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ABSTRACT 
When bosonic atoms are trapped in optical lattices, they exhibit one of the two phases: 

superfluid (SF), where atoms move coherently without any collisions, or Mott insulator 

(MI), where atoms are localized. These quantum phases on clean bosonic lattices have 

been thoroughly studied   !,!,!". When the optical lattices are disturbed by a source of 

disorder, a third exotic phase, Bose glass, has been predicted to appear  !,!. In this thesis, 

we utilize a mean field theory coupled within the Bose Hubbard model  ! to investigate 

the phases of two-dimensional disordered bosonic optical lattices. We study the phase of 

the systems as a function of chemical potential and hopping-parameter by using the SF 

density, compressibility, and number density of the system as characterizing order 

parameters. We have discovered that, even with the presence of disorder, the phase at 

each optical lattice site is either MI or SF. Real-space analyses show that the disordered 

systems contain separated MI and SF phases at different sites, rather than a new global 

phase. We have also discovered that the local phase at each lattice site is weakly 

correlated with the phase of neighboring sites; the phase at each site strongly depends on 

the strength of the local disorder potential.
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Chapter 1. INTRODUCTION 
At very low temperatures, where the kinetic energy of atoms is small, atoms can be 

trapped by optical potentials made of laser lights shined in opposite directions. When 

multiple lasers are crossed in a periodic manner, the optical traps form a lattice, which 

resembles a perfect crystal lattice. Bosons are particles of particular interest because they 

are not subject to the Pauli Exclusion Principle, which prohibits atoms from having the 

same quantum state with one another  !. When trapped in such perfect lattices are in one 

of two ‘phases’: they either do not move at all, a Mott insulator (MI) phase, or move 

freely without collision, a superfluid (SF) phase    !,!". With trapped bosons at very low 

temperatures, large scale observations of their quantum behavior can be seen as they drop 

into what is called a Bose Einstein Condensate  !". When a lattice is disordered by 

something such as an optical speckle field  !,!,!", a third phase called “Bose glass” (BG) 

has been predicted to appear. This phase is supposed to show up between the Mott 

insulating and SF phases and is described as a compressible non-superfluid phase  !,!,!!. 

Since the observation of the Bose-Einstein condensate  !", many different studies to 

characterize these phases in both clean and disordered lattices have been done  !,!,!,!,!".  

In this thesis, we utilize the Bose Hubbard model to theoretically study what happens 

when bosons are trapped in disordered optical lattices. We define order parameters that 

distinctly characterize MI, SF, and BG, and analyze how the order parameters change as 

a function of system parameters. In particular, we investigate the local properties of the 

BG phase and study if the local MI to SF phase transition happens directly between them 

or indirectly via the BG phase. 
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Our study differs from previous studies in that our system size is very large and we 

focus on the local site characteristics rather than the averaged global system-wise 

characteristics.  

Chapter 2. MODELS AND CALCULATION METHODS 
 

2.1 THE BOSE HUBBARD MODEL 
We describe the energy of two-dimensional optical lattices with bosonic atoms using a 

Bose Hubbard Hamiltonian  !: 

𝐻!"" = − 𝑡!"𝑎!
!𝑎!

!,!

+
𝑈
2 𝑛! 𝑛! + 1

!

− 𝜇 𝑛!
!

+ 𝑉!𝑛!
!

          (1) 

In this model the energy of the system is described by: 1) hopping energy: 

  − 𝑡!"𝑎!
!𝑎!!,!  , 𝑡!", associated with atoms moving from one lattice site to nearest 

neighboring sites, 2) the on-site interaction energy: !
!

𝑛! 𝑛! + 1! , which is the energy 

cost to put more than one atom at the same site, 3) the chemical potential: −𝜇 𝑛!! , the 

energy that controls the number of atoms of the system, and 4) the random disorder 

potential: 𝑉!𝑛!! , which changes the depth of optical lattice sites randomly. Different 

values of (t, U, V) combinations correspond to different systems. The energy operator, the 

Hamiltonian, is written in a site-dependent number state basis. The state at each site is a 

linear combination of the number states. In Eq. (1) each i stands for a site index in the 

system. 𝑎!
!𝑎! is the boson creation (annihilation) operator at site i, −𝑡!" is the hopping 

matrix element associated with the energy moving from sites j to site i, 𝑛! = 𝑎!
!𝑎! is the 

number operator, U is the on-site interaction energy, 𝜇 is the chemical potential, and 𝑉! is 
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the disorder potential. In a clean system, 𝑉! is zero for every site. To change the optical 

lattice’s phase, we alter the following energy parameters: 1) 𝑡 = 𝑡!": the hopping 

parameter, 2) U: the on-site potential, and 3) V: the disorder potential. Changes in these 

parameters correspond to systems with different trap potentials and particle numbers.  

 Figure 2.1 is a pictorial description of the Hamiltonian operator in Eq. (1). 

 

 

 

 

 

Fig. 2.1: Cartoon depicting the Bose-Hubbard Hamiltonian. When the system becomes 

disordered, then the depth of each site changes (V). In a clean system, all values of 𝑉! 

would be the same, i.e. 𝑉! = 𝑉! = ⋯ = 𝑉!. 

2.2 MEAN FIELD THEORY 
There are several different techniques that have been used for trapped bosons in optical 

lattice calculations. Popular calculation techniques include the Monte Carlo method, 

Gutzwiller Approach and Mean Field Theory  !,!,!. Taking into account all “many-body” 

interactions in every site is impractical because the computational cost to find the 

solution for such a Hamiltonian increases exponentially. For example, if we have M 

number of states at each site in a N-site lattice, the diagonalization of the Hamiltonian 

matrix will need approximately 𝑀!! number of algebraic operations. For a system we 

study in this these, M =15 and 𝑁 = 10!, and the solution would require 15!",!!! ≈

10!",!!! numerical operators. Even with the fastest supercomputer of this present day 

𝑉!	   𝑉!	   𝑉!	  

𝑉!	   𝑉!	   𝑉!	  

𝑉!	   𝑉!	   𝑉!	  

t	  
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which does around 10!" operations per second, the computation would take 

10!",!"#𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ≈ 10!",!"#years. 

As a practical alternative, we employ a mean-field approximation. Within this 

method, we map a many-site problem to a single-site problem by approximating the 

creation (annihilation) operators at neighboring sites to superfluid density (complex 

conjugate of superfluid density). For site i, the hopping term in Equation 1 is 

approximated as: 

𝑎!
!𝑎! ≈ 𝑎!

! 𝑎! + 𝑎!
! 𝑎! − 𝑎!

! 𝑎!                           (2) 

This results in a modification of the Hamiltonian in Equation 1 as: 

𝐻!""(!) = ℎ!
!

                        (3) 

𝑤ℎ𝑒𝑟𝑒  ℎ! = −𝑡 𝑎!
! 𝑎! + 𝑎!

! 𝑎! +
𝑈
2 𝑛! 𝑛! + 1 + 𝑉! − 𝜇 𝑛!                     (4) 

The term ℎ! is the single site Hamiltonian operator. States at different sites are related 

only through the expectation value of the creation and annihilation operators. 

We try to find the solution of Eq. (3) numerically. Since each site is independent 

of each other, instead of solving an eigenvalue equation for the total Hamiltonian 𝐻!"", 

we solve the eigenvalue problem for ℎ! one site at a time. The total solution of 𝐻!""(!) is 

a product of solutions of ℎ!. In actual numerical procedures, we start from a randomly 

guessed solution at each site. We span the whole lattice site-by-site and solve for ℎ!. The 

number of operations to solve each ℎ! is of order 𝑀!. We found that M=15 gives a good 
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convergence. The computational cost for a site Hamiltonian is, therefore, only 15! =

3375 operations. While we move from one site to a neighboring site, we use the solution 

from the previous site to update the mean-fields, i.e. the expectation values 𝑎!  and 𝑎!
! . 

After each iteration we check if the output mean-fields are the same as the input mean-

fields. If they are not the same, we update the mean-fields using the mean-fields from the 

previous iteration and use them as new inputs for the next iteration. We continue this 

procedure until we achieve a self-consistency within the mean fields, and the input and 

output mean-fields become identical. 

2.3 ORDER PARAMETERS 
We characterize the phase of any optical lattice’s using a combination of three order 

parameters: 

1. Compressibility (𝜅): The rate change of particle number when chemical potential 

is changed. 

2. SF Density (𝜓): The measure of SF in a system. 

3. Number Density (𝑛): The number of atoms. 

In the MI phase, the SF density is zero, the compressibility is zero, and number density is 

an integer  !. In the SF phase, the SF density and compressibility are non-zero, and the 

number density is not necessarily an integer  !,!!. Finally, the Bose glass phase has zero 

SF density, but non-zero number density and compressibility. 

Within our mean-field theory the above order parameters are defined as: 
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𝜅 =
1
𝑁 𝜅!

!

=
1
𝑁 𝑛!! − 𝑛! !

!

                                (5) 

𝜓 =
1
𝑁 𝜓!

!

= 𝑎!
!

                              (6) 

𝑛 =
1
𝑁 𝑛!

!

= 𝑎!
!𝑎!

!

                    (7) 

In Equations 5-7, N is the number of sites. 

In what follows, we study how the complexity of the disorder configurations 

influences the phase of the lattice. For this purpose, we start with a simple disorder 

configuration where binary values of disorder potentials are randomly assigned at 

different sites (See the left figure in Figure 2.2). We increase the complexity to ternary 

(three different disorder potential values), quaternary, etc. The right figure in Figure 2.2 

shows a uniform disorder configuration where disorder potential of uniformly spaced 

values within (− ∆
!
, ∆
!
) are randomly distributed in real space.
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Fig 2.2: Two disorder potential maps used to simulate an optical speckle field scattered 

across a lattice. The left is a map of binary disorder (two different divisions) and (b) is 

of 200 different divisions (essentially uniform disorder). The maximum and minimum 

disorder strength is the same across both, the only difference is the possible amount of 

different potentials within that range. 

In the third chapter, we create quantum phase diagrams to help us predict the 

quantum phase of a system through the deviation of chemical potential (𝜇) and lattice 

kinetic energy (t). The phase diagram helps us understand how the system’s phase 

changes as a function of chemical potential and the hopping parameter. In each different 

regions of the phase diagram, or phase space, the relationship of the system’s phase 

between these two values can be observed. 

For certain figures we utilize a “Phase Boundary” algorithm, which allows us to 

characterize where the system goes from zero to non-zero values in the quantum phase 

diagrams. This ensures simplicity when looking for phase transitions: 

𝐶!,! =
0  𝑖𝑓  𝜅,Ψ < 10!!  
1  𝑓𝑜𝑟  𝜅,Ψ ≥ 10!!

                                      (8) 

At each site 𝐶!,! in a parameter phase diagram that is of i x j size for phase parameters SF 

density, Ψ, and compressibility, 𝜅.	  	  
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Chapter 3. PHASE CHARACTERIZATION  
 

3.1 CLEAN SYSTEM PHASE DIAGRAMS 
In this section, we study how the phase of clean systems changes as a function of the 

system’s energy parameters. The independent parameters are the hopping parameter (t) 

and the chemical potential (𝜇). The phase of the system is determined by the order 

parameters, 𝜅,𝜓, and n, as discussed in Chapter 2. The vertical axis of these diagrams is 

𝜇/𝑈 and the horizontal is 𝑡/𝑈. Because the repulsive on-site interaction is usually larger 

than the hopping parameter, we limit our calculations within a small range of 𝑡/𝑈. Fig 

3.1 shows that, for a given chemical potential, the systems are MI for small hopping 

parameters (inside the blue lobes) and that the phase changes to SF at larger hopping 

parameters (outside the lobes). In the MI lobes, the number density is fixed integer 

values, the compressibility is zero and there is no SF density. Moving up the 𝜇 axis, the 

system number density increments by one in each separate lobe and the actual shapes 

shorten in length and remain constant in height  !". Note that the transition from MI to SF 

is direct, there is no other phase between them. 
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FIG. 3.1 Parameter quantum phase diagrams giving statistical averages over clean real 

space lattices for values of compressibility (A), SF Density (B), and Normal Density (C). 

At each point in each chart, we can predict the quantum phase of a real system in 

accordance to the parameters discussed in 2.2. When any disorder is introduced, it is 

predicted that there is a region of Bose glass which arises from the boundaries of the lobes, 

reducing their areas and growing larger as the disorder strength increases   !. 

3.2 THE NUMBER DENSITY AND COMPRESSIBILITY RELATIONSHIP 
We have discovered that the paired compressibility (𝜅) and number density (n) values for 

sites in a disordered system against those of multiple clean systems are very similar. 

When looking at the compressibility of a clean system and comparing it to a single site 

with the same compressibility value in a dirty lattice, they both share the same number 

density value as well. This implies that each site in a disordered system does not really 

care about the phases of sites around it, or they are weakly correlated between one 

another. The relationship between 𝜅 and n is shown in Fig 3.2 and Fig 3.3. These are 

density plots that vary in color according to the amount of sites (Fig. 3.2 a) or clean 

systems (Fig. 3.2 b) that have a particular 𝜅 and n value.  
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Figure 3.2: Density maps of lattice sites that correspond with a certain number density 

and compressibility value (< 𝑛 >, 𝜅). Diagram a is counted over a single disordered 

lattice with a system chemical potential of 𝜇/𝑈 = 1.0 and 𝑡/𝑈 = 0.0255 or point (1.0, 
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0.0255) in Figure 3.12. Diagram b was created through the density plot of 

compressibility and number density through a clean phase diagram.  

In Figure 3.2, the top figure (a) shows the compressibility and number density 

relationship between all sites in a disordered system as a density plot. The differences in 

color show the population of (𝜅,𝑛) pairs. The lower figure, b, shows a very similar plot 

crafted from clean system 𝜅 and n values which correspond to the clean compressibility 

and number density diagrams. The relationship between the two is apparent, and since 

they are remarkably similar we can craft a new means of generating any disordered phase 

diagram. Figure 3.3 shows the relationship between 𝜅 and n in clean systems. In Figure 

3.3, we show where Figure 3.2 b came from. Again, the color map corresponds to the 

population (likelihood) of the (𝜅,𝑛) pairs.  
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Figure 3.3: A density point plot of < 𝑛 > 𝑣𝑠. 𝜅 for all systems in a clean phase 

diagram. At each point, there is a pairing of (< 𝑛 >, 𝜅) and the color of the point 

corresponds to how many clean systems share these two parameter values of number 

density and compressibility. 

3.3 BINARY DISORDERED SYSTEM 
Since we know at this point the phases are weakly correlated with one another through 

the data shown in section 3.2, we should seek to observe what is happening at the local 

level. Disordered phase diagrams have similar features and have shapes that are 

dependent on the actual disorder itself. The Bose glass phase appears only with disorder 

applied across all real systems used in the calculation of the disordered phase 

diagrams  !,!,!!, and it characteristically separates the Mott lobes from the SF region. 

Recall that Bose glass is characterized by a finite compressibility, zero-SF density and 

any number density value.  

3.3.1 PHASE DIAGRAM FOR SYSTEM OF BINARY DISORDER 
We begin the observance of disorder’s effects by looking at a binary (two value) 

disordered lattice. With binary disorder, only two Hamiltonians are randomly considered 

at each lattice site and for a system of disorder strength range: [−∆/2,∆/2], they are: 

  ℎ!,! = −𝑡 𝑎!
! 𝑎! + 𝑎!

! 𝑎! +
𝑈
2 𝑛! 𝑛! + 1 +

Δ
2 − 𝜇 𝑛!                   (9) 

Or 

  ℎ!,! = −𝑡 𝑎!
! 𝑎! + 𝑎!

! 𝑎! +
𝑈
2 𝑛! 𝑛! + 1 + −

Δ
2 − 𝜇 𝑛!                   (9) 
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A system of ternary (three divisions) disorder then will consider a third Hamiltonian, 

where the disorder potential is 𝑉! = 0.  

Figure 3.3 shows a binary disordered system phase diagram for compressibility 

and its respective phase boundary. The phase boundary gives an idea as to where the 

system goes from zero to finite compressibility. The Bose glass phase is predicted to 

appear as a separating phase between these lobes and the region of SF systems adjacent 

to them  !,!.  

	  

FIG 3.4: A binary disorder map, where each colored square is either adding a potential 

of 0.25 or -0.25 to the system site it matches up with. This 100 x 100 disorder map can 

be visualized as an overlay across a real optical lattice with the disorder potentials 

raising or lowering trap potentials at each site randomly.
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FIG. 3.5 A compressibility phase diagram for a binary disordered system and its 

correlated phase boundary (i.e. where the system goes from SF to MI). The disorder 

strength is  ∆  = 0.5 and since it is binary, there are only two different disorder 

potentials randomly assigned to each site. The phase boundary plot was done with the 

conditional 𝐶! referenced above and the disorder map used is in Fig. 2.1. 
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The binary model has one of two divisions of disorder, and as the strength of the 

disorder changes – so does the displacement and shape of the Mott lobes. The predicted 

region of Bose glass arises out of the Mott Lobes, and completely separates the MI from 

the SF region as long as the disorder strength ∆ is less than the site potential (∆  < 𝑈). If 

the disorder is greater than the site potentials, ∆  > 𝑈, then there is only a region of Bose 

glass throughout the entire system, and no MI is present  !. Any system located in this 

Bose glass region should show no superfluid density and non-zero compressibility and 

number density. This is apparent when observing the maps showin in Figure 3.6. 

 

3.3.2 LOCAL PHASES FOR BINARY DISORDER POTENTIALS 
Now we need to look at what is happening locally in this expected Bose glass region. To 

do so, actual lattices must be observed and their phase dependent parameters measured.  

Figure 3.6 shows the compressibiliy, SF density and number density of three real lattices 

located at different points in the binary phase diagram identified through their (t/U, 𝜇/U) 

values to show their position. The points were chosen specifically in the MI, Bose glass 

and SF regions of the binary phase diagram (Figure 3.5). In the first three sub figures at 

point: (0.012, 0.5) in the phase diagram, there is a uniform zero compressibility, zero SF 

density and integer number density n = 1 which aligns precisely with the characteristics 

of the MI phase. The second set of three sub figures is at the Bose glass region point: 

(0.021, 1.0), and is our main topic of interest. We can see that there is a finite SF density 

and compressibility at some lattice points, but still large pockets of MI present. At every 

point where there is zero SF density, there is also zero compressibility and integer 

number density. In contrast, at every point there is finite SF density, there is also finite 
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compressibility and any number density value. When taking the average of all the 

parameters’ values, we see a finite number density and compressibility, but still there is 

no superfluid density (only pockets). This observation, coupled with the property that 

local site phases are weakly correlated with those of neighboring sites, proves that there 

is no exotic phase arising between the two known clean system states and only a local 

mixing of MI and SF. When taking the average of all the parameters separately (which is 

what is done when creating a SF phase diagram) there are mixed phase determining 

characteristics which would imply the presence of a third phase, but locally there is no 

such thing. There is simply either MI or supefluid present at each site. We renforce this 

observation through looking at systems with more complex disorder than binary in 

sections ahead. In the final three sub figures of Figure 3.6, there are real system 

parameter plots in a region of SF. Though there is disorder present, the entire system has 

no MI pockets present and has non-zero superfluid density throughout the entire optical 

lattice. 
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𝑛  (𝑆𝐹)	  

	  
	  

Fig. 3.6: Nine real-space lattice parameter diagrams that are of different points in binary 

disorder phase space (Figure 3.5). In the first row, we have chosen the point (0.012, 0.5) 

on the diagram that is located deep within the Mott region. Each site shows a uniform 

zero SF density, zero compressibility and finite/integer number density. For the second 

row, we have chosen a point in the Bose glass region of the phase diagram (0.021, 1.0). 

Notice that there are present SF clusters, but are surrounded by a region of MI (zero 

compressibility, zero SF density and non-integer number density). For the final row, we 

have chosen a point that is in a known region of SF: (0.045, 1.95). These systems show 

a non-uniform finite SF density over every site, finite compressibility and uniformally 

integer/non-integer number density. 

3.4 TERNARY DISORDERED SYSTEM 
To increment the disorder complexity in a small step, we will observe what happens in a 

ternary disordered system. Recall that with ternary disorders, there is now the 

consideration of a third Hamiltonian which has a disorder potential 𝑉! = 0. A ternary 
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disorder compressibility phase diagram is shown below in Figure 3.8. In the figure, there 

are smaller lobes in between the two larger lobes. This is characteristic of disordered 

lattices, and the amount of smaller intermediary lobes is dependent upon the total amount 

of possible Hamiltonians solved in the disordered real systems at each square in the 

diagram. The disorder map used to craft all ternary disordered systems in Figure 3.8 and 

3.9 is shown in Figure 3.7. 

	  

Figure 3.7: A disorder map created for a ternary system. Comparing to the binary 

disorder map shown in Figure 3.4, there is only a single added disorder potential of 

𝑉! = 0 scattered randomly across. 
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Figure 3.8 A ternary disordered compressibility phase diagram with disorder strength 

∆  = 0.5 and its phase boundary diagram. Again, an expected region of Bose glass 

separates the Mott lobes from the SF systems. We utilized the phase boundary 

algorithm discussed in 2.4 to find the compressibility boundary diagram. 
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In the next section we observe the real lattices at points chosen in the regions of MI, 

SF, and Bose glass to further enforce site exclusivity to either the MI or SF phases. 

3.4.1 LOCAL PHASES FOR TERNARY DISORDER 
Figure 3.9 shows lattices in the same pattern as what was done with the binary disordered 

system. The points chosen in ternary disordered phase space (Figure 3.8) are optical 

lattices in the MI, Bose glass and SF region and are disordered through the disorder map 

in Figure 3.7. 

𝜌   𝑀𝐼 	  
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Figure 3.9: The above table shows lattice SF density, compressibility, and number 

density at three different points on the ternary phase diagram which correspond with the 
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three different phases. The first row is at site (0.006, 0.5) and gives the characteristics 

of a MI, where there is zero SF density, zero compressibility and a uniform integer 

number density. The second row, (0.03, 0.5), gives parameter values in the Bose glass 

region, and shows the presence of SF clusters (but zero-SF density and compressibility)  

on a background of MI. The final row, (0.045, 1.95), has finite SF density, finite 

compressibility, and a integer/non-integer number density across all sites, confirming it 

is in a SF state. 

Through the diagrams shown in Figure 3.9, we can see that there are defined regions 

of MI and SF in the Bose glass system, with no actual intermiediary phase present. For 

our final case, a system with large amounts of disorder is considered. And we prove that 

there is still defined regions of solely SF and MI in the Bose glass area of the phase 

diagram. 

3.5 COMPLEX DISORDER APPLIED ACROSS A SYSTEM 
For the final portion of this chapter, we consider a uniformly disordered system. The 41 

different values of disorder potential in a (−0.25, 0.25) strength spectrum are randomly 

distributed. This is to further solidify our claim that the Bose glass phase does not appear 

on a local level. Figure 3.11 shows in similar pattern the parameter mappings for real 

lattices located at different point in the high disorder phase diagram (Figure 3.12). We 

can see that when overlaying the different paired parameter maps, there is only the MI or 

SF phases, and no exotic mixture between them (e.g. zero SF density at a compressible 

site). This shows that for any amount of disorder present, the Bose glass phase is still 

only present when observing statistical averages of each system parameter. 
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Figure 3.10: A disorder map for 41 divisions of disorder spread across a 

disorder potential spectrum Δ = 0.5. This is used to disorder systems utilized in 

Figures 3.11 and 3.12. 
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Fig. 3.11: Nine real lattices for parameters SF density, compressibility and number 

density. The first three sub figures (a, b, c) are at the point (1.5, 0.003) on the 

disordered phase diagram Figure 3.9. The second three (d, e, f) are located at point (1.0, 

0.009) in the Bose glass region of Figure 3.9. The final three (g, h, i) are located at point 

(1.99, 0.048) in the SF region. Notice that in d, e, and f, there is still the separation of 

the MI and SF clusters.  
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Figure 3.12: A continuous disorder phase diagram created with 41 divisions of disorder 

potential over a (-0.25, 0.25) potential strength spectrum. The intermediate Mott lobes 
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have become too small to see, and the Bose glass section is larger between the MI and 

SF. 

From our observation of the (𝜅,𝑛) relationship between a continuously disordered 

lattice and multiple clean systems, we have seen that there is a weak phase correlation 

between sites in the disordered system. Then, since we know there is weak correlation, 

the observance of actual lattice parameters shows that any site phase is largely dependent 

upon its local disorder potential. Through these important observations and the real-

system lattice diagrams, we have seen there will always be a separation of MI and SF at 

the local sites. Therefore, the Bose glass is solely present when observing averaged 

parameter values through phase space, and does not separate the MI and SF phases when 

observed at the local level. 
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CHAPTER 4.  PREDICTION OF THE DISORDERED PHASE 

DIAGRAM 
Assuming disorder is evenly distributed probabilistically, each site has the even chance of 

receiving any possible disorder potential. Because of this, we can craft a mechanic that 

creates all possible shifted clean diagrams and takes the average over all of their phase 

space values. The shifted diagrams compared to our actual simulated and calculated 

diagrams are shown in Figure 4.1. In the left-hand column there are the ‘shifted’ 

disordered phase diagrams and in the right-hand column, the actual calculated diagrams 

are displayed (by calculated, we mean created through our simulation mechanic discussed 

in chapter 2). Through the discovery that the site phases are weakly correlated with one 

another, we have predicted correctly the disordered phase diagrams using only the 

knowledge of phases in clean systems. 

  



27	  
	  	  

  

  

  

Figure 4.1: The predicted and calculated compressibility phase diagrams of disorder 

systems. In the left-hand column, the shifted diagrams are displayed. On the right-hand 

side, the Bose Hubbard Model calculated diagrams are displayed. 
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CHAPTER 5. CONCLUSION 
Experimental observation of the Bose-Einstein condensate was a landmark discovery that 

fueled many new experiments and discoveries to be built upon its foundation  !". In this 

theoretical study, a relationship has been found between clean systems and disordered 

system sites through pairings of local compressibility and number density. Because of 

this, each system site in a disordered lattice isn’t largely affected by different neighboring 

site phases. In other words, the quantum phases pertaining to optical lattice sites in a 

disordered Bose-Einstein condensate are largely independent from one another and 

dependent solely on the disorder potential placed at each site and local site 

characteristics. Through the careful analysis of real systems, the theoretically predicted 

Bose glass phase is apparent only through system-wide parameter averages. When 

focused solely on single site phases, there is no intermediary Bose glass phase. Since the 

system sites of a disordered lattice very weakly correlate between one another, an 

averaging of all shifted clean phase diagrams for every possible disorder potential within 

a disordered system proved to be a successful disordered phase diagram prediction 

mechanic.  

 The consideration of disorder is always important when optical lattices are 

observed experimentally. The precision and tools used to craft and observe these systems 

have become very advanced and defined  !, but certain inevitable fluctuations of site 

potentials could still persist  !",!". A three-dimensional application utilizing our parameter 

observations coupled with the approximated Bose-Hubbard model would be a viable 

option for building off of what we have found. 
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