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POSITIVE SOLUTIONS TO A SEMILINEAR HIGHER-ORDER
ODE ON THE HALF-LINE

MICHAEL I. GIL’

ABSTRACT. We study a semilinear non-autonomous ordinary differential equa-
tion (ODE) of order n. Explicit conditions for the existence of n linearly in-
dependent and positive solutions on the positive half-line are obtained. Also
we establish lower solution estimates.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

The problem of existence of positive of solutions to a higher order nonlinear
nonautonomous ordinary differential equations (ODEs) continues to attract the
attention of many specialists, despite its long history, cf. [I, 2 [, [7, 8 [I0] and
references therein. It is still one of the most burning problems of theory of ODEs,
because of the absence of its complete solution. Let py(¢) (¢t >0k =1,...n) be real
continuous scalar-valued functions defined and bounded on [0, c0) and pgp = 1. Let
F :]0,00) x R — R be a continuous function. In the present paper we investigate
the semilinear equation

i Akt
ST~ pay (450, 2= () (11)
k=0
with the initial conditions
D) =z,€eR (j=0,...,n—1). (1.2)

A solution of problem , is a function z(-) defined on [0, c0), having con-
tinuous derivatives up to the n-th order. In addition, z(-) satisfies and
for all ¢ > 0. The existence of solutions is assumed.

As it is well-known, the existence of positive solutions on the half-line for such
equations is proved mainly in the case when py are constants, cf. [7,[8,14]. In [6] the
positivity conditions were derived for a class of semilinear nonautonomous equa-
tions in the divergent form. In [9], the following remarkable result is established:
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Solutions to the equation

Zpk T o (>0 (13)
din—Fk :

do not oscillate, if the roots of the polynomial
= puk()* (z€C,t>0)

are real and not intersecting. In the present paper, under some “close” conditions
we prove that the nonlinear equation has n linearly independent positive
solutions. Besides, we generalize the corresponding result from [6].

Let polynomial P(z,t) have the purely real roots pi(t) (k = 1,...,n) with the

property

o) > —p (t>0, k=1,....n) (14)
for some pu > 0. Put
gm(t) = Zpk(t)c;":kk(—l)kum_k (m=1,...,n), g = 1. (1.5)
k=0
and
do = 1,d2]C = Sl;pq2k(t) and dgk_l = iréfqzk_l(t) (k = 1, ceey [n/2D,

n!

where [z] is the integer part of z > 0 and Ck = o
Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let all the roots of the polynomial

n

Qz) = (=1)Fdyz"" (1.6)

k=0
be real and nonnegative. In addition, let

F(y,t) =20 (y,t>0). (1.7)

Then (1.1)) has on (0,00) n linearly independent positive solutions x1,...,%,, sat-
isfying the inequalities

zj(t) > const e THHIE >0 (G =1,...,n; t >t >0),
where 71 > 0 is the smallest Toot of Q(z)

This theorem is proved in the next two sections.

Example. Consider the equation

d2x+ ()d
az TG

Assume that py(t), p2(t) > 0 and p3(t) > 4ps(t) (t > 0). Put

+pa(t)e = F(t,z) (t>0). (1.8)

pl = sup pi(t).
>0
Since p1(t) + pa(t) = —p1(t), we can take u = pj . Hence,
a1(t) = 2pf —p1(t), @2(t) =pi (pf —p1(t)) +p2(t)
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and
dy = inf at)=p7, do= sup qa(t).
If, in addition, (p{)? > 4dy and . ) holds, then due to Theorem [1.1} !, equatlon

. ) has 2 positive linearly independent solutions satisfying inequalities (|1.1]) with
n = 2 and

—p 471 =—pf /2 =/ (p])?/4 — ds.

2. PRELIMINARIES

Let ar(t) (t > 0; k=1,...,n) be continuous scalar-valued functions defined and
bounded on [0, 00), and ag = 1. Consider the equation
- dnFu(t)
k —

> (1) ar(t)———= =0 (t>0). (2.1)

k=0
Put

Cok = supagg(t), cop—1:=infagk—1(t) (k=1,...,[n/2]).
>0 t20

Lemma 2.1. Assume all the roots of the polynomial

n

Q) =Y (e (=1, 2€0)

k=0
be real and nonnegative. Then a solution u of with the initial conditions
u9(0)=0,7=0,...,n—2; u»D(0) =1 (2.2)
satisfies the inequalities
J tn 1—k
“tz )'zo (j=0,....,n—1; t > 0),

where 11 > 0 is the smallest root of Q(z).
Proof. We have
bi(t) == (=1)*(cr —ar(t)) >0 (k=1,...,n).
Rewrite equation in the form
n qn—k n qn—F

u u
D (D ek = Y () (2:3)
k=0 1
Denote i
1 e*ldz
0= 5 Jo Q)

where C' is a smooth contour surrounding all the zeros of Q(z). That is, G is the
Green functions for the autonomous equation

n n—kw
Z(—n’fckid dtn_,ft) =0. (2.4)
k=0
Put . .
y(t) = ch(—u’fddTﬂEt). (2.5)
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Then thanks to the variation of constants formula,

+/0 G(t— s)y(s)ds

where w(t) is a solution of (2.3)). Since
j 2t
GO(1) = o / L
2im Jo (z=11) ... (2 — 1)

where r; < -+ < r, are the roots of Q(z) with their multiplicities, due to [5, Lemma
1.11.2 ], we get

n—1,j 2t
GU(t) = (n_l 0 k& P
with 0 € [r1,7,]. Hence,

G(j)(t) zJ: N0t gi—km—1—k ZJ: erity J kyn—1-k - 26)

(]fk)(n—lf E)k! — pors nflfk)!k!_

According to the initial conditions (2.2)), we can write w(t) = G(t). So
t) + /t G(t—s)y(s)ds. (2.7)

0

For j < n — 2 we have GU)(0) = 0 and

i ) G s =G [ 60y
:/ GOt —s)y(s)ds (j=0,...,n—1).
Hence thanks to and (2.5), 0

Zbk ("R () + /0 tG("*‘“)<t—s)y(s)ds]

= K(t,t) —|—/O K(t,t —s)y(s)ds,
where .
T) = Zbk(t)G(”*’“) (1) (t,7>0).

According to ,T) > (t7 7 > 0). Put h(t) = K(¢,t). Let V be the Volterra
operator with the kernel K(t,t—s). Then thanks to (2.8) and the Neumann series,

= h(t)+ Y (VFh)(t) = h(t) = 0.
1
Hence yields,
t
w9 (t) = GO (1) + / GU(t — s)y(s)ds
> GO / GO(t — $)K(s,5)ds

>GY() (j=0,...,n—1).
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This inequality and (2.6)) prove the lemma. d

Recall that a scalar valued function W (¢, 7) defined for ¢ > 7 > 0 is the Green
function to equation (2.1) if it satisfies that equation for ¢ > 7 and the initial
conditions

. W (t,T)
. oMW (t,T)
i =g =1

Lemma 2.2. Assume all the roots of polynomial Q(z) are real and nonnegative.
Then the Green function to equation (2.1)) and its derivatives up to (n — 1) order
are nonnegative. Moreover,

OTW (¢ (t—T)n-1-k
#_ ri(t—T) chrl n_lT_)k)' >0 (j:(),“_’n—l;t>7'20),

Proof. For a 7 > 0, take the initial conditions
U(J)(T) :07 _]:07’71_27 u(n—l)(T) -1

Then the corresponding solution u(t) to (2.1) is equal to W (¢, 7). Repeating the
argument in the proof of Lemma we have

W (¢ : b ,
# >GU(t—7) + / G (t—7 —8)K(s,s —1)ds > G (t — 7).
According to ([2.6) this proves the lemma. O

3. PROOF OF THEOREM [[.T]
In (1.3) put v(t) = e #tu(t). Then
dn ke—pt
— okt n—Fk
0= S T = S 0

That is, (1.3)) is reduced to the equation

d e

P(t,— —mu = pr(t)(5 —w)" Fu=0. (3.1)

However,

k=0
n n—k )

= ()Y Ch i (—p) 2R
k=0 3=0

=Y om0 Y ety
k=0 m=k



6 M. I. GIL’ EJDE-2005/25

So

n

P(t,z =) = Y (=) qm(t)z" ",

m=0
where ¢,,,(t) are defined by (1.5)). Take into account that

n

P(t,z—p) = [[ (== px(t) HZ*Pk

k=1

where according to (1.4)), px(t) = pi(t) + © > 0. Hence it follows that g,,(t) are
nonnegative and we can apply Lemma to (3.1). Due to Lemma and the
substitution v(t) = e #!u(t), we have the following statement.

Lemma 3.1. Assume condition (1.4)) and that all the roots of the polynomial Q(z)
defined by (1.6) are real and nonnegative. Then the Green function W (t, ) for
1.3

equation (1.3) is positive and

I ent=TIW (¢, 7) JFrl-m) ch 7"1 t _ T)n 1-k

: >0
ot -k =
forj=0,...,n—1; t >7 > 0. In particular,
n—1
W (t,7) > elmrtri= nt=7) (t>7>0). (3.2)

(n—1)!

Lemma 3.2. Assume the hypothesis of Theorem , Let v(t) be a positive solution
of the linear non-autonomous problem (1.2)—(1.3). Then a solution z(t) of problem

(1.1)~(1.2) is also positive. Moreover, z(t) > v(t), t > 0.
Proof. Thanks to the Variation of Constants Formula, (1.1)) can be rewritten as

—l—/o W (t,s)F(s,z(s))ds.

Since W(t,s) is positive due to the previous lemma, there is a sufficiently small
to > 0, such that x(t) > 0, t < to. Hence, x(t) > v(t), t < tp. Extending this
inequality to all ¢ > 0, we prove the lemma. d

Proof of Theorem[I_1]. Take n solutions zx(t) (k =1,...,n) of (L.1) satisfying the

conditions
l’l(q;j)(ﬁk):(); (]:0,,71*2), xi" 1)(€k):1

with an arbitrary € > 0. It can be directly checked that these solutions are linearly
independent.
Now take n solutions vg(t) (k =1,...,n) of (1.3) satisfying the same conditions

v (ek)y=0, (j=0,....,n—2), v" V(ek)=1.
Then due to Lemma
vp(t) = Wit ek) >0 (t > €k).
Now the required result is due to Lemma (I
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