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A PROPERTY OF SOBOLEV SPACES ON COMPLETE
RIEMANNIAN MANIFOLDS

OGNJEN MILATOVIC

ABSTRACT. Let (M, g) be a complete Riemannian manifold with metric g and
the Riemannian volume form dv. We consider the R¥-valued functions T €
W=12(M) N LL _(M)]* and u € [WH2(M)]F on M, where [W12(M)]* is
a Sobolev space on M and [W~12(M)]F is its dual. We give a sufficient
condition for the equality of (T, u) and the integral of (7" - u) over M, where
(-,-) is the duality between [W~12(M)]* and [W2(M)]¥. This is an extension
to complete Riemannian manifolds of a result of H. Brézis and F. E. Browder.

1. INTRODUCTION AND MAIN RESULT

The setting. Let (M, g) be a C*° Riemannian manifold without boundary, with
metric g = (g;x) and dim M = n. We will assume that M is connected, oriented,
and complete. By dv we will denote the Riemannian volume element of M. In any
local coordinates z', ..., 2", we have dv = \/det(g;x) dz'dz? ... dz"

By L?(M) we denote the space of real-valued square integrable functions on M

with the inner product
(u,v) = / (uv) dv.
M

Unless specified otherwise, in all function spaces below, the functions are real-
valued.

In what follows, C°°(M) denotes the space of smooth functions on M, C°(M)
denotes the space of smooth compactly supported functions on M, Q(M) denotes
the space of smooth 1-forms on M, and L?(A'T*M) denotes the space of square
integrable 1-forms on M.

By Wh2(M) we denote the completion of C2°(M) in the norm

e = [ ol av+ / duf? dv,

where d : C°°(M) — Q' (M) is the standard differential.

Remark 1.1. It is well known (see, for example, Chapter 2 in [I]) that if (M, g) is a
complete Riemannian manifold, then W2(M) = {u € L*(M): du € L*(A'T*M)}.
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By W~12(M) we denote the dual space of W12(M), and by (-,-) we will denote
the duality between W~12(M) and W12(M).

In what follows, [C2°(M)]F, [L*(M)]F, [L*(A*T*M)]* and [W12(M)]* denote
the space of all ordered k-tuples u = (u1,us,...,ux) such that u; € C(M),
u; € L*(M), u; € L*(A'T*M), u; € WH2(M), respectively, for all 1 < j < k. For
u € [WH2(M)]*, we will use the following notation:

du := (duy, dug, ..., duy), (1.1)
lu| := (u? 4 ud + -+ ud)'/?, (1.2)
|du| == (|dut)? + |dug|?® + - - - + |dug|?)*/?, (1.3)

where |du;| denotes the length of the cotangent vector du,;.
The space [W12(M)]¥ is the completion of [C2°(M)]* in the norm

fulfiroauye = [ uPdv+ [ Jauf av
M M
where |u| and |du| are as in and respectively.
Remark 1.2. As in Remark if (M,g) is a complete Riemannian manifold,
then [W12(M)]¥ = {u € [L3(M)])*: du € [L2(AYT*M)]*}.
Assumption (H1). Assume that
(1) u = (uy,us,...,u) € [WH2(M)]* and
(2) T = (T1,Ts,...,Ty), where T1,To,..., Ty € W L2(M)N LL .
Here, the notation 7; € W—12(M)N L.
belonging to Li (M) such that

¢H/ Tybdv, ¢ e C(M),
M

extends continuously to W12 (M).
For a.e. z € M, denote

(M).
(M) means that T is a.e. defined function

I
M=

(T - u)(x) : T (z)u;(x), (1.4)
j=1
k
(T,u) = (T),u;), (1.5)
j=1
where (-,-) on the right hand side of (1.5) denotes the duality between W ~=%2(M)

and W12(M).
‘We now state our main result.

Theorem 1.3. Assume that (M,g) is a complete Riemannian manifold. Assume
that w = (uy,us,...,ux) and T = (Th,Ts,...,Tx) satisfy the assumption (HI).
Assume that there exists a function f € L*(M) such that

(T -u)(z) > f(z), a.e. on M. (1.6)
Then (T -u) € L*(M) and

(T, u) = /M (T - u)(x) dv(zx).
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In the following Corollary, by W2(M,C), W—%2(M,C) and L{

loc

(M, C) we de-
note the complex analogues of spaces W2(M), W~12(M) and L _(M). By (-,-)

we denote the Hermitian duality between W—12(M,C) and W12(M, C).

Corollary 1.4. Assume that (M, g) is a complete Riemannian manifold. Assume
that T € W=12(M,C)N L, (M,C) and u € WH2(M,C). Assume that there exists

loc

a real-valued function f € L*(M) such that
Re(Tu) > f, a.e. on M.
Then Re(Tu) € LY (M) and

Re (T, u) — /M Re(T) dv.

Remark 1.5. Theorem [I.3] and Corollary [I.4] extend the corresponding results
of H. Brézis and F. E. Browder [3] from R™ to complete Riemannian manifolds.
The results of [3] were used, among other applications, in studying self-adjointness
and m-accretivity in L?(R", C) of Schrédinger operators with singular potentials;
see, for example, H. Brézis and T. Kato [4]. Analogously, Theorem and Corol-
lary can be used in the study of self-adjoint and m-accretive realizations (in the
space L?(M,C)) of Schrodinger-type operators with singular potentials, where M
is a complete Riemannian manifold, as well as in the study of partial differential
equations on complete Riemannian manifolds.

2. PROOF OF THEOREM [L.3]

We will adopt the arguments of H. Brézis and F. E. Browder [3] to the context
of a complete Riemannian manifold. In what follows, F': R¥ — R is a C! vector-
valued function F(y) = (F1(y),F2(y),...,Fi(y)). By dF(y) we will denote the
derivative of F at y = (y1,¥2,---,Yk)-

Lemma 2.1. Assume that F € CY(R¥,R!), F(0) =0, and for all y € R¥,
ldF(y)| < C

where C > 0 is a constant.
Assume that u = (uy,ua, ..., u) € [WH2(M)])*. Then (Fou) € [WH2(M)],
and the following holds:

d(F o) Zau]duj, (2.1)
where
OF  (OF,, . OF, OF,
gu = (5, 05, 0 5, @), (2:2)

(Here the notation ‘35 (u), where 1 < s < 1, denotes the composition of & By L and u.

The notation d(F ou) denotes the ordered l-tuple (d(Fyou),d(Fyou),. d(Fl ou)),

where d(Fsou), 1 < s <1, is the differential of the scalar-valued functwn Fsou on
M.

Proof. Let u € [W12(M)]*. By definition of [W12(M)]*, the weak derivatives du,
1 < j <k, exist and du; € L*(M). By Lemma 7.5 in [6], it follows that for all
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1 < s <, the following holds:
k

OF
d(Fsou): : aujduja
j=1
where
8FS _ aFS( )
ou; Oy v

This shows (2.1)).
Since dF is bounded and since du; € L*(A'T*M), it follows that d(Fs o u) €

L2(A'T*M) for all 1 < s < 1. Thus d(F ou) € [L>(A*T*M)]!. Moreover, since
u € [WH2(M))* and

|Fs ouf = [Fs(u) — F5(0)] < Chlul,

where C; > 0 is a constant and |u| is as in (1.2), it follows that (Fs o u) € L?(M)
for all 1 < s <. Thus (F ou) € [L2(M)]'. Therefore, (F ou) € [WH2(M)]!, and
the Lemma is proven. O

Lemma 2.2. Assume that u, v € WH2(M)NL>®(M). Then (uv) € WH2(M) and
d(uv) = (du)v + u(dv). (2.3)

Proof. By the remark after the equation (7.18) in [6], the equation holds if the
weak derivatives du, dv exist and if uv € L (M) and ((du)v + u(dv)) € Li (M).
By the hypotheses of the Lemma, these conditions are satisfied, and, hence,
holds.

Furthermore, since u, v € WH2(M) N L>°(M), we have (uv) € L?*(M). By
hypotheses of the Lemma and by we have d(uv) € L?*(M). Thus (uv) €
WL2(M), and the Lemma is proven. O

In the next lemma, the statement “f: R — R is a piecewise smooth function”
means that f is continuous and has piecewise continuous first derivative.

Lemma 2.3. Assume that f: R — R is a piecewise smooth function with f(0) =0
and ' € L®(R). Let S denote the set of corner points of f. Assume that u €
WY2(M). Then (fou) € WH2(M) and

f'(w)du  for all x such that u(x) ¢ S
0 for all x such that u(z) € S

d(f ou) = {
Proof. By the remark in the second paragraph below the equation (7.24) in [6], the

Lemma follows immediately from Theorem 7.8 in [0]. O

The following Corollary follows immediately from Lemma [2.3

Corollary 2.4. Assume that u € WY2(M). Then |u| € WY2(M) and

dlu| = {f’(u) du  for all x such that u(x) # 0

0 for all x such that u(x) =0

where f(t) = |t|, t € R.
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Remark 2.5. Let f(t) = |t|, t € R. Let ¢ be a real number. By Lemma 7.7 in [0]
and by Corollary we can write d|u| = h(u)du a.e. on M, where

/
o= {0 il
Lemma 2.6. Assume that u, v € WH2(M) and let
w(zx) := min{u(z),v(x)}.
Then w € WH2(M) and
|dw| < max{|dul|, |dv|}, a.e. on M,
where |du(x)| denotes the norm of the cotangent vector du(zx).

Proof. We can write
w(r) = %(U(w) +u(x) - [u(z) —v(z))).

Since u, v € WH2(M), by Corollary we have |u —v| € W12(M), and, thus,
w € WH2(M). By Remark [2.5] we have

1

T2

dw(x) (du(z) + dv(z) — (h(u —v)) - (du(z) — dv(z))), a.e. on M, (2.4)

where h is as in Remark 2.5
Considering dw(z) on sets {z: u(z) > v(z)}, {z: u(z) < v(z)} and {z: u(z)
v(z)}, and using (2.4), we get
|dw(z)| < max{|du(x)|, |dv(z)|}, a.e. on M.

This concludes the proof of the Lemma. O

Lemma 2.7. Let a > 0. Let u = (u1,us,...,ux) be in [WH2(M)]F, let v =
(v1,v2, ..., vx) be in [WE2(M) N L (M))*, and let
wi= ((uf? + )72 min{ (jul? + )2 = a, (o + 0%/ ~ a} ) u,
where |u| is as in . Then w € [WH2(M) N L>®(M)]* and
|[dw| < 3max{|dul,|dv|}, a.e. on M,
where |dul is as in (1.3).
Proof. Let ¢ = (Ju|? + a?)~"?u. Then ¢ = F ou, where F: R¥ — R¥ is defined by
Fy) = (lyP* +a*)~%y, yeR"

Clearly, F € C*(R¥,R¥) and F(0) = 0. It easily checked that the component
functions

Fi(y) = (lyI* +a*) 1y,
satisfy

OF, | =(lyl* + a*) =3 y.y; for s # j
dy; Iyl +a®) 22|yl — y? + a?) for s =j.
Therefore, for all 1 < s,j < k, we have

OF, 1
|3T/j(y)| < pt
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and, hence, F satisfies the hypotheses of Lemma [2.I} Thus, by Lemma [2.1] we have
(Fou) =6 € W2
We now write the formula for d¢ = (d¢1,des, .. .,dor). We have

k
do = (Jul* + 0L2)_3/2((|u|2 + a?)du — (Zujduj)u), (2.5)
j=1
where du is as in .

By (2.5), using triangle inequality and Cauchy-Schwarz inequality, we have
k
do] < (lul® + )2 ((Juf? + a?)|dul + | Y ujdu;Ju])
j=1

< (luf® +a®) 72 ((Jul® + a®)|du| + [ul|dul|u]) (2.6)
< (luf® +a®) 732 ((Jul® + a®)|dul + (Juf® + a?)|du])
= 2(|ul® + a®)"V?|du|, a.e. on M,

where |du;| is the norm of the cotangent vector du;, and |u| and |du| are as in (1.2))
and (|1.3]) respectively.

Let
¢ = min{(|Ju)® + a®)/? — a, (|v|* + a®)Y/? — a}.
Then
(Ju? + a2 —a=Gou and (v +d*)Y2—a=Gou,
where

Gly) = (jyP* +a®)'? —a, yeR"

Clearly, G € C1(R*,R) and G(0) = 0, and
oG
Byj
It is easily seen that there exists a constant Co > 0 such that |[dG(y)| < Cy for all
y € RF. Hence, by Lemmawe have (Gou) € Wh2(M) and (Gov) € WH2(M).

Thus, by Lemma [2.6{ we have ¢ € W2(M), and
|dy| < max {|d((Ju]* + a®)/* — @), |d((Jv[* + a®)"/? —a)|}, ae. on M.

Using triangle inequality and Cauchy-Schwarz inequality, we have

= (lyl* +a®)~12y;,

k
A((Juf? + 072 = )] = [ (ul? + )2 (Y uydu)|

2 2\-1/2 (2.7)
< (lu]* + a®) 72 |u||dul

< |dul,
where |u| and |dul are as in (1.2 and (1.3)) respectively. As in ([2.7]), we obtain
ld((Jo]* +a*)'/? — a)| < |dv].

Therefore, we get
|dy| < max{|dul, |dv|}, a.e. on M, (2.8)
where |di)| is the norm of the cotangent vector di, and |du| and |dv| are as in (L.3).
By definition of ¢ we have ¢ € [L>°(M)]* and, by definition of 9 we have

P < (|v|2 + a2)1/2 —a.
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Thus,
¥ < Jol, (2.9)
where [v] is as in (L.2).
Since v € [L*>®(M)]*, we have ¢p € L>(M). We have already shown that ¢ €
(Wh2(M)]* and ¢ € WH2(M). By Lemma (applied to the components ¥¢;,
1 <j <k, of ¥p) we have w = ¢ € [WH2(M)]* and

d(y¢) = (dip)¢ + (dg). (2.10)
By , and , we have a.e. on M:
|[dw]| = |(d)¢ + ¢ (do)]
< [dy[|¢] + [¢]|dg|
< (max{|dul, |dv]}) |¢] + 2(|ul* + a®) 712 |dul|¢]
< max{|dul, |dv|} + 2|du]
< 3max{|dul, |dv|},

where the third inequality holds since |¢| < 1 and |[¢|(|u|?> + a?)~1/? < 1. This
concludes the proof of the Lemma. O

Lemma 2.8. Let T = (T1,Ts,...,T%) and u = (uj,uz,...,ug) be as in the hy-
potheses of Theorem [1.3 Additionally, assume that u has compact support and
u € [L®(M)]*. Then the conclusion of Theorem holds.

Proof. Since the vector-valued function u = (ug,us, ..., ux) € [WH2(M)]* is com-
pactly supported, it follows that the functions u; are compactly supported. Thus,
using a partition of unity we can assume that u; is supported in a coordinate
neighborhood V;. Thus we can use the Friedrichs mollifiers. Let p; > 0 and
(uj)Pi = JPiu, where J# denotes the Friedrichs mollifying operator as in Section
5.12 of [2]. Then (u;)* € C*(M), and, as p; — 0+, we have (u;)? — u; in
WL2(M); see, for example, Lemma 5.13 in [2]. Thus

(Tj, (u;)P7) = (Tj,u5),  as pj — 0+, (2.11)
where (-, -) is as on the right hand side of (L.5)).
Since (u;j)Pi € C°(M) and Tj € Li (M), we have

loc

Tt} = [ (@ ) o (212

Next, we will show that
lim (T - (u)P)dv = / (Tju;) dv. (2.13)
pi—=0+ J s M
Since u; € L*>°(M) is compactly supported, by properties of Friedrichs mollifiers
(see, for example, the proof of Theorem 1.2.1 in [B]) it follows that

(i) there exists a compact set K; containing the supports of u; and u?’ for all
0<p; <1, and
(ii) the following inequality holds for all p; > 0:

[ | zoe < Jlugl|zos- (2.14)
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Since (u;j)Pi — u; in L*(M) as p; — 0+, after passing to a subsequence we have

(uj)” —u; ae onM, asp; —0+. (2.15)
By (2.14) we have
|T'( ) (ug)? (2)] < |Tj(@)|ujll~,  ae. on M. (2.16)
Since T’ , it follows that T; € L'(K;).

By ({2.15) , and since T € Ll(K ), using dominated convergence theorem,

we have

lim (Tj-(u;)?)dv = lim (Tj-(uj)pf)dy:/ (Tjuj)dV:/M(Tjuj)du,

Pi—0+ Jas p;—0+ j

and (2.13) is proven. Now, using (2.11)), (2.12), (2.13) and the notations (1.4)) and
(L.5), we get

k
(T u) = Z(T i)

- (2.17)
=3 i [T (v

_zk:/M(Tjuj)dv = /M(T-u) dv.

This concludes the proof of the Lemma. ([

Proof of Theorem[1.3 Let u € [Wh2(M)]*. By definition of [W12(M)]* in Sec-
tion [1} there exists a sequence v™ € [C°(M)]* such that v™ — wu in [W12(M)]¥,
as m — +oc. In particular, v™ — wu in [L?(M)]*, and, hence, we can extract a
subsequence, again denoted by v, such that v™ — u a.e. on M.

Define a sequence \™ by

1 —1/2 1 1/2 1 1 1/2 1
Xi= (P 4 — ) min { (P + =) (0P ) T
m m m m m

where v™ is the chosen subsequence of v™ such that v — u a.e. on M, as
m — +o00. Clearly, 0 < A" < 1. Define

w™ = A", (2.18)

We know that u € [WH2(M)]* and v™ € [C°(M)]*. Thus, by Lemma for all
m=1,2,3,..., we have w™ € [WH2(M) N L>°(M)]*, and

|[d(w™)] < 3max{|dul,|d(v")|}, (2.19)
where |dul is as in (1.2)). Furthermore, for all m =1,2,3,..., we have
lw™ (@) < |u(z)], (2.20)

where | - | is as in (T.2).

Since u € [L2(M)]*, by it follows that {w™} is a bounded sequence
in [L2(M)]*. Since v™ — wu in [WH2(M)]*, it follows that the sequence {v™}
is bounded in [W12(M)]*. In particular, the sequence {d(v™)} is bounded in
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[L2(AYT*M)]*. Hence, by it follows that {d(w™)} is a bounded sequence
in [L2(A'T*M))k. Therefore, {w™} is a bounded sequence in [W12(M)J*. By
Lemma V.14 in [7] it follows that there exists a subsequence of {w™}, which we
again denote by {w™}, such that w™ converges weakly to some z € [W1h2(M)]*.
This means that for every continuous linear functional A € [W~12(M)]¥, we have

A(wp,) — A(z), as m — +oo.

Since
W) c [L2(M)]* c W2 (M),
it follows that w™ — z in weakly [L?(M)]*.

We will now show that, as m — +oo, w™ — w in [L?(M)]¥. By definition of w™
in it follows that w™ — w a.e. on M. Since u € [L?(M)]*, using and
dominated convergence theorem we get w™ — u in [L?(M)]¥, as m — +o0.

In particular, w™ — u weakly in [L?(M)]*. Therefore, by the uniqueness of the
weak limit (see, for example, the beginning of Section IIL.1.6 in [7]), we have z = u.
Therefore, w™ — u weakly in [W12(M)]*.

Thus, since T' € [W~12(M)]*, we have

(T, w™) — (T,u), asm — +oo. (2.21)
By the definition of A™ and ([2.18]) it follows that
w™ (2)] < o™ (2)]. (2.22)

Since v™ € [C°(M)]¥, by (2.22) it follows that the functions w™ have compact
support. We have shown earlier that w™ € [WY2(M) N L*(M)]*. Thus, by
Lemma the following equality holds:

(T,w™) = / (T - w™)dv. (2.23)
M
Let f be as in the hypotheses of the Theorem. Then
T -w"=T-(AN"u)=\X"(T-u) > \"f>—|f| (2.24)

By (12.24) it follows that T'-w™ 4| f| > 0. Consider the sequence T'-w™ + | f|. Since
f €LY (M) and (T-w™) € L*(M), by Fatou’s lemma we get
/ liminf(7 - w™ + | f|) dv < liminf [ (T-w™ + |f]) dv. (2.25)
M m——+o0 m——+oo M

Since w™ — u a.e. on M as m — +oo, we have T - w™ — T -u a.e. on M as
m — +oo. Thus, by (2.25) we have

/(T~u—|—|f\)d1/§/ |f|d1/—|—liminf/ (T-w™)dv,
M M m— 00 M
and, hence, by (2.23) and we have
/(T-u—l—|f|)du§/ |f|dl/—|—liminf/ (T-w™)dv
M M M

m——+oo

:/ |f] dv 4+ liminf (T, w™)
M m— 00

:/ |fldv + (T, u).
M
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Since f € LY(M), we have (T -u + |f|) € L*(M), and, hence, (T -u) € L*(M). We
have

T w™ = AT w)| < |T - ul,
and by definition of w™, we get, as m — 400,

T -w™—T-u, ae. onM.

Using dominated convergence theorem, we get

lim (T -w™)dv = / (T - u)dv (2.26)
m— —+00 M M

By (2.26), (2.23)) and (2.21]), we get

(T,u) = / (T - u)dv.
M
This concludes the proof of the Theorem. ([

Proof of Corollary[1.J} Let Ty = ReT and T, = Im7T. Let u; = Rew and up =
Imu. Then Re(T,u) = (T, u1) + (T2, uz) and Re(T-@) = Tyug +Tous. Thus, Corol-
lary [T.4] follows from Theorem O
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