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Abstract. The Modified Bifurcating Neuron (MBN) is a neuron model that is capable 
of amplitude-to-phase conversion and  volume-holographic memory.  Inputs are real 
valued and temporally spaced. This allows information to be coded in the temporal 
spacing of inputs and outputs as well as their values.  At its core, the MBN 
incorporates a stateful leaky-integrate-and–fire neuron model.  The MBN attempts to 
produce these properties by simulating mechanisms present in biological neural 
systems to a greater extent than is normally found in artificial neural networks.  
MBNs use an object model rather than the normal linear algebra approach.  The MBN 
is conceptually based on the computational model presented in the “Bifurcating 
Neuron Network 2” by G. Lee and N. Farhat.   

 
 

1    Introduction 
  
The MNB is conceptually based on the Bifurcating Neuron (BN) [1] is a neuron 
model in which an integrate-and-fire neuron is augmented by coherent modulation 
from the neural environment.  The BN is capable of amplitude to phase conversion 
and volume-holographic memory.   Because of its integrate-and-fire activation 
model, it exhibits frequency response to incoming pulse timing. When used in a 
network, BNs have time delays between neuron connections that represent signal 
propagation latency [1].  A single BN is defined by the following three equations: 
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where )(tiθ , and it)(ρ  are the threshold level, and the relaxation level of BNi, 
respectively.  The potential  rises at a constant rate, , due to the incoherent 
signal, until it reaches the threshold level 
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drops to the relaxation level it)(ρ .  The threshold level is constant.  The relaxation 
level, Eq (3) is driven by the coherent signal and maintains a sinusoidal oscillation 
with maximum amplitude 0ρ  and frequency f.  See Figure 1. [1] 
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       Figure 1:   Firing behavior of BN 

  
The MBN takes a simulation or mimetic approach and loosely attempts to use 
structures found in biological systems rather than pure mathematical solutions.  This 
allows us to explore the role of some biological occurrences, as they pertain to neural 
computation.   For instance, certain behaviors or rather behavioral modes have been 
correlated to the presence of Theta rhythms in the mammalian brain [1], [2]. MBNs 
are modeled using an object oriented paradigm and not the traditional linear algebra 
approach.  The behavioral complexity of MBN processing elements is more complex 
than is normally found in neural networks. 
 
 
2 Modified Bifurcating Neuron Object Model  
 
Our Modified Bifurcating Neuron (MBN) attempts to approach the afore mentioned 
behavior of the BN using simulated biological mechanisms.  Its structure is depicted 
in Figure 2.  

The neuron object is where most of the processing occurs.  Information propagated 
by each neuron is modeled by pulse objects.  Each pulse corresponds to a spike in a 
spike train i.e. neuron output. Each neuron contains an axon and a collection of 
dendrites.  These objects serve as containers for incoming and outgoing pulses.  The 
neuron object delegates direct control of pulse objects to these containers.  
Connections between neurons are managed by synapse objects.  Synapses maintain a 
collection of pulses, which are waiting to arrive at the neuron in question, and 
contain information about the time delay between neurons and the connection 
strength for this particular connection.  A synapse can be between at most two 
neuron objects.  Time is defined in terms of a universal clock tick that all objects 
receive.   When pulses that have been scheduled to arrive at a neuron held in a 
synapse actually arrive, they contribute to the internal potential of a neuron object.  If 
this neuron reaches its threshold, a new pulse is generated and sent to every synapse 
connected to the axon of this neuron. 
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                 Figure 2: MBN Object Model  
 
 
3 Modified Bifurcating Neuron Networks 
 
MBNs are linked using synapse objects.  These connections are one-way and may be 
redundant allowing the construction of high order networks.  Pulse objects propagate 
along these connections.  In real time they are held by synapse objects until their 
scheduled arrival time, at which time they contribute to the rise in potential of the 
neuron in question.  

 

4 Modified Bifurcating Neuron Definition 
  

We altered the basic BN definition to model our Modified Bifurcating Neuron 
(MBN). The form of the BN definition has been maintained to illustrate similarities 
and differences between the two models.  Foremost, we see that the change in 
internal potential, Eq (5), is no longer constant and the resting potential, Eq (6), no 
longer oscillates.  The set of equations to follow describe the behavior of an MBN, 
augmented with a coherent and incoherent signal input, without an actual data input. 
They describe the behavior of the ith MBN, which we shall simply refer to as MBNi: 
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where , )(txi it)(θ , and it)(ρ  are the internal potential, the threshold level, and the 
relaxation level of MBNi, respectively.  Contributions to the internal potential of  
MBNi noted in Eq (5) come from the incoherent signal, it)(ψ , and coherent signal, 

it)(φ .  The potential  changes in time due to contributions from the incoherent 
signal, the coherent signal, and the potential remaining from the previous time step.  
This remaining potential is modified by the ’leak’ factor, 

)(txi

β (a constant between 0 
and 1) representing decay.  This continues until the potential reaches the threshold 
level )(tiθ , which is some constant value K.  The internal potential then immediately 
drops to the relaxation level )(tiρ , which is a constant value Ci. Eq (5) is a recursive 
function dependent on a discrete time step.   

 
4.1  Incoherent Signal    

 
An incoherent signal is provided by a regular pulse of variable frequency.  In an 
MBN network, this can be produced by an MBN that is connected to every other 
MBN and itself.  This MBN produces a pulse on a constant time interval.  This pulse 
arrives at every other MBN simultaneously and serves to increase the neuron 
potential as in Figure 1.  The rhythmic pulse can be generated utilizing one recurrent 
connection, whose time delay serves to regulate the firing frequency.  This is 
intended to be loosely synonymous with rhythmic pulses emanating from the 
hypocambal area in mammalian brains.  Various studies have shown a correlation 
between frequency ranges of this rhythmic signal and general behavioral states in 
mammals such as heightened alertness, concentration and problem solving, hypnosis, 
sleep, etc. [3].  Different frequency ranges have been given different names such as 
Theta (7 – 10 Hz) and Gamma (60 – 100 Hz) [4]. Regardless of its specific role or 
roles in behavioral states, it is sufficient to say that this rhythmic pulse exists, is 
dynamic, and is propagated to various areas of the mammalian brain.   
 
4.2  Coherent Signal    
 
The MBN coherent signal is not specifically sinusoidal as in the BN.  It is a spike 
train, whose pattern repeats over a certain time interval. In other words, it is a series 
of pulses of various temporal spacing and possibly various amplitudes, which repeat 
over a time period. It can be spaced in time in such a way that it produces an 
approximate sinusoidal response in the internal potential of an MBN, but it is 
sufficient that this signal causes a change in the internal potential that is not constant 
overtime within the period, Eq (5).  In Figure 3, we see a theoretical depiction of an 



MBN stimulated by coherent signal alone.  We can see that the presence of the 
coherent signal affects the system in a similar way as in the BN (Figure 1).  It causes 
changes in the timing of threshold events i.e. neuron activation.  This couples the 
temporal spacing of the output spike train to that of the coherent signal. 
 
 

Figure 3:  Theoretical MBN firing behavior 

The internal potential is driven to the firing threshold by 
simulated Coherent input in this example.  This figure illustrates 
coherent input of one period or less, therefore behavior arising 
from periodic behavior is not illustrated here.  This figure is 
reminiscent of Figure 1 and illustrates how input leads to 
temporal spacing action potential generation.  Additionally we 
see that internal potential falls to zero after a threshold event. 

Theoretical MBN firing behavior
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4.3 MBN Behaviors 
 
The MBN is very similar to the BN in many respects.  It exhibits similar behaviors, 
namely amplitude to phase conversion.  However, the mechanisms by which these 
behaviors are achieved are dramatically different.  The BN represents a neuron 
augmented by input from the neural environment.  Therefore, its coherent input is 
represented as an internally generated sinusoidal wave that controls the neuron 
resting potential, whose frequency is supplied as a network input.   The MBN does 
not seek to make this assumption but to an extent attempts to simulate the 
environment as well.  The entire coherent signal is supplied externally as network 
input.  The form of this input corresponds with neuron output so that output from one 
or more neurons could serve as coherent input for others.  This adds flexibility to the 
use of this signal.  Furthermore on a neuron level, the coherent input is not different 
from other inputs.  More importantly, it contributes directly to the internal potential 
and has no direct effect on the resting potential.    In this same vein, rise in potential 



due to the incoherent signal is no longer constant but quasi-constant and supplied by 
a rhythmic pulse.  Also, the internal potential of the MBN dissipates with time 
following the leaky-integrate-and-fire model, while the BN uses an integrate-and-fire 
model.  The major differences between the BN and MBN are:  1) In the  MBN, the 
coherent signal also contributes to the internal potential rise, where it does not in the 
BN. 2) The potential rise due to the incoherent signal is no longer constant, Eq (5), 
but merely quasi-constant.  3) The internal potential dissipates with time.  This 
follows the leaky capacitor integrate-and-fire neuron model, where the internal 
potential of a given processing element decreases over time.  Therefore, the 
contribution to the internal potential of a given processing element from two pulses 
will not be additive unless the arrival of these pulses are closely spaced in time.   
 
4.4 General Form 
 
It is important to remember that the MBN need not be augmented by incoherent and 
coherent inputs.  Coherent and incoherent refer to a particular structure of the inputs.  
While this structure can result in rich and interesting or useful behavior, all inputs in 
general are handled in the same way.  Thus we can construct a general form that 
makes no distinction between different types of network input.  A single MBN is 
defined by the following three equations: 
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where , )(txi it)(θ , and it)(ρ  are the internal potential, the threshold level, and the 
relaxation level of MBNi, respectively.   Here we make no distinctions as to the 
structure of the input, it)(λ .  The potential  changes in time due to 
contributions from an input, 

)(txi

it)(λ , and the potential ‘leak’, β , from the previous 
time step.  An interesting behavior emerges in Eq (8), if we consider the input as a 
growth rate and the ‘leak’ as a decay rate, where the decay rate is an exponential of 
the form .  We can see that when the growth rate equals the decay rate, the 
rate of change of the internal potential is zero. This implies that at some point an 
equilibrium condition will arise in which the internal potential will stabilize at or 
about some value.  In general, it seems that there are two cases to consider:  First, the 
case in which the growth rate is constant in time.  In this case it can be shown, that 
the internal potential will asymptotically approach some static equilibrium point, if 
we cast, Eq (8) into a continuous form.  Second, the case in which the growth is not 
constant in time.  In this case, no static equilibrium exists.  However, if we assume 
the growth rate periodically oscillates around some median value, it can be shown 
that the internal potential will reach an oscillatory equilibrium about some other 

αα −= eβ



median value. We see that this oscillation of the growth rate can be said to drive the 
internal potential in a steady state.  Thus we see a theoretical basis for making 
distinctions in the structure of the input.  This approach to a stable state may also be 
construed as adaptive behavior, i.e. neural plasticity.  It somewhat mimics the ability 
of biological neurons to adapt to sustained input. 

 
5 Expected Outcome 
 
We now examine the expected behavior of the MBN.  First consider the MBN driven 
by the incoherent signal alone.  The incoherent signal is synonymous with a signal 
that is constant in time.  However, due to the discreet nature of the pulse data, this 
cannot be achieved.  Therefore our incoherent signal is only quasi-constant in time.  
This is represented as a rhythmic pulse of constant amplitude and frequency.  
According to our discussion in section 4.4, the internal potential will approach a 
constant value in which the growth rate equals the decay rate given, a constant input.  
Therefore, we would expect our quasi-constant input to approach this behavior.  
However, according to section 4.4, a periodic input will result in a periodic 
oscillation of the potential.   
 

Figure 4:   MBN response due to incoherent signal  

An MBN is driven by a quasi-constant input of frequency 0.33 
Hz.  The internal potential is seen to oscillate periodically 
around some median value, which asymptotically approaches 
an equilibrium constant. 

MBN response due to incoherent signal
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Figure 4 depicts a sample output of an MBN supplied with this incoherent input.  
The result is as expected.  The internal potential approaches an oscillatory 
equilibrium in which it oscillates predictably about some median value that 



asymptotically approaches a constant value.  Likewise for the coherent input, we 
would expect a similar response.  Figure 5 depicts the response of an MBN to 
coherent input.  In this instance, coherent input is titanic, which means that the signal 
is composed of a series of pulse inputs closely spaced in time (one time step) 
followed by a period of no input.  The whole cycle is then repeated.  While this is not 
sinusoidal, it fits our requirement that the signal is not constant in time and is 
periodic.  The fact that a titanic signal is acceptable here is interesting, considering 
the prevalence of titanic signals in biological systems. 
 

 

Response MBN due to tetanic coherent input
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Figure 5:  Response of MBN due to titanic coherent input 

Titanic coherent input consists of multiple closely spaced pulses 
(titanic), which occur periodically.  The internal potential is seen 
to oscillate periodically around some median value.  The trailing 
tail marks the conclusion of the input signal.  The potential then 
falls off exponentially. 

 
 
 
 
 
 

 
 
 
 

5.1 Amplitude to Phase Conversion 
 
In Amplitude to phase conversion, we start with input patterns that contain both 
incoherent and coherent signals.  These are arranged in such a way that the MBN 
produces output spikes on regular intervals that correspond to the period of the 
coherent input.  If an additional input or inputs are introduced during a coherent 
input period, this causes a phase lead in the output spike for that period.  In other 
words, the MBN fires before its normal firing time by some amount proportional to 
the amplitude of the additional input signal.  If this signal is repeated in the next 
period this phase lead will appear again.  This effect can be summarized with the 
addition of a new term to Eq (5), representing the contribution to the internal 



potential from the additional input denoted by ν(t), referred to as the data input. 
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Figure 6 depicts an example of the MBN response due to incoherent and coherent 
input compared to the response of incoherent, coherent, and data input signals.  The 
output pulse timing of response including the data signal is phase shifted.  

 
 

Comparison of  MBN response under tetanic coherent + incoherent + data input signal and 
MBN response under tetanic coherent + incoherent:  shows  induced phase shift
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 Figure 6:  Response of MBN due to titanic coherent input 

Input containing a data signal as well as coherent and incoherent input is phase shifted with respect 
to the same coherent and incoherent input without the data signal.  The firing threshold is twenty.  
The firing time phase shift is not constant, but this pattern of irregularity repeats over several firing 
intervals.  Notice that the phase shift of the firing time at t = 23 is the same as the spike at t = 54 and 
t = 85.  This is due to the discreet nature of the time sampling   

 
 
 
 
 

 
5.2 Holographic Paging 
 
Now consider a more general case where the contributions to the internal potential 
from the data section at time t are given by ν(t).  If ν(t) is maintained, but the 
coherent signal, it)(φ , is altered, it is apparent that the rate of increase of the internal 
potential and thus the time spacing of output spikes will be altered.  In fact, changing 
the coherent signal should change intervals on which the MBN fires even without a 



data input. Thus, the output spike pattern will only be the same, if both the coherent 
signal and the data input pattern are unaltered.  Significant changes in either will 
result in an output pattern that does not match the original.  Thus a particular output 
pattern can only be recreated given the appropriate coherent signal.  The second 
major requirement is that storing a new data pattern with a different coherent input 
does not disturb the original pattern.  The original BN accomplished this in a nearest 
neighbor pulse coupled neural network PCNN, using higher order synaptic 
connections.  This requires that one or more new connections be added for each 
stored pattern. The time delays of new synaptic connection are offset by an amount 
proportional to the induced phase shift.  
 
6 Conclusions 
 
The MBN more closely mimics biological neural systems than conventional neural 
models.  MBNs exhibit diverse temporal behavior.  The MBN responds differently to 
different structured inputs.  Using these strategies, we have demonstrated amplitude 
to phase conversion and a theoretical basis for holographic memory.  Furthermore 
the MBN is capable of higher order recurrent connections.  This allows construction 
of complex temporal patterns.  As stated in BNN 2 by Lee and Farhat [1], these 
complex temporal patterns are possible examples of how and why the brain uses 
multiple recurring connections.  There are approximately 104 recurrent connections 
in the brain for each neuron.  The reduction of these connections to one seems to be 
an oversimplification.   
 Neural Networks, in general, have proven to be powerful computational tools.  
Perhaps borrowing more behaviors from biological systems can lead to even more 
powerful tools and a better understanding of the systems that inspired them.  
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