs among platforms; although, further detailed information on 
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platform capabilities and associated costs would demonstrate a comprehensive 

comparison of remote sensing platform rates.  
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CHAPTER VI 

Conclusion 

This study utilized an UAV platform with two digital cameras to collect aerial 

imagery along the Pease River at the Matador Wildlife Management Area with spectral 

bands blue, green, red, and NIR. The collected imagery was mosaicked using 

EnsoMOSIAC software, which produced a high spatial resolution of 21 cm. The RGB 

based imagery was classified using an unsupervised classification method in ERDAS 

Imagine software in order to identify Tamarix and surface features. The accuracy 

assessment validated that the UAV sensors combined with the classification methods 

used in this study are accurate means for mapping certain surface features and not 

accurate for identifying Tamarix. The low accuracy found in identifying Tamarix is most 

likely attributed to sensor capabilities, exclusion of NIR, insufficient in situ data 

collection, classification methods, temporal resolution, and solar radiance variations. This 

research addresses the challenges and provides solutions of UAV remote sensing for 

mapping Tamarix in the various stages of this process, from image acquisition and 

classification to the statistical analysis of the accuracy assessment. The cost comparison 

found that UAV remote sensing is an affordable means to collect aerial imagery. The 

findings of this study parallel findings of other research; in that, UAV remote sensing 

was found to be a cost-effective and accurate method for mapping certain surface 

features.  
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CHAPTER VII 

 

Future Work 

 

Tamarix is a problem species in the entire Southwest region of the United States 

and mapping this species is a useful tool for resource managers. Through the findings of 

this study, researchers and resource managers can employ UAV technology as an 

affordable, accurate method for mapping surface features. Mapping specific plant species 

is possible depending on the capabilities of the sensor on the UAV platform, 

classification methods, and the ability to collect multi-temporal imagery. The same 

methods used in this research could be applied to mapping and identifying other invasive 

terrestrial plant species as long as the imagery was obtained at a time of the species’ 

phenological cycle in which the plant exhibited unique spectral signatures to that of 

neighboring plant species. The research findings of this study present the potential to use 

UAV remote sensing for other natural resource management needs that require high 

spatial resolution and low-cost data collection. UAV remote sensing offers many 

advantages for collecting high spatial resolution for natural resource management and as 

this technology continues to develop, the challenges faced throughout the process will 

further be identified to assist in future research.  

 



 

49 
 

APPENDIX SECTION 

 

APPENDIX A 

 

Error Matrix for unsupervised classification subset 1. 

 Reference Data 

Classified 

Data Tamarix Tamarix mix Shadow Vegetation Bare ground  Row Total 

Tamarix 24 8 0 11 0 43 

Tamarix 

mix 1 27 3 3 0 34 

Shadow 3 1 13 1 0 18 

Vegetation 1 15 2 127 3 148 

Bare ground 0 1 0 0 12 13 

Column 

Total 29 52 18 142 15 256 

 

Error Matrix for unsupervised classification subset 2. 

 Reference Data 

Classified 

Data Tamarix Tamarix mix Shadow Vegetation Bare ground  Row Total 

Tamarix 1 3 0 5 0 9 

Tamarix 

mix 0 11 3 22 0 36 

Shadow 0 0 18 1 0 19 

Vegetation 1 12 0 159 4 176 

Bare ground 0 1 0 2 13 16 

Column 

Total 2 27 21 189 17 256 

 

Error Matrix for unsupervised classification subset 3. 

 Reference Data 

Classified 

Data Tamarix Tamarix mix Shadow Vegetation Bare ground  Row Total 

Tamarix 1 8 1 5 0 15 

Tamarix 

mix 0 10 0 3 0 13 

Shadow 0 0 15 3 0 18 

Vegetation 5 16 0 159 4 184 

Bare ground 0 0 0 1 25 26 

Column 

Total 6 34 16 171 29 256 
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