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ASYMPTOTIC BEHAVIOUR OF NONLINEAR WAVE
EQUATIONS IN A NONCYLINDRICAL DOMAIN

BECOMING UNBOUNDED

AISSA AIBECHE, SARA HADI, ABDELMOUHCENE SENGOUGA

Communicated by Goong Chen

Abstract. We study the asymptotic behaviour for the solution of nonlin-

ear wave equations in a noncylindrical domain, becoming unbounded in some
directions, as the time t goes to infinity. If the limit of the source term is

independent of these directions and t, the wave converges to the solution of an

elliptic problem defined on a lower dimensional domain. The rate of conver-
gence depends on the limit behaviour of the source term and on the coefficient

of the nonlinear term.

1. Introduction

In recent years, there is much interest in evolution problems set in time-dependent
domains. These problems arise in many real world applications when the spatial
domain of the considered phenomena depends strongly on time, see for instance the
survey paper [14] and the references cited therein.

Let us denote the points in Rn1 × Rn2 as

x = (X1, X2) = (x1, . . . , xn1 , x
′
1, . . . , x

′
n2

),

where n1 and n2 are positive integers. Then we consider a time-dependent family
of bounded subsets in Rn1 × Rn2 defined as

Ωt := (−`0 − `t, `0 + `t)n1 × ω, t ≥ 0,

where ω is a bounded open subset of Rn2 with sufficiently smooth boundary, `0 > 0
and the speed of expansion ` is constant. In R+×Rn1+n2 , we obtain the noncylin-
drical domain and its lateral boundary

Qt := ∪0<s<t{s} × Ωs, Σt := ∪0<s<t{s} × ∂Ωs, t > 0.
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We are interested in the asymptotic behaviour, as t → +∞, of the solution of
the following nonlinear wave equation set in Qt,

u′′ −∆u+ βu′ + γ(t)|u|ρu = f(t, x), in Qt,

u(t, x) = 0, on Σt,

u(0, x) = u0(x), u′(0, x) = u1(x), in Ω0,

(1.1)

where the prime stands for the time derivative, ∆ is the Laplace operator, β is a
positive constant and γ is a nonnegative function.

This study is motivated by some recent works on the asymptotic behaviour of the
solutions of boundary value problems in a domain Ω`, when the size of Ω` becomes
unbounded in some directions, as the parameter ` → +∞ (independently of the
time). See for instance [3, 4, 5, 11] for elliptic and parabolic problems and [2, 10]
for hyperbolic problems. In the paper at hand, we give to `t the same role of the
parameter ` in these papers.

The existence and uniqueness of solutions for wave problems in noncylindrical
domains was considered by several authors, see [16, 17, 6, 7, 8, 9, 18] and related
works. To focus on the asymptotic behaviour, we considered Problem (1.1) whose
existence and uniqueness can be established by arguing as in [9].

Many works dealt with the asymptotic behaviour in time for the solutions of
evolution problems in noncylindrical domains. Using the multiplier method, Bardos
and Chen [1] proved that the energy of the linear wave equation decays when
the domain is timelike and expanding. Nakao and Narazaki [18] and Rabello [19]
studied the decay of the energy for weak solutions of nonlinear wave problems in
expanding domains. There idea relays on the penalization method, introduced by
Lions [16]. Another method consists in considering a suitable change of variables
that transforms the noncylindrical domain to a cylindrical one, establish energy
estimates for the new problem, then derive the desired energy estimates for the
noncylindrical problem, see for instance [13, 15]. The drawback of this method
is that the differential operator of the transformed problem is, in general, more
complicated.

In this work, we study the problem directly in the noncylindrical domain, without
any change of variables. The idea is based on the use of some special cut-off
functions, depending on (t,X1), to obtain local estimates of the difference between
the wave and its limit. This technique was recently introduced by Guesmia [12]
for a parabolic problem in a noncylindrical domain, see also [5]. Roughly speaking,
if f(t, x) converges to some f∞(X2) and γ(t) converges to 0, faster enough in a
sense to be made precise later, we obtain the convergence u(t) → u∞ in interior
regions of the domain Qt. Here u∞ is the solution of an elliptic problem defined
on ω. Then, the rate convergence u(t)→ u∞ is analysed and improved under some
assumptions.

The main features of this work can be summarized as follows:
• In [13, 18, 19], the size of the domain is assumed to remain bounded as t→ +∞

and the limit of the solution of the considered problem is zero. This situation arises
when the decay in the energy of the solution, due to the expansion of the domain
and damping terms, overtakes the contribution of the source term. In this work, Ωt
becomes unbounded in n1 directions and the limit of the solution, in interior regions
of the domain, is not necessarily zero, as t → +∞. To the best of our knowledge,
the asymptotic behaviour of such problems has not been considered before.
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• In contrast with [12], the source term f in this work depends on all the variables
(t, x) ∈ R+ × (−`0 − `t, `0 + `t)n1 × ω and not only on X2 ∈ ω.

The rest of this article is organized as follows: In the next section, we state
an existence and uniqueness result for u(t), solution of Problem (1.1). Then we
define u∞, the candidate limit u(t) as t → +∞, and the cut-off functions needed
in the sequel. In section 3, we give an energy estimate for u(t) as well as a local
energy estimate for the difference u(t) − u∞. In the last section, we give the
convergence results and discuss some particular cases where the rate of convergence
is exponential.

2. Preliminaries

2.1. Existence and uniqueness of solutions. First, let us state our assump-
tions:
• Concerning the speed of expansion, in the n1 first directions, it satisfies

0 ≤ ` ≤ 1. (2.1)

This ensures that Σt satisfies the so-called timelikness condition

|νt| ≤ |νx| on Σt, for t > 0,

where ν1 = (νt, νx) is the unit outward normal to Σt and | · | denotes the usual
Euclidian norm.
• The nonlinear term in Problem (1.1) is subject to the following assumptions

(Recall that x ∈ Rn1+n2)

0 < ρ ≤ 2
(n1 + n2)− 2

, if n1 + n2 > 2, 0 < ρ ≤ ∞ if n1 = n2 = 1, (2.2)

γ ≥ 0, γ′ ≤ 0, γ, γ′ ∈ L∞(0, t). (2.3)

• The initial data and the source term satisfy

u0 ∈ H2
0 (Ω0), u1 ∈ H1

0 (Ω0), f ∈ H1(0, t;L2(Ωs)). (2.4)

Then we have the following existence and uniqueness result.

Theorem 2.1. Let t > 0. Under the assumptions eqreftlike–(2.4) there exists a
unique solution for Problem (1.1), in the sense that

u ∈ L∞(0, t;H1
0 (Ωs) ∩H2(Ωs)), u′ ∈ L∞(0, t;H1(Ωs)), u′′ ∈ L2(0, t;L2(Ωs))

and we can take u′ as a test function, i.e. the following identity holds∫
Ωs

(u′′ −∆u+ βu′ + γ(s)|u|ρu)u′(s)dx =
∫

Ωs

f(s)u′(s)dx,

for a.e. s ∈ (0, t).

Proof. To express Ωs using the notation of [9], we consider K(s) = 1 + `
`0
s. Then

Ωs can also defined as

Ωs = {(X1, X2) ∈ Rn1 × ω | X1 = K(s)Y1, Y1 ∈ (−`0, `0)n1}, s ∈ (0, t).

The rest of the proof becomes similar to the proof of [9, Theorem 3.1], hence it is
omitted. �
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2.2. Limit problem. We set

∇X1u = (∂x1u, . . . , ∂xn1
u)T , ∇X2u = (∂x′1u, . . . , ∂x′n2

u)T ,

∇u =
(
∇X1u
∇X2u

)
), ∇x,tu =

(
u′

∇u

)
and we assume that the source term becomes independent of the variables (t,X1),
i.e.

f(t,X1, X2)→ f∞(X2), as t→ +∞,
for some

f∞ ∈ L2(ω). (2.5)

To handle the nonlinear term, in the estimations below, we need to assume that

γ(t)→ 0 as t→ +∞.

The sense of these two convergences will be made precise below.
Passing formally to the limit in (1.1), one expects the limit problem to become

independent of (t,X1), as t→ +∞. More precisely, the candidate limit of u(t), as
t→ +∞, is the solution of the elliptic problem defined on ω,

−∆X2u∞ = f∞ in ω,

u∞ = 0 on ∂ω,
(2.6)

where ∆X2 := ∂2
x′1

+ · · · + ∂2
x′n2

. It is well known that Problem (2.6) has a unique

solution u ∈ H1
0 (ω) and one can check easily that

|∇X2u∞|L2(ω) ≤ |f∞|L2(ω). (2.7)

Remark 2.2. By the Sobolev embedding theorem (Recall that ω ⊂ Rn2), we have:
• if n2 ∈ {1, 2}, then H1(ω) ⊂ Lρ+2(ω) for 0 < ρ ≤ ∞.
• if n2 ≥ 3, then due to (2.2) we have 0 < ρ ≤ 2

(n1+n2)−2 which implies that
0 < ρ ≤ 2

n2−2 , hence H1(ω) ⊂ Lρ+2(ω).
Therefore, under assumption (2.2), it holds that

|u∞|Lρ+2(ω) ≤ CS |∇u∞|L2(ω),

for n2 ≥ 1 and some constant CS depending only on ω. Combining this inequality
with (2.7) we have

|u∞|Lρ+2(ω) ≤ CS |f∞|L2(ω). (2.8)

2.3. Special cut-off functions. To estimate the converge of u(t) towards u∞, we
consider the functions

w(t,X1, X2) := u(t,X1, X2)− u∞(X2),

F (t,X1, X2) := f(t,X1, X2)− f∞(X2),

for (X1, X2) ∈ Ωt and t ≥ 0. Since u∞ depends only on X2, then the function w
satisfies the equation

w′′ −∆w + βw′ + γ|u|ρu = F in Qt, (2.9)

with the initial conditions

w(0, x) = u0(x)− u∞(X2), w′(0, x) = u1(x).
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Observe that if u∞ 6= 0 on Σt, then w 6= 0 on Σt. As a consequence w(t) /∈
H1

0 (ω), hence it is not a valid test function for equation (2.9). This motivates the
consideration of the next cut-off functions.

For a fixed t > 1, let m be a integer such that 0 ≤ m ≤ t− 1. On one hand, we
consider the sequence of sets

Stm := {(s,X1) : t−m < s < t, |xi| < `0 + `(m− t+ s), for i = 1, . . . , n1}.

This sequence is increasing in m, i.e. Stm ⊂ Stm+1, and satisfies

Stm ⊂ ∪t−m<s<t{s} × (−`0 − `s, `0 + `s)n1 ⊂ (t−m, t)× Rn1 .

On the other hand, we consider a sequence of smooth cut-off functions, depending
on (s,X1),

%m = %m(s,X1) : (0, t)× Rn1→ R
and satisfying

%m =

{
1 in Stm,

0 in {(0, t)× Rn1} \ Stm+1,

0 ≤ %m ≤ 1, |∇X1%m|, |%′m| ≤ θ,

where θ is a constant independent of t and m. We have in particular %m(0, X1) = 0
and %m = 0 near the lateral boundary Σt. The supports of ∇X1%m and %′m are
included in Stm+1\Stm.

3. Energy Estimates

In this section, we establish some useful lemmas needed in the sequel. The first
one gives an estimation for u and its derivatives.

Lemma 3.1. Under the assumptions (2.1)–(2.4), the solution of Problem (1.1)
satisfies,∫

Ωt

|u′(t)|2 + |∇u(t)|2 +
γ(t)
ρ+ 2

|u(t)|ρ+2dx+
∫
Qt

β|u′|2 +
2|γ′|
ρ+ 2

|u|ρ+2 dx ds

≤ C0

(
1 + |f |2L2(Qt)

)
, for t > 0,

where C0 is a positive constant independent of t.

Proof. Since the solutions u satisfies u = 0 on Σt, then all the tangential derivatives
of u are also vanishing on Σt, so ∇x,tu = ∂u

∂ν ν, on Σt, which implies that

u′ =
∂u

∂ν
νt, ∇u =

∂u

∂ν
νx, on Σt.

Thanks to Theorem 2.1, we can take u′ as a test function and arguing as in [1], we
obtain

1
2

∫
Ωt

|u′(t)|2 + |∇u(t)|2 +
γ(t)
ρ+ 2

|u(t)|ρ+2dx+
∫
Qt

β|u′|2 − γ′

ρ+ 2
|u|ρ+2 dx ds

=
1
2

∫
Ω0

|u1|2 + |∇u0|2 +
γ(0)
ρ+ 2

|u0|ρ+2dx+
∫
Qt

fu′ dx ds

+
1
2

∫
Σt

(
∂u

∂ν
)2 νt (|νx|2 − ν2

t ) dσ,
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for t > 0. Using the fact that |νt| ≤ |νx| on Σt and noting that νt ≤ 0 for
expanding domains, we infer that the boundary integral term in the right-hand
side is nonpositive. Then applying Young’s inequality fu′ ≤ β

2 (u′)2 + 1
2β f

2, we
obtain∫

Ωt

|u′(t)|2 + |∇u(t)|2 +
γ(t)
ρ+ 2

|u(t)|ρ+2dx+
∫
Qt

β|u′|2 +
2|γ′|
ρ+ 2

|u|ρ+2 dx ds

≤
∫

Ω0

|u1|2 + |∇u0|2 +
γ(0)
ρ+ 2

|u0|ρ+2dx+
1
β

∫
Qt

f2 dx ds.

This completes the proof. �

The second lemma, gives an estimation for the difference u(t) − u∞ in interior
regions of Ωt and Qt. For simplicity, we set

D(t, x) := |w′(t, x)|2 + |∇w(t, x)|2 + γ(t)|u(t, x)|ρ+2, for x ∈ Ωt, t ≥ 0. (3.1)

Then we have the following energy inequality.

Lemma 3.2. Under assumptions (2.1)–(2.5), the solutions of Problem (1.1) and
Problem (2.6) satisfy∫

Ωt

D(t)%2
m(t)dx+

∫
Stm×ω

D dxds

≤ C1

∫
(Stm+1\Stm)×ω

Ddxds+ C1

∫
Stm+1×ω

F 2 + γ|u∞|ρ+2 dx ds, for a.e. t > 0,

for some positive constant C1 independent of t.

Proof. To derive local energy estimates, we use %m and its proprieties.
• A local energy identity. Let us multiply (2.9) by 2w%2

m, it yields

∂

∂s
(β%2

mw
2 + 2%2

mww
′)− 2β%′m%mw

2 − 2%2
m|w′|2 − 4%′m%mww

′ + 2γ|u|ρuw%2
m

+ 2%2
m|∇w|2 − 2∇ · (%2

mw∇w) + 4%mw(∇%m · ∇w) = 2w%2
mF.

Then, multiplying (2.9) by 2αw′%2
m, for some constant α > 0, yields

∂

∂s

(
α%2

m|w′|2 + α%2
m|∇w|2 +

2αγ
ρ+ 2

|u|ρ+2%2
m

)
− 2α%′m%m|w′|2 + 2αβ%2

m|w′|2 −
2αγ′

ρ+ 2
|u|ρ+2%2

m −
4αγ
ρ+ 2

|u|ρ+2%′m%m

− 2α%′m%m|∇w|2 − 2α∇ · (%2
mw
′∇w) + 4α%mw′(∇%m · ∇w) = 2αw′%2

mF.

Summing the above identities, we obtain

∂

∂s

(
β%2

mw
2 + 2%2

mww
′ + α%2

m|w′|2 + α%2
m|∇w|2 +

2αγ
ρ+ 2

|u|ρ+2%2
m

)
− 2%2

m|w′|2 + 2αβ%2
m|w′|2 + 2%2

m|∇w|2 − 2α%′m%m|∇w|2

+ 2γ|u|ρ+2%2
m − 2γ|u|ρuu∞%2

m −
2αγ′

ρ+ 2
|u|ρ+2%2

m −
4αγ
ρ+ 2

|u|ρ+2%′m%m

− 2β%′m%mw
2 − 4%′m%mww

′ − 2α%′m%m|w′|2 − 2∇ · (%2
mw∇w) + 4%mw(∇%m · ∇w)

− 2α∇ · (%2
mw
′∇w) + 4α%mw′(∇%m · ∇w) = 2w%2

mF + 2αw′%2
mF.
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Collecting the terms with derivatives of % in the right-hand side of the above identity,
we obtain

∂

∂s

(
β%2

mw
2 + 2%2

mww
′ + α%2

m|w′|2 + α%2
m|∇w|2 +

2αγ
ρ+ 2

|u|ρ+2%2
m

)
2(αβ − 1)%2

m|w′|2 + 2%2
m|∇w|2 + 2

(
γ − αγ′

ρ+ 2
)
|u|ρ+2%2

m

= 2β%′m%mw
2 + 4%′m%mww

′ + 2α%′m%m|w′|2 + 2α%′m%m|∇w|2

− 4%mw(∇%m · ∇w)− 4α%mw′(∇%m · ∇w) + 2α∇ · (%2
mw
′∇w)

+ 2∇ · (%2
mw∇w) +

4α
ρ+ 2

|u|ρ+2γ%′m%m + 2γ(|u|ρu)u∞%2
m

+ 2w%2
mF + 2αw′%2

mF.

Integrating on Qt and taking into account the fact that %m = 0 for t = 0 and on
Σt, we end up with the identity∫

Ωt

(
βw2(t) + 2ww′(t) + α|w′(t)|2 + |∇w(t)|2 +

2αγ(t)
ρ+ 2

|u(t)|ρ+2
)
%2
m(t)dx

+
∫
Qt

2(αβ − 1)%2
m|w′|2 + 2%2

m|∇w|2 + 2(γ − αγ′

ρ+ 2
)|u|ρ+2%2

m dx ds

=
∫
Qt

2β%′m%mw
2 + 4%′m%mww

′ + 2α%′m%m|w′|2 + 2α%′m%m|∇w|2

+
4αγ
ρ+ 2

|u|ρ+2%′m%m dx ds−
∫
Qt

4%mw(∇%m · ∇w)− 4α%mw′(∇%m · ∇w) dx ds

+
∫
Qt

2γ(|u|ρu)u∞%2
m dx ds+

∫
Qt

2w%2
mF + 2αw′%2

mF dx ds.

• Estimate for the left-hand side of (3.2). Using the inequality

2ww′ ≥ −
(
βw2 +

1
β
|w′|2

)
,

then choosing α > 1/β, we obtain

β%2
mw

2 + 2%2
mww

′ + α%2
m|w′|2 + α%2

m|∇w|2 ≥ δ0%2
m|w′|2 + α%2

m|∇w|2,
where δ0 = (α − 1

β ) > 0. Integrating on Qt , and taking into account that γ′ ≤ 0,
we deduce that the left-hand side of (3.2) is bounded below by∫

Ωt

(
δ0|w′(t)|2 + α|∇w(t)|2 +

2αγ(t)
ρ+ 2

|u(t)|ρ+2
)
%2
m(t)dx

+ 2
∫
Qt

(
βδ0|w′|2 + |∇w|2 +

(
γ +

α|γ′|
ρ+ 2

)
|u|ρ+2

)
%2
m dx ds.

• Estimate for the right-hand side of (3.2). Given that the supports of %′m
and |∇%m| are included in the set Stm+1\Stm, the right-hand side of (3.2) can be
estimated above by

c0

∫
(Stm+1\Stm)×ω

|w′|2 + |w|2 + |∇w|2 + γ|u|ρ+2 dx ds

+
∫
Qt

2γ(|u|ρu)u∞%2
m dx ds+

∫
Qt

2w%2
mF + 2αw′%2

mF dx ds.
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Here and in the sequel, ci denotes positive constants depending (at most) on θ, α
and ω, but not on t. To estimate the second integral, containing (|u|ρu)u∞, we
apply Young’s inequality ab ≤ εap

p + 1
εq/p

bq

q for p = ρ+2
ρ+1 , q = ρ + 2 and ε ∈ (0, 1).

We obtain

(|u|ρu)u∞ ≤
(ρ+ 1)ε
ρ+ 2

|u|ρ+2 +
1

(ρ+ 2)ε(ρ+1)
|u∞|ρ+2.

The same inequality, for p = q = 2, yields

2w%2
mF + 2αw′F ≤ ε(w2 + |w′|2) +

1 + α2

ε
F 2,

2ww′ ≤ w2 + |w′|2,
2w|∇w| ≤ w2 + |∇w|2.

Then, the right-hand side of (3.2) is bounded above by

c0

∫
(Stm+1\Stm)×ω

|w′|2 + |w|2 + |∇w|2 + γ|u|ρ+2 dx ds

+ c1ε

∫
Qt

(|w′|2 + |w|2 + γ|u|ρ+2)%2
m dx ds+

c1
ε(ρ+1)

∫
Qt

(F 2 + γ|u∞|ρ+2)%2
m dx ds.

Since ω is bounded, then Poincaré’s inequality in the X2-direction yields∫
Ωt

|w(t)|2%2
m(t)dx ≤ c2ω

∫
Ωt

|∇X2w(t)|2%2
m(t)dx ≤ c2ω

∫
Ωt

|∇w(t)|2%2
m(t)dx,

where cω is the Poincaré constant. Thus the right-hand side of (3.2) is bounded
above by

c2

∫
(Stm+1\Stm)×ω

|w′|2 + |∇w|2 + γ|u|ρ+2 dx ds

+ c2ε

∫
Qt

(|w′|2 + |∇w|2 + γ|u|ρ+2)%2
m dx ds+

c2
ε(ρ+1)

∫
Qt

(F 2 + γ|u∞|ρ+2)%2
m dx ds.

• End of proof. The estimations of the two sides of (3.2) yields∫
Ωt

(
δ0|w′(t)|2 + α|∇w(t)|2 +

2αγ(t)
ρ+ 2

|u(t)|ρ+2
)
%2
m(t)dx

+ 2
∫
Qt

(
βδ0|w′|2 + |∇w|2 +

(
γ +

α|γ′|
ρ+ 2

)
|u|ρ+2

)
%2
m dx ds

≤ c2
∫

(Stm+1\Stm)×ω
|w′|2 + |∇w|2 + γ|u|ρ+2 dx ds

+ c2ε

∫
Qt

(
|w′|2 + |∇w|2 + γ|u|ρ+2

)
%2
m dx ds

+
c2

ε(ρ+1)

∫
Qt

(
F 2 + γ|u∞|ρ+2

)
%2
m dx ds.

For ε small enough, we end up with∫
Ωt

(
|w′(t)|2 + |∇w(t)|2 + γ(t)|u(t)|ρ+2

)
%2
m(t)dx

+
∫
Qt

(|w′|2 + |∇w|2 + γ|u|ρ+2)%2
m dx ds
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≤ c3
∫

(Stm+1\Stm)×ω
|w′|2 + |∇w|2 + γ|u|ρ+2 dx ds

+ c3

∫
Qt

(F 2 + γ|u∞|ρ+2)%2
m dx ds.

This completes the proof. �

Remark 3.3. Thanks to Inequality (2.8), we obtain∫
Stm+1×ω

γ|u∞|ρ+2%2
m dx ds = |u∞|ρ+2

Lρ+2(ω)

∫
Stm+1

γ%2
mdX1ds

≤ Cρ+2
S |f∞|ρ+2

L2(ω)

∫
Stm+1

γ%2
mdX1ds

and since 0 ≤ %m ≤ 1, we obtain∫
Qt

γ|u∞|ρ+2%2
m dx ds ≤ Cρ+2

S |f∞|ρ+2
L2(ω)2

n1(`0 + `t)n1

∫ t

t−m−1

γ(s)ds.

Thus ∫
Stm+1×ω

γ|u∞|ρ+2%2
m dx ds ≤ C2(`0 + `t)n1

∫ t

t−m−1

γ(s)ds (3.2)

where C2 is a constant independent of t and m.

4. Main Results

In this section, we establish the convergence u(t) → u∞, in bounded interior
region of Ωt and Qt, under some assumptions involving the asymptotic behaviour
of f and γ as t→ +∞.

4.1. Convergence theorems. Let us consider the nonnegative real function

g0(t) :=
[t]−1∑
j=1

(kj
∫
Stj+1×ω

|f − f∞|2 + γ|u∞|ρ+2 dx ds), t ≥ 2, (4.1)

where [·] denotes the integer part and k := C1/(1 + C1), (C1 > 0is the constant
considered in Lemma 3.2). Then, we have the following convergence on St1 × ω.

Theorem 4.1. Assume (2.1)–(2.5) and

g0(t)→ 0, as t→ +∞, (4.2)

t|f |2L2(Qt)
= o(eµ0t), as t→ +∞ (4.3)

where µ0 := ln(1 + 1
C1

). Then we have

u′ → 0, ∇X1u→ 0, ∇X2u→ ∇X2u∞ in L2(St1 × ω), (4.4)

γ
1
ρ+2u→ 0 in Lρ+2(St1 × ω), (4.5)

as t→ +∞. Moreover, if f = f∞ and γ = 0, the above convergences are exponen-
tial.
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Proof. The main idea is an iteration technique on the increasing sequence of sets
Stm × ω. First, we observe that∫

(Stm+1\Stm)×ω
Ddxds =

∫
Stm+1×ω

D dxds−
∫
Stm×ω

D dxds

and therefore Lemma 3.2 yields in particular

(1 + C1)
∫
Stm×ω

D dxds ≤ C1

∫
Stm+1×ω

Ddxds+ C1

∫
Stm+1×ω

F 2 + γ|u∞|ρ+2 dx ds.

Since k =
C1

1 + C1
, then 0 < k < 1 and we can rewrite the precedent inequality as∫

Stm×ω
D dxds ≤ k

∫
Stm+1×ω

Ddxds+ k

∫
Stm+1×ω

F 2 + γ|u∞|ρ+2 dx ds. (4.6)

This is an inequality that we can iterate for m = 1, . . . , [t]− 1. It follows that∫
St1×ω

D dxds ≤ k
∫
St2×ω

D dxds+ k

∫
St2×ω

(
F 2 + γ|u∞|ρ+2

)
dx ds

≤ k2

∫
St3×ω

D dxds+
2∑
j=1

(kj
∫
St1+j×ω

F 2 + γ|u∞|ρ+2 dx ds)

. . .

≤ k[t]−1

∫
St[t]×ω

D dxds+

[t]−1∑
j=1

(kj
∫
St1+j×ω

F 2 + γ|u∞|ρ+2 dx ds).

Note that t−1 < [t] ≤ t and µ0 = − ln k > 0. Then k[t]−1 = e([t]−1) ln k = e−µ0([t]−1)

and it follows that∫
St1×ω

D dxds

≤ c5e−µ0t

∫
St[t]×ω

Ddxds+
[t]−1∑
j=1

(
kj
∫
St1+j×ω

F 2 + γ|u∞|ρ+2 dx ds
)
.

(4.7)

To estimate the first integral term in the right-hand side of (4.7), we write∫
St[t]×ω

Ddxds ≤
∫
Qt

Ddxds

≤
∫
Qt

|u′|2 + |∇u|2 + |∇X2u∞|2 + γ|u|ρ+2 dx ds

≤
∫
Qt

|u′|2 + |∇u|2 + γ|u|ρ+2 dx ds

+ |∇X2u∞|2L2(ω)

∫ t

0

(
∫

(−`0−`s,`0+`s)n1

dX1)ds.

Taking into account Lemma 3.1 and (2.7), it follows that∫
St[t]×ω

D dxds ≤ c6t(1 + |f |2L2(Qt)
) +

2n1

`(n1 + 1)
|f∞|2L2(ω)(`0 + `t)n1+1

≤ c7(tn1+1|f∞|2L2(ω) + t|f |2L2(Qt)
)
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for large t. Substituting this in (4.7) and expending the expression of D(t, x), we
obtain ∫

St1×ω
|u′|2 + |∇X1u|2 + |∇X2(u− u∞)|2 + γ|u|ρ+2 dx ds

≤ c8
(
tn1+1|f∞|2L2(ω) + t|f |2L2(Qt)

)
e−µ0t + g0(t)

(4.8)

where g0 is the function given by (4.1). Since (4.2) and (4.3) ensure that the left-
hand side of (4.8) tends to zero, as t→ +∞, then the convergences (4.4) and ( 4.5)
follow.

If f = f∞ and γ = 0 then g0 = 0 and |f |2L2(Qt)
grows polynomially in time, hence

the claimed exponential convergences are a consequence of (4.8). This completes
the proof. �

Remark 4.2. (i) The source term f satisfies (4.3) for example when |f |L2(Ωt) is
bounded or grows polynomially in time.

(ii) The function g0 satisfies (4.2) if the convergences f(t) → f∞, γ(t) → 0, as
t→ +∞, are strong enough. Some examples are given below.

(iii) If f∞ = 0, and by consequence u∞ = 0, then g0 does not depend on γ. In
this case, Theorem 4.1 holds without any convergence assumption of γ(t) towards
0.

The next corollary gives the convergence on the domain Ω1.

Corollary 4.3. Under assumptions (2.1)–(2.5), (4.2) and (4.3), we have

u′(t)→ 0, ∇X1u(t)→ 0, ∇X2u(t)→ ∇X2u∞ in L2(Ω1),

γ(t)
1
ρ+2u(t)→ 0 in Lρ+2(Ω1),

as t→ +∞. Moreover, if f = f∞ and γ = 0, the above convergences are exponen-
tial.

Proof. Using Lemma 3.2, we have in particular for m = 1,∫
Ω1

D(t)dx ≤
∫

Ωt

D(t)%2
1(t)dx

≤ C1

∫
St2×ω

Ddxds+ C1

∫
St2×ω

F 2 + γ|u∞|ρ+2 dx ds.

Then we can estimate the integral
∫
St2×ω

Ddxds by using the above iteration tech-
nique for m = 2, . . . , [t] − 1. Arguing as in the proof of Theorem 4.1, we end up
with ∫

Ω1

D(t)dx ≤ c9(tn1+1|f∞|2L2(ω) + t|f |2L2(Qt)
)e−µ0t + g0(t).

Hence the corollary follows. �

4.2. Convergence in arbitrary interior regions. The assumptions (4.2) and
(4.3) can be considerably weakened to involve only the asymptotic behaviours of
f and γ for large t. Moreover, we show that the above convergences hold for an
arbitrary interior bounded region of Ωt and Qt.

Let O be a bounded subset of Rn1 × ω and a be a positive constant. Since Ωt is
increasing in time and becomes unbounded in the X1 direction, as t → +∞, then
there exists m0 > a such that

(t− a, t)×O b (t−m0, t)× Ωm0 , (4.9)
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and we can check that

(t−m0, t)× Ωm0 b S
t
2m0
× ω, for t > 2m0.

Let us consider the function

gm0(t) :=
[t/2]∑

j=2m0+1

(
kj
∫
St1+j×ω

|f − f∞|2 + γ|u∞|ρ+2 dx ds
)
. (4.10)

Then, we have the following convergences on (t− a, t)×O.

Theorem 4.4. Under the assumptions (2.1)–(2.5) and

gm0(t)→ 0 and t|f |2L2(Qt)
= o(e

µ0
2 t), as t→ +∞, (4.11)

we have

u′ → 0, ∇X1u→ 0, ∇X2u→ ∇X2u∞ in L2((t− a, t)×O),

γ
1
ρ+2u→ 0 in Lρ+2((t− a, t)×O),

as t→ +∞. Moreover, if f = f∞ and γ = 0, the above convergences are exponen-
tial.

Proof. Let us take t > 4m0 + 2, i.e., [t/2] > 2m0. Since (t− a, t)×O ⊂⊂ St2m0
×ω,

then iterating Inequality (4.6) for m = 2m0, . . . , [t/2]− 1, we obtain∫
(t−a,t)×O

D dxds

≤
∫
St2m0

×ω
D dxds

≤ k[t/2]−2m0

∫
St

[ t2 ]
×ω

D dxds+

[ t2 ]∑
j=2m0+1

(kj−2m0

∫
Stj×ω

F 2 + γ|u∞|ρ+2 dx ds)

hence∫
(t−a,t)×O

Ddxds ≤ c10

(
(tn1+1|f∞|2L2(ω) + t|f |2L2(Qt)

)e−
µ0
2 t + gm0(t)

)
(4.12)

where c10 > 0 and gm0 is defined by (4.10). Under the assumption (4.11), the
right-hand side tends to zero, as t→ +∞, and the theorem follows. �

Remark 4.5. In contrast with g0 defined in (4.1), by a sum that involves the values
of f − f∞ and γ on St[t]×ω (which is identical to Qt if t is an integer), the function
gm0 involves only the values of f − f∞ and γ on St[t/2]+1 × ω, included in the strip
( t2 − 1, t)× Rn1 × ω.

Corollary 4.6. Under the assumptions (2.1)–(2.5) and (4.11), we have

u′(t)→ 0, ∇X1u(t)→ 0, ∇X2u(t)→ ∇X2u∞ in L2(O),

γ
1
ρ+2u(t)→ 0 in Lρ+2(O),

as t→ +∞. Moreover, if f = f∞ and γ = 0, the above convergences are exponen-
tial.
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Proof. Using Lemma 3.2, we have for m = 2m0 and t > 2m0 + 1∫
O

D(t)dx ≤
∫

Ωt

D(t)%2m0(t)dx

≤ C1

∫
St2m0+1×ω

Ddxds+ C1

∫
St2m0+1×ω

F 2 + γ|u∞|ρ+2 dx ds.

The integral
∫
St2m0+1×ω

Ddxds in the right-hand side can be estimated as above

by iteration for m = 2m0 + 1, . . . , [t/2]− 1. The rest of the proof is similar to the
proof of Theorem 4.1 and hence is omitted. �

4.3. Exponential convergence. We give now some assumptions on the asymp-
totic behaviour of γ and f for large t, other than the trivial case f = f∞ and γ = 0,
that ensure an exponential rate of convergences.

Theorem 4.7. Assume (2.1)–(2.5), and that

γ(t), |f(t)− f∞|2L2(Ωt)
≤ K2e

−µ1t, (4.13)

for large t and some positive constants K2 and µ1. Then we have

|u′|L2((t−a,t)×O), |∇X1u|L2((t−a,t)×O), |∇X2(u− u∞)|L2((t−a,t)×O) ≤Me−µ
′t,

|γ
1
ρ+2u|Lρ+2((t−a,t)×O) ≤M e−

2µ′
ρ+2 t,

for some positive constants M and µ′, such that 0 < µ′ < min{µ0/2, µ1}/2.

Proof. On one hand, |f |2L2(Qt)
grows polynomially since (4.13) yields

|f |2L2(Qt)
≤ 2

∫ t

0

|f∞|2L2(ω)

(∫
(−`0−`s,`0+`s)n1

dX1 + 2K2e
−µ1s

)
ds

≤ c11t
n1+1

(4.14)

for large t. On the other hand, by Remark 3.3 we derive∫
St1+j×ω

F 2 + γ|u∞|ρ+2 dx ds

≤
∫ t

t−(1+j)

∫
Ωs

F 2 dx ds+ C2(`t+ `0)n1

∫ t

t−(1+j)

γ(s)ds

≤ K2(1 + C2(`t+ `0)n1)
∫ t

t−(1+j)

e−µ1sds

≤ K2(1 + C2(`t+ `0)n1)(1 + j)e−µ1t × eµ1(1+j)

≤ c12t
n1+1e−µ1t × eµ1j ,

for large t. Since kj = e−µ0j then we have

kj
∫
St1+j×ω

F 2 + γ|u∞|2 dx ds ≤ c12t
n1+1e−µ1t × e(µ1−µ0)j ,

for 2m0 + 1 ≤ j ≤ [t/2]. Summing the above inequalities from 2m0 + 1 to [t/2], we
obtain

gm0(t) ≤ c12t
n1+1e−µ1t

[t/2]∑
j=2m0+1

e(µ1−µ0)j .
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If µ1 < µ0, then the sum term in the right-hand is bounded independently of t. If
µ1 ≥ µ0, then

[t/2]∑
j=2m0+1

e(µ1−µ0)j ≤ c13te
(µ1−µ0) t2 .

Therefore, in both cases it holds that

gm0(t) ≤ c14t
n1+2e−min{µ0+µ1

2 ,µ1}t, (4.15)

for large t. The estimations (4.14) and (4.15) means that Assumption (4.11) is
satisfied.

Going back to (4.12) we derive that∫
(t−a,t)×O

D(t, x) dx ds

≤ c10(tn1+1|f∞|2L2(ω) + c11t
n1+2)e−

µ0
2 t + c14t

n1+2e−min{µ0+µ1
2 ,µ1}t.

Expending the expression of D(t, x), we end up with∫
(t−a,t)×O

|u′|2 + |∇X1u|2 + |∇X2(u− u∞)|2 + γ|u|ρ+2 dx ds

≤ c15t
n1+2 e−min{µ0

2 ,µ1}t.

This completes the proof. �

Remark 4.8. (i) Under assumption (4.13), the convergences in Corollary 4.6 are
also exponential.

(ii) Theorem 4.7 also holds if we replace the assumption (4.13) by the following
one ∫ t

t−1

γ(s)ds,
∫ t

t−1

∫
Ωs

|f − f∞|2 dx ds ≤ K3e
−µ2t,

for large t and some positive constants K3 and µ2.

Remark 4.9. As long as the existence result of Theorem 2.1 holds, we can obtain
the same results as in this article for more general domains, e.g.

Ωt =
( n1∏
i=1

(−αi(t), βi(t))
)
× ω, t ≥ 0,

where αi(t) and βi(t) are smooth functions satisfying

βi(0) + αi(0) > 0 and αi(t), βi(t)→ +∞, as t→ +∞

and their derivatives satisfy

0 < α′i(t), β
′
i(t) < 1, for i = 1, . . . , n1.

Of course, the definitions of Stm and %m must be adapted to this case.
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[4] M. Chipot, A. Rougirel; On the asymptotic behaviour of the solution of parabolic problems

in cylindrical domains of large size in some directions. Discrete Contin. Dyn. Syst. Ser. B,
1(3):319–338, 2001.

[5] M. Chipot, K. Yeressian; Exponential rates of convergence by an iteration technique. C. R.
Math. Acad. Sci. Paris, Sér. I, 346:21–26, 2008.

[6] J. Cooper, C. Bardos; A nonlinear wave equation in a dependent domain. J. Math. Anal.

Appl., 42:29–60, 1973.
[7] J. Cooper, L. A. Medeiros; The Cauchy problem for non linear wave equations in domains

with moving boundary. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 26:829–838,

1972.
[8] J. Ferreira; Nonlinear hyperbolic-parabolic partial differential equation in noncylindrical do-

main. Rend. Circ. Mat. Palermo (2), 44(1):135–146, 1995.

[9] J. Ferriera, N. A. Lar’kin; Global solvability of a mixed problem for a nonlinear hyperbolic-
parabolic equation in noncylindrical domains. Portugal. Math., 53(4):381–395, 1996.

[10] S. Guesmia; Some results on the asymptotic behaviour for hyperbolic problems in cylindrical

domains becoming unbounded. J. Math. Anal. Appl., 341(2):1190–1212, 2008.
[11] S. Guesmia; Some convergence results for quasilinear parabolic boundary value problems in

cylindrical domain of large size. Nonlinear Anal., 70(9):3320–3331, 2009.
[12] S. Guesmia; Large time and space size behaviour of the heat equation in noncylindrical

domains. Archiv der Mathematik, 101(3):293–299, 2013.

[13] T. G. Ha, J. Y. Park; Global existence and uniform decay of a damped Klein-Gordon equation
in a noncylindrical domain. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods,

74(2):577–584, 2011.

[14] E. Knobloch, R. Kerchetnikov; Problems on time-varying domains: Formulation, dynamics,
and challenges. Acta Applicandae Math., 137(1):123–157, Dec. 2015.

[15] N. A. Lar’kin, M. H. Simões; Nonlinear wave equation with a nonlinear boundary damping

in a noncylindrical domain. Matematica Contempornea, 23:19–34, 2002.
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