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A CHARACTERIZATION OF BALLS USING THE DOMAIN
DERIVATIVE

ANDRIY DIDENKO, BEHROUZ EMAMIZADEH

ABSTRACT. In this note we give a characterization of balls in RY using the do-
main derivative. As a byproduct we will show that an overdetermined Stekloff
eigenvalue problem is solvable if and only if the domain of interest is a ball.

1. INTRODUCTION

In this note we give a characterization of balls in RY using the domain derivative.
As an application we prove that an overdetermined Stekloff eigenvalue problem is
solvable if the domain of interest is a ball. This work is motivated by the following
result.

Theorem 1.1. A domain D C RY is a ball if and only if there exists a constant ¢
such that the following integral equality is valid

/ hdr =c hdo, (1.1)
D oD

for every harmonic function h.

For the proof of the above theorem, the reader is referred to [T}, B3].

Our characterization replaces by another integral equation which involves
the domain derivative of the solution of the Saint-Venant equation in D. This
result will enable us to show that an overdetermined Stekloff eigenvalue problem is
solvable if and only if the domain of the problem is a ball.

2. MAIN RESULT

To state the main result we need some preparation. Henceforth D is a smooth
simply connected bounded domain in RY. By u we denote the unique solution of
the Saint-Venant problem in D; i.e.,

—Au=1 inD

u=0 ondD (2.1)
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Given a vector field V € C2(RY;R"), we denote by u/, the domain derivative of u
at D in direction of V; the reader is referred to [5] for a thorough treatment of the
concept of domain derivatives. Using [5, Theorems 3.1 and 3.2], it follows that

Au'=0 inD
2.2
u’:—@V-I/ on 0D, 22)
ov

where v stands for the unit outward normal vector on dD. Now we state our main
result.

Theorem 2.1. The domain D is a ball if and only if there exists a constant ¢ such
that the following integral equation is valid

/ u' dr = c/ v do, (2.3)
D oD

for every vector field V € C*(RN;RY).
We need the following result.
Lemma 2.2. Suppose f € C(0D) and the following equation holds

|V vdo =0, (2.4)

for every V€ C*(RN,RN). Then f vanishes on dD.

Proof. To derive a contradiction suppose f(zg) # 0, for some 2y € dD. Let us
assume that in fact f(xg) > 0; the case f(z¢) < 0 can be addressed similarly. Since
f is continuous, we readily infer existence of an open component of 9D, denoted -,
where

1
f(l.) Z E, Va € s
for some integer k. Thanks to smoothness of 9D we can make the following obser-

vation; namely, D is locally star-shaped. This means: For every & € 9D, there
exists a ball B¢ centered at &, and a point x¢ € D, such that

(x —xz¢)-v(z) >0, Vre B:NoD.
Without loss of generality we may assume there exists z* € D such that
(x—2a")-v(xz)>0, Vzenr.

Let us now consider a non-negative test function ¢ € C§°(RY), where the intersec-
tion of the support of ¢ with 9D is a proper subset of v and has positive measure.
Now we choose V = ¢(z)(z —2*) in (2.4); note that V' is admissible since it belongs
to C2(RY,RY). Thus

/ F@)6() (@ — 27) - v(z) do = 0. (2.5)

However
) -v(x)do 1 ) (x —2*) - v(x)do
[1@ow) @) v@yinz L [ g seydo >0

which contradicts (2.5). Thus f must vanish on 9D, as desired. ([
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Proof of Theorem [2.1] Assume that (2.3) is satisfied. Let us fix V € C2(RN;RY).

We claim 5
u’dz:/ U2y do. 2.6
/D oD (61/) (2:6)

To prove (2.6) we observe that from the differential equation in (2.1)) we have
Jpu'dx =— [, u/Audz. Since v is harmonic in D it then follows that

/ o dr = / (uAu' — u'Au) dz.
D D

Now an application of the Green identity to the right hand side of the above equation

yields
o’ ou
"da = — —u'=—)do.
/Du v /BD(uaV uay) 7

Since u vanishes on 9D, the above equation implies

ou
v dx = —/ v — do. 2.7
/D op OV ( )

From (2.7) and the boundary condition in (2.2)) we derive (2.6). From the hypothesis

and (2.6) we obtain ¢ [, , v’ do = [, (94)"V - vdo. So again using the boundary
condition in (2.2]) we derive
0
—c 8u/8uV~udU:/ (—U)QV-VdU.
oD op OV

Oou. 2 ou
/aD ((5) +C%>V'l/d0 =0.

Since V € C?(RY;RY) is arbitrary Lemma applied to the above equation,
guarantees that

So

Ju ,0u
— (= =0 oD.

o gy 7€) =0 on

By the Hopf boundary point lemma applied to (2.1)) we infer that Ou/dv is negative
on dD. So the last equation implies Ou/0v = —c on dD. This result added to (2.1)

yields the following overdetermined boundary value problem

—Au=1 inD

8u =0 ondD (2.8)
U

o —c on 0D

It is classical, see [4] [6], that is solvable if and only if D is a ball.

Conversely, let us assume that D is a ball. Without loss of generality we may
assume that D is the ball with radius R centered at the origin. Note that in this
case the solution of is

u(a) = 5 (R ~ [of).

Therefore du/dv will be equal to —R/N on dD. So if we apply (2.7) we find that
R
/ uder=—=— u' do,
D N Jap

which coincides with the integral equation (2.3]), with ¢ = —R/N. This completes
the proof. O
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Note that ¢ = —R/N, as in the above argument, could also be written as ¢ =
— N:j;;’ g,zvv,l = - ‘5{((3)) , where wy stands for the volume of the unit N-dimensional

ball, and V (D), S(D) denote the volume and the surface area of D, respectively.
In the remaining of this section we focus on the Stekloff eigenvalue problem; i.e.,

Aw=0 1in D.

2.9
6—w:pw on 0D (2.9)
v

In , p denotes the eigenvalue. It is well known that there are infinitely many
eigenvalues 0 = p; < py < p3 < ... for which has non trivial solutions. These
solutions are the corresponding eigenfunctions denoted by wy, wo, ..., where w; is
clearly constant. We now prove the following result.

Theorem 2.3. The overdetermined boundary-value problem

Aw=0 inD
ow
= pw on 0D (2.10)

/wkdxzo vk > 2.
D

is solvable if and only if D is a ball.

Proof. Let us assume D is a ball. Let wy be an eigenfunction corresponding to
Pk, k = 2,3,.... Since wy is harmonic it follows from the mean value property

that
/ wy dr = d/ wy, do,
D oD

for some constant d. Thus using the boundary condition in (2.9 in conjunction
with the Divergence Theorem we infer

d
/ w dx = — Awy, dx.
D Pk JpD

Since wy is harmonic in D we obtain fD wy dr = 0, as desired.

To prove the converse we proceed along the same lines as in [2, Theorem 2] to
prove the converse. To this end, let u be the solution of the Saint-Venant problem
in D, V € C?>(RY;RY), and u’ the domain derivative of u in direction of V. Since
D is smooth it follows from that u' € C?(D). Hence u’ can be represented in
terms of the eigenfunctions wy, as follows

u'(x) = Z%‘ w;(z),

where

Vi = / w;u' do.
oD
Integrating the equation before the last, over D, and taking into account that

Jpwidr =0, for i =2,3,... yields

/u'dx:'yl/wldx:k/ u' do,
D D aD

where k is a constant independent of the vector field V. Since V is arbitrary we
can apply Theorem to conclude that D must be a ball, as desired. (I
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