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ABSTRACT 

     The ordinary least squares method, for estimating unknown parameters of a multiple 

linear regression (MLR) model, produces an idealistic solution if the column vectors 

(regressors) of the design matrix X are linearly independent. However, in a typical MLR 

setting, true linear independence of the regressors is often an unrealistic situation. 

Multicollinearity arises as two or more predictor variables departure from linear 

independence, thus, providing the model with redundant information and causing problems 

in the MLR parameter estimation and inaccurate statistical inference. The degree of 

multicollinearity directly reflects the amount of redundancy or interdependence among 

regressors and the inaccuracy of the MLR inference. Several statistical and analytical 

detection methods exist and are commonly used to diagnose multicollinearity. These 

diagnostic methods often produce a measure that reflects the degree of multicollinearity 

present in the overall model or among the individual regressors. However, these diagnostic 

methods generally fail to breakdown complex multicollinearity relationships among the 

regressors. There is also lack of a methodology that combines perturbation analysis with 

the available diagnostic measures. In addition, several observational strategies are often 

overlooked and underutilized for diagnosing multicollinearity. Therefore, we develop a 

new R package, mcperturb, that encompasses several multicollinearity observational 

strategies and employs a new 5-step perturbation-based method. This package can identify 

the regressors that may be the main source of the multicollinearity problem. The outputs 

from the mcperturb package provide a comprehendible opportunity to observe the 
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relatedness between two or more variables on a deeper level than the currently available 

multicollinearity diagnostic packages. 
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I.    INTRODUCTION  

1.1    Background for multiple linear regression 

 

Across many disciplines, multiple linear regression (MLR) analysis is one of the most 

commonly practiced modeling techniques. It is often used for the investigation of linear 

relationships among variables and making statistical inference. An MLR model can be 

written in matrix form as: 

𝒚 = 𝐗𝜷 +  𝜺, 

where y is an 𝑛 ×  1 vector of responses, X is an 𝑛 ×  𝑝 matrix (𝑝 =  𝑘 + 1), k is the 

number of regressors,  𝜷 is an 𝑝 ×  1 vector of coefficients or parameters, and 𝜺 is an 

𝑛 ×  1 vector of random errors. 𝜷 is a vector of unknown parameters and is estimated using 

the ordinary least-squares (OLS) method. The OLS estimator of 𝜷 can be written as:  

�̂� = (𝑿’𝑿)−1𝑿′𝒚, 

where 𝑿’𝑿 is a square 𝑝 ×  𝑝 matrix. Therefore, the estimated MLR model is written as:  

�̂� = 𝐗�̂� +  �̂�. 

 

Like any good modeling technique, key assumptions about the errors must be met to 

achieve reliable results. The key assumptions for the ordinary least squares (OLS) estimator 

used for estimating the unknown parameters of an MLR model are (Montgomery et al., 

2012):  

a. The errors are normally distributed. 

b. The error terms are uncorrelated.  

c. The expectation for the error terms is zero E(𝜺) = 0.   
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d. The variance for the error terms is constant Var(𝜺) = 𝜎2𝑰𝑛, where 𝑰𝑛 is the identity 

matrix.   

The Gauss-Markov theorem states that the OLS estimators are best linear unbiased 

estimators if the last three assumptions are satisfied (Montgomery et al., 2012; Ott et al., 

2015). There are often no explicit assumptions for the predictor variables of the X-matrix. 

However, to derive the least-squares estimator for 𝜷, one implicit assumption is that the 

predictor variables are linearly independent of each other. If linear dependence exists 

among the predictor variables, the X-matrix will not be of full rank, therefore singular. If 

the X-matrix is not full rank, then the 𝑿’𝑿-square matrix will not be of full rank. The 𝑿’𝑿-

square matrix cannot be inverted if it is not of full rank, thus the OLS estimator for 𝜷 is not 

solvable (Curto & Pinto, 2007).   

 

When predictor variables are highly correlated or are approaching linear dependence, the 

least-squares estimator for 𝜷 will become unstable because the X-matrix is ill-conditioned. 

This problem is often referred to as multicollinearity. In the rest of this thesis project, we 

will discuss multicollinearity in greater detail and introduce a new perturbation strategy 

that employs existing diagnostic measures to identify the regressor variables that may 

associate with a multicollinearity issue. 

 

1.2   What is multicollinearity and why is it a problem? 

 

Before defining multicollinearity and discussing why multicollinearity is a problem in 

greater detail, it’s important to introduce some key terms that are often used throughout the 
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multicollinearity discussion. Relatedness is a term used to describe a relationship between 

variables. Two variables can be linearly, exponentially, quadratically, or otherwise related 

or associated with each other. Generally, the more two variables are related to each other, 

the more they are thought to provide similar information to the model. The term orthogonal 

is used for describing no linear relationships between regressors or when the regressors are 

uncorrelated (Montgomery et al., 2012; Mertler & Reinhart, 2016). It has been stated that 

complete independence among variables means that the variables are orthogonal to each 

other (Mertler & Reinhart, 2016). The column vectors of a matrix are considered linearly 

dependent if and only if there is a set of constants 𝑎1, 𝑎2, … , 𝑎𝑝, not all zero such that 

∑ 𝑎𝑖𝒙𝑖

𝑝

1

=  𝟎. 

The column vectors are considered linearly independent if  

∑ 𝑎𝑖𝒙𝑖

𝑝

𝑖=1

= 𝟎 

can only be satisfied by the trivial solution, 𝑎𝑖 = 0 for 𝑖 = 1, 2, . . 𝑝. The condition number 

of a square matrix can be found by calculating the ratio between the largest eigenvalue 

𝜆𝑚𝑎𝑥 and smallest eigenvalue 𝜆𝑚𝑖𝑛 (Montgomery et al., 2012; Belsley et al., 1980).  

𝜅 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
 

 

A well-conditioned matrix has column vectors that have low dependencies on each other; 

resulting in a small condition number. An ill-conditioned matrix occurs when columns of 

a matrix have large dependencies of each other. Thus, the condition number of the matrix 

is large (Belsley et al., 1980). Condition indices of a square matrix are defined as 
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𝜅𝑗 =
𝜆𝑚𝑎𝑥

𝜆𝑗
, 𝑗 = 1,2, … , 𝑝. 

The largest condition index of a square matrix is the condition number (Montgomery et al., 

2012; Belsley et al., 1980). With a large number of column vectors, a common occurrence 

is the redundancy of variables. The term redundancy of variables is used when two or more 

variables are highly related to each other, thus providing the same or similar information 

to the model. Finally, a square matrix is considered a singular matrix if the rank of the 

matrix is less than the number of parameters, thus, the determinant is 0. A square matrix 

that has linearly dependent columns is considered a singular matrix, which cannot be 

inverted.  

 

In literature, collinearity and multicollinearity are often used interchangeably as shown 

below. The term collinearity has been defined as the degree of linear dependence between 

two regressor variables, and perfect collinearity occurs when one of the predictors is an 

exact linear combination of one or more other regressor variables (Kleinbaum et al., 2007). 

Collinearity has also been referred to as the near-linear relation among the predictors 

(Hocking, 2013). The term multicollinearity can be defined as the existence of near-linear 

dependence between the regressors (Montgomery et al., 2012). Multicollinearity has been 

described as a mathematical problem that arises when high intercorrelations exist among 

predictor variables (Mertler & Reinhart, 2016). To avoid confusion throughout the rest of 

this paper, multicollinearity will be used henceforth.  

 

If perfect multicollinearity exists, the 𝐗-matrix will not be full rank. Therefore, the least-

squares estimator will not be solvable because the 𝑿’𝑿-square matrix is singular and 
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consequently is not invertible. The X-matrix can approach singularity if the predictor 

variables are highly related or interdependent on each other. As the 𝑿’𝑿-square matrix 

approaches singularity, multicollinearity problems arise in an MLR model. These problems 

can be seen as large in magnitude standard errors for the regressors, as well as implausible 

and unstable coefficient estimates. Therefore, an MLR model that suffers from 

multicollinearity will often have inaccurate and unstable coefficients and should be 

perceived as unreliable for statistical inference (Montgomery et al., 2012; Ott et al., 2015). 

   

1.3   The structure of this thesis 

 

The structure of this thesis is described below. In chapter 2, we’ll be reviewing two 

available R-packages used for diagnosing multicollinearity, perturb and mctest 

(Hendrickx, 2012; Imdadullah et al, 2016). We’ll discuss the strengths and weaknesses of 

these two packages, the output files from their main functions with interpretation, and how 

each package inspires the idea of this thesis. In chapter 3 we will introduce a new 

multicollinearity diagnostics package called mcperturb. The mcperturb package is based 

on a 5-step perturbation strategy (algorithm). Detailed examples will be provided to 

illustrate the capabilities of this new package. The observational strategy/analysis from the 

mcperturb package will be explored first. The overall diagnostics perturbation strategy will 

follow with example output files from the package. Finally, the individual diagnostic 

perturbation strategy will be explored using an example and the output files of the 

mcperturb package.  
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II.    REVIEW 

2.1    Multicollinearity introduction  

 

Two aspects are explored when diagnosing a multicollinearity problem. The first aspect is 

about identifying the source and measuring the degree. Identifying the source of a 

multicollinearity problem often encompasses the following four primary origins 

(Montgomery et al., 2012).   

a. The sampling technique or data collection method 

b. The model or population constraints 

c. The model and variable specification 

d. The “curse of dimensionality” or an over fitted model  

 

Essential multicollinearity is defined as the multicollinearity that is inherent to the model 

and cannot be easily fixed, e.g., a and b, as shown above. Montgomery et. al. suggest that 

identifying essential multicollinearities is the primary concern because they cannot be 

easily fixed and require advanced detection methods (Montgomery et al., 2012). 

Nonessential multicollinearity can be defined as the multicollinearity that is introduced to 

the model by the researcher, e.g., c and d, as listed above. An example of nonessential 

multicollinearity is the multicollinearity that arises from the inclusion of higher ordered 

terms in the model. Most authors agree that the nonessential multicollinearity causes can 

be easily fixed and often prevented (Montgomery et al., 2012; Iacobucci et al., 2016).   

 

The second aspect of diagnosing the multicollinearity problem is about measuring the 
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degree of multicollinearity that exists in the overall model and among the individual 

regressors. Several multicollinearity diagnostics have been developed to measure the 

degree of multicollinearity. In Table 1, we summarize several diagnostic measures by their 

name, type, focus, and root. A more detailed summary of multicollinearity diagnostics can 

be found in Imdadullah  et al. (2016).   

 

Table 1 column 2 is the “type” of multicollinearity diagnostic. It categorizes based on 

whether the diagnostic is an observational strategy, a statistical measure, or a numerical 

analysis technique. Unlike a statistical measure or numerical analysis technique, an 

observational strategy/analysis does not measure the degree of multicollinearity. Instead, 

an observation analysis may display key information that are related to the source of the 

multicollinearity problem. Table 1 column 3 is the “focus” of each multicollinearity 

diagnostic. It classifies whether a diagnostic focuses on providing information about the 

individual regressor’s or the overall model’s multicollinearity problem, or just the source 

of the multicollinearity problem. The statistical measures and numerical techniques 

quantify the degree of multicollinearity. The “cutoff” values for the statistical and 

numerical diagnostic measures are suggested by Imdadullah et al. (2016). Table 1 column 

4 is the “root” of the multicollinearity diagnostic. It summarizes according to the root 

analysis performed. The root of a diagnostic is based on the variance (𝜎2) of the model or 

individual regressors, coefficient of determination (𝑅2) for the model of individual 

regressors, eigenvalues (𝜇, 𝜆) of the X-matrix and 𝑿’𝑿-matrix respectively, and the 

determinant |𝐷𝑒𝑡| of the 𝑿’𝑿-matrix.  
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Table 1. Multicollinearity diagnostic summary table 

Diagnostic Name Type Focus Root 

Plotting the regressors density 

functions 

Observational Source 𝜎2  

Identifying implausible 

coefficients & standard errors 

Observational Source 𝜎2  

Perturbation analysis Observational Source 𝜎2  

Identifying insignificant t-stats 

when overall F-test is significant   

Observational Source 𝜎2  

Change in the overall models 𝑅2  Observational  Source 𝑅2  

Pair-wise correlation matrix Statistical Measure Individual 𝑅2  

VIFs Statistical Measure Individual 𝜎2/𝑅2/λ, μ 

TOL limit Statistical Measure Individual 𝜎2/𝑅2/λ, μ 

Fi method Statistical Measure Individual 𝑅2  

Leamer's method Statistical Measure Individual 𝜎2  

Corrected VIF Statistical Measure Individual 𝜎2/𝑅2/λ, μ 

Kleins rule Statistical Measure Individual 𝑅2  

Variance decomposition 

proportions 

Statistical Measure Individual 𝜎2/𝑅2/λ, μ 

Determinant of 𝑿′𝑿 matrix Numerical Technique Overall  |Det| 

Farrar's 𝝌𝟐 Statistical Measure  Overall  𝜎2  

Red's indicator Numerical Technique Overall λ 

Sum of the inverse λ Numerical Technique Overall λ 

Theil's indicator Statistical Measure Overall 𝑅2    

Condition number & condition 

indices 

Numerical Technique Overall λ, μ 

Eigenvalues Numerical Technique Overall  λ, μ 

 

 

A majority if not all of the diagnostic measures listed in Table 1 have direct or indirect 

relationships in their equations. For example, the VIF is equal to the inverse of the 

Tolerance Limit. That is  
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𝑉𝐼𝐹 =
1

1 − 𝑅𝑗
2 = (𝑇𝑂𝐿)−1,  

(Montgomery et al., 2012; Imdadullah et al., 2016), where 𝑅𝑗
2 is the coefficient of 

determination obtained when 𝑥𝑗 is regressed on the remaining 𝑝 − 1 regressors. Also,  

𝑉𝐼𝐹 =  ∑
𝑡𝑗𝑖

2

𝜇𝑖
2

𝑝

𝑖=1

=  ∑
𝑡𝑗𝑖

2

λ𝑖
2

𝑝

𝑖=1

 , 

where 𝜆𝑖 are the eigenvalues of the 𝑿′𝑿 matrix, 𝜇𝑖 are the singular values of the X-matrix 

(note, 𝑿 =  𝑼𝑫𝑻’ is called the singular-value decomposition of X), and 𝑡𝑗 is the associated 

eigenvector of the of the 𝑿′𝑿 matrix (Montgomery et al., 2012). Finally, the variance 

decomposition proportion matrix can be defined as  

𝜋𝑖𝑗 =

𝑡𝑗𝑖
2

𝜇𝑖
2

𝑉𝐼𝐹𝑗
, 𝑗 = 1,2, … , 𝑝  (Montgomery et al. , 2012).  

Plotting the density functions of the regressors is not a typical multicollinearity 

observational strategy in the current literature. This is one of the new contributions of this 

thesis project and the strategy will be discussed in detail in Chapter 3.  

  

Recent R-packages, perturb and mctest, have been created for the purpose of diagnosing 

multicollinearity (Hendrickx, 2012; Imdadullah et al., 2016). These existing R-packages 

have different strategies for diagnosing multicollinearity. Their strengths and weaknesses 

will be discussed in the following sections as well as how they motivate the creation of the 

mcperturb package. We will start the review with the perturb package and its two main 

functions. Then we switch our focus to the mctest package and its diagnostic measures.  
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2.2   The perturb package 

 

For evaluating multicollinearity, Belsley proposed the original perturbation strategy in 

1980 (Belsley, 1980). He introduced a small amount of random normally distributed noise 

into the X-matrix and performed an MLR model. He performed this procedure for multiple 

iterations. Then he observed and analyzed the variability of the coefficients. If 

multicollinearity exists in an MLR model, adding a small amount of noise to the X-matrix 

can expose unstable coefficients (Belsley, 1980; Hendrickx, 2012). Thus, multicollinearity 

diagnostics uses perturbation as an observational strategy. 

 

The perturb package provides two main functions, perturb and colldiag.  The methodology 

behind the perturb function is to introduce random noise (interference) into the X-matrix 

for multiple iterations and calculate the MLR coefficients for each predictor variable. The 

colldiag function calculates the condition number, condition indices, and the variance 

decomposition proportions for the regressors in the X-matrix (Hendrickx, 2012).  

 

The perturb package uses the “consumption” dataset, a dataframe with 5 variables and 28 

observations. The 5 variables are year (1947-1974), cons (total consumption dollars), rate 

(interest rate), dpi (deposit income), and d_dpi (change in deposit income) (Belsley, 1991). 

The cons variable is the response variable and the predictor variables are year, rate, dpi, 

and d_dpi. The perturb package provides source code that generates the output files for the 

perturb and colldiag functions in the following example. 
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2.2.1 Example of the perturb package  

 

We start off the example by first providing the summary table for the MLR model in Table 

2, which is based on the MLR model for the raw data without perturbation. In Table 2, the 

regressors with large standard errors can be identified. 

 

R code used for generating Table 2 

library("perturb") 

data(consumption) 

attach(consumption) 

ct1 <- with(consumption, c(NA, cons[-length(cons)])) 

C_regmod <- lm(cons~ct1+dpi+rate+d_dpi,data = consumption) 

summary(C_regmod) 

 

Table 2. The summary of an MLR model for the Consumption dataset 
Call: 
lm(formula = cons ~ ct1 + dpi + rate + d_dpi, data = consumption) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-6.5567 -2.5185 -0.8726  2.2804  5.8832  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   6.7242     3.8271   1.757  0.09283 .  
ct1           0.2454     0.2375   1.033  0.31271    
dpi           0.6984     0.2077   3.363  0.00281 ** 
rate         -2.2097     1.8384  -1.202  0.24217    
d_dpi         0.1608     0.1834   0.877  0.39016    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.557 on 22 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.9991, Adjusted R-squared:  0.9989  
F-statistic:  5964 on 4 and 22 DF,  p-value: < 2.2e-16 
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From the summary table in Table 2 we can identify large standard errors for the intercept 

term and the rate regressor. This may be due to the regressors that provide the same 

information to the model. This redundancy among the variables is a sign that 

multicollinearity may exist among the regressors. Another sign that this model may have a 

multicollinearity issue is that the overall model’s p-value for the F statistic is highly 

significant, while only the dpi regressor has a significant p-value. The intercept term and 

the rate term are not significant coefficients. This might be because they have large 

standard errors relative to their estimates. Thus, multicollinearity may be the reason for 

these regressors to be insignificant to the model. 

 

Figure 1 displays the boxplots of the coefficients calculated using the perturb function. The 

perturb function allows random normal or uniform noise to be added to selected predictor 

variables. The perturb function takes in a model, a list of noise variables, and list of noise 

amounts. It then runs the model with the perturbation variables for n iterations and outputs 

a summary table of the calculated coefficients. We performed n = 100 iterations with noise 

added to the “dpi”, “rate”, and “d_dpi” regressors. In Figure 1, the robustness of the 

coefficients should be observed. From the boxplots in Figure 1, we can identify large 

variations in the coefficients for the intercept term and the rate regressor. These variations 

show that small perturbations in the dataset lead to large variation of their coefficients. This 

is a sign that multicollinearity may exist among the regressors. 

 

R code used to generate Figure 1 

perturb1 <- perturb(C_regmod, pvars = c("dpi", "rate", "d_dpi"), prange = c(1, 1, 1)) 

boxplot(perturb1$coeff.table,  ylab = "Coefficients", xlab = "Regressors") 
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Figure 1. Perturbation analysis of Consumption dataset.   

 

To conclude the example, we perform the colldiag function. The colldiag function takes in 

a model object or a dataframe and calculates the condition indexes and variance 

decomposition proportions. The variance decomposition proportions are the proportions of 

the variance for each coefficient contributed by its eigenvalue. Table 3 shows the output 

from the colldiag function. In Table 3, large condition indexes and variance decomposition 

proportions should be identified. The procedure for performing the colldiag function is as 

follows. First, identify the condition indices greater than 30, then identify the variance 

decomposition proportions greater than 0.5 (Montgomery et al., 2012; Hendrickx, 2012). 

The variables that have variance decomposition proportions greater than 0.5 may be 

causing a multicollinearity problem. 
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R code used to generate Table 3 

cd = colldiag(C_regmod) 

print(cd, fuzz = 0.3)  

 

Table 3. Output of colldiag function 
Condition 
Index Variance Decomposition Proportions 
           intercept ct1   dpi     rate  d_dpi 
1    1.000     -      -     -       -      -   
2    4.143     -      -     -       -      -   
3    7.799   0.310    -     -       -      -   
4   39.406     -      -     -     0.984   -   
5  375.614   0.421  0.995  0.995    -    0.814 
 

 

From Table 3, we find that the 4th and 5th condition indices are greater than 30. We also 

find that for the 4th and 5th condition indices, the rate regressor has a variance 

decomposition proportion much greater than 0.5 and that the ct1, dpi, and d_dpi regressors 

all have a variance decomposition proportion greater than 0.5, respectively. Thus, these 

variables may be identified as a potential source for multicollinearity problem.  

 

We can use the observational strategies offered by the perturb package and identify 

regressors that may be causing a multicollinearity problem. The two conclusions we can 

draw from the perturb function and the colldiag function are that multicollinearity might 

exist in the overall model and that the rate regressor may be associated with a  

multicollinearity problem. 
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2.3   The mctest package 

 

The mctest package is created specifically for calculating multicollinearity detection 

measures and outputting descriptive summary tables. The package provides the mctest, 

imcdiag, omcdiag, eigprop, and mc.plot functions. The mctest function is the main function 

that output summary tables from the imcdiag and/or omcdiag functions. The imcdiag 

function calculates some of the diagnostics classified as individual diagnostic measures 

shown in Table 1. The omcdiag function calculates some of the overall model diagnostic 

measures listed in Table 1. Each function returns a summary table with the calculated 

metrics and outputs a suggestion regarding either the detection of multicollinearity in 

overall model or the regressors deemed insignificant to the model. The output tables are 

provided in Table 4 and 5. The eigprop function provides similar analysis and outputs as 

the colldiag function in the perturb package. The mc.plot function displays a VIF plots and 

an eigenvalue plot. For more information about the different functions offered in the mctest 

diagnostic package, please refer to the user guide (Imdadullah et al., 2015).  

 

2.3.1 Example of the mctest package  

 

The dataset and source code used for the following example can be found in the example 

section of the mctest function. The name of the dataset is “Hald” cement which consist of  

13 observations and 5 predictor variables. The dependent variable is the Y (heat) variable. 

The predictor variables in the dataset are X1, X2, X3, and X4. Each predictor variable is a 

percentage integer of the four basic ingredients in cement. Table 4 shows the output for the 
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omcdiag function and Table 5 shows the output for the imcdiag function. The output for 

the eigprop function is shown in Table 6 and the output plots for the mc.plot function are 

displayed in Figure 2. 

 

R code used to generate Table 4, 5, 6, and Figure 2 

library("mctest") 

data(Hald) 

x  <- Hald[, -1] 

 y <- Hald[, 1] 

mctest(x,  y, type = "o",  Inter = FALSE) 

mctest(x, y, type = "i") 

eigprop(x) 

mc.plot(x, y) 

 

 

 

Table 4. Output of omcdiag function 
Call: 
omcdiag(x = x, y = y, Inter = FALSE, detr = detr, red = red,  
    conf = conf, theil = theil, cn = cn) 
 
 
Overall Multicollinearity Diagnostics 
 
                       MC Results detection 
Determinant |X'X|:         0.0011         1 
Farrar Chi-Square:        59.8700         1 
Red Indicator:             0.5414         1 
Sum of Lambda Inverse:   622.3006         1 
Theil's Method:            0.9981         1 
Condition Number:          9.4325         0 
 
1 --> COLLINEARITY is detected by the test  
0 --> COLLINEARITY is not detected by the test 
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Table 5. Output of imcdiag function 
Call: 
imcdiag(x = x, y = y, method = method, corr = FALSE, vif = vif,  
    tol = tol, conf = conf, cvif = cvif, leamer = leamer, all = all) 
 
 
All Individual Multicollinearity Diagnostics Result 
 
        VIF    TOL       Wi        Fi Leamer    CVIF Klein 
X1  38.4962 0.0260 112.4886  187.4811 0.1612 -0.5846     0 
X2 254.4232 0.0039 760.2695 1267.1158 0.0627 -3.8635     1 
X3  46.8684 0.0213 137.6052  229.3419 0.1461 -0.7117     0 
X4 282.5129 0.0035 844.5386 1407.5643 0.0595 -4.2900     1 
 
1 --> COLLINEARITY is detected by the test  
0 --> COLLINEARITY is not detected by the test 
 
X1 , X2 , X3 , X4 , coefficient(s) are non-significant may be due to 
multicollinearity 
 
R-square of y on all x: 0.9824  
 
* use method argument to check which regressors may be the reason of 
collinearity 
=================================== 

 

 

 

 

Table 6.  Output of eigprop function 
Call: 
eigprop(x = x) 
 
  Eigenvalues       CI Intercept     X1     X2     X3     X4 
1      4.1197   1.0000    0.0000 0.0004 0.0000 0.0002 0.0000 
2      0.5539   2.7272    0.0000 0.0100 0.0000 0.0027 0.0001 
3      0.2887   3.7775    0.0000 0.0006 0.0003 0.0016 0.0017 
4      0.0376  10.4621    0.0001 0.0574 0.0028 0.0457 0.0009 
5      0.0001 249.5783    0.9999 0.9316 0.9969 0.9498 0.9973 
 
=============================== 
Row 5==> X1, proportion 0.931570 >= 0.50  
Row 5==> X2, proportion 0.996865 >= 0.50  
Row 5==> X3, proportion 0.949846 >= 0.50  
Row 5==> X4, proportion 0.997299 >= 0.50  
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Figure 2. VIF and eigenvalues plots from the mc.plot function 

 

5 of the 6 overall multicollinearity diagnostics in Table 4 indicate multicollinearity in the 

overall model. The condition number is the only overall diagnostic measure that does not 

indicate the presence of multicollinearity. However, the condition number calculated in the 

eigprop function in Table 6 does indicate a multicollinearity problem. Thus, there is a 

discrepancy between the two functions due to the source code. The omcdiag function scales 

the X-matrix before it calls upon the eigprop function to calculate the condition number. 

Therefore, the omcdiag function inadvertently scales the regressors twice before it 

calculates the condition number. Observing Table 6, we can identify condition index 5 is 

greater than 30. We can also identify each term that has a variance decomposition 

proportion greater than 0.5. Thus, all regressors, X1–X4, may be associated with a 

multicollinearity problem.  
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The individual diagnostic measures calculated by the imcdiag function are shown in Table 

5. According to the default cutoffs used in the mctest package, the VIF, TOL, Wi, Fi, and 

Leamer’s multicollinearity measure all indicate that each regressor contributes to the 

multicollinearity problem. The CVIF does not detect any regressor to be a source of 

multicollinearity and the Klein diagnostic only indicates X2 and X4 as the troubled 

regressors. Figure 2 displays the VIF plot and the eigenvalue plot. The VIFs calculated for 

the VIF plot are the same values calculated by the imcdiag function. However, the 

eigenvalues calculated for the eigenvalue plot are not the same for the eigprop function. 

This is because the inclusion of the intercept term is not included as a default for the mc.plot 

function. Each regressor variable in the “Hald” dataset may be related to a multicollinearity 

problem. Thus, each regressor should be evaluated further. 

 

2.4   Strengths, weaknesses, and motivation for a new software package 

 

The concept of perturbing the data to investigate the variability of the coefficients is good 

for detecting multicollinearity. Once noise is introduced, we can identify the regressors that 

have unstable coefficients. However, it is unclear how much noise is the right amount and 

an algorithm is missing for systematically perturbing the regressors. What the current 

perturbation strategy lacks is a way of relating the initial amount of noise to the output 

variation and how adding noise strategically can provide more information about the 

regressors. The mctest package does a good job providing multiple diagnostics and 

functionality for multicollinearity diagnostic analysis. What the mctest package lacks is a 

dynamic methodology, such as perturbation, to utilize the capability of the measures. Table 
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7 provides a check list of which diagnostics are covered for each package and the cutoff 

metric for each diagnostic.  

 

 

Table 7. Diagnostics checklist by packages 

 Name: mctest perturb mcperturb cutoff 

1 Plotting the  regressors density 

functions 
  ✓  

2 Identifying implausible 

coefficients & standard errors 
  ✓  

3 Perturbation analysis  ✓ ✓  

4 Identifying insignificant t-stats 

when overall F-test is significant   
  ✓  

5 Change in the overall models 𝑅2    ✓  

6 Pair-wise correlation matrix    ≥ 0.85 

7 VIF 
✓  ✓ ≥ 5 𝑜𝑟 10 

8 TOL limit 
✓  ✓ ~ 0 

9 𝐹𝑗 method 
✓  ✓ 𝐹𝑗 > 𝐹∗ 

10 Leamer's method 
✓  ✓ 𝐶𝑗  ~ 0 

11 Corrected VIF 
✓  ✓ ≥ 5 𝑜𝑟 10 

12 Kleins rule 
✓  ✓ 𝑅𝑗

2 > 𝑅2  

13 Variance decomposition 

proportions 
✓ ✓  ≥ 0.5 

14 Determinant of 𝑿′𝑿 matrix  
✓  ✓ ~ 0 

15 Farrar's 𝝌𝟐 
✓  ✓ 𝜒2 > 𝜒𝛼,𝜐

2  

16 Red's indicator 
✓  ✓ RED ~ 1 

17 Sum of the inverse λ 
✓  ✓ ≥ 5 ∗ 𝑝 

18 Theil's indicator 
✓  ✓ M ~ 1 

19 Condition number & condition 

indices 
✓ ✓ ✓ ≥ 30 

20 Eigenvalues 
✓  ✓ ~ 0 
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In Table 7,  𝑝 is the number of regressors. n is the number of observations. 𝛼 is the 

significance level.  𝑅𝑗
2 is the coefficient of determination from the auxiliary regression for 

the jth regressor. The definition or math formulas of key statistics listed in the last column 

of Table 7 are shown below.  

For row 9 of Table 7,  

𝐹𝑗 =
𝑅𝑗

2

1 − 𝑅𝑗
2 ×

𝑛 − 𝑝 + 1

𝑝 − 2
 ~  𝐹∗ = 𝐹𝛼,𝑝−2,𝑛−𝑝+1. 

For row 10 of Table 7,  

𝐶𝑗 = √
(∑ (𝑋𝑛

1 𝒊𝒋
− �̅�𝒋)𝟐)

−𝟏

(𝑿′𝑿)𝒋𝒋
−𝟏

. 

For row 15 of Table 7, 

𝝌𝟐 =  − [𝑛 − 1 −
1

6(2𝑝 + 5)
] × log𝑒|𝑿′𝑿|,  

and  

𝜐 =  
1

2
𝑝(𝑝 − 1)  

degrees of freedom.  

From row 16 of Table 7, 

𝑅𝐸𝐷 =
√𝑝 − 1 

𝑝
× √∑(𝜆𝑗 − 1)

2

𝑝

𝑖=1

.  

For row 18 of Table 7,  
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𝑀 = 𝑅2 − ∑(𝑅2 − 𝑅−𝑖
2

𝑝

𝑖=1

) , 

where 𝑅−𝑖
2  is the regression model without the ith regressor.  

 

 

The cutoff value for each diagnostic in the last column of Table 7 can be found throughout 

multiple literatures. The statistical and numerical diagnostic measure equations and cutoff 

values are suggested in Imdadullah et al. (2016). The pair-wise correlation matrix, variance 

decomposition proportions, and condition numbers/indices cutoff values can be found in 

Montgomery et al. (2012). The VIF and TOL limit values can be found in Ott and 

Longnecker (2015).  

 

Regarding the information the multicollinearity diagnostic calculates, each package has its 

own strengths and limitations. Enhancing the abilities of both packages by combining their 

advantages is a part of the motivation behind the mcperturb package. Thus, we take the 

underlying concept of the perturbation strategy as a multicollinearity diagnostic and adapt 

the strategy to encompass the diagnostic measures in the mctest package. Therefore, the 

main functions for both packages will be used in the mcperturb package.  
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III.     A NEW PACKAGE 

3.1    Introduction  

 

The main goal of the mcperturb package is to diagnose multicollinearity. In order to 

achieve this goal, we execute a perturbation strategy/analysis and include an observational 

strategy/analysis. Performing perturbation analysis before calculating diagnostic measures 

can provide a dynamic element to the otherwise static information obtained by calculating 

diagnostic measures. That is, performing multicollinearity diagnostic measures (static) 

after applying small perturbations to the regressors (dynamic) may lead to a more in-depth 

analysis of a multicollinearity problem. In addition to the perturbation analysis, including 

the observational analysis is one of the new contributions of this mcperturb package as it 

is not included in the currently available software packages.  

 

The mcperturb package diagnoses multicollinearity by calculating both the overall and 

individual diagnostic measures after perturbation. This package consists of 5-steps as 

shown in Table 8 and explained below.  

Step 1: Perform observational analysis  

Step 2: Perform perturbation analysis  

Step 3: Calculate the overall or individual diagnostic measures and plot their 

 distributions 

Step 4: Conduct summary analysis for each regressor and calculate the rate of 

 change  
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Step 5: Rank the overall diagnostics and/or identify coupling regressors 

 

The mcperturb package is a structured approach that combines both the observational 

strategy/analysis and perturbation strategy/analysis. It begins with the observational 

strategy/analysis, and then combines a perturbation technique with the overall or individual 

diagnostic measures. It systematically perturbs the regressors sequentially at different noise 

levels before calculating the diagnostic measures. The mcperturb package includes 

functions designed specifically for each step of the 5-step multicollinearity diagnostic 

procedure. It generates output summary tables, graphs, or boxplots for interpretation. 

Performing the 5-step multicollinearity diagnostic procedure can generate a plethora of 

information, especially when including a large number of regressors for analysis. To make 

it easier for the users, we will provide examples to show how to utilize the mcperturb 

package and interpret the results. 

 

3.2    R function overview and the 5-step chart 

 

Table 8 outlines the new 5-step multicollinearity diagnostic method. It summarizes each 

step, lists the functions associated with each step, and lists the arguments for each function. 

The first step of the 5-step procedure is to perform observational analysis. The functions 

for performing observational analysis are densPlots, rsqdPlots, and implausStats. 

Providing graphical output for interpreting multicollinearity is the main goal for the 

observational analysis. The second step is to perform the perturbation analysis. The 

function used for the perturbation analysis is the noiseLevelDiagOutList function. The third 
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step of the new strategy is to calculate and plot the distributions for the overall diagnostic 

measures or the individual diagnostic measures. The overallDiagsPlots function is used for 

displaying the distributions for the overall diagnostics calculated at each noise level. The 

BoxplotsAllVars function is used for displaying the distributions for the individual 

diagnostics calculated at each noise level. The BoxplotsAllPercent function is used for 

displaying the distributions of an individual regressor per diagnostic measure at each noise 

level. Using either the mean or median values, step four displays the minimum, maximum, 

and difference for each regressor per diagnostic for all noise levels. The overallDiagOut 

and mcperSumTables functions are used for displaying summary tables for step four. 

Finally, using the overallDiagsRank, isRateOfChange, and isBestFit functions, step five 

calculates the rate of change, least squares best fit line, and rank sum values. 
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Table 8. 5-steps of the mcperturb package 

Steps Diagnostic/Purpose R Functions Arguments  

1. Perform 

observational 

analysis  

Identify regressors 

with similar 

density functions, 

implausible 

coefficients, 

inflated standard 

errors, and little 

impact on the R2  

densPlots,  

implausStats,  

rsqdPlots  

 

x - matrix of 

regressors, 

y - response 

variable 

2. Perform 

perturbation 

analysis  

 

Add small amounts 

of noise to each 

regressor at 

multiple levels 

noiseLevelDiagOutList x - matrix of 

regressors, 

y - response 

variable, 

i - # of iterations, 

n - # of noise 

levels 

 

3. Calculate the 

overall/individual 

diagnostic 

measures and 

plot their 

distributions  

Observe how small 

perturbation affects 

the diagnostic 

measures 

overallDiagsPlots, 

BoxplotsAllVars, 

BoxplotsAllPercent 

 

x - matrix of 

regressors, 

y - response 

variable, 

i - # of iterations, 

n - # of noise 

levels, 

p - path 

4. Conduct 

summary 

analysis for each 

regressor and 

calculate the rate 

of change  

 

Summarize the 

max, min, and 

difference values 

for each diagnostic 

and rate of change 

overallDiagOut, 

mcperSumTables  

x - matrix of 

regressors, 

y - response 

variable, 

i - # of iterations, 

n - # of noise 

levels 

 

5. Rank the 

overall 

diagnostics 

and/or identify 

coupling 

regressors 

 

Rank the overall 

diagnostics by their 

impact on the 

model and identify 

coupling 

regressors.  

overallDiagsRank, 

isRateOfChange, 

isBestFit 

 

x - matrix of 

regressors, 

y - response 

variable, 

i - # of iterations, 

n - # of noise 

levels 
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3.3    Body dimension dataset 

Before performing step 1 of the 5-sep procedure, we introduce the body dimension dataset 

used for analysis. This dataset is published as an observational study (Grete et al., 2003). 

The dataset is collected by the original authors, Grete Heinz and Louis J. Peterson, at San 

Jose State University and at the U.S. Naval Postgraduate School in Monterey California. 

The authors investigated relationships between individual’s body frame size, frame girths, 

and weight of active adults in the military. Because multiple body measurements are 

performed on the same individual who participated in the study, the high correlation 

between variables is inevitable.  

The original body dimension dataset consists of 25 variables (body measurements) and 507 

observations (profiles). From the 25 body measurements, the weight measurement is 

selected as the response variable and the shoulder diameter, chest girth, bicep girth, forearm 

girth, wrist minimum girth, height, and age variables are selected as the regressors for this 

thesis project. A summary of the subset of variables used for analysis is listed in Table 9. 

 

R code for generating Table 9.  

x = body.dat[, c(11, 12, 16, 17, 21, 22, 24] 

colnames(x) = c("shoulder",  "chest",  "bicep",  "forearm",  "wrist",  "age",  "height")  

summary(x) 
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Table 9. Summary statistics for a subset of the body dimension dataset  
Variable Names  Units Type Min 1st Qu Median Mean 3rd Qu Max 

Shoulder diameter cm Continuous 85.9 99.5 108.3 108.2 116.6 134.8 

Chest girth cm Continuous 72.6 85.3 91.8 93.42 101.2 118.7 

Bicep girth cm Continuous 22.4 27.6 31 31.2 34.5 42.4 

Forearm girth cm Continuous 19.6 23.6 25.8 25.97 28.4 32.5 

Wrist minimum girth cm Continuous 13 15 16.1 16.11 17.1 19.6 

Age yrs. Quantitative  18 23 27 30.36 36 67 

Weight kg Continuous 42 58.2 68.2 69.28 79.1 116.4 

Height cm Continuous 147.2 164 170.2 171.1 177.8 198.1 

 

The correlations between the regressor variables are displayed in a correlation plot in 

Figure 3. The shoulder diameter, chest girth, bicep girth, forearm girth, and wrist minimum 

girth variables are chosen for multicollinearity analysis because of the high correlations 

between each other. The height variable is included for analysis because of its moderate 

correlations with the other regressors. The age variable is selected because of its low 

correlations with the other regressors. Using the correlation matrix to identify 

interdependencies, we can hypothesize that multicollinearity may exist among the 

regressors because of their high intercorrelations. The correlation matrix in Figure 3 shows 

the intercorrelations are high between the shoulder, chest, bicep, forearm, and wrist 

regressors.  
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R code for generating Figure 3. 

library("corrgram") 

corrgram(x, lower.panel = panel.shade, upper.panel = panel.cor, col.regions = 

colorRampPalette(c("orange",  "yellow",  "green",  "blue",  "black"))) 

title(main = "Pairwise Correlations") 

 

 
Figure 3. Correlation matrix of the regressors  

 

3.4    Step 1. Perform observational analysis 

 

When diagnosing multicollinearity, the mcperturb package provides the functions 

densPlots, implausStats, and rsqdPlots for the observational analysis. These functions plot 

the regressor’s density functions, display implausible coefficients & standard errors, and 

plot the change in the overall model 𝑅2 value respectively. By providing graphical outputs, 
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the observational analysis of the mcperturb package may indicate a multicollinearity 

problem. However, performing observational analysis does not offer a measure for the 

degree of the multicollinearity problem.  

 

The first observational analysis is not used as a multicollinearity diagnostic strategy in 

currently available packages. However, plotting each regressor’s density function is useful 

for exploring how regressors relate to each other. The densPlots function performs the 

observational analysis and can be used for finding patterns in the regressors’ density plots. 

These plots can help us observe patterns for diagnosing multicollinearity by identifying 

regressors who share similar variances and have similar inflection points in their 

distributions. The steps for performing the densPlots function are: 

a. Mean center the regressors 

b. Plot the estimated density functions on the same graph 

c. Identify the variables that have similar spreads 

d. Identify the variables that have similar inflection points 

Note: The regressor variables do not have to be mean centered in order to perform this type 

of observational analysis. However, it is much easier to compare multiple regressors’ 

density plots on the same graph when each regressor distribution is centered around 0.   

 

Using the body dimension dataset, we show a graph consisting of the mean centered density 

plots for the regressors listed in Table 9, see Figure 4. 
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R code for generating Figure 4.  

densPlots(x, TRUE) 

 

 

Figure 4. The mean-centered density plots for the body dimension dataset  

 

 

Based on Figure 4, we can identify the regressors that have relatively narrow density 

functions and that show similar distribution patterns. The regressors with relatively narrow 

density functions should be identified because their small variances might be able to help 

us identify a source of a multicollinearity problem. Regressors with small variances may 

only be able to provide a small amount of information to the MLR model. If this is the 

case, the limited information these regressors may provide should be as unique as possible 
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to avoid being redundant with the information provided from the other regressors. When 

regressors are selected from the same population, it is possible for their density plots to 

display similar distributions. If this is the case, the information these regressors can provide 

in the MLR model might be redundant. The regressors that have narrow density functions 

and that display similarities in their density plots might be more likely to provide the MLR 

model with redundant information and be a source of multicollinearity.  

 

In Figure 4, the regressors with relatively narrow density plots are wrist minimum girth, 

forearm girth, and bicep girth. In addition, in Figure 4, there is a distinct bimodal pattern 

occurring among the regressors. Multiple regressors appear to have a natural separation, 

i.e., bimodal pattern, in their density plots. These regressors are shoulder diameter, chest 

girth, forearm girth, and wrist minimum girth. Thus, the two regressors with narrow ranges 

of their density plots and similar patterns in their density functions are wrist min girth and 

forearm girth. 

 

We investigate further and find that the bimodal pattern may be due to a latent variable 

missing from the analysis. We identify the latent variable as the gender variable. The 

natural separation in the regressors may be influenced by the differences between two 

subpopulations, male and female. Once the regressors are separated by gender, the bimodal 

pattern does not exist anymore.  

 

Next, we continue the diagnosis of multicollinearity by performing the second 

observational analysis using the densPlot function, see Figure 5. This figure displays the 
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density plots for two regressors of interest, shoulder diameter and chest girth. In Figure 4, 

shoulder diameter and chest girth are identified as two regressors that have very similar 

density functions because of their bimodal distributions and spread. Due to their similar 

density functions, it is likely that these regressors are associated with a multicollinearity 

problem. Although this may be generally true, observational analysis for detecting 

multicollinearity should be investigated on a case-by-case basis.  

 

R code for generating Figure 5.  

densPlots(x[, 1:2], TRUE) 

 

 

 
Figure 5. The mean-centered density function for shoulder diameter and chest girth  

 



 

34 

Identifying implausible coefficients and standard errors is the next observational analysis 

we will explore using the mcperturb package. The procedure behind this observational 

analysis is to perform a SLR model for each regressor and an MLR model using all of the 

regressors, then identify the regressors whose coefficients and standard errors are 

inconsistent in the SLR and MLR model. The implausStats function can output a summary 

table that displays the necessary statistics for performing the identification of implausible 

coefficients and standard errors. This function is described in detail below: 

a. Calculate the correlations between each regressor and the response variable 

b. Calculate the SLR model coefficients and standard errors 

c. Calculate the MLR model coefficients and standard errors 

 

The rationale behind the observational strategy/analysis is that the correlations between 

each regressor and the response variable should correspond with the coefficients estimated 

by the SLR models, and the parameter estimation from the SLR model should be consistent 

with the MLR model parameter estimation. A common example of an inconsistency that 

is often attributed to multicollinearity is when a regressor’s coefficient has a wrong sign. 

For example, the coefficient in the SLR model is positive, but it changes to negative in the 

MLR model. Identifying any implausible coefficients, inflated standard errors, and 

inconsistencies may indicate a possible multicollinearity problem. Next, we use the body 

dimension variables to show a potential multicollinearity problem, see Table 10 for the 

output from the implausStats function. 

 

 



 

35 

R-code for generating Table 10.  

implausStats(x, y) 

 

 

 

 

Table 10. Summary table of implausible coefficients & standard errors  
         Resp.corr SLR.coeff   MLR.coeff     SLR.std.err  MLR.std.err 
shoulder 0.8788    1.130     0.0908 0.0273   0.0648  
chest    0.8989    1.196      0.6023    0.0259   0.0685   
bicep    0.8666    2.723     0.4674   0.0697   0.1801    
forearm  0.8695    4.099     0.6479   0.1036    0.2997   
wrist    0.8164    7.890     -0.3194  0.2482    0.4011   
age      0.2072    0.2878    0.0357  0.0604   0.0244  
height   0.7173    1.017     0.3316   0.0439    0.03407  

 

 

Observing the statistics for the regressors in Table 10, we can identify an implausible 

coefficient change for the wrist regressor. The wrist regressor’s SLR coefficient, 7.890, 

changes dubiously to -0.3194 in the MLR model. This implausible coefficient change may 

be attributed to the MLR standard error for wrist 0.4011 being larger than the magnitude 

of its MLR coefficient.  Because of its implausible MLR coefficient, the wrist regressor 

may be identified as a potential regressor that may be related to a multicollinearity problem. 

In Table 10, we can also identify the regressors with inflated standard errors. Because the 

magnitudes of their MLR standard errors are significantly larger than the magnitudes of 

their SLR standard errors, the shoulder, forearm, and wrist regressors can be identified as 

the regressors with inflated standard errors. These regressors with inflated standard errors 

may influence their associated regressor coefficients to be insignificant. These inflated 

standard errors may be an indirect indicator that a multicollinearity problem exists in the 

MLR model. 
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The third observational analysis offered by the mcperturb package is a summary of the 

overall model’s R2 or adjusted R2 values as more variables are included in the MLR. The 

function used to perform this analysis is rsqdPlots function. This function calculates the 

overall model’s R2 or adjusted R2 values as each regressor is sequentially added into the 

MLR model by performing the following steps:  

a. Rank the regressors by their correlations with the response variable. 

b. Add in one regressor at a time into the MLR model and calculate the R2 or adjusted 

R2. 

c. Plot the R2 values and identify patterns with a small change of the slope.  

Using the body dimension dataset, we show the output from the rsqdPlots function, see 

Figure 6. 

 

R code for generating Figure 6  

rsqdPlots(x, y, T) 
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Figure 6. MLR adjusted R2 values 

 

 

If there is no significant change in the R2 and/or adjusted R2 values as regressors are 

sequentially added into the MLR model, this may imply that no more variation accounted 

by the newly added variable is being introduced into the model. Therefore, these regressors 

may be identified as regressors providing redundant information. When redundancy exists 

in the MLR model, the model may have a multicollinearity problem. In Figure 6, when the 

bicep, wrist, or age regressors is introduced into the MLR model, there seems to be no 

significant change in the R2 and adjusted R2 values. The inclusion of these regressors in 

the overall MLR model may be related to a multicollinearity problem because the model 

is possibly overfitted.  
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In summary, the three observational analyses offered by the mcperturb package are plotting 

the density functions, identifying the implausible coefficients and standard errors, and 

plotting the R-squared values as more variables are included in the model. Each analysis 

has its advantages and can be used to summarize different aspects of regression analysis. 

After the observational analysis is performed on the body dimension dataset, we now know 

the variables of interest we would like to investigate further. The regressors that may 

contribute to a multicollinearity problem according to the observational analysis are 

shoulder diameter, chest girth, bicep girth, forearm girth, and the wrist minimum girth.  

 

3.5    Step 2. Perform perturbation analysis 

 

From the observational analysis in step 1, we are able to identify the regressors that may 

associate with a multicollinearity problem. In step 2 of the 5-step strategy, small 

perturbations of random noise are systematically applied to each regressor. The 

noiseLevelDiagOutList function performs the perturbation analysis by perturbing each 

regressor sequentially for multiple iterations at different noise levels. Because the body 

dimension dataset consists of continuous regressors, random normally distributed noise is 

applied to each regressor. Using an iterative process, the noise levels are calculated with 

respect to the noise regressor. The iterative process is as follows:  

noise level 1 =  noise start × sd(regressor) 

noise level 2 =  noise level 1 + noise step 

…  

noise level n =  noise level (n − 1) + noise step 
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where noise start is the initial percentage of noise (i.e., 5%), noise step is the increase of 

percentage (i.e., 5%), and  

𝑛 =
𝑛𝑜𝑖𝑠𝑒 𝑒𝑛𝑑 –  𝑛𝑜𝑖𝑠𝑒 𝑠𝑡𝑎𝑟𝑡

𝑛𝑜𝑖𝑠𝑒 𝑠𝑡𝑒𝑝
+ 1  

 

The output for the noiseLevelDiagOutList function is a list of 𝑖 noise matrices, each noise 

level is a list of 𝑗 noise levels, and for each noise level, it includes a list of k noise regressors. 

Therefore, this function’s output is a list of lists. That is, it generates a total of 𝑖 × 𝑗 × k 

matrices structured in a list of lists. Using each noise matrix, we calculate the overall and 

individual diagnostic measures. Calculating the multicollinearity diagnostics measures 

after applying this perturbation analysis can provide even more information for 

multicollinearity diagnostics. 

 

3.6    Step 3. Calculate the overall or individual diagnostic measures and plot their 

distributions  

 

After performing step 1 and step 2, more information about the multicollinearity problem 

can be generated by calculating the overall and/or individual diagnostic measures for each 

resulting matrix and plotting their distributions. The third step of the 5-step strategy is to 

plot the resulting distributions after calculating the overall and individual diagnostic 

measures. We sequentially perturb each regressor for 𝑖 iterations, e.g., 𝑖 = 50, at each noise 

level before plotting the calculated diagnostic measures. The overallDiagsPots function 

provides a graphical output of the distribution for each noise level and for each overall 

multicollinearity diagnostic per individual noise regressor. The distributions for the 



 

40 

determinant diagnostic at each noise level are displayed in the boxplots in Figure 7. 

 

R code for generating Figure 7  

for (i in 1:dim(x)[2]){ 

  special.Vars = colnames(x)[i] 

  overallDiagsPlots(xmat = x, yvar = y, noiseLevels = noiseLevs, spec.Vars = 

special.Vars, iter =   iteration, choiceDig = c("determinant")) 

} 

 

 

 
Figure 7. Boxplots of the determinant of 𝑿′𝑿 with respect to the noise variable 

 

 

 

For each boxplot in Figure 7, the change in the determinant does not increase as the noise 

levels increase. This may be because the determinant measure is dependent on multiple 
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regressors. Therefore, adding noise to one regressor does not significantly affect the 

determinant. The distribution at each noise level follows a normal distribution, and the 

mean is used when the difference is calculated between the original determinant and the 

determinant at an individual noise level.   

 

Plotting the distributions for the individual diagnostic measures can be performed in two 

different ways. The first way is to plot all the regressors with respect to each diagnostic at 

multiple noise levels. The second way is to plot the change in one regressor over the 

different noise levels. boxplotAllPerc is the function used to display the individual 

diagnostics with noise added to a single regressor. The boxplotAllPerc function outputs a 

boxplot of the distributions of each regressor at different noise levels per diagnostic 

measure. Figure 8 shows the different distributions for each regressor as the shoulder 

regressor is being perturbed and the VIF is the diagnostic of interest. 

 

R code for generating Figure 8 

special.Vars = c(“shoulder”) 

boxplotoutperc = BoxplotAllPerc(xmatrix = x, y = y, noiseLevs = noiseLevs, 

special.Vars = special.Vars, iteration = iteration) 
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Figure 8. Boxplots of variables’ vifList with noise added to the shoulder regressor  

 

 

From Figure 8, observing the calculated VIF distributions of the shoulder diameter and 

chest girth, we can identify a significant decrease in their VIFs with respect to the increase 

of noise levels and the noise variable shoulder. Recalling the density plots in Figure 5, these 

two regressors have very similar distributions. Thus, now there is more evidence to suggest 

that as the shoulder diameter gets perturbed, the regressor that acts accordingly is the 

regressor, chest.  

 

For each diagnostic and regressor, we can observe the change in the distribution at every 

noise level. Figure 9 displays the output boxplots from the function boxplotAllVars. In 
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Figure 9, the perturbed regressor is shoulder diameter and the diagnostic of interest is VIF. 

The distributions of VIFs for each regressor are plotted for each noise level. Figure 9 shows 

that the regressor being perturbed, shoulder diameter, has the most variation of all the 

calculated VIF distributions. In Figure 9, we can identify the regressors that have noticeable 

changes to their VIF, i.e., shoulder diameter and chest girth. 

 

R code for generating Figure 9 

special.Vars = c(“shoulder”) 

boxplotout = boxplotsAllVars(xmatrix = x, y = y, noiseLevs = noiseLevs, special.Vars = 

special.Vars, iteration = iteration) 

 

 

Figure 9. Boxplots of the VIF’s for all the regressors at multiple noise levels 
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3.7    Step 4. Conduct summary analysis for each regressor and calculate the rate of 

change 

 

The overallDiagOut function provides a table displaying the minimum of calculated 

means, maximum means, and the difference between the maximum and minimum when 

each regressor is the noise variable. The original diagnostic measure is used in the search 

for the maximum or minimum values. Table 11 shows the output for the overallDiagOut 

function when the determinant of the 𝑿′𝑿 is the diagnostic of interest. 

 

R code for generating Table 11 

overallDiagsSummaryTable(x = x, y = y, noiseLevs = noiseLevs, iteration = iteration) 

 

 

Table 11. Output table of minimum, maximum, and max/min difference for the determinant 
Noise.variable Min.mean Max.mean Difference                   
shoulder  0.000158 0.000193 3.531e-05 
chest     0.000158  0.000197  3.905e-05 
bicep      0.000158 0.000204  4.675e-05  
forearm    0.000158  0.000217  5.913e-05 
wrist      0.000158  0.000181   2.36e-05 
age        0.000158  0.000158  5.881e-07 
height     0.000158  0.000163  4.909e-06 

 

 

In table 11, the minimum mean for each regressor is the original determinant before 

perturbation analysis. The maximum mean for each regressor does not vary much and is 

relatively close to the original mean. Thus, the differences between the maximum and 

minimum means are relatively small and may be an insignificant change.   
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The mcperSumTables function provides an output summary table for each individual 

diagnostic with respect to a single noise regressor. Table 12 displays the VIFs for each 

regressor as the shoulder diameter regressor is perturbed at multiple noise levels. The 

medians are used for the analysis because the distributions shown in Figure 8 do not seem 

to follow a normal distribution. The original VIF for each regressor is used to calculate the 

difference between the maximum and minimum median, least-squares fit, and rate of 

change values.  

 

Because the VIF distributions seem to be changing in a linear fashion for the body 

dimension dataset, the rate of change line and a least square best fit line are calculated in 

step 4. The rate of change is calculated by taking the ratio of the difference between the 

maximum and minimum medians and noise levels. The least squares best fit line is 

calculated by using the noise levels as the regressors and the VIF values as the response 

variable. The rate of change and the best fit values measure the rate a regressor changes as 

the noise change. Both values will agree with each other when the VIF values change 

linearly with respect to the noise levels. 

 

In order to interpret the rate of change and best fit values, we must first identify which 

regressors have a significant original VIF value. A VIF greater than 10 may be used as a 

threshold for identifying regressors causing a multicollinearity problem (Kleinbaum et al., 

2007). Using 10 as a cutoff value, we can identify bicep and forearm as the regressors that 

are significantly causing a multicollinearity problem. After noise is added to the shoulder 
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regressor, we can observe in Table 12 that even though bicep and forearm have the largest 

original VIF values, this does not imply they are going to have the greatest change of VIF 

values. 

 

R code for generating Table 12 

summaryTableList = rateOfChange(x = x, y = y, noiseLevs = noiseLevs, special.Vars = 

special.Vars, iteration = iteration) 

 

Table 12. Summary table of VIF diagnostics with the variable shoulder perturbed 
$`VIF Table` 
         Original-Values Diff-Median Least-squares-fit Rate-of-Change 
shoulder           9.293       8.024            -3.057         -3.094 
chest              9.691       2.983            -1.166         -1.150 
bicep             12.002       0.161            -0.069         -0.062 
forearm           14.764       0.181            -0.041         -0.070 
wrist              6.293       0.056            -0.014         -0.022 
age                1.133       0.010            -0.003         -0.004 
height             2.108       0.085            -0.031         -0.033 

 

 

3.8    Step 5. Rank the overall diagnostics and/or identify coupling regressors 

 

The overallDiagRank function outputs a table of rankings for each of the differences 

between the mean of the regressor and the original calculated diagnostic measures. Each 

regressor is ranked by how much of an influence it has on an overall diagnostic measure 

when it is the variable being perturbed. Table 11 shows the magnitude of the difference 

between maximum and minimum mean determinants for each noise regressor. We take the 

magnitudes found in Table 11 and rank them. Table 13 summarizes the ranking of the 

differences for each diagnostic. The lower the ranking is for a regressor, the greater the 

difference is. In table 13, we calculate the rank sum for each regressor with respect to each 
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diagnostic and conduct a final ranking of these sums. 

 

R code for generating Table 13 

overallDiagsPlots(xmat = x, yvar = y, noiseLevels = noiseLevs, spec.Vars = 

special.Vars, iter = iteration, choiceDig = c("d")) 

 

Table 13. Overall diagnostic ranks by differences  
Noise.variable  Det ChiSqr RedInd SumOfLam TheilInd Condition RankSum Overall 
Shoulder         4     4     4      4         2        5         23     4          
chest            3     3     2      3         5        4         20     3          
bicep            2     2     3      2         3        2         14     2          
forearm          1     1     1      1         1        1          6     1          
wrist            5     5     5      5         4        3         27     5          
age              7     7     7      7         7        6         41     7          
height           6     6     6      6         6        7         37     6    

 

 

In table 13 we can identify forearm as the regressor that has the greatest overall impact on 

the overall diagnostic measures, which suggests forearm may have the greatest impact on 

the overall model’s multicollinearity issue. 

 

Using the functions isRateOfChange and isBestFit, we can calculate the least squares best 

fit and rate of change values for each diagnostic. Each function will display a list of 

summary tables for the individual diagnostic. Table 14 displays the least squares best fit 

values for the VIF diagnostic after each regressor is perturbed. The least squares best fit 

values can be calculated for the VIF diagnostic and the body dimension dataset, but it may 

not be a useful if linearity is not satisfied for other datasets and diagnostics. Therefore, we 

also calculate and report the average rate of change values as a consistency check for the 

least squares best fit calculation and as a non-parametric analysis. Table 15 displays the 

rate of change for the VIF diagnostic after each regressor is perturbed. 
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R code for generating Table 14 and 15 

VifLeastSqrsMat = matrix(NA, nrow = 7, ncol = 7) 

VifRateOfChangeMat = matrix(NA, nrow = 7, ncol = 7) 

 

for(i in 1:dim(x)[2]){ 

  special.Vars = colnames(x)[i] 

  summaryTableList = rateOfChange(x = x, y = y, noiseLevs = noiseLevs, special.Vars 

= special.Vars, iteration = iteration) 

  VifLeastSqrsMat[, i] = summaryTableList[[4]][[3]] 

  VifRateOfChangeMat[, i] = summaryTableList[[4]][[4]] 

} 

 

VifLeastSqrsMat 

VifRateOfChangeMat 

 

 

Table 14. Least squares best fit values for VIF 
Noise variable  [,1]   [,2]   [,3]    [,4]    [,5]   [,6]   [,7] 
shoulder  -3.141 -1.210 -0.099  -0.128  -0.120 -0.024 -0.169 
chest     -1.155 -3.365 -0.798   0.016   0.085 -0.169  0.012 
bicep     -0.067 -0.472 -9.583  -5.871  -0.011  0.001 -0.172 
forearm   -0.040  0.017 -4.831 -18.026 -10.555 -0.104 -0.043 
wrist     -0.011  0.001 -0.006  -2.120 -15.685 -0.052 -0.178 
age       -0.002 -0.022  0.000  -0.021  -0.056 -0.047 -0.003 
height    -0.033  0.000 -0.070  -0.020  -0.504 -0.002 -0.444 

 

 

Table 15. Rate of change values for VIF  
Noise variable [,1]   [,2]    [,3]    [,4]    [,5]   [,6]   [,7] 
shoulder  -3.087 -1.163  -0.127  -0.168  -0.154 -0.032 -0.164 
chest     -1.133 -3.376  -0.926  -0.079  -0.168 -0.194 -0.035 
bicep     -0.074 -0.496 -10.044  -6.160  -0.119 -0.007 -0.189 
forearm   -0.130 -0.042  -5.030 -19.080 -10.045 -0.123 -0.051 
wrist     -0.014 -0.002  -0.024  -2.214 -14.610 -0.062 -0.181 
age       -0.003 -0.025  -0.002  -0.035  -0.064 -0.042 -0.004 
height    -0.032 -0.003  -0.080  -0.028  -0.472 -0.010 -0.409 

 

In Table 14 and 15, we can identify the regressors whose best fit and rate of change absolute 

values are greater than one. These values are highlighted in the tables above. A line with a 
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slope greater than a magnitude of one will signify that there is a significant difference in 

the calculated VIFs. We can observe that when the shoulder regressor is the noise variable, 

the chest regressor is the only regressor with a rate of change and best fit value greater than 

1. The same is true when chest is the noise regressor. When bicep is the noise regressor, 

the forearm regressor changes significantly. However, when the forearm is perturbed, the 

bicep and the wrist regressors changes significantly. When noise is added to the wrist 

regressor, only the forearm regressor changes dramatically. We call these types of 

relationships, coupling relationships. We define that a coupling relationship, or coupling 

dependency, exists between two or more regressors if significant changes of their best fit 

slope and rate of change values exists as either one is being perturbed. Thus, the coupling 

variables for the body dimensions dataset are shoulder and chest, bicep and forearm, and 

forearm and wrist.  

 

Choosing a magnitude of 1 as a threshold for the rate of change may be unique to the VIF 

diagnostic and this subset of variables. We chose 1 to perform our analysis because a 

magnitude greater than 1 for the rate of change or least squares best fit values indicates that 

the VIF diagnostic changed proportionally more than the noise added to each variable. 

Other diagnostics may indicate a different threshold value and other datasets might show a 

significant threshold other than 1 for the VIF diagnostic.   

 

The regressors that have the largest in magnitude rate of change and least squares fit values 

are the regressors that have the smallest variance. These variables are bicep girth, forearm 
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girth, and wrist girth. Because forearm’s variance is in between biceps and wrist variance, 

it is coupled with both of them. Age and height are both insignificant variable with respect 

to the multicollinearity problem. Thus, their insignificant changes in VIFs are not 

surprising. 
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IV.    DISCUSSION  

 

In this chapter, we’ll discuss the application of the mcperturb package to a larger dataset 

and explore a variable selection method. Then, we’ll discuss how to fix the 

multicollinearity problem. Finally, we’ll discuss some limitations of the mcperturb 

package.  

 

4.1    Application to a larger dataset 

 

The application of the mcperturb package on a bigger dataset is explored by using all 24 

continuous variables in the body dimension dataset. Tables 16 and 17 show the least 

squares best fit and rate of change VIF values for each regressor respectively.  

 

Even with  a much larger dataset used for analysis, the mcpertub package can identify 

coupling relationships. Parsing Table 16 and 17, the new coupling relationships among the 

regressors can be identified. The new coupling regressors are hip girth with thigh girth, 

knee diameter with ankle diameter, and wrist diameter with wrist girth. Wrist girth with 

forearm girth and forearm girth with chest girth are still coupling regressors. Shoulder 

diameter with chest girth are no longer identified as coupling regressors. This may be due 

to shoulder diameter being related to many of the new regressors included in the larger 

dataset. Thus, even as chest girth is being perturbed, the other variables relate with shoulder 

diameter enough to keep its VIF from changing. 
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R-code for generating Table 16 and 17 

VifLeastSqrsMat = matrix(NA, nrow = 23, ncol = 23) 

VifRateOfChangeMat = matrix(NA, nrow = 23, ncol = 23) 

for(i in 1:dim(x)[2]){ 

  special.Vars = colnames(x)[i] 

  summaryTableList = rateOfChange(x = x, y = y, noiseLevs = noiseLevs, special.Vars 

= special.Vars, iteration = iteration) 

  VifLeastSqrsMat[, i] = summaryTableList[[4]][[3]] 

  VifRateOfChangeMat[, i] = summaryTableList[[4]][[4]] 

} 

VifLeastSqrsMat 

VifRateOfChangeMat 
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4.2    Comparison to a variable selection method 

 

Variable selection for MLR can be used to select the regressors that provide significant 

information to the MLR model (Mertler & Reinhart, 2016). A stepwise variable selection 

method uses a model’s Akaike Information Criteria (AIC) measure to estimate the quality 

of each model when different regressors are included in different models. The stepwise 

procedure terminates once the calculated AIC value for a new model is no longer smaller 

than the existing AIC value. A possible sign that a multicollinearity problem exists in an 

MLR model is when practically significant regressors are deemed statistically 

insignificant. This was discussed in chapter 3 section 4 with the wrist minimum girth 

regressor. This statistical insignificance may occur, which depends on how inflated the 

regressor standard error is. Inflated standard errors can indicate redundancy between 

regressors. Comparing the regressors deemed insignificant by a stepwise variable selection 

method with the regressors identified as causing a multicollinearity problem by the 

mcperturb package may provide a more thorough diagnosis for fixing a multicollinearity 

problem. The summary results of the forward stepwise variable selection method are shown 

in Table 18. The forward and backwards selection methods conclude the same results.   

 

Performing stepwise variable selection procedure 

fullMat = cbind(x, y) 

null = lm(y ~ 1, data = fullMat) 

fullMod = lm(y ~., data = fullMat) 

step(null, scope = list(lower = null, upper = fullMod), direction = "forward") 
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Table 18. Summary table of the forward selection method  
Call: 
lm(formula = y ~ chest + height + bicep + forearm, data = x) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-15.842  -3.049  -0.255   2.644  22.875  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -80.38607    4.15716 -19.337  < 2e-16 *** 
chest         0.67128    0.05499  12.207  < 2e-16 *** 
height        0.33166    0.03183  10.418  < 2e-16 *** 
bicep         0.49943    0.17891   2.791  0.00545 **  
forearm       0.56092    0.25425   2.206  0.02782 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 4.972 on 502 degrees of freedom 
Multiple R-squared:  0.8623, Adjusted R-squared:  0.8612  
F-statistic: 785.9 on 4 and 502 DF,  p-value: < 2.2e-16 

 

The regressors not included in the variable selection result are shoulder diameter, wrist 

minimum girth, and age. The shoulder diameter regressor may be left out of the variable 

selection method because of its coupling relationship with chest girth. Because of this 

coupling relationship, shoulder diameter provides the MLR model with a lot of the same 

or similar information as chest girth. Because chest girth has a higher correlation with the 

response variable weight, shoulder diameter may be deemed insignificant by the variable 

selection method. Although age is not a variable causing a multicollinearity problem, the 

regressor is left out of the resulting variable selection due to lack of significance. The wrist 

minimum girth variable may have been left out of the selected model because of the 

coupling effect it has with forearm. Thus, wrist may be insignificant because it provides 

the MLR model with the same type of information as forearm and forearm has a higher 

correlation with the response variable. 
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It may be possible to use multicollinearity diagnostic measures as threshold criteria for a 

variable selection method. Systematically removing the less significant coupling regressors 

could be used as a strategy for the dimension reduction in regression analysis and will be 

explored in future research.   

 

4.3    Dealing with multicollinearity 

 

Although some researchers might argue that nothing should be done to fix the 

multicollinearity problem, there exist many solutions. These solutions consist of but are 

not limited to (Montgomery et al., 2012; Imdadullah et al, 2016), 

a. Collecting additional observations  

b. Deleting variable(s) that may cause the problem  

c. Combining variable(s) that may cause the problem  

d. Transforming variables 

e. Performing principal component regression (PCR) or ridge regression 

 

It has been suggested that the best method for combating multicollinearity is collecting 

additional observations in a way that addresses the multicollinearity problem (Montgomery 

et al., 2012). Although this method may be considered the best method, it is may be difficult 

to achieve. Deleting the variables that cause a multicollinearity problem can be executed 

by performing a variable selection method (Mertler & Reinhart, 2016). From the analysis 

covered in this thesis, we may identify which regressors are left out of the selected model 

because of insignificance or because of a coupling effect with another regressor. 
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Combining variables has been suggested to combat the multicollinearity problem 

(Hocking, 2013; Mertler & Reinhart, 2016) . If regressors are highly correlated with each 

other, they can be combined into one regressor. If a regressor is highly correlated with 

multiple regressors, then finding its coupling regressors can be used as reference to select 

which variables to combine. Variable transformation can be performed for multiple reasons 

and will inherently change the distribution of the regressor. With respect to 

multicollinearity, it has been suggested to perform a mean-center transformation when a 

higher ordered term is included in the model (Hocking, 2013; Iacobucci, et al., 2016). 

Finally, performing PCR combats multicollinearity by using less than the full set of 

principal components in the model. Because principal components are uncorrelated, there 

will be no issue with multicollinearity if PCR regression is performed (Jolliffe, 2002; 

Hocking, 2013).  Ridge regression is designed to provide more stable parameter estimates 

by shrinking the least squares estimators. This will lead to the ridge estimators having less 

variance than the least squares estimators (Hocking, 2013; Firinguetti et al, 2017). Here we 

only list a few ways of dealing with multicollinearity, identifying which strategy is the best 

for alleviating a multicollinearity problem can be explored in future work. 

 

4.4    Limitations   

 

Although the mcperturb package accomplishes dynamic multicollinearity diagnostic 

analysis, some limitations about the perturbation analysis should be discussed. The existing 

perturb package can be performed with the inclusion of categorical variables and with the 

application of randomly generation noise from a uniform distribution. However, the current 
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mcperturb package can only conduct the perturbation analysis with randomly generated 

noise from a normal distribution. Implementing categorical variables into the mcpertub 

package will be explored in future research. A weakness of performing perturbation 

analysis before calculating the overall diagnostics is that small perturbations applied to 

each regressor may not significantly change the diagnostic measure. That is, there may not 

be a noticeable difference between the diagnostic measure before and perturbation analysis. 

From Table 11 we can rank the regressors by their influence on the determinant. However, 

because the determinant is initially small and close to zero, the differences will be relatively 

small and close to zero. Thus, the ranking may not be very helpful. Another limitation of 

mcperturb package is that the cutoff values for identifying coupling relationships are left 

open for interpretation. Therefore, developing robust rate of change cut off values for all 

the individual diagnostics can be explored in future work. 
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V.    CONCLUSION 

 

Multicollinearity is a complex mathematical problem that should be addressed in order to 

have accurate statistical inference when using MLR models. The main contribution of this 

thesis is to improve multicollinearity detection methods by developing the new package, 

mcperturb. Advancing the diagnosis of multicollinearity by combining perturbation 

analysis with the calculation of diagnostic measures is a new contribution of the mcperturb 

package. Using observational analysis, the mcperturb package helps identify the regressors 

that may be causing a multicollinearity problem. Applying perturbation analysis to the 

overall multicollinearity diagnostic measures will provide evidence for ranking the 

influence that each regressor has on the overall model. Applying perturbation analysis to 

the individual multicollinearity diagnostic measures may help identify coupling 

relationships between regressors. These analyses can provide the analyst with the 

opportunity to further diagnose a multicollinearity problem, which allows for better ways 

to alleviate the multicollinearity problem and have more accurate statistical inference. 
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