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BOUNDEDNESS AND ASYMPTOTIC STABILITY IN A

CHEMOTAXIS MODEL WITH INDIRECT SIGNAL

PRODUCTION AND LOGISTIC SOURCE

XIAOBING YE, LIANGCHEN WANG

Abstract. This article concerns the chemotaxis-growth system with indirect
signal production

ut = ∆u−∇ · (u∇v) + µu(1− u), x ∈ Ω, t > 0,

0 = ∆v − v + w, x ∈ Ω, t > 0,

wt = −δw + u, x ∈ Ω, t > 0,

on a smooth bounded domain Ω ⊂ Rn (n ≥ 1) with homogeneous Neumann

boundary condition, where the parameters µ, δ > 0. It is proved that if n ≤ 2

and µ > 0, for all suitably regular initial data, this model possesses a unique
global classical solution which is uniformly-in-time bounded. While in the

case n ≥ 3, we show that if µ is sufficiently large, this system possesses a

global bounded solution. Furthermore, the large time behavior and rates of
convergence have also been considered under some explicit conditions.

1. Introduction

In this article, we consider the chemotaxis model with indirect signal production

ut = ∆u−∇ · (u∇v) + µu(1− u), x ∈ Ω, t > 0,

0 = ∆v − v + w, x ∈ Ω, t > 0,

wt = −δw + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω and ∂/∂ν
denotes the derivative with respect to the outer normal of ∂Ω, the parameters
µ > 0 and δ > 0. System (1.1) describes the spread and aggregative behavior of the
Mountain Pine Beetle (MPB) in a forest habitat, u represents the density of flying
MPB, v denotes the concentration of beetle pheromone, w is the density of nesting
MPB. We can refer to [28] for more details about the biological background.

Chemotaxis is the biased movement of the cells as a response to gradients of the
concentration of the chemical signal substance, which plays an important role in
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numerous biological fields such as cell sorting, wound healing, pattern formation,
embryonic morphogenesis and bacteria aggregation [7, 10, 16, 28]. The renowned
chemotaxis system was put forward by Keller and Segel in 1970 [17] to describe
the collective behavior of cells. And since then, many mathematicians have widely
studied different types chemotaxis system for a variety of chemotaxis processes
[4], the prototypical chemotaxis system with logistic source under homogeneous
Neumann boundary condition reads as follows:

ut = ∆u− χ∇ · (u∇v) + κu− µuγ , x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,
(1.2)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary, χ > 0, γ > 1
and κ, µ, τ ≥ 0, u and v is the density of the cells and the concentration of the
chemical signal substance, respectively. In the case τ = 0 and γ = 2, if either n ≤ 2
or µ > n−2

n χ, Tello and Winkler [33] proved that the model (1.2) possesses a global
bounded classical solution. Moreover, the global existence and boundedness of
weak solutions to (1.2) was proved in [33, 40]. When the second equation in (1.2) is
replaced by 0 = v−m(t)+u with m(t) := 1

|Ω|
∫

Ω
u(x, t)dx, Winkler [39] proved that

the solution of (1.2) blows up in finite time if n ≥ 5 and γ < 3
2 + 1

2n−2 . On the other
hand, in the case τ = 1 and γ = 2, if either n = 2 or n ≥ 3 and µ > 0 is suitably
large, then the solution of system (1.2) is globally bounded [38]. Model (1.2) has
also been extensively studied by many other authors [2, 5, 6, 18, 24, 31, 41, 42, 43].

In model (1.2), we know that the chemical signal is directly produced by cells
themselves, however, in some realistic biological processes the chemical signal pro-
duction through the intermediate stages, and such indirect signal production mech-
anisms may have new properties [13]. Before stating our main results in the present
paper, we consider the system

ut = ∆u−∇ · (u∇v) + µ(u− uα), x ∈ Ω, t > 0,

vt = ∆v − v + w, x ∈ Ω, t > 0,

wt = −δw + u, x ∈ Ω, t > 0,

(1.3)

model (1.3) has been intensively studied by many authors. For instance, if µ = 0
and the second equation in (1.3) is replaced by 0 = ∆v− 1

|Ω|
∫

Ω
w(x, t)dx+w, in the

case n = 2, Tao and Winkler [32] proved that under the assumption
∫

Ω
u0 < 8πδ

with δ > 0 the solution remain uniformly bounded, if
∫

Ω
u0 > 8πδ with δ ≥ 0,

the corresponding solution blow-up in infinite time. Moreover, if n = 2, α > 1,
the boundedness of solution in (1.3) was showed in [20]. If µ > 0, α = 2, Hu
and Tao [15] obtained that the solution of (1.3) is uniformly-in-time bounded in
three dimensional setting, while under the assumption that µ > 1

8δ2 the solution

will exponentially converges to (1, 1
δ ,

1
δ ) as t → ∞. Model (1.3) has also been

intensively studied by many other authors [9, 12, 25, 26, 34, 35].
Inspired by the arguments in [15, 32], we mainly consider the boundedness and

asymptotic behavior of solutions to (1.1). In this paper, we suppose that the initial
data (u0, w0) satisfies

u0 ∈ C0(Ω), u0 ≥ 0 (6≡ 0) in Ω,

w0 ∈ C1(Ω), w0 ≥ 0 in Ω.
(1.4)

Our main results are stated as follows. The first of our results addresses the
corresponding low-dimensional framework.
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Theorem 1.1. Let Ω ⊂ Rn (n ≤ 2) be a bounded domain with smooth boundary
and µ, δ > 0. Suppose that (1.4) holds, then (1.1) possesses a unique global classical
solution (u, v, w) which is uniformly bounded in the sense that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) ≤ C for all t > 0

with some constant C > 0.

Next, we consider the global boundedness of solution to (1.1) in the case n ≥ 3.

Theorem 1.2. Let Ω ⊂ Rn (n ≥ 3) be a bounded domain with smooth boundary
and δ > 0. Assume that µ is sufficiently large and (1.4) holds, then (1.1) possesses
a unique global classical solution (u, v, w) which is uniformly bounded.

Finally, motivated by the ideas in [15, 36], we shall investigate asymptotic be-
havior of solutions to (1.1) under the condition µ > 1/(16δ2).

Theorem 1.3. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary
and δ > 0. Suppose that (u, v, w) is a global bounded classical solution of (1.1), and
the initial data (u0, w0) satisfies (1.4). Assume that

µ >
1

16δ2
,

then there exist C > 0 and κ > 0 such that

‖u− 1‖L∞(Ω) + ‖v − 1

δ
‖L∞(Ω) + ‖w − 1

δ
‖L∞(Ω) ≤ Ce−κt for all t > 0.

Remark 1.4. Under the assumption µ > 1/(8δ2), Hu and Tao [15] proved that
the asymptotic behavior of the solutions to (1.3) in the case α = 2. However,
for the simplification (1.1), this condition µ > 1/(8δ2) in [15] can be relaxed to
µ > 1/(16δ2).

The rest of this article is organized as follows. In the next section, we give the
local existence of a solution to (1.1) and some important inequalities for later proofs.
Section 3, we main consider the global boundedness of solution to (1.1) in the case
n = 2. In the case when n = 1 and n ≥ 3, the global boundedness of solution will
be shown in Section 4. Section 5 is concern with the asymptotic behavior of the
solution to system (1.1).

2. Preliminaries

We first state the following result related to local existence of a classical solution
to (1.1), for the detail proof, we refer the reader to [27, 30].

Lemma 2.1. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary and
µ, δ > 0. Assume that (1.4) holds, then there exist Tmax ∈ (0,∞] and a unique
triple (u, v, w) of nonnegative functions:

u ∈ C0
(
Ω× [0, Tmax)

)
∩ C2,1

(
Ω× (0, Tmax)

)
,

v ∈ C2,0
(
Ω× [0, Tmax)

)
,

w ∈ C0,1
(
Ω× [0, Tmax)

)
,

which solves (1.1) classically in Ω × (0, Tmax) and has the following extensibility
property

if Tmax <∞ then ‖u(·, t)‖L∞(Ω) →∞ as t↗ Tmax. (2.1)
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The Gagliardo-Nirenberg inequality will be used in our later proofs. For details,
we refer the reader to [11, 23].

Lemma 2.2. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary, and
let p ≥ 1 and r ∈ (0, p). Then there exists a constant CGN > 0 such that

‖ϕ‖Lp(Ω) ≤ CGN
(
‖∇ϕ‖λL2(Ω)‖ϕ‖

1−λ
Lr(Ω) + ‖ϕ‖Lr(Ω)

)
for all ϕ ∈W 1,2(Ω) ∩ Lr(Ω) holds with λ ∈ (0, 1) satisfies

n

p
= λ

(n
2
− 1
)

+
n

r
(1− λ),

that is,

λ =

n
r −

n
p

1− n
2 + n

r

.

Finally, we give the following property on the total mass of the first equation in
(1.1) which can easily be achieved.

Lemma 2.3. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary and
µ, δ > 0. Then there exists a constant K > 0 such that∫

Ω

u(·, t) ≤ K for all t ∈ (0, Tmax). (2.2)

Proof. Integrating the first equation in (1.1) with respect to x ∈ Ω, we have

d

dt

∫
Ω

u = µ

∫
Ω

u− µ
∫

Ω

u2 for all t ∈ (0, Tmax).

Using Hölder’s inequality we can deduce that

d

dt

∫
Ω

u ≤ µ
∫

Ω

u− µ

|Ω|

(∫
Ω

u
)2

for all t ∈ (0, Tmax),

which implies

‖u(·, t)‖L1(Ω) ≤ K := max{‖u0‖L1(Ω), |Ω|} for all t ∈ (0, Tmax).

Hence, this proof can be completed. �

3. A priori estimate for n = 2

In this section, we consider the global boundedness of solutions to (1.1) with
n = 2. Firstly, to prove Lemma 3.2, we shall need the following basic inequality.

Lemma 3.1 ([15, Lemma 2.3]). Let µ > 0 and δ > 0. Then there exists M :=
M(µ, δ) > 0 such that

µs+
(2

δ
− µ

)
s2 + (µ+ 1)s ln s− µs2 ln s ≤M for all s > 0.

Next, we start to establish a bound for
∫

Ω
w2.

Lemma 3.2. Let µ, δ > 0 and suppose that (1.4) holds. Then there exists a constant
C > 0 such that the classical solution of (1.1) satisfying∫

Ω

w2 ≤ C for all t ∈ (0, Tmax). (3.1)
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Proof. Testing the first equation in (1.1) by lnu+ 1 and integrating we have

d

dt

∫
Ω

u lnu

=

∫
Ω

(lnu+ 1)∆u−
∫

Ω

(lnu+ 1)∇ · (u∇v) + µ

∫
Ω

(lnu+ 1)u(1− u)

= −
∫

Ω

|∇u|2

u
+

∫
Ω

∇u · ∇v + µ

∫
Ω

(lnu+ 1)u(1− u)

≤ −
∫

Ω

u∆v + µ

∫
Ω

(lnu+ 1)u(1− u)

≤
∫

Ω

uw + µ

∫
Ω

u+ µ

∫
Ω

u lnu− µ
∫

Ω

u2 − µ
∫

Ω

u2 lnu

(3.2)

for all t ∈ (0, Tmax). Next, testing the third equation in (1.1) by w and integrating
with respect to x ∈ Ω, we see that

1

2

d

dt

∫
Ω

w2 = −δ
∫

Ω

w2 +

∫
Ω

uw for all t ∈ (0, Tmax). (3.3)

Combining (3.2) and (3.3) and adding
∫

Ω
u lnu to both sides of this, we obtain

d

dt

{∫
Ω

u lnu+
1

2

∫
Ω

w2
}

+

∫
Ω

u lnu

≤ 2

∫
Ω

uw − δ
∫

Ω

w2 + µ

∫
Ω

u+ (µ+ 1)

∫
Ω

u lnu− µ
∫

Ω

u2 − µ
∫

Ω

u2 lnu

(3.4)

for all t ∈ (0, Tmax). We will deal with the first term on the right hand of (3.4).
Applying Young’s inequality we obtain

2

∫
Ω

uw ≤ δ

2

∫
Ω

w2 +
2

δ

∫
Ω

u2. (3.5)

Therefore, combining (3.4) and (3.5) we have

d

dt

{∫
Ω

u lnu+
1

2

∫
Ω

w2
}

+
{∫

Ω

u lnu+
δ

2

∫
Ω

w2
}

≤ µ
∫

Ω

u+ (µ+ 1)

∫
Ω

u lnu+
(2

δ
− µ

) ∫
Ω

u2 − µ
∫

Ω

u2 lnu

(3.6)

for all t ∈ (0, Tmax). Letting y(t) :=
∫

Ω
u lnu + 1

2

∫
Ω
w2 and using Lemma 3.1, we

have

y′(t) + C1y(t) ≤ C2 for all t ∈ (0, Tmax),

where C1 := min{1, δ} and C2 := M |Ω| with M is defined in Lemma 3.1. Therefore,
by the definition of y(t) and together with the basic inequality −s ln s ≤ 1/e for all
s > 0, we obtain (3.1). �

To obtain (3.8) below, we give the following important lemma.

Lemma 3.3. Let n = 2 and suppose that (1.4) holds. Then for any 1 < q < ∞,
one can find a constant C > 0 such that∫

Ω

|∇v|q ≤ C for all t ∈ (0, Tmax). (3.7)
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Proof. Noting that v satisfies

−∆v + v = w, x ∈ Ω, t > 0,

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0.

From (3.1) and elliptic equation theory, for some C1 > 0 and C2 > 0, we infer that

‖v‖W 2,2(Ω) ≤ C1‖w‖L2(Ω) ≤ C2 for all t ∈ (0, Tmax).

Since n = 2 and according to Sobolev embedding theory, for any 1 < q < ∞, we
see that (3.7). �

Finally, our aim is to sutdy the boundedness of
∫

Ω
up +

∫
Ω
wp+1.

Lemma 3.4. Let n = 2, µ, δ > 0, and suppose that (1.4) holds. Then for any
p > 1, there exists a constant C > 0 such that∫

Ω

up +

∫
Ω

wp+1 ≤ C for all t ∈ (0, Tmax). (3.8)

Proof. Testing the first equation in (1.1) by up−1, integrating by parts and using
(3.7) and Young’s inequality, for some C1 > 0, we obtain

1

p

d

dt

∫
Ω

up

= −(p− 1)

∫
Ω

up−2|∇u|2 + (p− 1)

∫
Ω

up−1∇u · ∇v + µ

∫
Ω

up − µ
∫

Ω

up+1

≤ −p− 1

2

∫
Ω

up−2|∇u|2 +
p− 1

2

∫
Ω

up|∇v|2 + µ

∫
Ω

up − µ
∫

Ω

up+1

≤ −2(p− 1)

p2

∫
Ω

|∇up/2|2 +
p− 1

2

∫
Ω

up+
1
2 +

p− 1

2

∫
Ω

|∇v|4p+2

+ µ

∫
Ω

up − µ
∫

Ω

up+1

≤ −2(p− 1)

p2

∫
Ω

|∇up/2|2 +
p− 1

2

∫
Ω

up+
1
2 + µ

∫
Ω

up − µ
∫

Ω

up+1 + C1

(3.9)

for all t ∈ (0, Tmax). Now we will cope with the second term on the right-hand side
of (3.9). According to Lemma 2.2 and (2.2), there exist C2 > 0 and C3 > 0 such
that ∫

Ω

up+
1
2 = ‖up/2‖

2p+1
p

L
2p+1
p (Ω)

≤ C2‖∇up/2‖
2p+1
p ·θ

L2(Ω) ‖u
p/2‖

2p+1
p ·(1−θ)

L2/p(Ω)
+ C2‖up/2‖

2p+1
p

L2/p(Ω)

≤ C3‖∇up/2‖
2p+1
p ·θ

L2(Ω) + C3

(3.10)

for all t ∈ (0, Tmax), where θ = 2p−1
2p+1 ∈ (0, 1), thus

2p+ 1

p
θ =

2p− 1

p
= 2− 1

p
< 2.

Applying Young’s inequality, for some C4 > 0, we can derive

p− 1

2

∫
Ω

up+
1
2 ≤ 2(p− 1)

p2
‖∇up/2‖2L2(Ω) + C4. (3.11)
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Combining (3.9) and (3.11), for some C5 > 0, we have

1

p

d

dt

∫
Ω

up ≤ µ
∫

Ω

up − µ
∫

Ω

up+1 + C5 (3.12)

for all t ∈ (0, Tmax). Adding
∫

Ω
up to both sides of (3.12) we obtain

d

dt

∫
Ω

up +

∫
Ω

up ≤ (µp+ 1)

∫
Ω

up − µp
∫

Ω

up+1 + C5p (3.13)

for all t ∈ (0, Tmax). Next applying Young’s inequality, for some C6 > 0, we have

d

dt

∫
Ω

up +

∫
Ω

up +
µp

2

∫
Ω

up+1 ≤ C6

for all t ∈ (0, Tmax), which implies

‖u(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, Tmax), (3.14)∫ t+τ

t

∫
Ω

up+1 ≤ C for all t ∈ (0, Tmax − τ) (3.15)

where τ := min{1, 1
2Tmax}. Testing the third equation in (1.1) by wp and integrat-

ing yields

1

p+ 1

d

dt

∫
Ω

wp+1 + δ

∫
Ω

wp+1 =

∫
Ω

uwp ≤ δ

2

∫
Ω

wp+1 +

(
2

δ

)p ∫
Ω

up+1

namely,

d

dt

∫
Ω

wp+1 +
δ(p+ 1)

2

∫
Ω

wp+1 ≤ (p+ 1)
(2

δ

)p ∫
Ω

up+1 (3.16)

for all t ∈ (0, Tmax), which implies ‖w(·, t)‖Lp+1(Ω) is bounded for all t ∈ (0, Tmax)
because of (3.15). Hence, with (3.14), we have (3.8). �

4. A priori estimate for n = 1 and n ≥ 3

In this section, we establish the boundedness of
∫

Ω
up+

∫
Ω
wp+1 in the case n = 1

and n ≥ 3. To obtain our goals, we first establish a differential inequality.

Lemma 4.1. Let p > 1 and µ, δ > 0, and suppose that (1.4) holds. Then we have

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+ δ

∫
Ω

wp+1 +
4(p− 1)

p2

∫
Ω

|∇up/2|2

≤ p− 1

p

∫
Ω

upw +

∫
Ω

uwp + µ

∫
Ω

up − µ
∫

Ω

up+1

(4.1)

for all t ∈ (0, Tmax).
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Proof. Multiplying the first equation in (1.1) by up−1, integrating by parts and
combining the second equation in (1.1), we obtain

1

p

d

dt

∫
Ω

up

= −(p− 1)

∫
Ω

up−2|∇u|2 + (p− 1)

∫
Ω

up−1∇u · ∇v + µ

∫
Ω

up − µ
∫

Ω

up+1

= −4(p− 1)

p2

∫
Ω

|∇up/2|2 +
p− 1

p

∫
Ω

∇up · ∇v + µ

∫
Ω

up − µ
∫

Ω

up+1

= −4(p− 1)

p2

∫
Ω

|∇up/2|2 − p− 1

p

∫
Ω

up ·∆v + µ

∫
Ω

up − µ
∫

Ω

up+1

≤ −4(p− 1)

p2

∫
Ω

|∇up/2|2 +
p− 1

p

∫
Ω

upw + µ

∫
Ω

up − µ
∫

Ω

up+1

(4.2)

for all t ∈ (0, Tmax). Next, testing the third equation in (1.1) by wp and integrating,
we have

1

p+ 1

d

dt

∫
Ω

wp+1 + δ

∫
Ω

wp+1 =

∫
Ω

uwp for all t ∈ (0, Tmax). (4.3)

Therefore, combining (4.2) and (4.3) we obtain (4.1). �

Next, we will establish a bound for
∫

Ω
up +

∫
Ω
wp+1 in the case n = 1.

Lemma 4.2. Let n = 1 and µ, δ > 0, and suppose that (1.4) holds. Then for any
p > 1, there exists a constant C > 0 such that∫

Ω

up +

∫
Ω

wp+1 ≤ C for all t ∈ (0, Tmax). (4.4)

Proof. Using Young’s inequality, there exists C1 > 0 such that

p− 1

p
ApB +ABp ≤ δ

2
Bp+1 + C1A

p+1 for all p > 1 and A,B ≥ 0. (4.5)

Therefore, combining (4.1) and (4.5) and applying Young’s inequality, for some
C2 > 0, C3 > 0, we can obtain

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+ δ

∫
Ω

wp+1 +
4(p− 1)

p2

∫
Ω

|∇up/2|2

≤ C2

∫
Ω

up+1 +
δ

2

∫
Ω

wp+1 + C3,

(4.6)

that is,

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+
δ

2

∫
Ω

wp+1 +
4(p− 1)

p2

∫
Ω

|∇up/2|2

≤ C2

∫
Ω

up+1 + C3

(4.7)

for all t ∈ (0, Tmax). Now we deal with the term C2

∫
Ω
up+1 in (4.7). Since n = 1,

using Lemma 2.2 there exists CGN > 0 such that∫
Ω

up+1 = ‖up/2‖
2(p+1)
p

L
2(p+1)
p (Ω)

≤ CGN‖∇up/2‖
2(p+1)
p ·θ

L2(Ω) ‖u
p/2‖

2(p+1)
p ·(1−θ)

L2/p(Ω)
+ CGN‖up/2‖

2(p+1)
p

L2/p(Ω)
,

(4.8)
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where

θ :=
p2

p2 + 2p+ 1
∈ (0, 1).

We can easily be checked that

2(p+ 1)

p
· θ =

2(p+ 1)

p

p2

(p+ 1)2
=

2p

p+ 1
< 2.

Therefore, using (2.2) and Young’s inequality, for some C4 > 0, we can derive

C2

∫
Ω

up+1 ≤ 2(p− 1)

p2
‖∇up/2‖2L2(Ω) + C4. (4.9)

Combining (4.7) and (4.9) we have

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+
δ

2

∫
Ω

wp+1 +
2(p− 1)

p2

∫
Ω

|∇up/2|2 ≤ C5 (4.10)

for all t ∈ (0, Tmax), where C5 = C3 + C4. Applying the Poincaré inequality, for
some C6 > 0, we obtain∫

Ω

ϕ2 ≤ C6

∫
Ω

|∇ϕ|2 + C6

(∫
Ω

|ϕ|p/2
)p

for all ϕ ∈W 1,2(Ω). (4.11)

Therefore, combining (4.11) and (2.2) there exists C7 > 0 such that

2(p− 1)

p2

∫
Ω

|∇up/2|2 ≥ 2(p− 1)

C7p2

∫
Ω

up − 2(p− 1)

p2
Kp for all t ∈ (0, Tmax). (4.12)

From (4.10) and (4.12) we have

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+
{2(p− 1)

C7p2

∫
Ω

up +
δ

2

∫
Ω

wp+1
}
≤ C8 (4.13)

for all t ∈ (0, Tmax), where C8 = C5 + 2(p−1)
p2 Kp. Letting y(t) := 1

p

∫
Ω
up +

1
p+1

∫
Ω
wp+1 and C9 = min{ 2(p−1)

C7p
, δ(p+1)

2 } we obtain

y′(t) + C9y(t) ≤ C8 for all t ∈ (0, Tmax).

By the definition of y(t), for some C10 > 0 we can derive∫
Ω

up ≤ C10 and

∫
Ω

wp+1 ≤ C10 for all t ∈ (0, Tmax). (4.14)

The proof is complete �

Next, we consider the boundedness of
∫

Ω
up +

∫
Ω
wp+1 in the case n ≥ 3.

Lemma 4.3. Let Ω ⊂ Rn(n ≥ 3) be a bounded domain with smooth boundary and
δ > 0, and suppose that (1.4) holds. Then for p > 1 and µ sufficiently large, there
exists a constant C > 0 such that∫

Ω

up +

∫
Ω

wp+1 ≤ C for all t ∈ (0, Tmax). (4.15)
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Proof. According to (4.1) and (4.5) and using Young’s inequality, for some C1 >
0, C2 > 0, we have

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+ δ

∫
Ω

wp+1 +
4(p− 1)

p2

∫
Ω

|∇up/2|2

≤ p− 1

p

∫
Ω

upw +

∫
Ω

uwp + µ

∫
Ω

up − µ
∫

Ω

up+1

≤ δ

2

∫
Ω

wp+1 −
(µ

2
− C1

) ∫
Ω

up+1 + C2

(4.16)

for all t ∈ (0, Tmax). Since µ is sufficiently large, we can derive µ
2 − C1 > 0. Thus,

we know that

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+
δ

2

∫
Ω

wp+1 +
4(p− 1)

p2

∫
Ω

|∇up/2|2 ≤ C2 (4.17)

for all t ∈ (0, Tmax). Using the Poincaré inequality and (2.2), there exists C3 > 0
such that

4(p− 1)

p2

∫
Ω

|∇up/2|2 ≥ 4(p− 1)

C3p2

∫
Ω

up − 4(p− 1)

p2
Kp for all t ∈ (0, Tmax). (4.18)

Thus, combining (4.17) and (4.18) we obtain

d

dt

{1

p

∫
Ω

up +
1

p+ 1

∫
Ω

wp+1
}

+
{4(p− 1)

C3p2

∫
Ω

up +
δ

2

∫
Ω

wp+1
}
≤ C4, (4.19)

where C4 = C2 + 4(p−1)
p2 Kp. Letting y(t) := 1

p

∫
Ω
up + 1

p+1

∫
Ω
wp+1 we obtain

y′(t) + C5y(t) ≤ C4 for all t ∈ (0, Tmax),

where C5 = min
{

4(p−1)
C3p

, δ(p+1)
2

}
. By an ODE comparison argument and the defi-

nition of y(t), we can derive (4.15). �

Finally, we will give a boundedness criterion for the solutions of (1.1).

Lemma 4.4. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary and
(1.4) hold. If there exist p ≥ 2 such that p > n− 1 and that∫

Ω

up +

∫
Ω

wp+1 ≤ C(p) for all t ∈ (0, Tmax) (4.20)

with a constant C(p) > 0, then Tmax =∞ and

‖u(·, t)‖L∞(Ω) <∞ for all t > 0. (4.21)

Proof. Noting that v satisfies

−∆v + v = w, x ∈ Ω, t > 0,

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0.

According to (4.20) and elliptic regularity theory, one can find c1 > 0 such that

‖v(·, t)‖W 2,p+1(Ω) ≤ c1 for all t ∈ (0, Tmax).

Applying Sobolev embedding theory [14], fix p > n−1, for some c2 > 0 independent
of p, we can derive

‖∇v(·, t)‖L∞(Ω) ≤ c2 for all t ∈ (0, Tmax). (4.22)
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From the well-known Moser-Alikakos iteration [1, 8], testing the first equation of
(1.1) by up−1(p ≥ 2) and integrating by parts over Ω, using (4.22) and Young’s
inequality we have

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

up−2|∇u|2 + µ

∫
Ω

up+1

= (p− 1)

∫
Ω

up−1∇u · ∇v + µ

∫
Ω

up

≤ c2(p− 1)

∫
Ω

up−1|∇u|+ µ(p− 1)

∫
Ω

up

≤ p− 1

2

∫
Ω

up−2|∇u|2 +
(c22

2
+ µ

)
(p− 1)

∫
Ω

up

(4.23)

for all t ∈ (0, Tmax). Using the following interpolation inequality [29], we can find
c3 > 0 independent p such that

‖ϕ‖2L2(Ω) ≤ ε‖∇ϕ‖
2
L2(Ω) + c3

(
1 + ε−

n
2

)
‖ϕ‖2L1(Ω) for all ε > 0. (4.24)

Letting c4 =
c22
2 + µ+ 1, combining (4.23) and (4.24) we conclude

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up +
2(p− 1)

p

∫
Ω

|∇up/2|2 ≤ c4p(p− 1)

∫
Ω

up

≤ 2(p− 1)

p

∫
Ω

|∇up/2|2 + c5p(p− 1)(1 + pn)
(∫

Ω

up/2
)2

(4.25)

for all t ∈ (0, Tmax), where c5 = c3c4 max{1, (c4/2)n/2}. Therefore, the inequality
(4.25) can be rewritten as

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up ≤ c5p(p− 1)(1 + pn)
(∫

Ω

up/2
)2

for all t ∈ (0, Tmax), together with the fact (1 + pn) ≤ (1 + p)n we have

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up ≤ c5p(p− 1)(1 + p)n
(∫

Ω

up/2
)2

for all t ∈ (0, Tmax). Thus,

d

dt

[
ep(p−1)t

∫
Ω

up
]
≤ c5ep(p−1)tp(p− 1)(1 + p)n

(∫
Ω

up/2
)2

(4.26)

for all t ∈ (0, Tmax). Integrating (4.26) over [0, t] for 0 < t < Tmax, we obtain∫
Ω

up(x, t) ≤
∫

Ω

up0(x) + c5(1 + p)n sup
0≤t≤Tmax

(∫
Ω

up/2(x, t)
)2

. (4.27)

We define

G(p) := max
{
‖u0‖L∞(Ω), sup

0≤t≤Tmax

(∫
Ω

up(x, t)
)1/p}

. (4.28)

Then, from (4.27) and (4.28) we obtain

G(p) ≤ [c6(1 + p)n]1/pG(
p

2
) for all p ≥ 2,

where c6 = |Ω|+ c5. Taking p = 2j , j = 1, 2, · · · , we obtain

G(2j) ≤ c2
−j

6

(
1 + 2j

)2−jn
G
(
2j−1

)
≤ · · ·
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≤ c2
−j+···+2−1

6

(
1 + 2j

)2−jn · · · (1 + 2)2−1nG(1)

≤ c6[2j2
−jn(2−j + 1)2−jn] · · · [22−1n(2−1 + 1)2−1n]G(1)

≤ c62[j2−j+(j−1)2−(j−1)+···+2−1]n · 2[2−j+2−(j−1)+···+2−1]nG(1)

≤ c623nG(1).

Letting j →∞ and using (2.2) we infer that

‖u(·, t)‖L∞ ≤ c623nG(1) ≤ C := c623n max{‖u0‖L∞(Ω), ‖u0‖L1(Ω)} (4.29)

for all t ∈ (0, Tmax). Therefore, using Lemma 2.1, (4.29), and the extensibility
criterion we can obtain (4.21). �

Proof of Theorems 1.1 and 1.2. The results follow by using Lemmata 3.4, 4.2 and
4.3 and the boundedness criterion of Lemma 4.4. �

5. Asymptotic behavior of solutions

In this section, we consider the asymptotic behavior of solutions to (1.1) under
the assumption that µ is positive and properly large. Then the solution (u, v, w) will
exponentially converges to the constants stationary solution (1, 1/δ, 1/δ). Firstly,
we give the following lemma which plays an important role for later proofs.

Lemma 5.1 ([3, Lemma 3.1]). Suppose that f : (1,∞) is a uniformly continuous
nonnegative function such that

∫∞
1
f(t)dt <∞. Then f(t)→ 0 as t→∞.

To proof of Theorem 1.3, we shall need the following basic property. For a detail
proof, we refer the reader to [22, 36].

Lemma 5.2. Let a1, a2, a3, a4, a5 ∈ R satisfy

a1 > 0, a2 > 0, a1a2a3 −
a1a

2
5

4
− a2a

2
4

4
> 0. (5.1)

Then there exists ε > 0 such that

a1x
2 + a2y

2 + a3z
2 + a4xz + a5yz ≥ ε(x2 + y2 + z2) (5.2)

for any x, y, z ∈ R.

Now, we use an energy functional to establish the asymptotic behavior of solu-
tions to system (1.1), and an idea from [15, 37, 44].

Lemma 5.3. Let δ > 0 and (u, v, w) be a non-negative global bounded classical
solution of (1.1). Assume that the initial data (u0, w0) satisfies (1.4). If

µ >
1

16δ2
, (5.3)

then there exist ε > 0 and β > 0, such that the functions

E(t) :=

∫
Ω

(u− 1− lnu) +
β

2

∫
Ω

(
w − 1

δ

)2
, (5.4)

F (t) :=

∫
Ω

(u− 1)2 +

∫
Ω

(
v − 1

δ

)2
+

∫
Ω

(
w − 1

δ

)2
(5.5)

satisfy

E(t) ≥ 0 for all t > 0, (5.6)
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d

dt
E(t) ≤ −εF (t) for all t > 0. (5.7)

Proof. We define

A(t) :=

∫
Ω

(u− 1− lnu) for all t > 0,

B(t) :=
1

2

∫
Ω

(
w − 1

δ

)2
for all t > 0.

Then we can rewritten (5.4) as

E(t) = A(t) + β ·B(t) for all t > 0.

Next we prove (5.7). By the straightforward calculations we have

d

dt
A(t) =

∫
Ω

ut −
1

u
ut

=

∫
Ω

[
∆u−∇ · (u∇v) + µu(1− u)

− 1

u
(∆u−∇ · (u∇v) + µu(1− u))

]
= −

∫
Ω

∆u

u
+

∫
Ω

1

u
· ∇ · (u∇v)− µ

∫
Ω

(u− 1)2

= −
∫

Ω

|∇u|2

u2
+

∫
Ω

1

u
∇u · ∇v − µ

∫
Ω

(u− 1)2

≤ 1

4

∫
Ω

|∇v|2 − µ
∫

Ω

(u− 1)2.

(5.8)

To estimate
∫

Ω
|∇v|2, testing the second equation of (1.1) by

(
v− 1

δ

)
and integrating

by parts we have

0 =

∫
Ω

∆v
(
v − 1

δ

)
+

∫
Ω

(
w − 1

δ

)(
v − 1

δ

)
−
∫

Ω

(
v − 1

δ

)2
= −

∫
Ω

|∇v|2 +

∫
Ω

(
w − 1

δ

)(
v − 1

δ

)
−
∫

Ω

(
v − 1

δ

)2
,

(5.9)

that is ∫
Ω

|∇v|2 =

∫
Ω

(
w − 1

δ

)(
v − 1

δ

)
−
∫

Ω

(
v − 1

δ

)2
. (5.10)

Combining (5.8) and (5.10), we obtain

d

dt
A(t) ≤ 1

4

∫
Ω

(
w − 1

δ

)(
v − 1

δ

)
− 1

4

∫
Ω

(
v − 1

δ

)2 − µ∫
Ω

(u− 1)2. (5.11)

Rewriting the third equation in system (1.1) as

wt = −δw + u = −δ
(
w − 1

δ

)
+ (u− 1). (5.12)

Multiplying the equation (5.12) by
(
w− 1

δ

)
and using Young’s inequality, we derive

d

dt
B(t) = −δ

∫
Ω

(
w − 1

δ

)2
+

∫
Ω

(u− 1)
(
w − 1

δ

)
. (5.13)

Therefore, combining (5.11) and (5.13) we infer that

d

dt
E(t) ≤ −µ

∫
Ω

(u− 1)2 − 1

4

∫
Ω

(
v − 1

δ

)2 − δβ ∫
Ω

(
w − 1

δ

)2
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+
1

4

∫
Ω

(
w − 1

δ

)(
v − 1

δ

)
+ β

∫
Ω

(u− 1)
(
w − 1

δ

)
for all t > 0.

Now we will prove that there exists ε > 0 such that

d

dt
E(t) ≤ −ε

{∫
Ω

(u− 1)2 +

∫
Ω

(
v − 1

δ

)2
+ δ

∫
Ω

(
w − 1

δ

)2}
. (5.14)

We set a1 := µ, a2 := 1/4, a3 := δβ, a4 := −β, a5 := −1/4, x := u− 1, y := v − 1
δ ,

and z := w − 1
δ . From (5.3) and µ, δ > 0, we obtain

a1 = µ > 0, a2 =
1

4
> 0,

a1a2a3 −
a1a

2
5

4
− a2a

2
4

4
=
µδβ

4
− µ

64
− β2

16
=

16µδβ − 4β2 − µ
64

> 0.

Using Lemma 5.2, we obtain there exists ε > 0 such that (5.14) holds. The proof
is complete. �

In view of Lemma 5.3 we have the asymptotic behavior of u, v and w.

Lemma 5.4. Let (u, v, w) be a global bounded classical solution of (1.1) and the
initial data (u0, w0) satisfy (1.4). Then we have the following asymptotic behavior

‖u− 1‖L∞(Ω) + ‖v − 1

δ
‖L∞(Ω) + ‖w − 1

δ
‖L∞(Ω) → 0 as t→∞. (5.15)

Proof. From u, v, w are bounded in Ω× (0,∞), applying standard parabolic regu-
larity theory [19] (see also [3, 21]), there exist θ ∈ (0, 1) and C > 0 such that

‖u‖
C2+θ,1+ θ

2 (Ω×[t,t+1])
+ ‖v‖

C2+θ,1+ θ
2 (Ω×[t,t+1])

+ ‖w‖
C2+θ,1+ θ

2 (Ω×[t,t+1])
≤ C (5.16)

for all t ≥ 1. Integrating (5.7) over (1,∞) and thanks to E(t) ≥ 0 we have∫ ∞
1

F (t)dt ≤ 1

ε
E(t) <∞.

According to (5.16) we infer that F (t) is uniformly continuous in (1,∞). Therefore,
from Lemma 5.1 we obtain

F (t) =

∫
Ω

(u− 1)2 +

∫
Ω

(
v − 1

δ

)2
+

∫
Ω

(
w − 1

δ

)2 → 0 as t→∞. (5.17)

Using the Gagliardo-Nirenberg interpolation inequality with some CGN > 0 we
obtain

‖ϕ‖L∞(Ω) ≤ CGN‖ϕ‖
n
n+2

W 1,∞(Ω)‖ϕ‖
2

n+2

L2(Ω) for all ϕ ∈W 1,∞(Ω). (5.18)

Applying (5.16) and collecting (5.17)-(5.18), we have (5.15). �

To obtain the rate of convergence for u, v and w, we give the following lemma.

Lemma 5.5. Let (u, v, w) be a nonnegative global bounded classical solution of
(1.1) and the initial data (u0, w0) fulfill (1.4). Then one can find C > 0 and κ > 0
such that

‖u− 1‖L∞(Ω) + ‖v − 1

δ
‖L∞(Ω) + ‖w − 1

δ
‖L∞(Ω) ≤ Ce−κt for all t > 0. (5.19)
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Proof. Applying the L’Hôpital theorem and letting H(s) := s − ln s for s > 0 we
obtain

lim
s→1

H(s)−H(1)

(s− 1)2
= lim
s→1

H ′(s)

2(s− 1)
=

1

2
. (5.20)

Therefore, using (5.20) and Lemma 5.4, there exists t1 > 0 such that

1

4

∫
Ω

(u− 1)2 ≤ A(t) =

∫
Ω

(u− 1− lnu) ≤
∫

Ω

(u− 1)2 for all t > t1. (5.21)

Hence, by the definitions of E(t) and F (t), there exists C1 > 0 such that

E(t) ≤ C1F (t) for all t > t1. (5.22)

Plugging (5.22) into (5.7) we obtain

d

dt
E(t) ≤ −εF (t) ≤ − ε

C1
E(t) for all t > t1, (5.23)

which implies there exist C2 > 0 and l > 0 such that

E(t) ≤ C2e
−lt for all t > t1. (5.24)

Hence, by (5.21) we can find some C3 > 0 such that∫
Ω

(u− 1)2 +

∫
Ω

(
v − 1

δ

)2
+

∫
Ω

(
w − 1

δ

)2 ≤ C3E(t) ≤ C2C3e
−lt (5.25)

for all t > t1. Applying the Gagliardo-Nirenberg interpolation inequality (5.18)
with the regularity of u, v and w, we can obtain there exist C4 > 0 and κ > 0 such
that

‖u− 1‖L∞(Ω) + ‖v − 1

δ
‖L∞(Ω) + ‖w − 1

δ
‖L∞(Ω) ≤ C4e

−κt for all t > t1. (5.26)

Furthermore, choosing C4 large enough such that (5.26) holds for all t > 0. The
proof is complete. �

Proof of Theorem 1.3. The theorem follows immediately from Lemma 5.5. �
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