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A PROPERTY OF SOBOLEV SPACES ON COMPLETE
RIEMANNIAN MANIFOLDS

OGNJEN MILATOVIC

Abstract. Let (M, g) be a complete Riemannian manifold with metric g and

the Riemannian volume form dν. We consider the Rk-valued functions T ∈
[W−1,2(M) ∩ L1

loc(M)]k and u ∈ [W 1,2(M)]k on M , where [W 1,2(M)]k is

a Sobolev space on M and [W−1,2(M)]k is its dual. We give a sufficient
condition for the equality of 〈T, u〉 and the integral of (T · u) over M , where

〈·, ·〉 is the duality between [W−1,2(M)]k and [W 1,2(M)]k. This is an extension

to complete Riemannian manifolds of a result of H. Brézis and F. E. Browder.

1. Introduction and main result

The setting. Let (M, g) be a C∞ Riemannian manifold without boundary, with
metric g = (gjk) and dimM = n. We will assume that M is connected, oriented,
and complete. By dν we will denote the Riemannian volume element of M . In any
local coordinates x1, . . . , xn, we have dν =

√
det(gjk) dx1dx2 . . . dxn.

By L2(M) we denote the space of real-valued square integrable functions on M
with the inner product

(u, v) =
∫

M

(uv) dν.

Unless specified otherwise, in all function spaces below, the functions are real-
valued.

In what follows, C∞(M) denotes the space of smooth functions on M , C∞c (M)
denotes the space of smooth compactly supported functions on M , Ω1(M) denotes
the space of smooth 1-forms on M , and L2(Λ1T ∗M) denotes the space of square
integrable 1-forms on M .

By W 1,2(M) we denote the completion of C∞c (M) in the norm

‖u‖2
W 1,2 =

∫
M

|u|2 dν +
∫

M

|du|2 dν,

where d : C∞(M) → Ω1(M) is the standard differential.

Remark 1.1. It is well known (see, for example, Chapter 2 in [1]) that if (M, g) is a
complete Riemannian manifold, then W 1,2(M) = {u ∈ L2(M) : du ∈ L2(Λ1T ∗M)}.
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By W−1,2(M) we denote the dual space of W 1,2(M), and by 〈·, ·〉 we will denote
the duality between W−1,2(M) and W 1,2(M).

In what follows, [C∞c (M)]k, [L2(M)]k, [L2(Λ1T ∗M)]k and [W 1,2(M)]k denote
the space of all ordered k-tuples u = (u1, u2, . . . , uk) such that uj ∈ C∞c (M),
uj ∈ L2(M), uj ∈ L2(Λ1T ∗M), uj ∈ W 1,2(M), respectively, for all 1 ≤ j ≤ k. For
u ∈ [W 1,2(M)]k, we will use the following notation:

du := (du1, du2, . . . , duk), (1.1)

|u| := (u2
1 + u2

2 + · · ·+ u2
k)1/2, (1.2)

|du| := (|du1|2 + |du2|2 + · · ·+ |duk|2)1/2, (1.3)

where |duj | denotes the length of the cotangent vector duj .
The space [W 1,2(M)]k is the completion of [C∞c (M)]k in the norm

‖u‖2
[W 1,2(M)]k =

∫
M

|u|2 dν +
∫

M

|du|2 dν,

where |u| and |du| are as in (1.2) and (1.3) respectively.

Remark 1.2. As in Remark 1.1, if (M, g) is a complete Riemannian manifold,
then [W 1,2(M)]k = {u ∈ [L2(M)]k : du ∈ [L2(Λ1T ∗M)]k}.

Assumption (H1). Assume that
(1) u = (u1, u2, . . . , uk) ∈ [W 1,2(M)]k and
(2) T = (T1, T2, . . . , Tk), where T1, T2, . . . , Tk ∈W−1,2(M) ∩ L1

loc(M).
Here, the notation Tj ∈W−1,2(M)∩L1

loc(M) means that Tj is a.e. defined function
belonging to L1

loc(M) such that

φ 7→
∫

M

Tjφdν, φ ∈ C∞c (M),

extends continuously to W 1,2(M).
For a.e. x ∈M , denote

(T · u)(x) :=
k∑

j=1

Tj(x)uj(x), (1.4)

〈T, u〉 :=
k∑

j=1

〈Tj , uj〉, (1.5)

where 〈·, ·〉 on the right hand side of (1.5) denotes the duality between W−1,2(M)
and W 1,2(M).

We now state our main result.

Theorem 1.3. Assume that (M, g) is a complete Riemannian manifold. Assume
that u = (u1, u2, . . . , uk) and T = (T1, T2, . . . , Tk) satisfy the assumption (H1).
Assume that there exists a function f ∈ L1(M) such that

(T · u)(x) ≥ f(x), a.e. on M. (1.6)

Then (T · u) ∈ L1(M) and

〈T, u〉 =
∫

M

(T · u)(x) dν(x).
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In the following Corollary, by W 1,2(M,C), W−1,2(M,C) and L1
loc(M,C) we de-

note the complex analogues of spaces W 1,2(M), W−1,2(M) and L1
loc(M). By 〈·, ·〉

we denote the Hermitian duality between W−1,2(M,C) and W 1,2(M,C).

Corollary 1.4. Assume that (M, g) is a complete Riemannian manifold. Assume
that T ∈W−1,2(M,C)∩L1

loc(M,C) and u ∈W 1,2(M,C). Assume that there exists
a real-valued function f ∈ L1(M) such that

Re(T ū) ≥ f, a.e. on M.

Then Re(T ū) ∈ L1(M) and

Re〈T, u〉 =
∫

M

Re(T ū) dν.

Remark 1.5. Theorem 1.3 and Corollary 1.4 extend the corresponding results
of H. Brézis and F. E. Browder [3] from Rn to complete Riemannian manifolds.
The results of [3] were used, among other applications, in studying self-adjointness
and m-accretivity in L2(Rn,C) of Schrödinger operators with singular potentials;
see, for example, H. Brézis and T. Kato [4]. Analogously, Theorem 1.3 and Corol-
lary 1.4 can be used in the study of self-adjoint and m-accretive realizations (in the
space L2(M,C)) of Schrödinger-type operators with singular potentials, where M
is a complete Riemannian manifold, as well as in the study of partial differential
equations on complete Riemannian manifolds.

2. Proof of Theorem 1.3

We will adopt the arguments of H. Brézis and F. E. Browder [3] to the context
of a complete Riemannian manifold. In what follows, F : Rk → Rl is a C1 vector-
valued function F (y) = (F1(y), F2(y), . . . , Fl(y)). By dF (y) we will denote the
derivative of F at y = (y1, y2, . . . , yk).

Lemma 2.1. Assume that F ∈ C1(Rk,Rl), F (0) = 0, and for all y ∈ Rk,

|dF (y)| ≤ C

where C ≥ 0 is a constant.
Assume that u = (u1, u2, . . . , uk) ∈ [W 1,2(M)]k. Then (F ◦ u) ∈ [W 1,2(M)]l,

and the following holds:

d(F ◦ u) =
k∑

j=1

∂F

∂uj
duj , (2.1)

where
∂F

∂uj
=

(∂F1

∂yj
(u),

∂F2

∂yj
(u), . . . ,

∂Fl

∂yj
(u)

)
. (2.2)

(Here the notation ∂Fs

∂yj
(u), where 1 ≤ s ≤ l, denotes the composition of ∂Fs

∂yj
and u.

The notation d(F ◦u) denotes the ordered l-tuple (d(F1 ◦u), d(F2 ◦u), . . . , d(Fl ◦u)),
where d(Fs ◦u), 1 ≤ s ≤ l, is the differential of the scalar-valued function Fs ◦u on
M .

Proof. Let u ∈ [W 1,2(M)]k. By definition of [W 1,2(M)]k, the weak derivatives duj ,
1 ≤ j ≤ k, exist and duj ∈ L2(M). By Lemma 7.5 in [6], it follows that for all
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1 ≤ s ≤ l, the following holds:

d(Fs ◦ u) =
k∑

j=1

∂Fs

∂uj
duj ,

where
∂Fs

∂uj
=
∂Fs

∂yj
(u).

This shows (2.1).
Since dF is bounded and since duj ∈ L2(Λ1T ∗M), it follows that d(Fs ◦ u) ∈

L2(Λ1T ∗M) for all 1 ≤ s ≤ l. Thus d(F ◦ u) ∈ [L2(Λ1T ∗M)]l. Moreover, since
u ∈ [W 1,2(M)]k and

|Fs ◦ u| = |Fs(u)− Fs(0)| ≤ C1|u|,

where C1 ≥ 0 is a constant and |u| is as in (1.2), it follows that (Fs ◦ u) ∈ L2(M)
for all 1 ≤ s ≤ l. Thus (F ◦ u) ∈ [L2(M)]l. Therefore, (F ◦ u) ∈ [W 1,2(M)]l, and
the Lemma is proven. �

Lemma 2.2. Assume that u, v ∈W 1,2(M)∩L∞(M). Then (uv) ∈W 1,2(M) and

d(uv) = (du)v + u(dv). (2.3)

Proof. By the remark after the equation (7.18) in [6], the equation (2.3) holds if the
weak derivatives du, dv exist and if uv ∈ L1

loc(M) and ((du)v + u(dv)) ∈ L1
loc(M).

By the hypotheses of the Lemma, these conditions are satisfied, and, hence, (2.3)
holds.

Furthermore, since u, v ∈ W 1,2(M) ∩ L∞(M), we have (uv) ∈ L2(M). By
hypotheses of the Lemma and by (2.3) we have d(uv) ∈ L2(M). Thus (uv) ∈
W 1,2(M), and the Lemma is proven. �

In the next lemma, the statement “f : R → R is a piecewise smooth function”
means that f is continuous and has piecewise continuous first derivative.

Lemma 2.3. Assume that f : R → R is a piecewise smooth function with f(0) = 0
and f ′ ∈ L∞(R). Let S denote the set of corner points of f . Assume that u ∈
W 1,2(M). Then (f ◦ u) ∈W 1,2(M) and

d(f ◦ u) =

{
f ′(u) du for all x such that u(x) /∈ S
0 for all x such that u(x) ∈ S

Proof. By the remark in the second paragraph below the equation (7.24) in [6], the
Lemma follows immediately from Theorem 7.8 in [6]. �

The following Corollary follows immediately from Lemma 2.3.

Corollary 2.4. Assume that u ∈W 1,2(M). Then |u| ∈W 1,2(M) and

d|u| =

{
f ′(u) du for all x such that u(x) 6= 0
0 for all x such that u(x) = 0

,

where f(t) = |t|, t ∈ R.
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Remark 2.5. Let f(t) = |t|, t ∈ R. Let c be a real number. By Lemma 7.7 in [6]
and by Corollary 2.4, we can write d|u| = h(u)du a.e. on M , where

h(t) =

{
f ′(t) for all t 6= 0
c otherwise.

Lemma 2.6. Assume that u, v ∈W 1,2(M) and let

w(x) := min{u(x), v(x)}.
Then w ∈W 1,2(M) and

|dw| ≤ max{|du|, |dv|}, a.e. on M,

where |du(x)| denotes the norm of the cotangent vector du(x).

Proof. We can write

w(x) =
1
2
(u(x) + v(x)− |u(x)− v(x)|).

Since u, v ∈ W 1,2(M), by Corollary 2.4 we have |u − v| ∈ W 1,2(M), and, thus,
w ∈W 1,2(M). By Remark 2.5, we have

dw(x) =
1
2
(du(x) + dv(x)− (h(u− v)) · (du(x)− dv(x))), a.e. on M, (2.4)

where h is as in Remark 2.5.
Considering dw(x) on sets {x : u(x) > v(x)}, {x : u(x) < v(x)} and {x : u(x) =

v(x)}, and using (2.4), we get

|dw(x)| ≤ max{|du(x)|, |dv(x)|}, a.e. on M.

This concludes the proof of the Lemma. �

Lemma 2.7. Let a > 0. Let u = (u1, u2, . . . , uk) be in [W 1,2(M)]k, let v =
(v1, v2, . . . , vk) be in [W 1,2(M) ∩ L∞(M)]k, and let

w :=
(
(|u|2 + a2)−1/2 min{(|u|2 + a2)1/2 − a, (|v|2 + a2)1/2 − a}

)
u,

where |u| is as in (1.2). Then w ∈ [W 1,2(M) ∩ L∞(M)]k and

|dw| ≤ 3 max{|du|, |dv|}, a.e. on M,

where |du| is as in (1.3).

Proof. Let φ = (|u|2 + a2)−1/2u. Then φ = F ◦ u, where F : Rk → Rk is defined by

F (y) = (|y|2 + a2)−1/2y, y ∈ Rk.

Clearly, F ∈ C1(Rk,Rk) and F (0) = 0. It easily checked that the component
functions

Fs(y) = (|y|2 + a2)−1/2ys

satisfy
∂Fs

∂yj
=

{
−(|y|2 + a2)−3/2ysyj for s 6= j

(|y|2 + a2)−3/2(|y|2 − y2
j + a2) for s = j.

Therefore, for all 1 ≤ s, j ≤ k, we have∣∣∂Fs

∂yj
(y)

∣∣ ≤ 1
a
,
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and, hence, F satisfies the hypotheses of Lemma 2.1. Thus, by Lemma 2.1 we have
(F ◦ u) = φ ∈ [W 1,2(M)]k.

We now write the formula for dφ = (dφ1, dφ2, . . . , dφk). We have

dφ = (|u|2 + a2)−3/2
(
(|u|2 + a2)du−

( k∑
j=1

ujduj

)
u
)
, (2.5)

where du is as in (1.1).
By (2.5), using triangle inequality and Cauchy-Schwarz inequality, we have

|dφ| ≤ (|u|2 + a2)−3/2
(
(|u|2 + a2)|du|+

∣∣ k∑
j=1

ujduj

∣∣|u|)
≤ (|u|2 + a2)−3/2

(
(|u|2 + a2)|du|+ |u||du||u|

)
≤ (|u|2 + a2)−3/2

(
(|u|2 + a2)|du|+ (|u|2 + a2)|du|

)
= 2(|u|2 + a2)−1/2|du|, a.e. on M,

(2.6)

where |duj | is the norm of the cotangent vector duj , and |u| and |du| are as in (1.2)
and (1.3) respectively.

Let
ψ := min{(|u|2 + a2)1/2 − a, (|v|2 + a2)1/2 − a}.

Then
(|u|2 + a2)1/2 − a = G ◦ u and (|v|2 + a2)1/2 − a = G ◦ v,

where
G(y) = (|y|2 + a2)1/2 − a, y ∈ Rk.

Clearly, G ∈ C1(Rk,R) and G(0) = 0, and
∂G

∂yj
= (|y|2 + a2)−1/2yj ,

It is easily seen that there exists a constant C2 ≥ 0 such that |dG(y)| ≤ C2 for all
y ∈ Rk. Hence, by Lemma 2.1 we have (G ◦u) ∈W 1,2(M) and (G ◦ v) ∈W 1,2(M).

Thus, by Lemma 2.6 we have ψ ∈W 1,2(M), and

|dψ| ≤ max
{∣∣d((|u|2 + a2)1/2 − a)

∣∣, ∣∣d((|v|2 + a2)1/2 − a)
∣∣}, a.e. on M.

Using triangle inequality and Cauchy-Schwarz inequality, we have

|d((|u|2 + a2)1/2 − a)| =
∣∣(|u|2 + a2)−1/2

( k∑
j=1

ujduj

)∣∣
≤ (|u|2 + a2)−1/2|u||du|
≤ |du|,

(2.7)

where |u| and |du| are as in (1.2) and (1.3) respectively. As in (2.7), we obtain

|d((|v|2 + a2)1/2 − a)| ≤ |dv|.
Therefore, we get

|dψ| ≤ max{|du|, |dv|}, a.e. on M, (2.8)
where |dψ| is the norm of the cotangent vector dψ, and |du| and |dv| are as in (1.3).

By definition of φ we have φ ∈ [L∞(M)]k and, by definition of ψ we have

ψ ≤ (|v|2 + a2)1/2 − a.
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Thus,
ψ ≤ |v|, (2.9)

where |v| is as in (1.2).
Since v ∈ [L∞(M)]k, we have ψ ∈ L∞(M). We have already shown that φ ∈

[W 1,2(M)]k and ψ ∈ W 1,2(M). By Lemma 2.2 (applied to the components ψφj ,
1 ≤ j ≤ k, of ψφ) we have w = ψφ ∈ [W 1,2(M)]k and

d(ψφ) = (dψ)φ+ ψ(dφ). (2.10)

By (2.10), (2.6) and (2.8), we have a.e. on M :

|dw| = |(dψ)φ+ ψ(dφ)|
≤ |dψ||φ|+ |ψ||dφ|

≤ (max{|du|, |dv|}) |φ|+ 2(|u|2 + a2)−1/2|du||ψ|
≤ max{|du|, |dv|}+ 2|du|
≤ 3 max{|du|, |dv|},

where the third inequality holds since |φ| ≤ 1 and |ψ|(|u|2 + a2)−1/2 ≤ 1. This
concludes the proof of the Lemma. �

Lemma 2.8. Let T = (T1, T2, . . . , Tk) and u = (u1, u2, . . . , uk) be as in the hy-
potheses of Theorem 1.3. Additionally, assume that u has compact support and
u ∈ [L∞(M)]k. Then the conclusion of Theorem 1.3 holds.

Proof. Since the vector-valued function u = (u1, u2, . . . , uk) ∈ [W 1,2(M)]k is com-
pactly supported, it follows that the functions uj are compactly supported. Thus,
using a partition of unity we can assume that uj is supported in a coordinate
neighborhood Vj . Thus we can use the Friedrichs mollifiers. Let ρj > 0 and
(uj)ρj := Jρju, where Jρj denotes the Friedrichs mollifying operator as in Section
5.12 of [2]. Then (uj)ρj ∈ C∞c (M), and, as ρj → 0+, we have (uj)ρj → uj in
W 1,2(M); see, for example, Lemma 5.13 in [2]. Thus

〈Tj , (uj)ρj 〉 → 〈Tj , uj〉, as ρj → 0+, (2.11)

where 〈·, ·〉 is as on the right hand side of (1.5).
Since (uj)ρj ∈ C∞c (M) and Tj ∈ L1

loc(M), we have

〈Tj , (uj)ρj 〉 =
∫

M

(Tj · (uj)ρj ) dν. (2.12)

Next, we will show that

lim
ρj→0+

∫
M

(Tj · (uj)ρj ) dν =
∫

M

(Tjuj) dν. (2.13)

Since uj ∈ L∞(M) is compactly supported, by properties of Friedrichs mollifiers
(see, for example, the proof of Theorem 1.2.1 in [5]) it follows that

(i) there exists a compact set Kj containing the supports of uj and uρj

j for all
0 < ρj < 1, and

(ii) the following inequality holds for all ρj > 0:

‖uρj

j ‖L∞ ≤ ‖uj‖L∞ . (2.14)
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Since (uj)ρj → uj in L2(M) as ρj → 0+, after passing to a subsequence we have

(uj)ρj → uj a.e. on M, as ρj → 0 + . (2.15)

By (2.14) we have

|Tj(x)(uj)ρj (x)| ≤ |Tj(x)|‖uj‖L∞ , a.e. on M. (2.16)

Since Tj ∈ L1
loc(M), it follows that Tj ∈ L1(Kj).

By (2.15), (2.16) and since Tj ∈ L1(Kj), using dominated convergence theorem,
we have

lim
ρj→0+

∫
M

(Tj ·(uj)ρj ) dν = lim
ρj→0+

∫
Kj

(Tj ·(uj)ρj ) dν =
∫

Kj

(Tjuj) dν =
∫

M

(Tjuj) dν,

and (2.13) is proven. Now, using (2.11), (2.12), (2.13) and the notations (1.4) and
(1.5), we get

〈T, u〉 =
k∑

j=1

〈Tj , uj〉

=
k∑

j=1

lim
ρj→0+

〈Tj , (uj)ρj 〉

=
k∑

j=1

lim
ρj→0+

∫
M

(Tj · (uj)ρj ) dν

=
k∑

j=1

∫
M

(Tjuj) dν =
∫

M

(T · u) dν.

(2.17)

This concludes the proof of the Lemma. �

Proof of Theorem 1.3. Let u ∈ [W 1,2(M)]k. By definition of [W 1,2(M)]k in Sec-
tion 1, there exists a sequence vm ∈ [C∞c (M)]k such that vm → u in [W 1,2(M)]k,
as m → +∞. In particular, vm → u in [L2(M)]k, and, hence, we can extract a
subsequence, again denoted by vm, such that vm → u a.e. on M .

Define a sequence λm by

λm :=
(
|u|2 +

1
m2

)−1/2

min
{(

|u|2 +
1
m2

)1/2

− 1
m
,
(
|vm|2 +

1
m2

)1/2

− 1
m

}
,

where vm is the chosen subsequence of vm such that vm → u a.e. on M , as
m→ +∞. Clearly, 0 ≤ λm ≤ 1. Define

wm := λmu. (2.18)

We know that u ∈ [W 1,2(M)]k and vm ∈ [C∞c (M)]k. Thus, by Lemma 2.7, for all
m = 1, 2, 3, . . . , we have wm ∈ [W 1,2(M) ∩ L∞(M)]k, and

|d(wm)| ≤ 3 max{|du|, |d(vm)|}, (2.19)

where |du| is as in (1.2). Furthermore, for all m = 1, 2, 3, . . . , we have

|wm(x)| ≤ |u(x)|, (2.20)

where | · | is as in (1.2).
Since u ∈ [L2(M)]k, by (2.20) it follows that {wm} is a bounded sequence

in [L2(M)]k. Since vm → u in [W 1,2(M)]k, it follows that the sequence {vm}
is bounded in [W 1,2(M)]k. In particular, the sequence {d(vm)} is bounded in
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[L2(Λ1T ∗M)]k. Hence, by (2.19) it follows that {d(wm)} is a bounded sequence
in [L2(Λ1T ∗M)]k. Therefore, {wm} is a bounded sequence in [W 1,2(M)]k. By
Lemma V.1.4 in [7] it follows that there exists a subsequence of {wm}, which we
again denote by {wm}, such that wm converges weakly to some z ∈ [W 1,2(M)]k.
This means that for every continuous linear functional A ∈ [W−1,2(M)]k, we have

A(wm) → A(z), as m→ +∞.

Since
[W 1,2(M)]k ⊂ [L2(M)]k ⊂ [W−1,2(M)]k,

it follows that wm → z in weakly [L2(M)]k.
We will now show that, as m→ +∞, wm → u in [L2(M)]k. By definition of wm

in (2.18) it follows that wm → u a.e. on M . Since u ∈ [L2(M)]k, using (2.20) and
dominated convergence theorem we get wm → u in [L2(M)]k, as m→ +∞.

In particular, wm → u weakly in [L2(M)]k. Therefore, by the uniqueness of the
weak limit (see, for example, the beginning of Section III.1.6 in [7]), we have z = u.
Therefore, wm → u weakly in [W 1,2(M)]k.

Thus, since T ∈ [W−1,2(M)]k, we have

〈T,wm〉 → 〈T, u〉, as m→ +∞. (2.21)

By the definition of λm and (2.18) it follows that

|wm(x)| ≤ |vm(x)|. (2.22)

Since vm ∈ [C∞c (M)]k, by (2.22) it follows that the functions wm have compact
support. We have shown earlier that wm ∈ [W 1,2(M) ∩ L∞(M)]k. Thus, by
Lemma 2.8, the following equality holds:

〈T,wm〉 =
∫

M

(T · wm) dν. (2.23)

Let f be as in the hypotheses of the Theorem. Then

T · wm = T · (λmu) = λm(T · u) ≥ λmf ≥ −|f |. (2.24)

By (2.24) it follows that T ·wm + |f | ≥ 0. Consider the sequence T ·wm + |f |. Since
f ∈ L1(M) and (T · wm) ∈ L1(M), by Fatou’s lemma we get∫

M

lim inf
m→+∞

(T · wm + |f |) dν ≤ lim inf
m→+∞

∫
M

(T · wm + |f |) dν. (2.25)

Since wm → u a.e. on M as m → +∞, we have T · wm → T · u a.e. on M as
m→ +∞. Thus, by (2.25) we have∫

M

(T · u+ |f |) dν ≤
∫

M

|f | dν + lim inf
m→+∞

∫
M

(T · wm) dν,

and, hence, by (2.23) and (2.21) we have∫
M

(T · u+ |f |) dν ≤
∫

M

|f | dν + lim inf
m→+∞

∫
M

(T · wm) dν

=
∫

M

|f | dν + lim inf
m→+∞

〈T,wm〉

=
∫

M

|f | dν + 〈T, u〉.
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Since f ∈ L1(M), we have (T · u+ |f |) ∈ L1(M), and, hence, (T · u) ∈ L1(M). We
have

|T · wm| = |λm(T · u)| ≤ |T · u|,
and by definition of wm, we get, as m→ +∞,

T · wm → T · u, a.e. on M.

Using dominated convergence theorem, we get

lim
m→+∞

∫
M

(T · wm) dν =
∫

M

(T · u) dν (2.26)

By (2.26), (2.23) and (2.21), we get

〈T, u〉 =
∫

M

(T · u) dν.

This concludes the proof of the Theorem. �

Proof of Corollary 1.4. Let T1 = ReT and T2 = ImT . Let u1 = Reu and u2 =
Imu. Then Re〈T, u〉 = 〈T1, u1〉+〈T2, u2〉 and Re(T ·ū) = T1u1+T2u2. Thus, Corol-
lary 1.4 follows from Theorem 1.3. �
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[3] H. Brézis, F. E. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris
Sr. A-B, 287, no. 3, (1978), A113–A115. (French).
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