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The Optimal Order of Convergence for Stable

Evaluation of Differential Operators ∗

C.W. Groetsch and O. Scherzer

Abstract

An optimal order of convergence result, with respect to the error level
in the data, is given for a Tikhonov-like method for approximating values
of an unbounded operator. It is also shown that if the choice of param-
eter in the method is made by the discrepancy principle, then the order
of convergence of the resulting method is suboptimal. Finally, a modi-
fied discrepancy principle leading to an optimal order of convergence is
developed.

1 Introduction

Suppose that L : D(L) ⊆ H1 → H2 is a closed densely defined unbounded
linear operator from a Hilbert space H1 into a Hilbert space H2. The problem
of computing values y = Lx, for x ∈ D(L), is then ill–posed in the sense that
small perturbations in x may lead to data xδ satisfying ‖x − xδ‖ ≤ δ, but
xδ /∈ D(L), or, even if xδ ∈ D(L), it may happen that Lxδ →/ Lx as δ → 0, since
the operator L is unbounded.

Morozov has studied a stable method for approximating the value Lx when
only approximate data xδ is available (see [7] for information on Morozov’s
work). This method takes as an approximation to y = Lx the vector yδα = Lzδα,
where zδα minimizes the functional

‖z − xδ‖2 + α‖Lz‖2 (α > 0) (1.1)

over D(L). This is equivalent to

yδα = L(I + αL∗L)−1xδ. (1.2)
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Morozov shows that if α = α(δ)→ 0 as δ → 0, in such a way that δ√
α
→ 0, then

yδα → Lx as δ → 0. He also develops an a posteriori method, the discrepancy
principle, for choosing the parameter α, depending on the data xδ, that leads
to a stable convergent approximation scheme for Lx.

As a simple concrete example of this type of approximation, consider differ-
entiation in L2(R). That is, the operator L is defined on H1(R), the Sobolev
space of functions possessing a weak derivative in L2(R), by Lx = x′. For a
given data function xδ ∈ L2(R) satisfying ‖x− xδ‖ ≤ δ, the stabilized approxi-
mate derivative (1.2) is easily seen (using Fourier transform analysis) to be given
by

yδα(s) =

∫ ∞
−∞

σα(s− t)xδ(t) dt

where the kernel σα is given by

σα(t) = −
sign (t)

2α
exp(−|t|/

√
α).

Another concrete example of this stable evaluation method is provided by
the Dirichlet to Neumann map. Consider for simplicity the unit disk D and
unit circle ∂D. For a given function g on ∂D we denote by u the function which
is harmonic in D and takes boundary values g. The operator L is then defined
by Lg = ∂u

∂n . To be more specific, L is the closed operator defined on the dense
subspace

D(L) =

{
g ∈ L2(∂D) :

∑
n∈Z

|n|2|ĝ(n)|2 <∞

}
of L2(∂D) by

(Lg)(eiθ) =
∑
n∈Z

|n|ĝ(n) exp(inθ)

where

ĝ(n) =
1

2π

∫ 2π

0

g(t)e−int dt .

The stable approximation (1.2) for Lx, given approximate data xδ, is then

yδα(eiθ) =
∑
n∈Z

(
n

1 + αn2

)
x̂δ(n) exp(inθ).

Our aim is to provide an order of convergence result for {yδα} and to show
that this order of convergence is essentially best possible. Our approach, which is
inspired by a work of Lardy [6] on generalized inverses of unbounded operators,
is based on spectral analysis of certain bounded operators associated with L (see
also [5] where other consequences of this approach are investigated). We also
determine the best possible order of convergence when the discrepancy principle
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is used to determine α. This order of convergence turns out to be suboptimal.
For results of a similar nature pertaining to Tikhonov regularization for solving
first kind equations involving bounded operators, see [4, Chapter 3]. Finally, we
propose a modification of the discrepancy principle for approximating values of
an unbounded operator that leads to an optimal convergence rate.

2 Order of Convergence

To establish the order of convergence of (1.2) it will be convenient to reformulate
(1.2) as

yδα = LĽ[αI + (1− α)Ľ]−1xδ (2.1)

where Ľ = (I + L∗L)−1 and LĽ are known to be bounded everywhere defined
linear operators and Ľ is self–adjoint with spectrum σ(Ľ) ⊆ [0, 1] (see, e.g. [8,
p.307]).

Because xδ in (2.1) is operated upon by a product of bounded operators, we
see that for fixed α > 0, yδα depends continuously on xδ, that is, the approxima-
tions {yδα} are stable. The representation (2.1) has certain advantages in that
the dependence of yδα on bounded operators (Ľ and LĽ), which are independent
of α, is explicit. To further simplify the presentation, we introduce the functions

Tα(t) = (α+ (1− α)t)−1, α > 0, t ∈ [0, 1].

We then have

yδα = LĽTα(Ľ)xδ.

The approximation with no data error will be denoted by yα:

yα = LĽTα(Ľ)x.

Theorem 2.1 If x ∈ D(LL∗L) and α = α(δ) satisfies α3

δ2 → C > 0 as δ → 0,

then ‖yδα − Lx‖ = O
(
δ

2
3

)
.

Proof: Let w = (I + LL∗)Lx. Then Lx = L̂w, where L̂ = (I + LL∗)−1.
Since

LĽ = L(I + L∗L)−1 = (I + LL∗)−1L = L̂L

and Lx = (I + LL∗)−1w = L̂w, we obtain from (2.1)

yα − Lx = L
(
Ľ− [αI + (1− α)Ľ]

)
[αI + (1− α)Ľ]−1x

= αL(Ľ− I)[αI + (1− α)Ľ]−1x

= α(L̂− I)[αI + (1− α)L̂]−1Lx

= α(L̂− I)Tα(L̂)L̂w.
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Since ‖Tα(L̂)L̂‖ ≤ 1, we find that

‖yα − Lx‖ = O(α). (2.2)

Also,

‖yδα − yα‖
2 = (L∗LĽTα(Ľ)(xδ − x), ĽTα(Ľ)(xδ − x))

= ((I − Ľ)Tα(Ľ)(xδ − x), ĽTα(Ľ)(xδ − x))

≤ ‖I − Ľ‖ δ
2

α

(2.3)

since ‖Tα(Ľ)‖ ≤ 1
α . Therefore,

‖yδα − yα‖ = O

(
δ
√
α

)
.

We then have

‖yδα − Lx‖ = O(α) +O

(
δ
√
α

)
= O

(
δ

2
3
)
,

since α3

δ2
→ C > 0. 2

This theorem shows that under the regularity condition x ∈ D(LL∗L) on the

exact data the order of convergence O
(
δ

2
3

)
is attainable by the approximation

(2.1) using approximate data with error level δ. In the next section we show
that this order is best possible, except for the trivial case when x ∈ N(L), i.e.,
when Lx = 0.

3 Optimality

We begin by showing that any improvement in the order O
(
δ

2
3

)
entails a certain

convergence rate for the parameter α.

Lemma 3.1 If x /∈ N(L) and ‖yδα−Lx‖ = o
(
δ

2
3

)
for all xδ satisfying ‖x−xδ‖ ≤

δ, then α = o
(
δ

2
3

)
.

Proof: Let xδ = x − δu, where u is a unit vector and let eδα = yδα − Lx.
Then

[αI + (1− α)L̂]eδα = [αI + (1− α)L̂]
(
LĽ(αI + (1− α)Ľ)−1x− Lx

)
−

δ[αI + (1− α)L̂]LĽ(αI + (1− α)Ľ)−1u

= α(L̂− I)Lx− δLĽu.

Since ‖eδα‖ = o
(
δ

2
3

)
, by assumption, and since

‖δLĽu‖ ≤ δ‖LĽ‖ = o
(
δ

2
3

)
,
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we find that
α

δ
2
3

‖(L̂− I)Lx‖ → 0, as δ → 0.

But x /∈ N(L) = N((L̂− I)L) and hence α = o
(
δ

2
3

)
. 2

We now show that for a wide class of operators the order of convergence

O
(
δ

2
3

)
can not be improved. We will consider the important class of operators

L∗L which have a divergent sequence of eigenvalues. Such is the case if L is the
derivative operator, when −L∗L is the Laplacian operator, or more generally
whenever L is a differential operator for which Ľ is compact.

Theorem 3.1 If L∗L has eigenvalues µn →∞ and ‖yδα −Lx‖ = o
(
δ

2
3

)
for all

xδ with ‖x− xδ‖ ≤ δ, then x ∈ N(L).

Proof: If x /∈ N(L), then α = o
(
δ

2
3

)
, by Lemma 3.1. Let eδα = yδα − Lx,

then

‖eδα‖
2 = ‖yα − Lx‖

2 + 2(yα − Lx, y
δ
α − yα) + ‖yδα − yα‖

2

and by hypothesis ‖yα−Lx‖
2

δ
4
3

→ 0 as δ → 0 (since xδ = x satisfies ‖x−xδ‖ ≤ δ).

Therefore we must have

2(yα − Lx, yδα − yα) + ‖yδα − yα‖
2

δ
4
3

→ 0 as δ → 0. (3.1)

Suppose that {un} are orthonormal eigenvectors of L∗L associated with {µn}.
Then {un} are eigenvectors of Ľ associated with the eigenvalues λn = 1

1+µn
and

λn → 0 as n→∞. Now let xδ = x+ δun. Then

‖yδα − yα‖
2 = δ2

(
Ľ(αI + (1− α)Ľ)−1un, L

∗LĽ(αI + (1− α)Ľ)−1un
)

= δ2λ2
nµn(α+ (1− α)λn)−2

= δ2λn(1− λn)(α+ (1− α)λn)−2.

Therefore, if δ = δn = λ
3
2
n , then δn → 0 as n→∞ and

‖yδnα − yα‖
2

δ
4
3
n

= (1− λn)

(
α

δ
2
3
n

+ 1− α

)−2

→ 1 as n→∞. (3.2)

Finally, we have

|(yα − Lx, yδnα − yα)|

δ
4
3
n

≤
‖yα − Lx‖

δ
2
3
n

‖yδnα − yα‖

δ
2
3
n

→ 0.

This, along with (3.2), contradicts (3.1) and hence x ∈ N(L). 2
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4 The Discrepancy Principle

We may write the approximation yδα to Lx as

yδα = Lzδα where zδα = ĽTα(Ľ)xδ. (4.1)

Morozov [7, p.125] has shown that if ‖xδ‖ > δ (i.e., the signal–to–noise ratio is
greater than one), then there is a unique α = α(δ) > 0 such that

‖zδα(δ) − x
δ‖ = δ. (4.2)

Moreover, he showed that yδα(δ) → Lx as δ → 0. We now provide an order of
convergence for this method and show that, in general, it can not be improved.

Theorem 4.1 If x ∈ D(L∗L) and x /∈ N(L), then ‖yδα(δ) − Lx‖ = O(
√
δ).

Proof: First note that

[αI + (1− α)Ľ](zδα − x
δ) = α(Ľ− I)xδ.

Moreover, note that (cf. (2.1)) ‖αI + (1− α)Ľ‖ ≤ 1.
Therefore, if α is chosen by (4.2), then

α‖(Ľ− I)xδ‖ ≤ ‖zδα − x
δ‖ = δ

and hence

‖(Ľ− I)xδ‖ ≤
δ

α(δ)
.

Since x /∈ N(L), we have x /∈ N(Ľ− I) and hence

0 < ‖(Ľ− I)x‖ ≤ lim inf
δ→0

δ

α(δ)
.

We therefore have
α = O(δ). (4.3)

Since zδα minimizes (1.1) over D(L) and α(δ) satisfies (4.2), it follows that

δ2 + α(δ)‖Lzδα(δ)‖
2 = ‖zδα(δ) − x

δ‖2 + α(δ)‖Lzδα(δ)‖
2

≤ ‖x− xδ‖2 + α(δ)‖Lx‖2

≤ δ2 + α(δ)‖Lx‖2

and hence ‖Lzδα(δ)‖ ≤ ‖Lx‖. We then have

‖yδα(δ) − Lx‖
2 = ‖yδα(δ)‖

2 − 2(yδα(δ), Lx) + ‖Lx‖2

≤ 2(Lx− yδα(δ), Lx) = 2(x− zδα(δ), L
∗Lx)

≤ 4δ‖L∗Lx‖
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and hence ‖yδα(δ) − Lx‖ = O(
√
δ). 2

It turns out that if the parameter is chosen by the discrepancy method (4.2),
then the order of convergence derived in Theorem 4.1 can not be improved in
general. To see this, suppose that Ľ has a sequence of eigenvalues λn → 0 and
that{un} is a corresponding sequence of orthonormal eigenvectors. Furthermore,
let λn = 1

1+µn
,x = u1, and

xδn = u1 + δnun. An easy calculation then gives

‖yδnα − Lx‖
2 ≥

λ2
n

(α+ (1− α)λn)2
δ2
nµn. (4.4)

Now set δn = µn
(1+µn)2 , then δn → 0 as n→∞. We will show that if α satisfies

(4.3), then ‖yδnα − Lx‖ = o(
√
δn) is not possible. Indeed, if this were the case,

then by (4.4) we have(
α

δn
+ (1− α)

λn

δn

)−2

= µnλ
2
nδn(α+ (1− α)λn)−2 → 0

and hence α
δn

+ (1− α)λnδn →∞. But if α is chosen by (4.2), then by (4.3), α
δn

is bounded and hence λn
δn
→∞. But λn

δn
= 1

µn
+ 1→ 1, a contradiction.

In the next section we show how the discrepancy principle can be modified
to recover the optimal order of convergence.

5 Optimal Discrepancy Methods

Engl and Gfrerer [1],[2],[3] have developed discrepancy principles of optimal
order for approximating solutions of bounded linear operator equations of the
first kind by Tikhonov regularization. In this section we investigate similar
principles for approximating values of unbounded linear operators.

We begin by considering the function

ρ(α) = α2‖zδα − x
δ‖.

By using a spectral representation of the operator ĽTα(Ľ) which defines zδα
via (4.1), it is easy to see that the function α → ρ(α) is continuous, strictly
increasing and satisfies

lim
α→0+

ρ(α) = 0 and lim
α→∞

ρ(α) =∞

(we assume that xδ 6∈ N(L), for otherwise the approximations are trivial).
Therefore, there is a unique α = α(δ) > 0 satisfying

‖zδα − x
δ‖ =

δ2

α2
. (5.1)

We will show that the modified discrepancy principle (5.1) leads, under suitable
conditions, to an optimal order of convergence for the approximations yδα to Lx.
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Theorem 5.1 Suppose x ∈ D(L∗L) and x /∈ N(L). If α = α(δ) is chosen by

condition (5.1), then δ2

α3(δ) → ‖L
∗Lx‖ > 0 as δ → 0.

Proof: To simplify notation we set α = α(δ) in the proof. First we show
that α→ 0 as δ → 0. Since

[αI + (1− α)Ľ](zδα − x
δ) = α(Ľ− I)xδ and ‖Ľ‖ ≤ 1,

we have

α‖(Ľ− I)xδ‖ ≤ ‖zδα − x
δ‖ =

δ2

α2
. (5.2)

Also, (Ľ− I)xδ → (Ľ − I)x 6= 0 as δ → 0 since Ľx = x implies L∗Lx = 0, i.e.,
x ∈ N(L).
Therefore, from (5.2), we find that α→ 0 as δ → 0.

Next we show that δ
α
→ 0 as δ → 0. In fact,

‖zα − z
δ
α‖ = ‖ĽTα(Ľ)(x− xδ)‖ ≤ δ

and
x− zα = x− ĽTα(Ľ)x→ 0 as α→ 0

since N(Ľ) = {0} and tTα(t)→ 1 as α→ 0 for each t 6= 0. Therefore ‖x−zδα‖ →
0 as δ → 0. We then have

δ2

α2
= ‖zδα − x

δ‖ ≤ ‖zδα − x‖+ δ → 0 as δ → 0

and hence δ
α
→ 0 as δ → 0.

We can now show that L∗Lzδα → L∗Lx as δ → 0.
Indeed,

L∗Lzα − L
∗Lx = (ĽTα(Ľ)− I)L∗Lx→ 0 as δ → 0 (5.3)

and
L∗L(zδα − zα) = (I − Ľ)Tα(Ľ)(xδ − x),

therefore,

‖L∗L(zδα − zα)‖ ≤ ‖(I − Ľ)‖
δ

α
. (5.4)

Since ‖Tα(Ľ)‖ ≤ 1
α
. But, since δ

α
→ 0, we find from (5.3) and (5.4) that

L∗Lzδα → L∗Lx as δ → 0.

Finally, we have
xδ − zδα = αL∗Lzδα

and hence, by (5.1)

δ2

α3
= ‖L∗Lzδα‖ → ‖L

∗Lx‖ as δ → 0.

2

From Theorem 2.1 and 5.1 we immediately obtain
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Corollary 5.1 If x ∈ D(LL∗L), x /∈ N(L) and α = α(δ) is chosen by (5.1),

then ‖yδα(δ) − Lx‖ = O
(
δ

2
3

)
.

The Corollary requires the “smoothness” condition x ∈ D(LL∗L) in order
to guarantee the optimal convergence rate, but it is possible to obtain a “quasi–
optimal” rate without any additional smoothness assumptions on the data x.
It follows from the proof of Theorem 2.1 (specifically, from (2.3)), that

1

2
‖yδα − Lx‖

2 ≤ ‖yα − Lx‖
2 + C

δ2

α
. (5.5)

Let m(x, δ) be the infimum, over α > 0, of the right hand side of (5.5). It is
possible, following ideas of Engl and Gfrerer [2], to choose a parameter α = α(δ)
such that ‖yδα(δ) − Lx‖

2 has the same order as m(x, δ) which we call the quasi-

optimal rate. In fact, minimizing the right hand side of (5.5) leads to a condition
of the form

f(α, x) :=
(
[α(I − Ľ)Tα(Ľ)]3x, x

)
= Cδ2.

If we denote the spectral resolution of the identity generated by the operator
Ľ by {Eλ : λ ∈ [0, 1]}, then

f(α, z) =

∫ 1

0

[
α(1− λ)

α(1− λ) + λ

]3

d‖Eλz‖
2 .

¿From this it follows that for any z 6∈ N(L), f(·, z) is a monotonically increasing
continuous function satisfying

lim
α→0

f(α, z) = 0 and lim
α→∞

f(α, z) = ‖Pz‖2,

where P is the orthogonal projector of H1 onto N(L)⊥. Therefore, for any
δ > 0 and xδ 6∈ N(L) and any positive constant γ which is dominated by the
signal-to-noise ratio of data xδ, that is, satisfying

0 < γ < ‖Pxδ‖/δ,

there is a unique choice of the parameter α = α(δ) satisfying

f(α(δ), xδ) = (γδ)2.

It can be shown, but we will not provide the details, that, this a posteriori choice
of the parameter always leads to the quasi-optimal rate ‖yδα−Lx‖

2 = O(m(x, δ)),
without any additional smoothness assumptions on the data x.
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