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A class of nonlinear

elliptic variational inequalities:

qualitative properties and existence of solutions ∗

Luka Korkut, Mervan Pašić, & Darko Žubrinić

Abstract

We study a class of nonlinear elliptic variational inequalities in di-
vergence form. In the recent paper [6], we obtained results on the local
control of essential infimum and supremum of solutions of quasilinear el-
liptic equations, and here we extend this point of view to the case of
variational inequalities. It implies a new qualitative property of solutions
in W 1,p(Ω) which we call “jumping over the control obstacle.” Using the
Schwarz symmetrization technique, we give an existence and symmetriza-
tion theorems in W 1,p

0 (Ω)∩L∞(Ω) which agree completely with previous
qualitative results. Also we consider generating singularities of weak so-
lutions in W 1,p(Ω) of variational inequalities.

1 Problem setting and main results

Let Ω be a bounded open subset of RN , N ≥ 1, and p ∈ (1,∞). We are
concerned with the following nonlinear elliptic double obstacle problem: Find
u ∈W 1,p(Ω) such that ω1 ≤ u ≤ ω2 in Ω and∫

Ω

a(x, u,∇u) · ∇(v − u) dx ≥
∫

Ω

[
f(x, u) + g(x, u)|∇u|p

]
(v − u) dx, (1.1)

for all v ∈W 1,p(Ω) such that v − u ∈ L∞(Ω) and ω1 ≤ v ≤ ω2 in Ω.
The obstacles ω1 and ω2 are two measurable functions without any global

regularity, such that ω1 ≤ ω2 in Ω. For any measurable set A in RN we say that
a property holds “in A” if it holds in the a.e. sense. The leading term on the
left-hand side is the Carathéodory vector function a(x, η, ξ) satisfying general
structure conditions of Leray-Lions type, see (1.7)–(1.8). The leading terms on
the right-hand side are Carathéodory real functions f(x, η) and g(x, η) which
will essentially influence the main results.
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In order to describe our main goals of this paper, we introduce an additional
obstacle ωc, that we call control obstacle, which is taken to be a measurable real
function defined on Ω, satisfying the following natural condition relative to ω1

and ω2:
ω1 ≤ ωc ≤ ω2 in Ω . (1.2)

Furthermore, we assume that there exist two balls Br and Bρ in Ω such that
B2r ⊆ Ω, B2ρ ⊆ Ω, B2r ∩B2ρ = ∅,

m1 = ess infB2rω1, Mc = ess supB2r
ωc, m2 = ess infB2rω2,

−∞ < m1 < Mc < m2 <∞,
(1.3)

and

M1 = ess supB2ρ
ω1, mc = ess infB2ρωc, M2 = ess supB2ρ

ω2,

−∞ < M1 < mc < M2 <∞.
(1.4)

Relation (1.3) (respectively (1.4)) has the following meaning: the obstacles ω1

and ω2 are bounded from below (respectively from above) on the corresponding
ball, and the obstacles ωc and ω2 (respectively ωc and ω1) are strictly separated
on the corresponding balls.

In this paper we find sufficient conditions on functions f(x, η) and g(x, η)
which will give us the following three types of results: (i) jumping over a pre-
scribed control obstacle on prescribed balls, (ii) existence of at least one essen-
tially bounded weak solution, (iii) generating of singularities, bumping on the
upper obstacle and pushing to the upper obstacle.

(i) We say that a solution u of (1.1) jumps over the prescribed control obstacle
ωc if it satisfies∣∣{x ∈ Ω : u(x) > ωc(x)}

∣∣ 6= 0,
∣∣{x ∈ Ω : u(x) < ωc(x)}

∣∣ 6= 0 , (1.5)

where |A| denotes the Lebesgue measure of a subset A of RN . Taking Br, Bρ,
m1, M1, mc, Mc, m2 and M2 as in (1.2)–(1.4), and α0, a0(x), a1, a2 as in
structure conditions (1.7)–(1.8), we now impose two crucial sets of hypotheses.
First those corresponding to ball B2r:

(H1) g(x, η) ≥ 0 in B2r, for all η ∈ I1 = (m1,Mc)

(H2) There exists f1 ∈ L1(B2r), such that f(x, η) ≥ f1(x) in B2r, for all η ∈ I1,
f1(x) ≥ 0 in B2r \Br, and∫

Br

f1(x) dx > D1
m2 −m1

m2 −Mc
,

where D1 = d
∫
B2r

[a0(x) + a1m̂
p−1]p

′
dx+

(
p
d

)p−1 (2N−1)|Br|
rp ,

m̂ = max{|m1|, |Mc|}, d = α0

ap
′

2 (m2−m1)
, d = p′

2p′−1 d.
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Now we impose the dual hypotheses corresponding to ball B2ρ.

(H3) g(x, η) ≤ 0 in B2ρ, for all η ∈ I2 = (mc,M2)

(H4) There exists f2 ∈ L1(B2ρ), such that f(x, η) ≤ f2(x) in B2ρ for all η ∈ I2,
f2(x) ≤ 0 in B2ρ \Bρ,∫

Bρ

f2(x) dx < −D2
M2 −M1

mc −M1
,

where D2 = d
∫
B2ρ

[a0(x) + a1m̂
p−1]p

′
dx+

(
p
d

)p−1 (2N−1)|Bρ|
ρp ,

m̂ = max{ |mc|, |M2| }, d = α0

ap
′

2 (M2−M1)
, d = p′

2p′−1 d, with p′ satisfying

1/p+ 1/p′ = 1.

Two complementary situations occur: the hypotheses (H1)–(H2) require that
the function f(x, η) be sufficiently large and positive in the strip B2r × I1,
and that g(x, η) be non-negative in the same strip (respectively, the hypotheses
(H3)–(H4) require that f(x, η) be sufficiently large and negative in the strip
B2ρ × I2, and that g(x, η) be non-positive in the strip). These conditions will
imply, see Theorem 1.1, that each solution u of (1.1) satisfy∣∣{x ∈ B2r : u(x) > ωc(x)}

∣∣ 6= 0,
∣∣{x ∈ B2ρ : u(x) < ωc(x)}

∣∣ 6= 0 , (1.6)

that is to say, there are two measurable sets Er ⊆ B2r and Eρ ⊆ B2ρ, |Er| 6= 0,
|Eρ| 6= 0, satisfying u(x) > ωc(x) for each x ∈ Er and u(x) < ωc(x) for each
x ∈ Eρ.

Since B2r ∩ B2ρ = ∅, both pairs of hypotheses (H1)–(H2) and (H3)–(H4)
are independent of each other, which allows us to combine them and derive the
main result of this paper:

Theorem 1.1 (Jumping over the Control obstacle in W 1,p(Ω)) Under as-
sumptions (1.2)–(1.4), let the Carathéodory vector function a(x, η, ξ) satisfy:

∃α0 > 0, a(x, η, ξ) · ξ ≥ α0|ξ|p in Ω, η ∈ R, ξ ∈ RN , (1.7)

∃a0 = a0(x) ≥ 0, a0 ∈ Lp
′
(Ω), ∃a1 ≥ 0, ∃a2 > 0,

|a(x, η, ξ)| ≤ a0(x) + a1|η|p−1 + a2|ξ|p−1 in Ω, η ∈ R, ξ ∈ RN .
(1.8)

If the Carathéodory functions f(x, η) and g(x, η) satisfy the hypotheses (H1)–
(H4), then for each solution u ∈W 1,p(Ω) of (1.1) satisfies (1.6).

To prove (1.6) we argue by contradiction. First we choose appropriate test
functions in order to localize the balls in RN , then integrate over level sets of
the form {u > t} and {u < t}, and then use several elementary inequalities
in R in order to obtain contradiction. We want to indicate that the proof of
property (1.6) is not difficult. As pointed out in the abstract, the same method
has been exploited in [6] in order to obtain the local control of essential infimum
and supremum of solutions of elliptic equations, and in [7] to obtain some new
qualitative properties of solutions. In (H2) and (H4) we have to impose slightly
different conditions on nonlinear term f(x, η) than we did in [6, Theorem 5], in
order to have the desired control effect.
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(ii) The second type of result is the existence of at least one solution of (1.1) in
W 1,p

0 (Ω)∩L∞(Ω) that satisfy jumping condition (1.5). This condition is fulfilled
if |f(x, η)| is uniformly bounded in Ω×R and |g(x, η)| is uniformly small enough
in Ω × R, or conversely, |g(x, η)| is uniformly bounded and |f(x, η)| uniformly
small enough. Precisely, we will impose one more hypotheses on these functions,
which does not contradict (H1)–(H4):

(H5) There exist f0 > 0 and g0 ≥ 0 such that |f(x, η)| ≤ f0, |g(x, η)| ≤ g0, in
Ω× R, and

fp
′−1

0 g0 <
(α0NC

1/N
N

2 | Ω |1/N
)p′ p′

N(p′ + 1)
.

Then we have the following result on existence and symmetrization of solutions
in W 1,p

0 (Ω) ∩ L∞(Ω)).

Theorem 1.2 Under the structure assumptions (1.2)–(1.4) where ω1 ≤ 0 ≤ ω2

in Ω and ω1, ω2 ∈ Lp(Ω), let the Carathéodory vector function a(x, η, ξ) satisfy
the hypotheses (1.7), (1.9), and

(a(x, η, ξ)− a(x, η, ξ∗)) · (ξ − ξ∗) > 0 in Ω, η ∈ R, ξ, ξ∗ ∈ RN , ξ 6= ξ∗. (1.9)

Assume that Carathéodory functions f(x, η) and g(x, η) satisfy conditions (H1)–
(H5). Then there exists a solution u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) of (1.1) satisfying
(1.5). Moreover,

u#(x) ≤ v#(x) = v(x) in Ω#,

‖u‖L∞(Ω) ≤ ‖v‖L∞(Ω#) and ‖∇u‖Lp(Ω) ≤ ‖∇v‖Lp(Ω#),
(1.10)

where u# is the Schwarz symmetrization of u, and v is the unique solution of
the symmetrized problem

−dvi(α0|∇v|p−2∇v) = f0 + g0|∇v|p in Ω#,

v ∈W 1,p
0 (Ω#) ∩ L∞(Ω#), v is positive and spherically symetric.

(1.11)

Here Ω# is a ball in RN centered at the origin, with the same volume as Ω.

Applications of the Schwartz symmetrization to partial differential equations
can be seen for instance in [1, 4, 14], while applications to variational inequalities
are treated in [2, 3, 5]. Let us mention that the additional condition (H5), that
is to say, the “smallness condition” on the data f(x, η) and g(x, η) is used only
sufficient for existence of a solution v of the symmetrized equation (1.11). This
problem is treated in detail in [12, 8, 15].

In contrast to the proof of qualitative property (1.6), the proof of existence
result requires a more complicated procedure. Here we exploit the method of
penalty functions as approximation step, and the method of Schwartz sym-
metrization of penalty equation in order to derive a priori estimates which are
independent on the approximative process. This construction has already been
announced in the recent paper [10], but without proof and details.
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(iii) The third type of results concerns the possibility to generate singularities
of solutions in a given point. In particular, this enables to obtain nonexistence
result for essentially bounded weak solutions.

It will be convenient to define essential supremum u∗ and essential infimum
u∗ of a measurable function u Ω→ R in the point x0 ∈ Ω:

u∗(x0) = lim
r→0

ess supBr(x0)u(x), u∗(x0) = lim
r→0

ess infBr(x0)u(x). (1.12)

We say that u has singularity at x0 if u∗(x0) = +∞. The following theorem
shows that it is possible to generate a singularity of all solutions of variational
problem (1.1) in a given point x0 ∈ Ω. Of course, the upper obstacle w2 also
has to be singular in this point.

Theorem 1.3 (Generating singularities of solutions) Assume that a(x, η, ξ) sat-
isfies conditions (1.7) and (1.8). Let there exist x0 ∈ Ω and β ∈ R such that:∫

Br

[a0(x) + a1m̂
p−1]p

′
dx = O(rβ), as r → 0, (1.13)

where Br = Br(x0). Assume that there exist positive constants α, γ, R, C1, C2,
such that for a.e. x ∈ BR and η ≥ ess infBRω1,

g(x, η) ≥ 0, f(x, η) ≥ C1

|x− x0|γ
, w2(x) ≥ C2

|x− x0|α
. (1.14)

If

α <
γ − p
p− 1

, (1.15)

and
α+ β + γ > N, (1.16)

then any solution u of problem (1.1) is singular at x0, that is, u∗(x0) =∞. In
particular, problem (1.1) has no solutions in W 1,p(Ω) ∩ L∞(Ω).

Remark Note that conditions (1.14), (1.15) and α > 0 imply that p < γ < N .
This shows that Theorem 1.3 is in accordance with the Sobolev imbedding
theorem, since we have p < N and singular solutions.

Remark If a0(x) ≡ 0 and a1 = 0, then condition (1.16) can be dropped,
since then we can take β arbitrarily large, in order to ensure (1.16). Also, if
a0(x) = O(rβ) for some β ≥ 0, or a1 > 0, then condition (1.16) is fulfilled
with β = N or β < α+γ

p respectively. It is also possible to consider the case of
α = (γ − 1)/(p− 1) in Theorem 1.3.

Under simple additional conditions we can ensure that the solution will bump
on the upper obstacle infinitely many times near its singular point x0, that is,
along an infinite sequence converging to x0.
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Theorem 1.4 (Bumping on the Upper Obstacle near the Singularity)
Assume that a(x, η, ξ) = |ξ|p−2ξ, and let there exist positive constants α, γ, R,
C1, C2, such that for a.e. x ∈ BR and η ≥ ess infBR(x0)ω1,

g(x, η) ≥ 0, f(x, η) ≥ C1

|x− x0|γ
, (1.17)

ω2(x) ≤ C2|x− x0|−α a.e. on BR(x0). (1.18)

Let α < γ−p
p−1 and let a solution u of (1.1) and lower obstacle w1 satisfy the

condition

u∗(x) > w∗1(x) for all x ∈ BR for some R > 0, (1.19)
u(x) ≥ 0 a.e. on BR, (1.20)

Then for any r > 0 there exists xr ∈ Br(x0) \ {x0}, such that

u∗(xr) = w2∗(xr). (1.21)

Theorem 1.5 (Pushing to the upper obstacle) Assume that a(x, η, ξ) =
|ξ|p−2ξ. Let x0 be a given point in Ω such that w2∗(x0) <∞. Assume that

f(x, η) ≥ C · |x− x0|−γ for a.e. x ∈ BR = BR(x0), η ∈ (m1,m2),

where m1 = ess infBRw1 and m2 = ess supBRw2. If p < c < N , then for any
solution u of variational problem (1.1), we have u∗(x0) = w2∗(x0).

2 Proof of results

Proof of Theorem 1.1 As we have described in Introduction, we will restrict
our attention to the first case in (1.6) only, because the dual case can be obtain
in analogous way. We start by an easy localization fact from harmonic analysis
(see for instance [7]) that we state in the following form. For any c0 > 1 and
r > 0 there exists a function Φ ∈ C∞0 (RN ), 0 ≤ Φ ≤ 1 in RN such that

Φ(x) = 1 for x ∈ Br and Φ(x) = 0 for x ∈ RN \B2r

Φ(x) > 0 for x ∈ B2r and |∇Φ| ≤ c0/r in RN .
(2.1)

Taking Br, m1, Mc and m2 such that conditions (1.2)–(1.4) are satisfied, let us
choose for any c0 > 1 an appropriate test function ϕ defined by

ϕ = (u− t)−Φp + u with t ∈ (Mc,m2] . (2.2)

Here and in the sequel u is a solution of (1.1) and η− = max{0,−η}. The basic
step it is to check that ϕ has the properties

ϕ ∈W 1,p(Ω), ϕ− u ∈ L∞(Ω), and ω1 ≤ ϕ ≤ ω2 inΩ . (2.3)
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Arguing by contradiction, we assume that there holds the opposite of (1.6),
say |{x ∈ B2r : u > ωc}| = 0. In other words, u ≤ ωc in B2r. Remark that we
already have ω1 ≤ u in Ω. Taking one-sided supremum and infimum over B2r

in the previous two inequalities, we deduce:

m1 ≤ u ≤Mc in B2r . (2.4)

Since

∇(u− t)− =
{
−∇u in {u < t},
0 in {u ≥ t},

substituting test function ϕ from (2.2) into (1.1), and using the structure con-
dition (1.7), we obtain:

α0

∫
{u<t}2r

|∇u|pΦp dx

≤ p

∫
{u<t}2r

|a(x, u,∇u)|Φp−1(t− u)|∇Φ| dx (2.5)

−
∫
{u<t}2r

f(x, u)(t− u)Φp dx−
∫
{u<t}2r

g(x, u)|∇u|p(t− u)Φp dx.

where {u < t}2r = {u < t} ∩ B2r. It is interesting to mention that in the light
of (2.4) the level set {u < t}2r satisfies:

{u < t}2r = {u ≤Mc}2r ∪ {Mc < u < t}2r = {u ≤Mc}2r = B2r.

Thus, we are able to reduce all integrations over {u < t}2r, appearing in (2.5),
to B2r.

In the sequel, due to (H1) we can drop the last term on the right-hand
side of (2.5). This together with the structure condition (1.8) and t − u =
(t− u)

1
p′ (t− u)

1
p leads us to the inequality

α0

∫
B2r

|∇u|pΦp dx

≤
∫
B2r

[(
a0(x) + a1|u|p−1 + a2|∇u|p−1

)
Φp−1(t− u)

1
p′
]
·
[
p|∇Φ|(t− u)

1
p
]
dx

−
∫
B2r

f(x, u)(t− u)Φp dx . (2.6)

Now we consider the product under the first integral on the right-hand side
of (2.6). Applying the following two elementary inequalities, a(pb) ≤ d

p′ a
p′ +

(pd )p−1bp and (a + b)p
′ ≤ 2p

′−1(ap
′

+ bp
′
) for all a ≥ 0, b ≥ 0, and d > 0, we

obtain

0 =
[
α0 − ap

′

2 d(m2 −m1)
] ∫

B2r

|∇u|pΦp dx

≤ d

∫
B2r

(
a0(x) + a1|u|p−1

)p′Φp(t− u) dx+
(p
d

)p−1
∫
B2r

|∇Φ|p(t− u) dx

−
∫
B2r

f(x, u)(t− u)Φp dx, (2.7)
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where the numbers d and d are defined in (H2).
Now we are in the position to exploit properties of the localization function

Φ in (2.7). First, since f(x, η) ≥ f1(x) in B2r for all η ∈ I1 (see (H2)), then
using (2.1) and (2.4) we derive

0 ≤ (t−m1)d
∫
B2r

[a0(x) + a1m̂
p−1]p

′
dx

+(t−m1)
(p
d

)p−1|B2r \Br|
(c0
r

)p−(t−Mc)
∫
Br

f1(x) dx.

Setting s = t−Mc, using |B2r \Br| = (2N − 1)|Br|, and passing to the limit as
c0 → 1, we obtain∫

Br

f1(x) dx ≤ D1

[
s+ (Mc −m1)

]
s

, for all s ∈ (0,m2 −Mc].

Since in the previous inequality the function appearing on the right-hand side
is decreasing with respect to s, we can set s = m2 −Mc to obtain∫

Br

f1(x) dx ≤ D1
m2 −m1

m2 −Mc
.

However, this contradicts (H2), and the theorem is proved. ♦

Sketch of the proof of Theorem 1.2 The penalty method is carried out in
the following three steps (see for instance [9] for the case of Au = f ∈ V ′).

Firstly, we associate to (1.1) an ε-problem, the so called penalty equation

−dvi a(x, uε,∇uε) +
1
ε
β(x, uε) = f(x, uε) + g(x, uε)|∇uε|p in D′(Ω),

uε ∈W 1,p
0 (Ω) ∩ L∞(Ω),

(2.8)

where the penalty function β(x, η) is a Carathéodory function defined by

β(x, η) = ((η − ω2(x))+)p−1 − ((η − ω1(x))−)p−1, in Ω× R. (2.9)

Since ω1(x) ≤ 0 ≤ ω2(x) in Ω, the penalty function β has the following three
important properties:

β(x, v) = 0 in Ω if and only if ω1 ≤ v ≤ ω2 in Ω, (2.10)
(β(x, η1)− β(x, η2))(η1 − η2) > 0 in Ω, η1 6= η2 ∈ R, (2.11)

β(x, η) sgn(η) ≥ 0 in Ω, η ∈ R. (2.12)

In the first step, by means of the Schwartz symmetrization we derive some
basic a priori estimates for uε in W 1,p

0 (Ω) ∩ L∞(Ω).
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Proposition 2.1 Under the assumptions of Theorem 1.2, for each ε > 0 there
exist a solution uε of (2.8), and two constants C1 and C2 which are independent
on ε, such that

u#
ε (x) ≤ v#(x) = v(x) in Ω#,

‖uε‖L∞(Ω) ≤ C1 = ‖v‖L∞(Ω#),

‖∇uε‖LP (Ω) ≤ C2 = ‖∇v‖Lp(Ω#),

(2.13)

where u#
ε is the Schwarz symmetrization of u, and v is the unique solution

of (1.11).

Having in mind the sign condition (2.12) for the penalty function β(x, η),
the proof of Proposition 1 is very similar to the proofs of [11, Theorems 2, 3, 4].

Next, we consider the relative compactness of the sequence uε. According to
previous estimates and the relative compactness results from [2], one can show
the following proposition.

Proposition 2.2 Under the assumptions of Theorem 1.2, let uε be a solution of
(2.8). Then there exist a subsequence of uε, still denoted by uε, and a function
u ∈W 1,p

0 (Ω) ∩ L∞(Ω), such that as ε→ 0,

uε → u strongly in W 1,p
0 (Ω),

a(x, uε,∇uε)→ a(x, u,∇u) weakly in Lp
′
(Ω),

f(x, uε)→ f(x, u), g(x, uε)|∇uε|p → g(x, u)|∇u|p weakly in L1(Ω).

(2.14)

Proof According to (2.13), and using the reflexivity of W 1,p
0 (Ω) and compact-

ness of imbedding of W 1,p
0 (Ω) into Lp(Ω), we immediately conclude that there

exist a subsequence of uε, still denoted by uε, and a function u ∈ W 1,p
0 (Ω) ∩

L∞(Ω), such that

uε → u weakly in W 1,p
0 (Ω) and strongly in Lp(Ω),

a.e. in Ω and weak∗ in L∞(Ω).
(2.15)

By means of the monotonicity assumption (1.9) we are able to repeat all steps
from the proof of [2, Lemma 4, p. 189], and to derive:∫

Ω

[a(x, uε,∇uε)− a(x, uε,∇u)] · ∇(uε − u) dx→ 0. (2.16)

Now, with the help of the compactness result from [2, Lemma 5, p. 190], and
using the convergence result from [9, Lemma 3.2], together with (2.15) and
(2.16), we derive all claims in (2.14). ♦

Finally, as a consequence of two previous propositions, we obtain the follow-
ing statement.

Proposition 2.3 Under the assumptions of Theorem 1.2, let uε be a solution
of (2.8) satisfying (2.13), and let u ∈W 1,p

0 (Ω)∩L∞(Ω) be a function satisfying
(2.14). Then we have:
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(i) ω1 ≤ u ≤ ω2 in Ω

(ii) u is a solution of (1.1).

Proof Using (2.10) we see that in order to prove (i) it suffices to check that
β(x, u) = 0 in Ω. Let us remark that with the help of (1.8), (H5) and (2.13) we
obtain the existence of three positive constants c1, c2 and c3 such that∫

Ω

a(x, uε,∇uε) · ∇uε dx < c1,
∣∣ ∫

Ω

f(x, uε)uε dx
∣∣ < c2,∣∣ ∫

Ω

g(x, uε)|∇uε|puε dx
∣∣ < c3.

Furhtermore, testing (2.8) with the function ϕ = εuε, we obtain

ε

∫
Ω

a(x, uε,∇uε) · ∇uε dx+
∫

Ω

β(x, uε)uε dx

= ε

∫
Ω

f(x, uε)uε dx+ ε

∫
Ω

g(x, uε)|∇uε|puε dx.

Passing to the limit as ε→ 0, from the previous estimates we obtain∫
Ω

β(x, u)u dx = 0,

which together with the “sign” condition (2.12) implies that β(x, u(x))u(x) = 0
in Ω. Since β(x, 0) = 0, we obtain that also β(x, u(x)) = 0 in Ω.

Now we proceed with the proof of the second claim of the proposition.
Testing the penalty equation (2.8) with the function ϕ = v − uε, where v ∈
W 1,p(Ω) ∩ L∞(Ω) such that ω1 ≤ v ≤ ω2 in Ω, we have∫

Ω

a(x, uε,∇uε) · ∇(v − uε) dx+
1
ε

∫
Ω

β(x, uε)(v − uε) dx

=
∫

Ω

f(x, uε)(v − uε) dx+
∫

Ω

g(x, uε)|∇uε|p(v − uε) dx. (2.17)

Furthermore, by means of (2.10) and (2.11) we also have

1
ε

∫
Ω

β(x, uε)(v − uε) dx = −1
ε

∫
Ω

(β(x, v)− β(x, uε))(v − uε) dx ≤ 0. (2.18)

From (2.17) and using (2.18) we derive∫
Ω

a(x, uε,∇uε)∇(v − uε) dx (2.19)

≥
∫

Ω

f(x, uε)(v − uε) dx+
∫

Ω

g(x, uε)|∇uε|p(v − uε) dx.

Finally, according to (2.14)–(2.15), and passing to the limits in (2.19), we deduce
that the function u is a solution of the equation (1.1). ♦
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Proof of Theorem 1.3 We assume without loss of generality that x0 = 0,
and denote r = |x|. Let us fix a ball B2r, r < R/2, and let us define

f1(x) = C1(2r)−γ , m1 = ess infBRω1,

m2(r) = C1(2r)−α, Mc(r) = L ·m2(r),

where L ∈ (0, 1) is a given fixed number and C1 > 0. If we show that for any
r > 0 sufficiently small condition∫

Br

f1(x) dx > D1(r) · m2(r)−m1

m2(r)−Mc(r)
, (2.20)

is satisfied, see (H2), than the claim will follow from Theorem 1.1, since Mc(r)→
∞ as r → 0, and ∩r>0B2r = {0}. Denoting the left-hand side of (2.20) by F (r),
we have (note that γ < N since f1(x) ≤ f(x, u) ∈ L1(B2r)):

F (r) =
C1ωNN

2γ(N − γ)
rN−γ , (2.21)

where ωN = |B1(0)|. To estimate the right-hand side of (2.20), that we denote by
G(r), note that for a given and fixed k > 1 we have thatm2(r)−m1 ≤ k1/p·m2(r)
for all r small enough. Also, the left-hand side of (1.13) can be estimated by
C · rβ , where C is a positive constant. Hence,

G(r)

≤ [α0a
−p′
2 C · rβ + 2k

(
p− 1
α0

)p−1

ap2(2N − 1)ωNm2(r)p · rN−p] 2αrα

(1− L)C1

= D1r
α+β +D2r

−α(p−1)+N−p, (2.22)

where D1 ≥ 0 and D2 > 0 are explicit positive constants independent of r. In
order to ensure F (r) > G(r) for all r > 0 small enough, see (2.20), it suffices
have:

C1ωN
2γ(N − γ)

rN−γ > D1r
α+β +D2r

−α(p−1)+N−p,

that is,
C1ωN

2γ(N − γ)
rα(p−1)+p−γ > D1r

α+β+α(p−1)−N+p +D2.

This inequality holds for all r > 0 small enough due to α(p− 1) + p− γ < 0 and
α(p− 1) + p− γ < α+ β + α(p− 1)−N + p. ♦

Proof of Theorem 1.4 Assume, contrary to claim of the theorem, that there
exists a ball Br = Br(x0) such that u∗(x) < w2∗(x) for all x ∈ Br. Since we
have strict inequalities

w∗1(x) < u∗(x), u∗(x) < w2∗(x), ∀x ∈ Br,
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it is easy to see that solution u of variational inequality (1.1) is in fact a solution
of quasilinear elliptic equation on Br in the sense of distributions:

−∆pu = f(x, u) + g(x, u) · |∇u|p, in D′(Br), (2.23)

since for any test function ϕ ∈ D(Br) the function v = u + tϕ is admissible in
(1.1) for t small enough. Therefore,

−∆pu ≥
C1

|x− x0|γ
, in D′+(Br).

Since u ≥ 0 on ∂Br, then using [16, Theorem 3] we conclude that solution u
has singularity at least of order γ−p

p−1 at x0. However, this is a impossible, since
u(x) is dominated from above by obstacle w2(x), which has singularity at x0 at
most of order equal precisely to α, see (1.18), such that α < γ−1

p−1 . ♦

Remark Using the same method it is possible to show that Theorem 1.4
holds also for p-Laplace like operators, that is for a(x, η, ξ) = A(x, ξ) satisfying
Leary–Lions conditions with |A(x, ξ)| ≤ a2|ξ|p−1.

Proof of Theorem 1.5 Let us assume that x0 = 0 and denote r = |x|.
Here we define f1(x) = C · |x|−γ , m2(r) = ess infB2rw2, Mc(r) = m2(r) − rε,
where we take ε > 0 small enough. Similarly as in the proof of Theorem 1.3 we
obtain that condition (2.20) is satisfied for all r > 0 small enough if we have
rN−γ > a · rN−p−ε, where a is a positive constant independent of r. Thus we
have to secure that rγ−p−ε < 1/a for r > 0 small, and this is possible by taking
ε ∈ (0, γ − p). The claim follows from Theorem 1.1, since Mc(r) → w2∗(x0) as
r → 0. ♦

As a final remark, we note that our main Theorem 1.1 can be formulated in
a much more general context.

Theorem 2.4 Assume that a(x, η, ξ) satisfies conditions (1.7) and (1.8). Let
A be a measurable subset of Ω, such that Ar ⊆ Ω and |Ar \A| <∞. Let Mc be
a given number such that

Mc ∈ (m1,m2), mi = ess infArωi(x), i = 1, 2. (2.24)

Assume that

g(x, η) ≥ 0 for a.e. x ∈ Ar and η ∈ I1 = (m1,Mc), (2.25)

∃f1 ∈ L1(Ar), f(x, η) ≥ f1(x) for a.e. x ∈ Ar, η ∈ I1, (2.26)
f1(x) ≥ 0 on Ar \A. (2.27)

Furthermore, assume that∫
A

f1(x) dx > D1 ·
m2 −m1

m2 −Mc
, (2.28)
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where

D1 = d

∫
Ar

[a0(x) + a1m̂
p−1]p

′
dx+

(p
d

)p−1 |Ar \A|
rp

, (2.29)

with m̂, d and d defined in the same way as in Theorem 1.1. Then for any
solution u of (1.1) we have

|{x ∈ Ar u(x) > Mc}| 6= 0. (2.30)

Proof. The proof is the same as the proof of Theorem 1.1. We only have
to change Br to A, B2r to Ar, and to use our general result about localization
of measurable sets stated in [7, Lemma 5].
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