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INEQUALITIES AMONG EIGENVALUES OF STURM
LIOUVILLE EQUATIONS WITH PERIODIC COEFFICIENTS

YAPING YUAN, JIONG SUN, ANTON ZETTL

Communicated by Jerome Goldstein

Abstract. It is well known that for h-periodic coefficients, every periodic
eigenvalue on every interval [a, a + kh], k = 2, 3, 4, . . . , is also an eigenvalue

on the interval [a, a + h] of a periodic, semi-periodic or complex self-adjoint

boundary condition. Here we give an explicit 1-1 correspondence between
these eigenvalues.

1. Introduction

Consider the equation

− (py′)′ + qy = λwy, λ ∈ C, on R (1.1)

with coefficients satisfying:
1
p
, q, w ∈ Lloc(R,R), p > 0, w > 0 a.e. on R,

p(t+ h) = p(t), q(t+ h) = q(t), w(t+ h) = w(t), a.e. t ∈ R,
(1.2)

and for K = I, or K = −I and 0 ≤ γ ≤ π, the boundary conditions

Y (a+ k h) = eiγK Y (a+ (k − 1)h), Y =
[

y
(py′)

]
k ∈ N. (1.3)

Here R, C denote the real and complex numbers, respectively, I the identity matrix,
N = {1, 2, 3, . . . }, and Lloc(R,R) the real valued functions which are Lebesgue
integrable on every compact subinterval of R, in particular on the k-intervals [a+
k h], k ∈ N. Note that Lloc(R,R) contains the piecewise continuous functions on
any compact subinterval. Also note that for γ = 0 and K = I the conditions (1.3)
are periodic, for γ = π, K = I as well as for γ = 0 and K = −I the conditions
(1.3) are semi-periodic. For 0 < γ < π (1.3) are complex valued. It is well known
that for all these cases the conditions (1.3) are self-adjoint and for each of these
self-adjoint conditions the spectrum is real, discrete, bounded below, not bounded
above, has no finite cluster point, and the eigenvalues can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . . (1.4)
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with no consecutive equalities. This ordering determines λn uniquely. In case of
multiplicity 2 the eigenfunctions are not determined uniquely.

Let N0 = {0, 1, 2, 3, . . . } and, for k ∈ N, n ∈ N0, we define

P (k) = ∪∞n=0λ
P
n (k), S(k) = ∪∞n=0λ

S
n(k), Γ(γ) = ∪∞n=0λn(γ), (1.5)

where λPn (k), λSn(k), denote the periodic and semi-periodic eigenvalues on the k-
interval [a, a+ kh], respectively, and λn(γ) denote the eigenvalues on the 1-interval
[a, a + h] for 0 < γ < π; we also use the notation λPn (1) = λPn = λPn (0), λSn(1) =
λSn = λSn(π), n ∈ N0, since the periodic eigenvalues correspond to the endpoint
0 and the semi-periodic eigenvalues to the endpoint π of the interval (0, π) in a
natural sense as we will see below.

For reference below we specialize (1.4) to these three cases

−∞ < λP0 (k) ≤ λP1 (k) ≤ λP2 (k) ≤ λP3 (k) ≤ . . . , (1.6)

−∞ < λS0 (k) ≤ λS1 (k) ≤ λS2 (k) ≤ λS3 (k) ≤ . . . , (1.7)

−∞ < λ0(γ) < λ1(γ) < λ2(γ) < λ3(γ) < . . . , (1.8)

which are of special interest here. Note that in (1.8) the inequalities are all strict
[7]. See the book [7] for a general discussion of basic results about Sturm-Liouville
problems and as a reference for results, definitions, and notation used here.

Remark 1.1. The eigenvalues (1.6), (1.7), (1.8) can be computed with the Bailey-
Everitt- Zettl Fortran code SLEIGN2 [2], [1] which can be downloaded free and
comes with a user friendly interface.

This paper is a follow up of [6] where we proved, under the general hypothesis
(1.2), that for every n ∈ N0, and every k ∈ N, every eigenvalue λPn (k), λSn(k) on the
k-interval for k > 1 is also an eigenvalue on the k = 1 interval. In this paper we
identify which values of γ ∈ (0, π) generate periodic and semi-periodic eigenvalues
on the intervals [a + k h], for k ∈ N and construct an explicit 1-1 correspondence
between these eigenvalues.

Although we are influenced by some of the methods in Eastham’s well known
book [3] there are some significant differences in our approach. The boundary
conditions (1.3) are defined in terms of the quasi-derivative (py′) rather than the
classical derivative y′ used in [3]. This not only allows the use of the much more
general hypothesis (1.2) but has numerous other advantages. Our focus is on the
eigenvalues of the boundary conditions (1.3) and their relationships to each other.
Also we use the parameterization γ ∈ (0, π), rather t ∈ (0, 1) as in [3], directly.
This makes our presentation clearer and more transparent. In particular the 1-1
correspondence.

The organization of the paper is as follows. This Introduction is followed by
general eigenvalue characterizations and inequalities in Section 2, eigenvalue in-
equalities for different intervals in Section 3, the 1-1 correspondence between these
in Section 4. Examples to illustrate the inequalities and the 1-1 correspondence
between the eigenvalues for different intervals are given in Section 5.

2. Eigenvalue inequalities and characterizations

Russel Bertrand (1872-1970): A good notation has a subtlety and suggestiveness
which at times make it almost seem like a live teacher.

In [6] we proved the following two theorems.
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Theorem 2.1. Let (1.1) to (1.5) hold. Then, for k = 2s, s ≥ 1 and for k = 2s+1,
s ≥ 0, we have

P (k) = ∪sl=0Γ(
2lπ
k

). (2.1)

Furthermore, if k > 2 then every eigenvalue in S(k) has multiplicity 2. In particu-
lar, for k = 1 we have P (1) = Γ(0) = {λPn (1) = λPn : n ∈ N0}.

For a proof of the above theorem see [6]. The case k = 2 in Theorem 2.1 is
‘special’ in the sense that there is no γ in the open (0, π) which generates a periodic
eigenvalue in the interval k = 2. For every k > 2 there is at least one such γ. It is
clear that if λ is a periodic eigenvalue for k = 1 then it is also a periodic eigenvalue
for k = 2. Also if λ is a semi-periodic eigenvalue for k = 1 then λ is a periodic
eigenvalue for k = 2. The next corollary shows that the converse is true: If λ is a
periodic eigenvalue for k = 2 then it is either a periodic or semi-periodic eigenvalue
for k = 1.

Corollary 2.2. Let the hypotheses and notation of Theorem 2.1 hold. Then

P (2) = Γ(0) ∪ Γ(π) = P (1) ∪ S(1).

The above corollary follows directly from (2.1).

Theorem 2.3. Let (1.1) to (1.5) hold. Then, for k = 2s, s ≥ 1 and for k = 2s+1,
s ≥ 0, we have

S(k) = ∪sl=0Γ(
(2l + 1)π

k
). (2.2)

Furthermore, if k > 2, then every eigenvalue in P (k) has multiplicity 2. In partic-
ular, for k = 1 we have S(1) = Γ(π) = {λSn(1) = λSn : n ∈ N0}.

For a proof of the above theorem see [6]. The next theorem plays an important
role below and is stated here for the benefit of the reader.

Fix a ∈ R, and λ ∈ C define solutions u(·, λ), v = v(·, λ) of equation (1.1) with
the initial conditions

u(a, λ) = 1 = (pv′)(a, λ), v(a, λ) = 0 = (pu′)(a, λ). (2.3)

When a and λ are fixed we abbreviate this notation to u = u(·, λ), v = v(·, λ) and
sometimes to just u, v.

Theorem 2.4. Let (1.1)–(1.5) hold. Let a ∈ R, k ∈ N, b = a+ k h and let K = I.
With u, v determined by (2.3) define D(λ) by

D(λ) = u(b, λ) + v[1](b, λ), λ ∈ R (2.4)

Then
(1) The real number λ = λn(γ) for some n ∈ N0 and some γ ∈ (0, π) if and

only if
D(λ) = 2 cos γ, quad− π < γ < π. (2.5)

In this case
− 2 < D(λ) < 2. (2.6)

(2) Let 0 < γ < π. Then λn(γ) is simple and λn(γ) = λn(−γ), n ∈ N0. If un
is an eigenfunction of λn(γ), then it is unique up to constant multiples and
its complex conjugate un is an eigenfunction of λn(−γ), n ∈ N0.
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(3) λ = λPn for some n ∈ N0 if and only if

D(λ) = 2. (2.7)

(4) λ = λSn for some n ∈ N0 if and only if

D(λ) = −2. (2.8)

(5) The following inequalities hold for 0 < γ < π,

−∞ < λP0 < λ0(γ) < λS0 ≤ λS1 < λ1(γ) < λP1 ≤ λP2 < λ2(γ) < λS2

≤ λS3 < λ3(γ) < λP3 ≤ λP4 < λ4(γ) < λS4 ≤ λS5 < . . . .
(2.9)

(6) λn ≤ λDn ≤ λn+2, n ∈ N0 where λn is the n -th eigenvalue for any self-
adjoint boundary condition (1.3); there is no lower bound for λ0 and λ1 as
functions of the self-adjoint boundary conditions.

(7) λP0 and each λn(γ), n ∈ N0 is simple.
(8) For 0 < α < β < π we have

λ0(β) < λ0(α) < λ1(α) < λ1(β) < λ2(β) < λ2(α)

< λ3(α) < λ3(β) < λ4(β) < λ4(α) < . . .
(2.10)

In other words, λ0(γ) is decreasing, λ1(γ) is increasing, λ2(γ) decreasing,
λ3(γ) increasing, . . . , for γ ∈ (0, π).

(9) D(λ) is strictly decreasing in the intervals (λP2n, λ
S
2n), n ∈ N0 and strictly

increasing in the intervals (λS2n+1, λ
P
2n+1), n ∈ N = {1, 2, 3, . . . }.

(10) D′(λ) 6= 0 for λ ∈ (0, π).

The above theorem is a special case of [7, Theorem 4.8.1]. We omit its proof.

Figure 1. D(λ)

The special case of Figure 1 when K = I, λn(K) = λPn , λn(−K) = λSn ,
λn(γ,K) = λn(γ), and νn, υn denote the Neumann and Dirichlet eigenvalues il-
lustrates the results below. (We make no direct use of Neumann and Dirichlet
eigenvalues in this paper.)

It is clear that λP0 (1) is also a periodic eigenvalue on interval k for k > 1 but,
given the ordering (1.6), is it the first eigenvalue determined by this ordering?
The next Corollary answers this question.

Corollary 2.5. Let the hypotheses and notation of Theorem 2.4 hold. Then

λP0 (k) = λP0 (1) = λP0 , k ∈ N (2.11)

Proof. Clearly λP0 ∈ P (k). By definition λP0 (k) is the lowest eigenvalue determined
by the ordering (1.6). It follows from (2.1) and (2.9) that this is λP0 . �
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3. Inequalities among eigenvalues of different intervals

Note that for both Theorems 2.1 and 2.3 the eigenvalues on the right side are
all from the interval k = 1 while the eigenvalues on the left are from intervals for
k > 1. Corollary 2.5 shows that λP0 (k) stays constant as k changes but how do the
other eigenvalues change? More specifically:

• Given an eigenvalue λ in P (k) for some k > 1, by Theorem 2.1 λ is also an
eigenvalue for k = 1, which eigenvalue?
• Given an eigenvalue λ in S(k) for some k > 1, by Theorem 2.3 λ is also an

eigenvalue for k = 1, which eigenvalue?

These questions are answered in this section. Our proof is based on Theorems
2.1, 2.3, 2.4 and develops a method for finding a 1-1 correspondence between these
eigenvalues for each fixed k > 1. This method is used in Section 4 to explicitly
construct this 1-1 correspondence.

For each k we identify the values of γ which generate periodic and semi-periodic
eigenvalues on k-interval. Note that the set ∪∞k=1P (k) is a countable union of
countable sets and is therefore countable, whereas the set Γ(γ) = {∪∞n=0λn(γ) : γ ∈
(0, π)} is not countable so there can be no 1-1 correspondence between these two
sets.

As mentioned above, the inequalities (1.6), (1.7), (1.8) determine λPn (k), λSn(k)
and λn(γ) for each γ ∈ (0, π) and each n ∈ N0. This is the ‘natural’ ordering which
defines λn for any self-adjoint boundary condition when the eigenvalues are bounded
below. In [3] the assumption that p is positive seems to have been omitted. Möller
[5] has shown that if p is positive and negative each on a set of positive Lebesgue
measure then the eigenvalues are unbounded above and below. In this case λn is
not well defined. Using Theorems 2.1, 2.3, and 2.4 we will find a different ordering
and a 1-1 correspondence between these two orderings. This new correspondence
will be illustrated with some examples for both the periodic and the semi-periodic
case. We start with a remark.

Remark 3.1. Although (1.5) defines Γ(γ) only for γ in the open interval (0, π)
Theorems 2.1 and 2.3 show that the ‘boundary sets’ Γ(0), Γ(π) represent the peri-
odic eigenvalues and semi-periodic eigenvalues on the interval [a, a+h], respectively.
However, it is important to keep in mind that the eigenvalues when γ ∈ (0, π) are
all simple but the eigenvalues in Γ(0), Γ(π) may be simple or double, except for
λP0 which is always simple. It follows from Theorem 2.3 that Γ(0) = Γ(2lπ) and
Γ(π) = Γ((2l + 1)π) for any l ∈ Z = {· · · − 3,−2,−1, 0, 1, 2, 3, . . . }.

In the next two theorems we establish inequalities between the eigenvalues of
P (k) = ∪∞n=0λ

P
n (k), S(k) = ∪∞n=0λ

S
n(k), and Γ(γ) = ∪∞n=0λn(γ).

Theorem 3.2. Let (1.1)–(1.5) hold. Fix k > 2, let P (k), S(k) , Γ(γ) be defined
by (1.5) and let

P (1) = {λPn (1) : n ∈ N0} = Γ(0) = {λn(0) : n ∈ N0},
S(1) = {λSn(1) : n ∈ N0} = Γ(π) = {λn(π) : n ∈ N0}.

(3.1)
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(1) If k = 2s, s > 1, then

λP0 (0)

= λ0(0) < λ0(2π/k) < λ0(4π/k) < · · · < λ0(2(s− 1)π)/k) < λ0(π)

≤ λ1(π) < λ1(2(s− 1)π/k) < λ1(2(s− 2)π/k) < · · · < λ1(2π/k) < λ1(0)

≤ λ2(0) < λ2(2π/k) < λ2(4π/k) < · · · < λ2(2(s− 1)π/k) < λ2(π)

≤ λ3(π) < λ3(2(s− 1)π/k) < λ3(2(s− 2)π/k) · · · < λ3(2π/k) < λ3(0)

≤ λ4(0) < λ4(2π/k) < . . .

(3.2)

Therefore

λP0 (k) = λP0 ,

λPs (k) = λ0(2sπ/k) = λS0 ,

λPs+1(k) = λ1(2sπ/k) = λS1 ,

λPs+2(k) = λ1((2s− 2)π/k)
. . .

(3.3)

(2) If k = 2s+ 1, s > 1, then

λP0 = λ0(0) < λ0(2π/k) < λ0(4π/k) < λ0(6π/k) · · · < λ0(2sπ/k)

< λ1(2sπ/k) < λ1(2(s− 1)π/k) < · · · < λ1(2π/k) < λ1(0)

≤ λ2(0) < λ2((2π/k) < λ2(4π/k) < · · · < λ2(2sπ/k)

< λ3(2sπ/k) < λ3(2(s− 1)π/k) < · · · < λ3(2π/k) < λ3(0)

≤ λ4(0) < λ4(2π/k) . . . .

(3.4)

Therefore

λP0 (k) = λP0 ,

λPs (k) = λ0(2sπ/k),

λPs+1(k) = λ1(2sπ/k),

λPs+2(k) = λ1((2s− 2)π/k)
. . .

(3.5)

Proof. These inequalities follow from Theorems 2.1, 2.3 and 2.4, particularly (2.8)
and (2.9). The fact λ0(γ) is decreasing, λ1(γ) is increasing, λ2(γ) decreasing, λ3(γ)
increasing, . . . , for γ ∈ (0, π) is reflected in the pattern for the alternating rows in
(3.2), (3.4). This pattern is clearly seen in the examples below. �

Theorem 3.3. Let the hypotheses and notation of Theorem 3.2 hold.
(1) If k = 2s, s > 1, then

λ0(π/k) < λ0(3π/k) < · · · < λ0((2s− 1)π/k)

< λ1((2s− 1)π/k) < λ1((2s− 3)π/k) < · · · < λ1(π/k)

< λ2(π/k) < · · · < λ2(3π/k) < · · · < λ3((2s− 1)π/k)

< λ3((2s− 1)π/k) < λ3((2s− 3)π/k) < · · · < λ3(π/k)

< λ4(π/k) < · · · < λ4(3π/k) < · · · < λ4((2s− 1)π/k) . . .

(3.6)
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Therefore
λS0 (k) = λ0(π/k),

λSs−1(k) = λ0((2s− 1)π/k),

λs(k) = λ1((2s− 1)π/k),

λSs+1(k) = λ1((2s− 3)π/k)
. . .

(3.7)

(2) If k = 2s+ 1, s > 1, then

λ0(π/k) < λ0(3π/k) < · · · < λ0((2s+ 1)π/k) = λS0

≤ λS1 = λ1(π) < λ1((2s− 1)π/k) < · · · < λ1(π/k)

< λ2(π/k) < λ2(3π/k) < · · · < λ2((2s+ 1)π/k) = λS2

≤ λS3 = λ3(π) < λ3((2s− 1)π/k) < · · · < λ3(π/k) < . . .

(3.8)

Therefore
λS0 (k) = λ0(π/k),

λSs (k) = λS0 ,

λSs+1(k) = λS1 ,

λSs+2(k) = λ1((2s− 1)π/k),
. . .

(3.9)

Proof. These inequalities follow from Theorems 2.1, 2.3 and 2.4. Particularly (2.8)
and (2.9). The fact λ0(γ) is decreasing, λ1(γ) is increasing, λ2(γ) decreasing, λ3(γ)
increasing, . . . , for γ ∈ (0, π) is reflected in the pattern for the alternating rows in
(3.6), (3.8). This pattern is used in the proofs of Theorems below and illustrated
in the examples below. �

Now we list some examples to illustrate Theorem 3.2 and clarify its proof. We
start with the periodic case for k = 2. This case is special and does not illustrate
the general pattern because it does not involve γ.

As k gets large the eigenvalues λPn (k) and λSn(k) approach λP0 (1) = λP0 from the
right. More precisely we have the following result.

Theorem 3.4. For any n ∈ N we have

lim
k→∞

λPn (k) = λP0 , lim
k→∞

λSn(k) = λP0 . (3.10)

Proof. Let n ∈ N. For k = 2(n+ 1) = 2s. From (3.2) we have λPn (k) = λ0(2sπ)/k)
and therefore

lim
k→∞

λPn (k) = λP0 . (3.11)

For k = 2n + 1 = 2s + 1 from (3.6) we have λPn (k) = λ0(2sπ/k) and (3.10)
follows. By Theorem 3.2 λPn (k) > λP0 for k even or odd; hence the limit in (3.11) is
from the right.

The proof of limk→∞ λSn(k) = λP0 is similar using (3.4), (3.8) and the limit is
also from the right. �

It is well known that equation (1.1) is oscillatory on R when λ > λP0 and non-
oscillatory when λ ≤ λP0 . In the next theorem we give an elementary proof of this
using Theorem 3.4 valid under our general hypotheses (1.2).
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Theorem 3.5. Let the hypotheses and notation of Theorem 3.2 hold. Then (1.1)
is oscillatory on R when λ > λP0 and non-oscillatory when λ ≤ λP0 .

Proof. Suppose that λ = λP0 and u is an eigenfuntion of λ. Then by [6, Theorem
8] u has no zero in the closed interval [a, a+ h]. Hence the extension of u to R has
no zero on R. By the Sturm Comparison Theorem equation (1.1) is non-oscillatory
for λ ≤ λP0 . Let λ > λP0 . By Theorems 2.1, 3.4, λP0 < λPn (k) < λ for all sufficiently
large n and k. Since λPn (k) has zeros in the interval [a, kh], its extension to R has
infinitely many zeros, i.e. it is oscillatory. �

4. Construction of the 1-1 correspondence

The next two theorems give the explicit 1-1 correspondence between the peri-
odic and semi-periodic eigenvalues on the k interval k > 1 and the corresponding
eigenvalues from the interval k = 1.

Theorem 4.1. Let the hypotheses and notation of Theorem 3.2 hold and let the
eigenvalues λPn (k) be ordered according to (1.6).

• If k = 2s, s ∈ N, then:
(1) for m even we have

λPms+n(k) = λ(2(n−m)π)/k), n = m,m+ 1, . . . ,m+ s. (4.1)

(2) for m odd we have

λPms+n(k) = λ(2(m+ s− n)π)/k), n = m, m+ 1, . . . ,m+ s. (4.2)

• If k = 2s+ 1, s > 0, then:
(1) for m even and we have

λPms+n(k) = λ(2(n−m)π)/k), n = m,m+ 1, . . . ,m+ s. (4.3)

(2) for m odd we have

λPms+n(k) = λ(2(m+ s− n)π)/k), n = m,m+ 1, . . . ,m+ s. (4.4)

Proof. For clarity of presentation we use the notation discussed in Theorem 3.2.
Suppose k = 2s, s ∈ N. From (3.2) and the natural ordering (1.6) it follows that

λP0 = λP0 , λP1 (k) = λ0(2π/k), . . . , λPs−1(k) = λ0(2(s− 1)π)/k), λPs (k) = λS0 ,

λPs+1(k) = λS1 , λPs+2(k) = λ1(2(s− 1)π/k), . . . ,

λP2s(k) = λ1(2π/k), λP2s+1(k) = λP1 ,

λP2s+2(k) = λP2 , λP2s+3(k) = λ2(2π/k), . . . ,

λP3s+1(k) = λ2(2(s− 1)π/k), λP3s+2(k) = λS2 ,

λP3s+3(k) = λS3 , λPs+4(k) = λ3(2(s− 1)π/k), . . . ,

λP4s+2(k) = λ3(2π/k), λP4s+3(k) = λP3

and so on.
Note that for λPms+n(k) the values of γ increase 0, 2π/k, . . . , 2(s−1)π/k, 2sπ/k =

π as the index n goes from m to m + s when m is even and decreases 2sπ/k = π,
2(s− 1)π/k, . . . , 2π/k, 0 when m is odd. This establishes (4.1) and (4.2).

Suppose k = 2s+ 1, s > 0. From (3.4) and the natural ordering (1.6) it follows
that

λP0 (k) = λP0 , λP1 (k) = λ0(2π/k), . . . ,
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λPs−1(k) = λ0(2(s− 1)π/k), λPs (k) = λ0(2sπ/k),

λPs+1(k) = λ1(2sπ/k), λPs+2(k) = λ1(2(s− 1)π/k), . . . ,

λP2s(k) = λ1(2π/k), λP2s+1(k) = λP1 ,

λP2s+2(k) = λP2 , λP2s+3(k) = λ2(2π/k), . . . ,

λP3s+1(k) = λ2(2(s− 1)π/k), λP3s+2(k) = λ2(2sπ/k),

λP3s+3(k) = λ3(2sπ/k), λP3s+4(k) = λ3(2(s− 1)π/k), . . . ,

λP4s+2(k) = λ3(2π/k), λP4s+3(k) = λP3

and so on.
Note that for λPms+n(k) the values of γ increase 0, 2π/k, . . . , 2(s−1)π/k, 2sπ/k =

π as the index n goes from m to m + s when m is even and decreases 2sπ/k = π,
2(s− 1)π/k, . . . , 2π/k, 0 when m is odd. This establishes (4.3) and (4.4). �

Theorem 4.2. Let the hypotheses and notation of Theorem 3.2 hold and let the
eigenvalues λSn(k) be ordered according to (1.7).

• If k = 2s, s > 1, then:
(1) for m even we have

λSms+n(k) = λ(2n+ 1)π)/k), n = 0, 1, . . . , s− 1. (4.5)

(2) for m odd we have

λSms+n(k) = λ(2(s− 1− n)π)/k), n = 0, 1, . . . , s− 1. (4.6)

• If k = 2s+ 1, s > 0, then:
(1) for m even and n ∈ [m,m+ s] we have

λSms+n(k) = λ(2(n−m)π + 1)/k), n = m, m+ 1, . . . ,m+ s. (4.7)

(2) for m odd and n ∈ [m,m+ s] we have

λSms+n(k) = λ(2(m+ s− n) + 1π)/k), n = m, m+ 1, . . . ,m+ s. (4.8)

Proof. For clarity of presentation we use the notation discussed in Theorem 3.3.
Suppose k = 2s, s ∈ N. From (3.6) and the natural ordering (1.7) it follows that

λS0 (k) = λ0(π/k), . . . , λSs−2(k) = λ0((2s− 3)π/k), λSs−1(k) = λ0((2s− 1)π/k),

λSs (k) = λ1((2s− 1)π/k), . . . , λS2s−2(k) = λ1(3π/k), λS2s−1(k) = λ1(π/k),

λS2s(k) = λ2(π/k), . . . , λS3s−2(k) = λ2((2s− 3)π/k), λS3s−1(k) = λ2((2s− 1)π/k),

λS3s(k) = λ3((2s− 1)π/k), . . . , λS4s−2(k) = λ3(3π/k), λS4s−1(k) = λ3(π/k),

and so on.
Note that for λSms+n(k) the values of γ increase π/k, . . . , (2s − 1)π/k, as the

index n goes from 0 to s− 1 when m is even, and decreases (2s− 1)π/k, . . . , π/k,
when m is odd. This establishes (4.5) and (4.6).

Suppose k = 2s+ 1, s > 0. From (3.8) and the natural ordering (1.7) it follows
that

λS0 (k) = λ0(π/k), . . . , λSs−1(k) = λ0((2s− 1)π/k),

λSs (k) = λ0((2s+ 1)π/k) = λS0 , λSs+1(k) = λS1 ,

λSs+2(k) = λ1((2s− 1)π/k), . . . , λS2s(k) = λ1(3π/k),



10 Y. YUAN, J. SUN, A. ZETTL EJDE-2017/264

λS2s+1(k) = λ1(π/k), λS2s+2(k) = λ2(π/k), . . . , λS3s+1(k) = λ2((2s− 1)π/k),

λS3s+2(k) = λ2((2s+ 1)π/k) = λS2 , λS3s+3(k) = λS3 ,

λS3s+4(k) = λ3((2s− 1)π/k), . . . , λS4s+2(k) = λ3(3π/k), λS4s+3(k) = λ3(π/k),

and so on.
Note that for λSms+n(k) the values of γ increase π/k, . . . , (2s − 1)π/k, as the

index n goes from m to m + s when m is even, and decreases (2s + 1)π)/k = π,
. . . , π/k, when m is odd. This establishes (4.7) and (4.8). �

5. Examples

In this section we give some examples. First for the cases k = 2, 3, 4, then for
some higher order cases. There are some key differences between k even and k odd.
For the periodic even order case any periodic eigenvalue for k = 1 is also a periodic
eigenvalue for k > 1. Also a semi-periodic eigenvalue for k = 1 is a periodic
eigenvalue for even k. A more subtle difference is the effect of the inequalities
of Theorem 3.2 on the 1-1 correspondence. This has to do with the alternating
increasing and decreasing values of γ for the even and odd order cases. These will
be illustrated in the examples below.

Example 5.1. k = 2. As mentioned above the case k = 2 is special. By Corollary
2.2: P (2) = P (1) ∪ S(1) = Γ(0) ∪ Γ(π). From this and 2.9) we get

λP0 < λS0 ≤ λS1 < λP1 ≤ λP2 < λS2 ≤ λS3 < λP3 ≤ λP4 < . . . .

Hence the 1-1 correspondence is:

λP0 (2) = λP0 (1) = λP0 , λP1 (2) = λS0 , λP2 (2) = λS1 ,

λP3 (2) = λP1 , λP4 (2) = λP2 , . . . .

Example 5.2. k = 3. This case is similar to 5.1. In this case there is one γ = 2π/3
generates the additional eigenvalues rather than the semi-periodic ones which can
be identified with γ = π. Thus we have

λP0 < λ0(2π/3) < λP1 ≤ λP2 < λ2(2π/3) < λP3 ≤ λP4 < λ4(2π/3) < . . . .

Hence the 1-1 correspondence is:

λP0 (2) = λP0 (1) = λP0 , λP1 (2) = λ0(2π/3), λP2 (2) = λP2 ,

λP3 (2) = λ3(2π/3), λP4 (2) = λP4 , . . . .

Example 5.3. k = 2s, s = 4.This and the next example illustrates the fact that
the values of γ increase π/k, . . . , (2s − 1)π/k, as the index n goes from m to
m+ s when m is even and decrease (2s+ 1)π)/k = π, . . . , π/k, when m is odd. By
Theorem 3.3 we have

λP0 (0) = λ0(0) < λ0(2π/8) < λ0(4π/8) < λ0(6π/8) < λ0(π)

≤ λ1(π) < λ1(6π/8) < λ1(4π/8) < λ1(2π/8) < λ1(0)

≤ λ2(0) < λ2(2π/8) < λ2(4π/8) < λ2(6π/8) < λ2(π)

≤ λ3(π) < λ3(6π/8) < λ3(4π/8) < λ3(2π/8) < λ3(0)

≤ λ4(0) < λ4(2π/8) < . . .

Therefore
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(1) for m = 0 we have

λP0 (8) = λP0 , λP1 (8) = λ0(2π/8), λP2 (8) = λ0(4π/8),

λP3 (8) = λ0(6π/8), λP4 (8) = λ0(8π/8) = λS0 ;

(2) for m = 1 we have

λP5 (8) = λS1 , λP6 (8) = λ1(6π/8), λP7 (8) = λ1(4π/k),

λP8 (8) = λ1(2π/8), λP9 (8) = λ1(0) = λP1 ;

(3) for m = 2 we have

λP10(8) = λP2 , λP11(8) = λ2(2π/8), λP12(8) = λ2(4π/8),

λP13(8) = λ2(6π/8), λP14(8) = λ2(π) = λS2 ;

(4) for m = 3 we have

λP15(8) = λS3 , λP16(8) = λ3(6π/8), λP17(8) = λ3(4π/8),

λP18(8) = λ3(2π/8), λP19(8) = λP3 .

Example 5.4. k = 2s+ 1, s = 4. By Theorem 3.3 we have

λP0 < λ0(2π/9) < λ0(4π/9) < λ0(6π/9) < λ0(8π/9) <

< λS1 = λ1(π) < λ1((2s− 1)π/9) < · · · < λ1(π/9)

< λ2(π/9) < λ2(3π/9) < · · · < λ2((2s+ 1)π/9) = λS2

≤ λS3 = λ3(π) < λ3((2s− 1)π/9) < · · · < λ3(π/9) < . . .

Therefore

(1) for m = 0 we have

λP0 (9) = λP0 , λP1 (9) = λ0(π/9), λP2 (9) = λ0(3π/9),

λP3 (9) = λ0(5π/9), λP4 (9) = λ0(7π/9);

(2) for m = 1 we have

λP5 (9) = λ1(7π/9), λP6 (9) = λ1(5π/9),

λP7 (9) = λ1(3π/9), λP8 (9) = λ1(π/9) < λP9 (9) = λP1 ;

(3) for m = 2 we have

λP10(9) = λP2 , λP11(9) = λ2(π/9), λP12(9) = λ2(3π/9),

λP13(9) = λ2(5π/9), λP14(9) = λ2(7π/9);

(4) for m = 3 we have

λP15(9) = λ3(7π/9), λP16(9) = λ3(5π/9),

λP17(9) = λ3(3π/9), λP18(9) = λ3(π/9) < λP19(9) = λP3 .

The next examples illustrate the semi-periodic case. For S(2) = Γ(π2 ) the 1-1
correspondence is just the identity so we start with S(3).
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Example 5.5. k = 3. For S(3) = S(1) ∪ Γ(π3 ) = Γ(π) ∪ Γ(π3 ) and from Theorem
2.4 we get the inequalities:

λ0(π/3) < λ0(π) = λS0 ≤ λS1 = λ1(π) < λ1(π/3) < λ2(π/3) < λ2(π) = λS2

≤ λS3 = λ3(π) < λ3(π/3) < λ4(π/3) < λ4(π) = λS4 ≤ λS5 < . . .

Hence λS0 (3) = λ0(π/3), λS1 (3) = λS0 , λS2 (3) = λS1 , λS4 (3) = λ2(π/3), . . . .

Example 5.6. k = 2s, s = 4. By Theorem 2.3 we have

S(8) = Γ(π/8) ∪ Γ(3π/8) ∪ Γ(5π/8) ∪ Γ(7π/8).

By Theorem 2.4 we have the inequalities:

λ0(π/8) < λ0(3π/8) < λ0(5π/8) < λ0(7π/8)

< λ1(7π/8) < λ1(5π/8) < λ1(3π/8) < λ1(π/8)

< λ2(π/8) < λ2(3π/8) < λ2(5π/8) < λ2(7π/8)

< λ3(7π/8) < λ3(5π/8) < λ3(3π/8) < λ3(π/8)

< λ4(π/8) < λ4(3π/8) < λ4(5π/8) < λ4(7π/8) < . . .

From these inequalities and Theorem 4.2:
(1) for m = 0 we have

λS0 (k) = λ0(π/k), λS1 (k) = λ0(3π/k), λS2 (k) = λ0(5π/k), λS3 (k) = λ0(7π/k);

(2) for m = 1 we have

λS4 (k) = λ1(7π/k), λS5 (k) = λ1(5π/k), λS6 (k) = λ1(3π/k), λS7 (k) = λ0(π/k);

(3) for m = 2 we have

λS8 (k) = λ2(π/k), λS9 (k) = λ2(3π/k), λS10(k) = λ2(5π/k), λS11(k) = λ2(7π/k);

(4) for m = 3 we have

λS12(k) = λ3(7π/k), λS13(k) = λ3(5π/k), λS14(k) = λ3(3π/k), λS15(k) = λ3(π/k).

Example 5.7. k = 2s+ 1, s = 4. From Theorem 2.3 we have:

S(9) =S(1) ∪ Γ(
π

9
) ∪ Γ(

3π
9

) ∪ Γ(
5π
9

) ∪ Γ(
7π
9

)

= Γ(π) ∪ Γ(
π

9
) ∪ Γ(

3π
9

) ∪ Γ(
5π
9

) ∪ Γ(
7π
9

)

This and Theorem 2.4 yields the inequalities:

λ0(π/9) < λ0(3π/9) < λ0(5π/9) < λ0(7π/9) < λ0(9π/9) = λ0(π) ≤ λ1(π)

< λ1(7π/9) < λ1(5π/9) < λ1(3π/9) < λ1(1π/9)

< λ2(1π/9) < λ2(3π/9) < λ2(5π/9) < λ2(7π/9) < λ2(π) ≤ λ3(π)

< λ3(7π/9) < λ3(5π/9) < λ3(3π/9) < λ3(1π/9)

< λ4(1π/9) < λ4(3π/9) < λ4(5π/9) < λ4(7π/9) < λ4(π) ≤ λ5(π) < . . .

From these inequalities and Theorem 4.2:
(1) for m = 0 we have

λS0 (9) = λ0(π/9), λS1 (9) = λ0(3π/9), λS2 (9) = λ0(5π/9),

λS3 (9) = λ0(7π/9), λS4 (9) = λS0 ;
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(2) m = 1 :

λS5 (9) = λS1 , λS6 (9) = λ1(7π/9), λS7 (9) = λ1(5π/9),

λS8 (9) = λ1(3π/9), λS9 (9) = λ1(π/9);

(3) for m = 2 we have

λS10(9) = λ2(π/9), λS11(9) = λ2(3π/9), λS12(9) = λ2(5π/9),

λS13(9) = λ2(7π/9), λS14(9) = λS2 ;

(4) for m = 3 we have

λS15(9) = λS3 , λS16(9) = λ3(7π/9), λS17(9) = λ3(5π/9),

λS18(9) = λ3(3π/9), λS19(9) = λ3(π/9);
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