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ABSTRACT 

 We aimed to investigate the molecular mechanisms that drive liquid-liquid phase 

separation (LLPS) of intrinsically disordered proteins (IDPs). This phenomenon is critical 

in many cellular processes (including RNA metabolism, chromatin rearrangement, and 

signal transduction), and known to be driven primarily, but not exclusively, by IDPs. To 

fully understand how these processes occur and are regulated, it is important that we 

understand the interactions and sequence properties underlying phase separation 

behavior. IDPs are proteins that contain intrinsically disordered regions (IDRs), which 

are regions that do not adopt stable tertiary or secondary structures. While at least 40% of 

the human proteome is classified as IDPs, only a subset exhibit phase separation 

behavior.  

Previous work created a computer algorithm called ParSe (partition sequence) that 

successfully predicts folded, ID, and phase-separating (PS) IDRs from the protein 

primary sequence. This algorithm uses the polymer scaling exponent, v, and a 

conformational parameter, the intrinsic beta-turn propensity, to distinguish the three 

protein classes (folded, F; disordered, D; and phase-separating disordered, P). Here, we 

confirm that the v and beta-turn propensity values follow a normal distribution in three 

expanded protein sequence sets (PS-IDR, IDR, and Folded). Next, we determined the 

ability of 568 intrinsic sequence-based properties to define the F, D, and P populations in 

the sequence sets. We found that most of these properties yield statistically significant 

differences in the means of the sequence sets. Principal component analysis identified 
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two principal modes of variance in the human proteome: one corresponding to 

physiochemical properties, like hydrophobicity, charge, or v, and the other to 

conformational propensities, like preferences for alpha-helix, beta-turn, or beta-sheet. 

These results established that a hydrophobicity scale could accurately distinguish 

between folded and ID populations, and that an alpha-helix scale paired with v could 

optimally identify PS-IDR from IDR. Using those three parameters, a second-generation 

version of ParSe was developed. 



 

1 

I. INTRODUCTION 

 Eukaryotic cells contain organelles and compartments that are utilized to 

facilitate many biochemical reactions, whereby specific molecules and proteins are 

sequestered within such structures and their associated reaction rates and processes are 

concomitantly increased.1 Cells are found to contain two classes of organelles: 

membrane-bound organelles, such as the endoplasmic reticulum, which is used to 

synthesize, process, and transport proteins, and membraneless organelles (MLOs), such 

as the nucleolus, which controls ribosome biogenesis.1,2,3 The distinction between these 

two organelle classes is that one has a lipid-based encapsulation, while the other is 

membrane-free.3 

Early studies established that MLOs exhibit liquid-like behavior and coalesce 

through a physicochemical process referred to as liquid-liquid phase separation (LLPS).2 

LLPS in cells is a spontaneous and reversible assembly of proteins and other 

biomacromolecules where, through a de-mixing transition, two liquid phases are formed, 

one dense and the other dilute.4 Also called biological condensates, MLOs form stable 

droplets that are found to exchange molecules with the surrounding cytoplasm.3 

Phenomenologically, LLPS can be illustrated by the example of oil and vinegar. After oil 

and vinegar are vigorously mixed, they de-mix over time and ultimately form two distinct 

phases upon reaching equilibrium. This is easily demonstrated with oil and balsamic 

vinegar. Mechanistically, MLOs are formed through multivalent interactions between 

biological macromolecules.5 MLOs may include protein-protein, protein-nucleic acid, 

and nucleic acid-nucleic acid interactions; these macromolecular interactions are 
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mediated at the atomic level by π-π, cation-π, cation-anion, and/or dipole-dipole 

interactions.5   

 Functionally, these condensates play important roles in a wide variety of cellular 

processes, including cell cycle regulation, signal transduction, and chromatin 

rearrangement.4,5 A classic example is stress granules, which are ribonucleoprotein MLOs 

formed from mRNAs stalled at translation initiation along with both RNA-binding 

proteins and non-RNA-binding proteins, including many translation initiation factors.6 

Protein-RNA interactions also form within P granules, an MLO that is associated with 

RNA metabolism.6,7  

One well-studied component of stress granules is heterogenous nuclear 

ribonucleoprotein A1 (hnRNPA1).7 This protein contains two RNA recognition motifs 

(RRMs) at its N-terminus that binds to RNA molecules and an intrinsically disordered 

low complexity domain (LCD) at its C-terminus.7 LLPS by hnRNPA1 occurs 

spontaneously in a protein concentration-dependent and temperature-dependent manner 

without a molecular crowding agent.7 While phase separation of hnRNPA1 is promoted 

upon binding to RNA, the LCD is sufficient to promote LLPS even in the absence of 

RNA ligand.7 Hexanediol is a compound that disables the selectivity filter of the nuclear 

pore complex phenylalanine-glycine motifs in natively unfolded domains.8,9 LLPS by 

hnRNPA1 was disrupted by hexanediol, suggesting that aromatic residues in the LCD 

contribute to LLPS.7 Additionally, lowering the NaCl concentration led to LLPS at 

lower concentrations, indicating that electrostatic interactions also contributed to LLPS.7 

Furthermore, hnRNPA1 is enriched in the aromatic residues (tyrosine and 
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phenylalanine) and charged residue (arginine) in the LCD that are critical for cation-π 

interactions in driving phase separation.7 

As observed for hnRNPA1, electrostatic properties of macromolecules can be 

critical for MLO formation.10 Furthermore, posttranslational modifications (PTMs) 

altering the proteins charge features is a way to control the multivalent interactions of 

the proteins, thereby regulating phase separation.10,11,12 PTMs play a critical role in 

signaling pathways and contributes to the structural, functional, and dynamic integrity of 

MLOs.10 An example of tyrosine phosphorylation is the T-cell receptor (TCR) signaling 

pathway.13 The TCR consists of multivalent proteins: protein linker for activation of T-

cells (LAT), growth factor receptor-bound protein 2 (GRB2), GRB2-related adaptor 

protein 2 (Gads), son of sevenless 1 (Sos1), and SH2 domain-containing leukocyte 

protein of 76kDa (SLP-76).13 LAT contains multiple tyrosine residues, whereby the 

tyrosine’s get phosphorylated (phosphotyrosines), which then act as binding sites for 

GRB2 and Gads to activate Sos1 or SLP-76.13 By mutating the tyrosine residues on LAT 

to phenylalanine residues, they found that phosphorylation of those sites reduced cluster 

formation.13 This suggests that tyrosine phosphorylation induces phase separation of the 

TCR.9 Additionally, this indicates that phosphorylation can be used to regulate the 

mechanisms controlling the assembly and disassembly of MLOs.13 

Similarly, the addition of acetyl groups to positively charged amino acids such as 

lysine will not only neutralize the positive charge but will also enhance its 

hydrophobicity, affecting the inter- and intra-molecular interactions of the polypeptide.14 

Tau protein is an IDP that is enriched in lysine residues , some of which are acetylated.15 

Neutralization of the lysine positive charge by acetylation has been found to have 
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significant effects on Tau function (microtubule assembly/stabilization) and dysfunction 

(Tau aggregation) by mediated p300/CREB-binding protein (CBP) HAT.15-19,20  

 

Intrinsically disordered proteins are a critical component of many MLOs 

 The underlying mechanisms that facilitate LLPS of biological macromolecules 

are not fully understood. However, proteins that contain intrinsically disordered regions 

(IDRs) have been found to play a major role in LLPS.22 IDRs are regions within proteins 

that do not adopt stable tertiary structures or secondary structures. Intrinsically disordered 

proteins (IDPs) are proteins with IDRs. In general, IDRs are depleted in hydrophobic 

amino acids relative to folded protein regions, which supports the observation that IDRs 

cannot spontaneously fold into globular structures stabilized by a hydrophobic core.24,25 

 Rather, IDRs typically contain a higher proportion of charged amino acids than 

globular proteins, and additionally are often comprised of repetitive and/or low 

complexity sequences.24,25 Based on these distinct differences in the compositions of 

folded and IDRs within proteins, many sequence-based algorithms to predict the presence 

of IDRs in a protein have been successfully developed.26-28 When whole genomes are 

analyzed using these algorithms, IDPs are estimated to be a large percentage (≥ 40%) of 

eukaryotic proteomes, including the human proteome.29-31 Such a large proportion of the 

proteome containing IDRs suggests that IDR-containing proteins may confer useful 

cellular functions that were able to be positively selected by evolution.32 Indeed, IDRs 

can provide many potential functional advantages, particularly within cellular signaling 

and regulatory pathways. For example, posttranslational modification of residues within 

the IDR enables regulation of both protein structure and function, while the inherent 
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conformational flexibility of IDRs could allow a sequence to potentially adopt different 

conformations when binding to different partners.32 Another possible benefit that would 

be subject to natural selection is the ability of IDR sequences to undergo or even drive 

LLPS.32 

 Supporting this hypothesis, many MLOs involve proteins that contain RNA-

binding domains. As described above, P-granules are ribonucleoprotein-rich MLOs that 

regulate RNA metabolism.33,34 One characteristic P-granule component is the well-

studied LAF-1 protein, which has a disordered N-terminal arginine-glycine-glycine 

(RGG)-rich domain.34 This sequence is a mixture of positively charged (arginine) and 

negatively charged (aspartic acid) residue; electrostatic interactions between these 

charged residues are sufficient to promote phase separation in vitro.33,34 The RGG 

domain of LAF-1 is also critical for driving protein-RNA interactions.33,34 Tau is a 

microtubule-associated protein also found in MLOs like the nucleolus and stress 

granules.35 Tau has a strong propensity to promote phase separation mediated by 

electrostatic interactions between positively charged residues in the C-terminal/middle 

regions and negatively charged N-terminal region.35 Hydrophobic interactions also play a 

role in promoting LLPS of Tau.35 

 

Identifying phase-separating IDRs using only amino acid sequence 

 While the presence of IDRs in a protein sequence can be accurately predicted 

using a number of computer algorithms, several research groups have also developed 

sequence-based predictors to identify LLPS-competent regions.36-38 Some of the 

multivalent molecular interactions that are thought to facilitate the formation of protein- 
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rich droplets, such as hydrophobic, π-π, ion-π, and charge-charge interactions, can be 

identified from the intrinsic properties of a sequence and, as such, LLPS predictors have 

been developed for primary sequences.36-38 

 The same interactions that drive LLPS have also been hypothesized to affect the 

hydrodynamic size (e.g., radius of hydration, Rh, or radius of gyration, Rg) of IDRs in the 

monomeric state.39-42  Conceptually, a disordered, flexible polymer that has favorable 

interactions with the solvent adopts an ensemble of elongated and swollen conformations 

with an average Rh that is larger than the average Rh of the relatively compacted ensemble 

that is observed when self-interactions dominate. Similarly, the propensity for a particular 

protein to drive phase separation is determined by the balance of intramolecular and 

solvent interactions, with LLPS requiring protein-protein contacts over protein-solvent 

contacts.43 

 One framework to quantify such a relationship is derived from polymer theories 

developed for long homopolymers.44,45 Called the polymer scaling exponent, v, this 

metric is obtained experimentally from the dependence of size (e.g., hydrodynamic 

radius, Rh, or radius of gyration, Rg) on polymer length, N, in the power law 

relationship, Rh ∝ Nv. Small values for v (~0.3) indicate a net preference for self-

interactions, while larger values (~0.6) suggest chain-solvent interactions are preferred 

instead.46 Because proteins are heteropolymers, the parameter vmodel was introduced as 

a phenomenological substitute to v and is used to normalize the protein hydrodynamic 

size to its chain length:43 

vmodel = log (Rh/Ro)/log (N)    (1) 
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where Ro is a constant set to 2.16 Å, and Rh can be calculated from sequence using an 

equation that has been found to be accurate for monomeric IDPs.47-50 

 Previous studies by Whitten and coworkers demonstrated that sequence-

calculated vmodel could indeed predict the potential for IDR sequences to de-mix, when 

vmodel was combined with a second parameter, the intrinsic propensity for a sequence to 

form β-turns.43 Using a simple, surface area-based molecular model, they proposed a 

physical mechanism for a β-turn role in promoting LLPS: transient β-turn structures 

reduce the desolvation penalty of forming a protein-rich phase and increase exposure of 

atoms involved in π/sp2 valence electron interactions. By this mechanism, β-turns could 

act as energetically favored nucleation points, which may explain the increased 

propensity for turns in IDRs utilized biologically for phase separation. Moreover, the 

combination of vmodel and β-turn propensity composition were distinctive across three 

sequence sets: folded, ID, and phase-separating (PS) IDR sequences, demonstrated a 

difference in vmodel and intrinsic β-turn propensity (Figure 1). Based on this finding, 

Whitten and coworkers developed the computer algorithm ParSe (partition sequence) that 

can accurately identify folded, ID, and PS-IDRs from the protein primary sequence.43 
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Figure 1. β-turn propensity vs. vmodel plot shows the means of each set occupy different regions when 

using three different β-turn propensity scales.43A). Levitt scale, B). Chou-Fasman Scale, and C). 

Hutchinson-Thorton Scale. Levitt, Chou and Fasman Scales are single-position potential scales. Hutchinson 

and Thorton are four-position potential scales.43,51-53 

 

 

 

 

 Figure 2 demonstrates the ability of the ParSe algorithm to identify PS-IDRs in 

proteins with diverse reported mechanisms driving LLPS.43 Briefly, to analyze proteins 

without using predefined boundaries for different regions, the algorithm uses a 25-residue 

window and then slides this window across the whole sequence in 1-residue steps, as 

shown schematically in Figure 2A. For each 25-residue window, vmodel and β-turn 

propensity are calculated from the amino acid sequence of the window. These values are 

mapped onto a β-turn propensity versus vmodel plot, which was divided into sectors 

labeled PS, ID, and Folded (Figure 2B). Sector boundaries were defined by the mean and 

standard deviations in vmodel and β-turn propensity in the IDR sequence set (Figure 1). 

Figure 2, B-C shows the results from using this algorithm on the Sup35 sequence 

(UniProt accession ID P05453) where each dot in Figure 2B represents a different 25-

residue window. The Sup35 primary sequence was then assigned a new three-letter code: 
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P, D, or F based on window localization into the PS, ID, or Folded sectors. Next, 

identified regions in the Sup35 sequence of length ≥20 residues that were at least 90% of 

only one of these labels were color-coded (Figure 2C). Consistent with the ParSe 

prediction, it has been shown that Sup35 has an N-terminal prion domain (residues 1-

125) that mediates phase separation, and ID middle and folded C-terminal domains.54,55 

 

 
Figure 2. Predicting protein regions that drive phase separation.43 A). Sliding window calculation that 

was used to identify protein regions that drive phase separation by using vmodel and β-turn propensity. 25-

residue window were calculated for each in the primary sequence. B). Each window is assigned a label 

represents PS-IDR(blue), D represents IDR (red), and F represents folded regions (black).The label was 

given to the central residue of the window. N- and C-terminal residues that do not belong to a central 

window position were assigned to a label of the first and last windows. The larger white dot is the 

calculated vmodel and β-turn propensity for the whole protein sequence. C). Contiguous regions containing 

residues greater than or equal to 20 that were 90% of only one label P, D, or F were colored blue, red, or 

black to represent PS-IDR, IDR, or Folded regions. 

 

 

 

 Figure 3 A-F shows the results from applying this algorithm to the whole 

sequences of six multi-domain proteins that are well-characterized and known to have 

regions that drive LLPS: FUS, LAF-1, spidroin-1, SSB, DDX4, and eIF4G2.56-66 FUS has 

multiple domains: an N-terminal PS-IDR (also a low-complexity domain or LC domain), 
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a C-terminal PS-IDR, three arginine-glycine-glycine (RGG1, RGG2, RGG3) repeat 

domains, and a folded RNA recognition motif (RRM).56,57 The folded RRM is a short 

domain that consists of residues 285-371.57 The LC domain has been identified as the 

major driver in promoting LLPS.57 Recent studies found that phase separation of FUS is 

driven by the cation-pi interactions between multiple arginine residues in the RGGs and 

tyrosine residues in the LC domain.57 As described above, the N terminus of LAF-1 is 

intrinsically disordered and contains an arginine/glycine rich domain (residues 1-168) 

that uses electrostatic interactions to both promote phase separation and bind single-

stranded RNA.58 The core of the protein (residues 231-628) contains a RecA-like DEAD 

box helicase containing ATP and RNA-binding sites.58 Spidroin-1 is a silk-wrapping 

protein consisting of highly repetitive sequence that alternates between folded regions 

and short IDR regions; the IDR sequences drive phase separation via hydrophobic 

interactions.59,60 

 Single-stranded DNA-binding protein (SSB) contains a highly conserved C-

terminal peptide (CTP) that has protein-protein interactions and a less conserved 

intrinsically disordered linker (IDL) that is thought to drive LLPS.61,62 LLPS of SSB 

proteins is thought to be driven by a low sequence complexity ID linker region that 

connects a highly conserved N-terminus OB fold (residues 1-113) to a C-terminal peptide 

motif (residues 168-178).61,62 In vitro studies found that salt interactions with the 

backbone (especially at glycine positions) and at side chain amide groups in the IDL are 

necessary in regulating the propensity to undergo LLPS.61,62 Moreover, SSB is an 

example of a highly multivalent phase-separating system.61,62 Protein:DNA and 

protein:protein interactions are necessary for phase separation of SSB, and so not only is 
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DNA required but both the folded and PS-IDR domains of SSB must be present to 

facilitate phase-separation.61,62 

 Like LAF-1, DDX4 is DEAD-box helicase.63,64 However, its N terminus (residue 

1-236) uses a far more complex network of charge, hydrophobic, cation-π, and aromatic 

interactions to drive phase separation, relying heavily on interactions that involve 

phenylalanine and arginine residues.63,64 Finally, the eIF4G2  translational regulator 

protein contains a short, N-terminal PS-IDR region (enriched in glutamine and 

asparagine) that has been experimentally demonstrated to be sufficient to drive LLPS in 

vitro.65,66 Also, modeling based on sequence similarity has been used to predict two 

structured domains in eIF4G2, one of which was identified by ParSe.65,66 Overall, the 

ParSe algorithm predicted regions driving LLPS in proteins with a variety of reported 

mechanisms, indicating that vmodel and β-turn propensity may represent a unifying 

property driving LLPS. 
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Figure 3. Sliding window calculation applied to whole sequence of six other proteins of varying 

mechanisms. A-F). Proteins are identified by name and UniProt accession number.43,56-66 Blue regions are 

PS-IDR, red regions are IDR, and black regions are Folded. Striped regions represent 80% identify to a 

known sequences that phase separate (blue) or fold (black).67 
 

 

 

 Moreover, it was noticed that known LLPS proteins (e.g., those in Figure 3) had 

not just IDRs with high average β-turn propensity and low average vmodel, but that they 

tended to contain long (≥50 residue) stretches labeled by ParSe to be “P”. To determine if 

this feature is unique to proteins driving LLPS, the prevalence of regions predicted from 

sequence to have high LLPS potential was calculated in the human proteome. These were 

identified as regions with at least 90% of residue positions labeled as “P” by ParSe. 

Figure 4 shows that ~70% of the human proteome had a region at least one residue in 

length with predicted high LLPS potential (i.e., a single P-labeled position), while only 

~4% have such a region that is at least 50 residues in length. This result shows that few 

human proteins possess a region of substantial length (≥50 residues) that combines high 

β-turn propensity with low vmodel.43 This calculation was repeated for a set of 43 proteins 

assembled by Vernon et al that have been verified in vitro to exhibit phase separation 

behavior, finding that ~90% of these in vitro sufficient LLPS protein have a region 
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predicted by ParSe to have high LLPS potential that is 50 residues in length or longer.37 

The DisProt database, which is a collection of experimentally verified IDPs and IDRs, 

mirrored the human proteome result, demonstrating that ID alone is not sufficient to 

trigger LLPS prediction by ParSe.69,70 The set of proteins listed by SCOPe (Structural 

Classification of Proteins extended, version 2.07) that represent the globular fold classes 

across families and superfamilies were mostly devoid of regions predicted to have high 

LLPS potential by ParSe.71,72 Thus, while proteins containing long, contiguous P-labeled 

regions are highly represented in proteins known and verified to undergo LLPS, these 

regions appear relatively unique to that class of proteins.43 

 

 
Figure 4. ParSe 1.0 identifies PS-IDRs, but is rare in the human proteome. Solid blue is ParSe 1.0; 

blue is confirmed LLPS proteins. Solid black line is the human proteome (~75,000 protein sequences), red 

is the DisProt database (~1,500 IDR sequences), and gray is the SCOPe database (~14,000 folded 

sequences).67,69-72  
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Thesis goals 

 Previously, Whitten and coworkers investigated the wide-spread idea that the 

polymer scaling exponent (v) could predict LLPS potential in IDRs and found that it 

could when combined with the β-turn propensity.43 This result was used to develop a 

computer algorithm, ParSe, for identifying phase-separating IDRs within proteins, and 

further suggested a mechanistic role for β-turns in promoting the formation of protein-

rich droplets.43 

 The goals for this thesis dissertation are three-fold. First, the set of sequences used 

to represent non-phase-separating IDRs will be increased. Previously, this set consisted 

of only 23 IDRs that were selected because experimental Rh were available and thus these 

IDRs could be used to test the sequence-based equation that calculates vmodel.43 To expand 

the IDR sequence set, all sequences found in the Biological Magnetic Resonance Bank 

(BMRB) and DisProt databases classified as ID were added to the original set.69,70,73 

However, any sequence that matched a sequence found in the Protein Data Bank (PDB), 

a repository of verified folded proteins, were omitted.67 The set of folded protein 

sequences used previously was also expanded.74 The original set was obtained from 

known LLPS proteins but expanded here to include folded regions from a wider set of 

proteins, obtained from another study.74 The set of PS-IDR sequences used previously, 

which represents 224 unique protein sequences, was not expanded.43 

 Second, the range of amino acid properties that identify PS-IDRs from sequence 

will be exhaustively investigated to gain insight into the mechanisms and protein features 

that possibly have a role in phase separation. This will be done using 566 amino acid 

properties obtained from the Amino Acid Index database which is a curated set of 
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numerical indices representing various physicochemical and biochemical properties of 

the amino acids.75-79 Also included is a newly developed hydrophobicity scale that was 

designed to predict sequences that drive LLPS.80 The amino acid properties that identify 

PS-IDRs will be determined by finding a statistical difference in the means when the 

three sequence sets, folded, ID, and PS-IDR, are compared. Principal component analysis 

(PCA) will be used to determine those properties that exhibit different modes of variance 

in the human proteome, and thus can be combined for predicting protein class. 

 Third, and lastly, the findings from the second goal will be leveraged to develop a 

second-generation version of the ParSe algorithm and determine if the changes improve 

the predictive accuracy of ParSe.  
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II. METHODS 

PS-IDR sequence set 

 Sequences of intrinsically disordered proteins that are known to exhibit LLPS 

behavior were obtained from Vernon et al and two curated databases of experimentally 

characterized proteins, PhasePro and DisProt database.37,69-72 These were chosen because 

each contains lists of proteins that have been manually curated for experimentally 

verified cases of LLPS.43 DisProt is a database of intrinsically disordered proteins that are 

manually curated from literature.69,70 PhaSePro is a comprehensive database of proteins 

that are known to drive phase separation in living cells.68 We began with the IDRs from 

43 proteins reported by Vernon et al to undergo phase-separation as purified, isolated 

proteins in vitro from those that do not.37 To identify the IDRs in the Vernon et al protein 

set, we used the GeneSilico MetaDisorder, which is a service online that predicts PS-

IDRs in a sequence.26 We next added IDRs from 59 human proteins to this set listed in 

the PhaSePro database as showing LLPS behavior and 18 IDRs annotated “liquid-liquid 

phase separation were found and identified by search using the disorder function 

ontology identifier for LLPS, IDPO: 00041 in the DisProt database.68-70 Since DisProt is 

manually curated for verified cases of IDRs, we assumed that IDRs that drive LLPS 

lacked folded regions.69,70 After merging these three subsets of sequences, duplicate 

entries were removed along with IDRs with N <20.43 A set of IDPs that are not known to 

phase separate but with monomeric experimental mean Rh rather than sequence-predicted 

mean Rh were created from literature reports.43 The human proteome reference set 

UP000005640, the Structural Classification of Proteins-extended (SCOPe), and the 

consensus disordered regions from the DisProt database (06/2021) excluding those 
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regions with the ontology identifier for phase separation, were used as negative controls 

representing lists of protein sequences that do not drive phase separation.67,69-72 Together, 

this enlarged set contains 224 sequences. 

 

IDR sequence set 

 The previous IDR set consisted of 23 sequences.43 To increase the size of the IDR 

set, we searched the Biological Magnetic Resonance Bank (BMRB), the database of 

proteins that have been investigated by NMR and found all those regions that are at least 

twenty residues long that had NMR data consistent with the proteins being disordered 

and were remaining monomeric in solution.73 We also used the DisProt database.69,70 We 

searched the BMRB database, culled it for sequences that are at least 20 residues in 

length or longer.73 For the sequences added to the IDR set, we took all sequences in the 

BMRB labeled as intrinsically disordered, then removed those that matched sequences 

found as folded in the protein data bank.67 Similarly, we took all “consensus” sequences 

in DisProt, removed those annotated as “liquid-liquid phase separation” and then also 

removed those that matched sequences found as folded in the protein data bank.67,69,70 

Then we combined these sets, removing duplicates. By expanding the IDR sequence set 

that do not drive phase separation, we added 98 sequences from the BMRB and the 

DisProt database.69,70,73 In total, this set is comprised of 121 sequences (Table 4). 

 

Folded sequence set 

 The Protein Data Bank (PDB) was used to identify these folded regions (N ≥20).  

Sequences from folded protein regions were used as a control set (e.g., sequences not 
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enriched for IDRs that drive LLPS).67 The previous Folded sequence set consisted of 82 

folded sequences.43 This set was expended from another study.74 The expanded set 

contains sequences of 122 human proteins with nonhomologous folded structures, 54 

folded extremophile proteins, 53 metamorphic folded proteins, 90 membrane folded 

proteins, and 32 proteins with small (N = 36) to large (N = 415) folded structures. This 

sets represents 421 sequences.74 

 

Calculation of mean Rh from sequence 

 The hydrodynamic radius, Rh, is calculated from sequence and is highly 

predictable from sequence in IDPs and strongly depends on sequence composition.43 Rh 

can be accurately predicted from the intrinsic chain bias for the polyproline II (PPII) 

conformation (Table 6) and protein net charge. The equation for calculating Rh is shown 

below: 

Rh = 2.16Å∙𝑁(0.503−0.11)∙𝑙𝑛(1−𝑓𝑃𝑃𝐼𝐼)) + 0.26∙|𝑄𝑛𝑒𝑡|−0.29∙𝑁0.5, (2) 

where the net charge, Qnet, is calculated from the number of lysine and arginine 

residues minus the number of glutamic and aspartic acid in a protein sequence. N is the 

number of residues and fPPII is the fractional number of residues in the PPII 

conformation. fPPII is estimated from Σ PPPII,i/N, where PPPII, is the experimental 

PPII propensity determined for amino acid type i in unfolded peptides and summed 

over the protein sequence. 
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Calculation of vmodel for each protein sequence 

 Proteins are heteropolymers and the property, vmodel was introduced as a 

substitution that normalizes protein hydrodynamic size to the chain length from sequence. 

The equation to calculate vmodel is shown in the introduction (equation 1).  

 

Calculation of β-turn propensity 

Calculating the propensity for sequences to form β-turns was achieved by the 

following equation:  

∑
𝑠𝑐𝑎𝑙𝑒𝑖

𝑁
, (3) 

where N is the number of amino acids and scalei is the value for amino acid type i in the 

normalized frequency for β-turns from Levitt.51 The normalized frequency for β-turns 

from Levitt was applied to calculate the specificity in the different turn positions whereby 

a 4-residue window was applied.77 With each residue position in the window, a turn 

position was slid across the protein sequence in 1-residue increments. Next, the 

summation of the turn potentials in a window was divided by 4, and the overall window 

sum was divided by the number of windows. 

 

Normal distributions and histograms to evaluate normality of protein sequence sets 

A Fortran program, dataset_generation_fromsequence_files.f calculated for every 

sequence in each of the sets vmodel and β-turn propensity. The input files were the previous 

IDR, expanded IDR, combined Folded, and PS-IDR sequence sets. The output generated 

from this Fortran script was the sequence number (count), type (F, P, or D), vmodel, and β-

turn propensity. The output file, generated_dataset.txt was then converted into an excel 
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spreadsheet. R programming software was applied for different statistical tests in 

evaluating the normality of each sequence set and comparing sequence sets.  

 

Determining means of two independent groups 

 We utilized a parametric test, Welch’s t-test, and a nonparametric test, Mann-

Whitney U-test to compare the means of two-independent groups.81,82 In other words, we 

used these statistical tests to also evaluate the normality of our protein sequence sets 

(results in Tables 1 and 2) for vmodel and β-turn propensity.81,82 

 Three additional Fortran programs, Mann_Whitney_U_test_beta_turn.f, 

Mann_Whitney_U_test_nu.f, and Welch’s_T_test.f gave us calculated one-tailed p-

values to compare the means of two protein sequence sets at a time. First, we used the 

Welch’s_T_test.f script for the calculation of Welch’s t-test that involved two 

components: t-statistic and degrees of freedom (dof).81 The normalized frequency of β-

turn’s by Levitt and Intrinsic PPII bias measured in peptides by Hilser’s group were 

incorporated in ALL the programs including the input files of protein sequence sets 

(shown above) to obtain vmodel and β-turn propensity values (values for each amino acid 

in Tables 5 and 6).77-80 The t-statistic is calculated as follows: 

𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =  
(𝑚𝑒𝑎𝑛1−𝑚𝑒𝑎𝑛2)

√(
𝑣𝑎𝑟1

𝑁1
+

𝑣𝑎𝑟2

𝑁2
)

, (4)  

where mean1 and mean2 are the means of each group, var1 and var2 are the variance of 

the two groups, N1 and N2 are the first and second sample sizes.81 The dof is calculated 

as follows: 

𝑑𝑜𝑓 =  
(

𝑣𝑎𝑟1

𝑁1
+

𝑣𝑎𝑟2

𝑁2
)2

(
(
𝑣𝑎𝑟1

𝑁1 )2

(𝑁1−1)
+

(
𝑣𝑎𝑟2

𝑁2 )2

(𝑁2−1)

, (5).  
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Furthermore, the one-tail p-values of vmodel and β-turn propensity were calculated from 

the t-statistic and dof for Welch’s t-test when comparing two proteins sequence sets at a 

time.81 

 Next, we used both Mann_Whitney_U_test_beta_turn.f and 

Mann_Whitney_U_test_nu.f programs to determine the one-tail p-values of vmodel and β- 

turn propensity of using the Mann-Whitney U-test.82 The set order is important for the U- 

test, therefore the set with fewer entries go first.82 In this test, the first step was to assign 

ranks and to do so we ordered our data from smallest to largest.82 For example, the scripts 

read the protein sequence set with the fewest sequence in that set first and the largest 

second. Again, we can only compare two sequence sets at a time.  Second, we calculated 

the sum of the ranks for the two sequence set groups. Third, we determined the sample 

size for both groups when we calculated the sum of the ranks in each group. Fourth, we 

computed U for each group using the following equation: 

𝑈𝑎 = (𝑛𝑎 ∙  𝑛𝑏) +
𝑛𝑎 ∙(𝑛𝑎+1)

2
− 𝑇𝑎, (6)  

where na and nb are the sample sizes in each group, Ta is the sum of the rank for one of 

the groups.82 Fifth, we determined the value of U to compare it to the U-critical value. An 

example is the following instance,  

Ua = 32 from equation 6  

and Ub = (na ∙ nb) – Ua = 4,  

we would use Ub = 4 because it’s the smaller value. Sixth, we computed the standard 

deviation (Std dev) of U and finally computed the Z-score using the following equation:  

𝑍 =  
𝑈−(

𝑛𝑎∙𝑛𝑏
2

)

𝑆𝑡𝑑 𝑑𝑒𝑣
, (7) 

Furthermore, the output gave us the one-tail p-values of vmodel and β-turn propensity for 
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Mann-Whitney U-test when comparing two proteins sequence sets at a time.  

 

Searching other amino acid properties 

 We explored and accessed an Amino Acid Index Database that contains 566 

different properties that was used to separate PS-IDRs, IDRs, and Folded sequence 

sets.75-79 These amino acid property scales consist of various physiochemical and 

biochemical properties of all amino acid type. The link for the database can be accessed 

using the following link: https://www.genome.jp/aaindex/.75-79 Also, we included a new 

hydrophobicity scale that was designed to predict protein sequences that drive protein 

phase separation (Table 7).80 The amino acid index was then downloaded as a text file to 

be used in the Fortran programs for the identification of amino acid property scales 

(aaindex1_new.text). 

 

Classifying amino acid property scales from database 

Each amino acid property scale was individually evaluated and classified and 

grouped the scales by type: conformational, physiochemical, and other. Scales that had 

identifications such as graph theory, hydrostatic pressure, stability, slopes tripeptide, etc 

were classified as other (Figure 7). Furthermore, we have grouped the hydrophobicity 

scales as two types: structural and solution scales (Figure 7). Structural scales were 

produced based on the physical location of the amino acid in three-dimensional 

structures; for example, propensity to be buried within a globular protein core versus 

surface-exposed. Almost a third of the 566 scales represent structure-based 

hydrophobicity scales (Figure 7). The solution-based hydrophobicity scales were defined 

https://www.genome.jp/aaindex/.75-79
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based on the partitioning of each amino acid between aqueous and organic solvents. 

BreakDown, readxl, ggplot2, and tidyverse packages in the R environment were used to 

extrapolate each amino acid scale into groups (Figure 10).  

 

Identifying new amino acid property scales from database to separate sequence sets  

 Each scale from the database was calculated individually for each sequence in the 

PS-IDR, IDR, and Folded sets by the sequence sum divided by N. We also performed 

Welch’s t-test and Mann Whitney U-test to obtain one-tail p-values to identify the scales 

that showed statistical differences in the means of the sequence sets.81,82 Welch’s t-test 

and Mann-Whitney U-test compares two sets and only one property at a time.81,82 Two  

Fortran programs were used for this analysis: 

Find_best_sequence_property_Welch_T_test.f and 

Find_best_sequence_property_Mann_Whitney_U_test.f. The new hydrophobicity scale 

from Table 7 was incorporated in this analysis.80 These programs were used to obtain p-

values of ALL amino acid property scales when comparing two sets at a time: PS-IDR 

from IDR, IDR from Folded, and PS-IDR from Folded. One of the inputs is the amino 

index in txt format (aaindex1_new.text). The other input file contains the protein 

sequences in fasta format (shown above) that read two sets at a time (previously 

mentioned) for the comparison and then computes the one-tail p-values for all amino acid 

property scales including vmodel and the new hydrophobicity scale for a total of 568 

properties. 

The output from each of these statistical tests is the one-tail p-value. The property 

with the smallest p-value in that property will generate the greatest statistical difference 
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between the two sets. To interpret the amino acid property scales when comparing the 

protein sequence sets, the one-tail p-values obtained from both statistical tests were saved 

in a text file, which then was converted into an excel spreadsheet. P-values are so small 

that they are sometimes logged because they can span several orders of magnitude and 

the log makes the values easier to plot, interpret, and transform the p-values. By using -

log, this enabled us to make the p-values positive, and the bigger the value the smaller the 

underlying p-value (equals more significance). Hence, our p-values are very small in all 

these compared protein sequence set distributions. Each scale was calculated individually 

for each sequence by taking the sum for each sequence and dividing it by N in the protein 

sequence sets: PS-IDR, IDR, and folded.  

 The following packages in the R environment were used to interpret the p-values 

when comparing two sets at a time: ggplot2, magrittr, tidyverse, readxl, and ggforce. 

From these R packages, we then developed box plots to interpret the one-tail p-values of 

all the amino acid properties for both Welch’s t-test and Mann-Whitney U-test.81,82  

 

Principal component analysis (PCA) across the human proteome 

To identify which amino acid property scale to be used at separating the three 

protein sequence sets: PS-IDR, IDR, and Folded, we computed the principal components 

across the human proteome. Principal Component Analysis (PCA) is a statistical 

procedure that allows us to summarize our information content in the human proteome of 

the different amino acid properties.83 This will enable us to capture the variance in the 

human proteome of the different amino acid properties.83 We took this approach by 

taking three amino acid property scales from each category that had the three smallest p-
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values. The Fortran program, PCA_dataset_generation_top3_scalees_human_proteome.f 

read the input file of the Human Proteome in fasta format (sequences.fasta) and the 

aaindex1_new.txt for this step of our amino acid property analysis.  

 In the Fortran program, we used a simple sliding window calculation of each of 

the three scales in order to calculate the sequence sum via a sliding 25-residue window 

that will be applied to proteins in the human proteome of length of at least 100 amino 

acid residues to 500 residues (approximately spanning 55,000 human proteins in the 

sequences.fasta input file). Proteins have modular structure, meaning proteins have 

disordered and folded regions. By applying the sliding window calculation, we captured 

differences in sequences of proteins to identify possible protein that have modular 

structure. Each sequence sum calculated for each of the three property scales was divided 

by the window length and then vmodel was calculated for each window (25-residues each). 

The output file extrapolated from the Fortran script was of the scale-calculated properties 

of each 25-residue window as PCA_dataset.txt. PCA_dataset.txt was then read in the R 

environment to perform PCA across the human proteome. PCA was obtained from the 

following R packages: ggfortify, ggplot2, factoextra, MetBrewer, and tidyverse. 

 

ParSe 2.0 algorithmic steps 

 In this step, we took the data obtained from PCA, where we ultimately found two 

amino acid properties: hydrophobicity structure scale from Vendruscolo and the alpha-

helix propensity scale from Scheraga.84,85 Both of these scales gave means in PS-IDR, 

IDR, and Folded sets with the smallest p-values when comparing IDR from Folded and 

PS-IDR from IDR. By modifying our algorithm to make a second version of ParSe. This 
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version, like ParSe 1.0, an input primary sequence is read to determine its length, N, and 

the number of each amino acid type (only to the 20 types). Rh is then calculated by 

Equation 2, incorporating Qnet and fPPII (mentioned previously), which then is used to 

obtain vmodel by Equation 1. The hydrophobicity structure and alpha-helix propensity 

scales are added now for this calculation (Tables 8 and 9).84,85 ParSe 2.0 uses a sliding 

window calculation to compute vmodel, hydrophobicity, and alpha-helix propensity for 

every 25-residue window of the primary sequence. Every 25-residue is then slid across a 

whole sequence in 1-residue increments. The values of vmodel, hydrophobicity, and alpha-

helix propensity calculated for a window determines the window’s localization to a PS-

IDR, IDR, and Folded region in a 3D plot. The sector or region boundaries (cutoff) are 

determined based on the mean  standard deviation in vmodel, hydrophobicity, and alpha-

helix propensity at separating PS-IDR from IDR and IDR from Folded. 

 If a sequence window, based on its vmodel and alpha-helix propensity values is 

high, the central residue in that window is labeled “D” for IDR. If a window, based on 

vmodel and alpha-helix propensity values is low, the central residue in that window is 

labeled “P” for PS-IDR. If a window, based on its hydrophobicity values, the central 

residue in that window is labeled “F” for Folded. Protein regions predicted by ParSe 2.0 

to be PS-IDR, IDR, or Folded are determined by finding contiguous residues in regions 

of a sequence with a length greater than or equal to 20 that are at least 90% of only one 

label P, D, or F.  

 ParSe 2.0 was then applied to predict protein regions that drive protein phase 

separation of all mechanisms that was used previously used in ParSe 1.0. We used 7 

proteins: Sup35, FUS, LAF-1, Spidroin-1, SSB, DDX4, eIF4G2.  
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III. REVISED PROTEIN SEQUENCE SETS 

Many proteins show modular characteristics, with some regions folded into stable, 

globular structures, and other regions intrinsically disordered, or ID.43  Clear, 

compositional differences are found between folded and ID regions (IDRs) when they are 

surveyed.43 For example, differences in hydrophobicity, charge, and sequence 

complexity.43 Based upon these differences, predictive algorithms have been developed 

that identify folded and IDRs within proteins from the primary sequence.36-38 Among 

IDRs, some have been found to drive liquid-liquid phase separation (LLPS), while most 

do not. To better understand the features and properties of proteins that promote LLPS, 

we have constructed a novel database consisting of three sets of sequences, all derived 

from experimentally validated biological proteins. The first sequence set is comprised of 

intrinsically disordered sequences that are known to not undergo phase separation 

(hereafter called “Non-PS-IDR”. The second set is also comprised of intrinsically 

disordered sequences but is composed of only IDRs that are confirmed to spontaneously 

phase separate (hereafter called “PS-IDR”).43 The third set was constructed using 

sequences from folded protein regions (hereafter called “Folded”); this set is used as a 

control (i.e., to represent sequences that are not enriched for intrinsic disorder). Our 

hypothesis is that by analyzing the sequence-based differences found between these three 

subsets, we can identify molecular mechanisms that underlie LLPS behavior. 

 

Defining the sequence sets 

 This work builds upon a previous study where 224 IDRs were extracted from lists 

of proteins verified to exhibit LLPS behavior.43 These protein sequences were obtained 
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from Vernon et al, the PhaSePro database, and the DisProt database.37,68-72These sources 

were chosen because each contains protein lists that have been manually curated for 

experimentally verified cases of LLPS. The resulting “phase-separating IDR” (“PS-IDR”) 

set of sequences is therefore a set of protein sequences enriched for LLPS behavior. The 

protein sequences in this set have been published elsewhere.43 

 A set of 23 IDRs not known to phase separate were used as a comparison set.43 

These sequences were chosen because they have been confirmed to remain monomeric in 

solution (i.e., to not undergo phase-separation) and the hydrodynamic size of each has 

been measured, allowing for direct tests of the vmodel calculation.43 This original Non-PS 

IDR set is not extensive; in fact, it is only ~10% the size of the PS-IDR set. Specifically, 

the small sample size raises the concern that a sample of 23 is not an accurate 

representation of IDRs in general.  

 Therefore, we sought to expand the number of sequences in the Non-PS-IDR set. 

To do this, we started with all sequences in the Biological Magnetic Resonance Bank 

(BMRB) from proteins or protein fragments exhibiting spectroscopic hallmarks of ID, 

and thus that have been classified as IDPs (104 sequences).68 Next, we added the 

consensus disordered regions (~1,500 sequences) from the DisProt database (2021_06), 

excluding those regions with the ontology identifier for LLPS, IDPO:00041.64,65 We 

found substantial overlap between these two sets. Duplicate sequences (111 sequences) 

were removed. Additionally, there were some sequences that matched sequences found in 

the Protein Data Bank (PDB), representing sequences that fold in some contexts.61 Those 

sequences were also removed, leaving 98 new IDR sequences that can be added to the 

original set of 23 IDRs. This expands the original Non-PS IDR set to 121 unique protein 
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sequences, hereafter referred to as the “Expanded Non-PS-IDR Set” (Table 1). 

 Simultaneously, similar work was carried out to expand the original set of 82 

sequences representing the folded regions within confirmed LLPS proteins (“Folded 

Set”).43 As detailed elsewhere, an additional 339 nonhomologous sequences were 

identified in human proteins, membrane proteins, extremophile proteins, small-to-large 

proteins, and metamorphic proteins.74 The protein sequences in both the original (82 

sequences) and expanded (421 sequences) Folded Sets have been published 

elsewhere.43,74 

 

Comparing vmodel and β-turn propensity between the original and expanded 

sequence sets 

 

 These revisions to the composition of these sequence sets might also alter our 

previous conclusions that the parameters vmodel and β-turn propensity could be used to 

identify folded, non-phase-separating intrinsically disordered, and phase-separating 

intrinsically disordered regions from primary sequence alone. To determine if the 

sequence set changes significantly alters the vmodel and β-turn propensity of each training 

set, we evaluated the mean values in vmodel (Table 1) and β-turn propensity (Table 2) and 

compared them in several combinations. First, the mean values were compared between 

the three expanded sets. These values were also compared between the previous and 

expanded versions of the Non-PS-IDR and Folded sets (as the PS-IDR set was not 

revised).  
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Table 1. Summary of mean vmodel in the protein sequence sets. 

 
 

 

Table 2. Summary of mean β-turn propensity in the protein sequence sets. 
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 The means of the previous and expanded Folded sets were overall similar. This 

was determined by one-tail p-values calculated using Welch’s unequal variances t-test, 

which assumes a normal distribution, and the nonparametric Mann-Whitney U-test, 

which does not.81,82 For vmodel, sequences from folded regions within extremophiles gave 

p-values <0.05 when compared to the previous folded set, indicating that there is a 

statistical difference between the means of the folded regions of LLPS proteins (0.538 ± 

0.008) and folded regions of extremophile proteins (0.542 ± 0.011). Similarly, statistical 

differences were found in mean β-turn propensity (i.e., p-values <0.05) between the 

previous PS-IDP set (0.969 ± 0.039) and three subsets of folded sequences: extremophile 

(0.983 ± 0.030), membrane (0.956 ± 0.046), and human protein (0.980 ± 0.039) folded 

regions. Generally, these results support that the subsets that were added to the previous 

Folded set.43,74 

 For the Non-PS-IDR sets, mean vmodel is statistically similar between the previous 

set (0.558 ± 0.019) to the newly-added subset of sequences (i.e., the sequences from the 

BMRB and DisProt subsets; 0.558 ± 0.023). However, a statistical difference in β-turn 

propensity was observed between the newly-added sequences (1.110 ± 0.071) and the 

previous Non-PS-IDR set (1.062 ± 0.082), yielding p-values from the t- and U-tests that 

were <0.05.81,82 Overall, however, when comparing means between the sets (Tables 1 and 

2) or visually assessing the means in a β-turn propensity versus vmodel plot (Figure 5), the 

differences between the three classes (Folded, Non-PS-IDR, and PS-IDR), were more 

pronounced than to comparisons of subsets within a class, i.e., between previous and new 

subsets of the same class type. Moreover, when plotted, the subsets were clearly grouped 

by class in terms of Folded, Non-PS-IDR, and PS-IDR (Figure 5). 
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Figure 5. Means and standard deviations of vmodel and β-turn propensity show that expanded sets and 

subsets are not statistically different from each other. The dashed lines represent the subsets. The 

subsets were clearly separated by class: Folded, Non-PS-IDR, and PS-IDR.  
 

 

 

Distributions of vmodel and β-turn propensity in the sequence sets are normal 

 Welch’s unequal variances t-test assumes that the values in two compared sets are 

normally distributed.81 To determine if this is the case in the expanded sequence sets, 

Figure 6 shows the histogram distribution in vmodel and β-turn propensity in each set, and 

then compares the observed histogram distribution to the probability density function of 

the normal distribution, 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥−𝜇

𝜎
)

2

, (8) 

where x is a value in vmodel or β-turn propensity, and µ and σ are the distribution mean and 

standard deviation, respectively.86 Also shown in this figure is a quantile-quantile plot, 

which directly compares two distributions by plotting the quantiles against each other, in 

this case the observed and the probability density function. When the trend in a quantile-

quantile plot follows the identity line, then this is evidence that the compared 
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distributions are similar. Because this is observed for each sequence set in both vmodel and 

β-turn propensity, this suggest that the sets are similar to normal. Accordingly, p-values 

calculated by Welch’s unequal variances t-test are appropriate for statistically comparing 

the means in vmodel and β-turn propensity between the three sequence sets, folded, ID, and 

PS-IDR. 
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A). PS-IDR sequence set  

 
 

B). Expanded IDR sequence set  

 
C). Combined Folded sequence set  

 
Figure 6. Normal distribution curves for vmodel  and β-turn propensity of the sequence sets. A).PS-IDR 

B). Expanded IDR, and C). Combined Folded sequence sets. Red solid lines indicate the normal 

distribution of the same mean and median values of each of the sets. The quantile-quantile plots (Insets) 

show the variance from expected, further demonstrating the normality of each sequence set.   
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Conclusions 

 In summary, the sequence sets that cumulatively represent folded, ID, and PS-

IDRs were expanded to better represent proteins in general. The expanded sets showed 

differences in mean vmodel and β-turn propensity when the folded, ID, and PS-IDR sets 

were compared, similar to prior results with smaller sequence sets.38 Moreover, the 

observed distributions in vmodel and β-turn propensity in the expanded sets were similar to 

normal. 
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IV. INTRINSIC PROPERTIES OF PHASE-SEPARATING PROTEIN REGIONS 

 To better understand how IDRs are utilized to drive protein LLPS, we have 

analyzed protein databases containing subsets of IDRs from proteins not known to 

phase separate, IDRs from proteins confirmed to spontaneously phase separate, and 

folded regions from a diverse, but general, set of proteins. The idea is to identify those 

sequence features and properties that are unique to the phase-separating IDRs, as 

these possibly represent molecular characteristics selected by evolution to drive the 

formation of protein-rich droplets.  

 To do this, we identified from a large, curated set of amino acid property 

scales, those sequence-based properties yielding statistically significant differences in 

the means of the three sequence sets.75-79 To characterize these differences, we 

applied principal component analysis (PCA) to the human proteome, uncovering the 

principal modes of variance arising from the identified sequence properties.85 Results 

from the PCA indicate that proteomic variance associated with properties that 

distinguish IDRs and phase-separating (PS) IDRs has two principal modes: one 

corresponding to physiochemical properties, like hydrophobicity, charge, or vmodel, 

and the other to backbone conformational propensities, like preferences for α-helix, β-

turn, or β-sheet. We found that most amino acid scales yield statistically different 

means in the IDR and PS-IDR sequence sets, suggesting robust instead of discrete 

property differences. 
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A curated set of amino acid property scales  

 We sought to understand how the sequence sets defined in chapter III, i.e., sets 

representing the folded, ID, and PS-ID protein classes, are different in their physical 

properties. Amino acid property scales were obtained from the Amino Acid Index 

database, which manually curates the scientific literature for numerical indices 

representing the various physicochemical and biochemical properties of the amino 

acids.75-79 This database contains 566 amino acid property scales.75-79 To this list, we 

added a newly developed hydrophobicity scale designed to predict sequences that 

drive protein LLPS.80 

 

 
Figure 7. Grouping amino acid property scales by type from AAindex ver9.2.75-80 567 amino acid 

property scales grouped by type depicted in the x-axis and the number of the amino acid scales depicted on 

the y-axis. 

 

 

 

 In Figure 7, the amino acid scales are grouped by type and color-coded according 

to conformation-based scales and physicochemical-based scales. Property scales that do 

not easily map into a conformation-based or physicochemical-based group (e.g., 

refractivity, crystal melting point) were combined separately into "other".75-79 Overall, 
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hydrophobicity (φ) scales represented almost a third of the amino acid property scales 

used to analyze the sequence sets.75-79 Of these, there were two types: those 

hydrophobicity scales that are structure-based (φ_struct), where the scale is derived from 

a structural metric like burial or contact frequency in surveys of high-resolution protein 

structures, and those that are solution-based (φ_sol), where the scale is obtained from 

solution studies like measuring the transfer free energy of the amino acids from water to 

an organic solvent.75-79 Together, conformational propensity scales represented ~37% of 

the amino acid property scales, with α-helix propensities represented the most.75-79 

 

Property differences of the protein sequence sets 

 For each amino acid property scale, the sequence sum divided by N was 

calculated individually for each sequence in the three sets: PS-IDR test, IDR null, and 

folded. The sequence sets are defined in Chapter III, where the null and folded sets refer 

to the combined IDR null and combined folded sets. vmodel also was calculated for each 

sequence using Equation I, yielding a total of 568 sequence-calculated properties that 

were investigated.75-80 To compare the means in any one property between any two of the 

sequence sets, one-tail p-values were calculated by Welch’s unequal variances t-test.81 By 

this test, a p-value <0.05 indicates two sets have statistically different means in the 

compared property (i.e., the probability is less than 5% that the two sets are the same).81 

In contrast, large p-values mean the opposite - the probability is high that the two sets are 

the same in that specific property.81 

 Figure 8, panel A shows that a scale of α-helix propensities from Scheraga and 

coworkers gave the smallest one-tail p-value when comparing sequence-calculated 



 

39 

means in the PS-IDR test and IDR null sets, and 82% of scales give p-values <0.05 

(indicating means that are statistically different), among the 567 scales and vmodel.84 

Moreover, 10% and 25% of scales yield p-values smaller than the p-values obtained 

from vmodel  and β-turn propensity, respectively, that are used in ParSe. Each scale 

type (e.g., α-helix propensity, β-turn propensity, hydrophobicity, etc.) had some scales 

with very low p-values and some with p-values ≥ 0.05, suggesting that, overall, most, 

but not all, conformational- and physicochemical-based scales could be used to 

distinguish IDRs and PS-IDRs from sequence.75-79 

 When comparing means in the PS-IDR test and folded sets (Figure 8, panel B) 

and in the IDR null and folded sets (Figure 8, panel C), we find that a structure-based 

hydrophobicity scale from Vendruscolo and coworkers had the smallest one-tail p-

value in both cases.85 Hydrophobicity scales with the lowest p-values when 

comparing means in the folded and ID sets had among the highest p-values when 

comparing means in the test and null sets (and vice versa). Also, 95% and 94% of 

scales produced p-values <0.05 when means were compared between the test and 

folded sets and the null and folded sets, respectively, showing that almost all amino 

acid scales yield a statistical difference in mean properties when comparing ID and 

folded sequences. As before, most scale types (e.g., α-helix propensity, β-turn 

propensity, hydrophobicity, etc.) had some scales with very low p-values and some 

with p-values ≥ 0.05, when comparing ID and folded set means. 
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Figure 8. p-values calculated by Welch’s t-test indicate most amino acid scales can be used to 

separate the classes. A). PS-IDR vs. IDR, B). PS-IDR vs. Folded, and C). IDR vs. Folded. 

Significance level (p-value = 0.05) limit is represented with a solid line across all three box plots. 

Triangles represent the top three amino acid scales: Turn (by Levitt), Helix (by Scheraga), and 

Hydrophobicity structure (by Vendrusculo) by their p-values.51,84,85 The three charged scales are 

labeled by red circle (negative charge inside circle), blue circle (positive charge inside circle circle), 

and solid black circle (neutral charge). 
 

 

 

 While vmodel and β-turn propensity are normally distributed in the folded, ID, 

and PS-IDR sets (see Chapter III), it is not known if the other sequence-calculated 

properties also show a normal distribution. Because the p-values calculated by 

Welch's unequal variance t-test assume a normal distribution, p-values also were 

calculated using the nonparametric Mann-Whitney U-test.81,82 Figure 9, panels A-C 

show that overall similar results were obtained with the U-test generated p-values, 

whereby most of the sequence-based properties show a statistically significant 

difference in mean values when the three sequence sets are compared. The α-helix 

propensity and structure-based hydrophobicity scales were the best at separating ID 
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from PS-ID and ID from folded, respectively. 

 

 

 
Figure 9. p-values calculated by Mann Whitney U-test indicate most amino acid scales can be 

used to separate the classes. A). PS-IDR vs. IDR, B). PS-IDR vs. Folded, and C). IDR vs. Folded. 

Significance level (p-value = 0.05) limit is represented with a solid line across all three box plots. 

Triangles represent the top three amino acid scales: Turn (by Levitt), Helix (by Scheraga), and 

Hydrophobicity structure (by Vendrusculo) by their p-values.51,84,85 The three charged scales are 

labeled by red circle (negative charge inside circle), blue circle (positive charge inside circle circle), 

and solid black circle (neutral charge). 

 

 

 

PCA indicates two principal modes of variation in the human proteome 

 To aid in the interpretation of the property differences among the three 

sequence sets, we applied PCA to the human proteome.83 PCA applies a coordinate 

rotation on a data set such that the transformed axes become aligned with the 

directions of maximum variance.83 To assess proteomic variance, we first selected 

three scales from each scale type, wherein the scales represent those with the three 

smallest p-values for a scale type. One-tail p-values calculated by comparing means 
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in the PS-IDR test and IDR null sets were used here (i.e., taken from Figure 8, panel 

A), because a primary goal is to understand the property differences between ID and 

PS-IDRs. Each scale, three per type, was then used to calculate sequence sums via a 

sliding 25-residue window applied to proteins in the human proteome with lengths 

from 50 to 500 residues (representing ~55,000 proteins). A sliding window scheme 

was used to capture differences within a sequence owing to the possibility of modular 

protein characteristics. Each sequence sum was divided by the window length (i.e., 

25), and vmodel also was calculated for each 25-residue window. 

 The results of the PCA on this data set show that most of the variance (~70%) 

is captured by two principal modes of variation, and at somewhat equivalent amounts 

(38% and 30%; Figure 10, panels A and B). One mode of variation trends mostly, but 

not exclusively, with the variance arising from conformational propensity scales 

(panel B, blue arrows), and a second trends mostly, but not exclusively, with 

physicochemical metrics like charge, hydrophobicity, and other compositional details 

(panel B, green arrows). Thus, while many sequence-calculated properties can be 

used to discern phase-separating from nonphase-separating IDRs (Figure 8, panel A), 

or ID from folded (Figure 8, panels B and C), many of these properties exhibit similar 

variance patterns in the human proteome (Figure 10, panel B), meaning that they 

partition sequences similarly. As such, the predictive capabilities of amino acid scales 

are limited. Specifically, turn and coil scales applied to human sequences yield 

strongly correlated modes of variation that also are mostly anti-correlated with the 

variance produced from α-helix propensity scales (Figure 10, panel B). In contrast, 

the proteomic variance arising from hydrophobicity, charge, or vmodel have patterns 
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that, in general, are disparate to the variance arising from turn, coil, and α-helix 

conformational propensities.  

 

 
Figure 10. PCA indicates two primary modes of variation in the human proteome. A). Scree plot 

indicates most of the variation in the first two dimensions. There are two modes of variation when all 

the amino acid property scales were applied to the human proteome in that 70% of the variance in the 

human proteome is captured by two modes. B). PCA plot shows two primary modes: green as 

physiochemical and blue as conformational. Hydrophobicity separates IDR from folded and the two 

properties from the two modes are alpha-helix propensity (thickened blue arrow) and orthogonal 

(roughly 90 degrees) to that is vmodel. The “human proteome” was defined as human proteome 

sequences between 100 and 500 amino acid residues, inclusive. 

 

 

 

 To illustrate these results, hydrophobicity was calculated for each sequence in 

the three sequence sets, test, null, and folded, using the scale from Vendruscolo 

mentioned above.85 This property separates sequences according to folded versus ID 

(Figure 11). However, there are many sequence-based ID predictors already available 

that could have been used for this purpose instead.43 Next, to separate ID sequences 

according to phase separation potential, the α-helix propensity of each sequence was 

calculated using the scale from Scheraga mentioned above, as well as a second 

property that exhibits a mode of variation orthogonal to that of the helix propensity 
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scale in the human proteome, which is satisfied by vmodel (Figure 10, panel B).84 The 

test, null, and folded set means each are well separated by these three intrinsic 

sequence-based properties (Figure 11). 

 

 
Figure 11. Three intrinsic sequence-based properties separate the protein classes: PS-IDR, IDR, 

and Folded. Vendruscolo hydrophobicity scale separates IDR (P or D) from Folded (F).85 Alpha-helix 

propensity scale by Scheraga and vmodel separate PS-IDR (P) from IDR (D).84 
 

 

 

Conclusions 

 We have analyzed protein databases containing subsets of proteins that are 

folded, ID, or ID and enriched for phase separation behavior. We found robust 

differences in the sequence-calculated properties of these three subsets, when 

compared. Out of 568 sequence-calculated properties, most yield statistically 

significant differences in the means of the sequence sets. We applied PCA to the 

human proteome and found that the myriad of intrinsic, sequence-calculated 

properties results in two principal modes of proteomic variance; one corresponding to 

physiochemical properties and the other conformation propensities.  

 



 

45 

V. PREDICTING FOLDED, ID, AND PS-ID PROTEIN REGIONS FROM 

SEQUENCE 

 In Chapter IV, we demonstrated that a structure-based hydrophobicity scale 

from Vendruscolo, an α-helix propensity scale from Scheraga, and vmodel (eq 1 in 

Chapter I) could be used in combination to distinguish folded, IDR null, and PS-IDR 

test sequence sets (see Figure 11).84,85 The Vendruscolo scale gave the smallest p-

value when comparing means in the folded and IDR sets (relative to the other 

sequence-calculated properties tested), and thus this scale efficiently distinguishes 

folded and ID regions from sequence.85 Likewise, the Scheraga scale gave the 

smallest p-value when comparing means in the ID and PS-IDR sets.84 The PCA 

showed that intrinsic sequence properties that best separate the means in the IDR null 

and PS-IDR test sets exhibit two principal modes of variance in the human 

proteome.83 Thus, a second scale can be used with the Scheraga α-helix scale to 

distinguish ID and PS-IDRs from sequence.84 We selected vmodel for this purpose 

because vmodel has a mode of variance in the human proteome that is unlike the 

variance arising from α-helix propensities (see Figure 10). 

 

A second-generation version of the ParSe algorithm 

 Here, we test if these three sequence-calculated properties can be used to 

improve the ability of the ParSe algorithm to predict protein regions that drive LLPS. 

To do this, we modified the algorithm making a second-generation version, ParSe 2.0. 

In this version, as with the original, we apply a 25-residue window and then slide this 

window across a protein sequence in 1-residue steps (Figure 12).43 For each 25-
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residue window, the hydrophobicity (ϕ), α-helix propensity (α), and vmodel are 

calculated from the amino acid sequence of the window. Based upon the window-

specific sequence-calculated values, the central residue of each window is labeled 

with a one-letter code, F, D, or P. 

  

 
Figure 12. Predicting protein regions from the primary sequence using a sliding-window algorithm. 

For a given protein sequence (shown is a segment of the Sup35 primary sequence), the ParSe algorithm 

slides a 25-residue window across the whole sequence and calculates the hydrophobicity (ϕ), α-helix 

propensity (α), and vmodel of each window. The central residue of a window is assigned the label F for high 

ϕ, while low ϕ coupled with high α and high vmodel is assigned the label D, and low ϕ coupled with low α 

and low vmodel is assigned the label D. Protein regions that are predominantly labeled F are predicted to be 

folded. Those regions mostly labeled D or P are predicted to be ID or PS-ID, respectively. 

 

 

 

 The label F is assigned to windows with high ϕ values. This is shown 

schematically in Figure 13, panel A, plotting ϕ calculated for every 25-residue window in 

the phase-separating yeast protein Sup35 (UniProt accession ID P05453). In ParSe 2.0, 

windows are labeled F when ϕ ≥ folded set mean - 2σ; the mean ± σ for the folded set is 

shown by the black-filled ellipse in the figure for reference. Windows with ϕ < folded set 

mean - 2σ are assigned either P or D, depending on the values of α and vmodel calculated 

for the window. For the low-ϕ windows, those with high α and high vmodel are labeled D, 

while those with low α and low vmodel are labeled P (Figure 13, panel B). 
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Figure 13. Sequence-calculated ϕ, α, and vmodel determined the window label. A) Small, open circles 

show ϕ and vmodel for each 25-residue window in the Sup35 sequence. Black-, red-, and blue-filled ellipses 

show the mean ± σ in the folded, IDR null, and PS-IDR test sequence sets, respectively. Windows with ϕ 

above the cutoff boundary (shown by the dashed line) are assigned the label F. B) Small, open circles show 

α and vmodel for each 25-residue window in the Sup35 sequence that was not labeled F (i.e., those with low 

ϕ). Windows with α and vmodel below the cutoff boundary (shown by the dashed line) are assigned the label 

P, while those with α and vmodel above the cutoff boundary are assigned the label D. 

 

 

 

 The P/D boundary is determined by the means and standard deviations in the PS-

IDR test and IDR null sets for α-helix propensity and vmodel (shown in the figure by the 

blue- and red-filled ellipses). Note that the P/D boundary bisects the distribution overlap 

in the two sequence sets in α-helix propensity and vmodel. One point on this boundary line 

was determined by averaging the two points defined by (x1, y1) = (mean - σ in α for the 

IDR null set, mean vmodel for the IDR null set) and (x2, y2) = (mean α for the PS-IDR test 

set, mean + σ in vmodel for the PS-IDR test set). A second point on this boundary line was 

determined by averaging the two points defined by (x1, y1) = (mean α for the IDR null 

set, mean - σ in vmodel for the IDR null set) and (x2, y2) = (mean + σ in α for the PS-IDR 

test set, mean vmodel for the PS-IDR test set). The P/D boundary defined by these two 
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points is,  

vmodel = (-0.244)*α + 0.789. (9) 

The means ± σ in ϕ, α, and vmodel for the three sequence sets, folded, IDR null, and PS-

IDR test, are given in Table 3. 

 

Table 3. Summary of mean values for the protein sequence sets. 

Sequence Set Hydrophobicity (ϕ)a α-helixa vmodel 
a 

Folded 0.116 ± 0.016 1.031 ± 0.043 0.537 ± 0.007 

IDR Null 0.044 ±0.024 1.027 ± 0.067 0.558 ± 0.022 

PS-IDR Null 0.045 ± 0.021 0.960 ± 0.065 0.542 ± 0.020 
a mean ± σ (standard deviation). 

 

Identifying phase-separating regions in proteins using ParSe 2.0 

 Residues in regions within a protein sequence of length ≥ 20 that are at least 90% 

of only one of these labels F, D, or P are predicted by ParSe to be a folded, ID, and PS-

IDR, respectively. This definition was not changed in ParSe 2.0, and Figure 14 shows its 

application to Sup35. This 685-residue protein is known to have three domains; the ID N-

terminal prion domain (residues 1–124), the ID middle domain (residues 125–254), and 

the folded C-terminal catalytic domain (residues 255–685).53,54 Of these domains, only 

the N-terminal prion domain mediates phase separation, which matches the ParSe 2.0 

prediction.53,54 
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Figure 14. ParSe 2.0 prediction for the phase-separating yeast protein Sup35. In the top color bar, 

blue, red, and black regions are those regions within the protein sequence that are predicted to by PS-ID, 

ID, and folded respectively. White-colored regions are segments of the sequence that have mixed F, D, 

and/or P labels. The bottom color bar shows those regions that have been reported by experiment.43 

 

 

 

 To evaluate whether ParSe 2.0 can predict and identify regions of proteins that 

drive phase separation as well as or better than ParSe 1.0, we applied the algorithm to the 

same six model proteins that were analyzed by ParSe 1.0.43 Figure 15 shows the results 

from applying ParSe 2.0 to the whole sequences of additional proteins with diverse 

reported mechanisms driving LLPS. As described in the introduction, LLPS of these 

proteins is driven via different mechanisms, such as protein-protein interactions driven by 

hydrophobic-hydrophobic, cation-π, charge-charge, and aromatic-aromatic contacts.56-66 

The proteins are identified by name and UniProt accession number in this figure. The 

domain-level structure of each is outlined below. Overall, ParSe 2.0 accurately predicted 

regions that drive LLPS in proteins with a variety of reported mechanisms. 
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Figure 15. ParSe 2.0 predicted phase-separating regions in six proteins verified to exhibit LLPS 

behavior. A-F). Proteins are identified by name and UniProt accession number.56-66 Blue regions are PS-

IDR, red regions are IDR, and black regions are Folded. Striped regions represent 80% identify to a known 

sequences that phase separate (blue) or fold (black).67  

 

 

 

Predicted PS regions by ParSe 2.0 are rare in the human proteome 

 We noticed that the proteins in Figures 14 and 15 had predicted phase-separating 

(PS) regions that tended to be long (≥50 residues). To determine if this feature is unique 

to proteins driving LLPS, we measured the prevalence of regions predicted from 

sequence to have high LLPS potential in the human proteome using ParSe 2.0 (Figure 

5.5). These were identified as regions with at least 90% of residue positions labeled as P 

by the algorithm. We found that, like the result from using the original ParSe (~70% of 

the human proteome had a region at least one residue in length with predicted high LLPS 

potential (i.e., a single P-labeled position), while only ~5% have such a region that is at 

least 50 residues in length. This result shows that few human proteins possess a predicted 

PS region of substantial length (≥50 residues). 

 Next, we repeated this calculation for the set of 43 proteins assembled by Vernon 

et al that have been verified in vitro to exhibit phase separation behavior.64 We find that 
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almost 90% of these “in vitro sufficient” LLPS proteins have a region predicted by ParSe 

2.0 to have high LLPS potential that is 50 residues in length or longer. The DisProt 

database, minus the LLPS annotated IDPs, mirrored the human proteome result, 

demonstrating that ID alone is not sufficient to trigger LLPS prediction.69,70 The set of 

proteins in SCOPe (Structural Classification of Proteins extended, version 2.07) that 

represent the globular fold classes across families and superfamilies, were mostly devoid 

of regions predicted to have high LLPS potential by ParSe 2.071,72 Thus, while proteins 

containing long, contiguous P-labeled regions are highly represented in proteins known to 

undergo LLPS, these regions appear relatively unique to this class of proteins. 

 

 
Figure 16. ParSe 2.0 predicted PS-IDRs are rare in the human proteome. The dashed lines are 

calculations from ParSe 2.0; the solid lines are from the original ParSe for comparison.37 Blue is a set of 

confirmed LLPS proteins. Black line is the human proteome.67 Red is the set of consensus IDP sequences 

in the DisProt database minus those annotated for LLPS.69,70 Gray is the set of folded sequences obtained 

from the SCOPe database.71,72 
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Conclusions 

 We have evaluated three intrinsic sequence-based properties to predict protein 

regions that drive phase separation. We achieved this by modifying the ParSe algorithm, 

ParSe 2.0, where we applied the same 25-residue window calculation (same as ParSe 1.0) 

and calculated the amino acid sequence for each window hydrophobicity (ϕ), α-helix, and 

vmodel. This was applied to protein regions that drive LLPS, across different LLPS 

mechanisms. ParSe 2.0 generated similar predictions (compared to ParSe 1.0) of protein 

regions that drive LLPS.43 Interestingly, the addition of the hydrophobicity (ϕ) as a 

property yielded a slightly more accurate prediction of the sequence boundaries between 

Folded, PS-ID, and ID regions. Additionally, ParSe 2.0 continued to identify long PS-

IDRs that are rare in the human proteome. Furthermore, these findings support our 

hypothesis that other intrinsic properties of amino acids are associated with phase 

separation (beyond β-turns propensity and vmodel) that were applied in ParSe 1.0.43 The 

many properties that can be used to predict phase-separating IDRs may reflect the variety 

of molecular mechanisms that drive LLPS. 
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VI. CONCLUSIONS 

 The primary goals of this research study were to 1) expand the previous IDR 

sequence set, 2) determine whether amino acid characteristics other than vmodel  and β-turn 

propensity can define a phase-separating polypeptide, and 3) test whether these amino 

acid characteristics that are associated with phase separating proteins provide insight into 

the mechanisms underlying phase separation.  

 ParSe 1.0 distinguished PS-IDR from non-PS-IDR with the application of just two 

properties: β-turn propensity and vmodel. The ultimate goal of this study was to identify 

other characteristics that can enable us to separate these protein classes. Performing a 

pair-wise comparison between the protein sequence sets and computing a p-value of these 

comparisons helped us identify the probability of two sets to be separated or 

indistinguishable in that property. Furthermore, we have thoroughly characterized and 

identified that, surprisingly, most amino acid properties from the database could separate 

PS-IDRs, IDRs, and Folded regions beyond vmodel and beta-turn propensity.  

 To identify trends and/or shared characteristics within the multitude of properties 

that distinguish folded, ID, and PS-IDR sequences, we used principal component analysis 

(PCA) to analyze the variances in these properties in the human proteome. If a particular 

group of amino acid characteristic scales captured similar variances, then we could 

interpret those scales as separating the protein sequence sets in a similar way. PCA 

enabled us to identify two primary modes of variation: conformational and 

physiochemical. A structure-based (physiochemical) hydrophobicity structure scale best 

separated IDR from Folded sequence sets (Vendruscolo).85 Additionally, an α -helix 
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(conformational) propensity scale and vmodel (also physiochemical) efficiently separated 

PS-IDR from IDR.84 

 Finally, we evaluated whether ParSe 2.0 was an improvement over ParSe 1.0 at 

predicting domain-level protein structure for phase-separating IDRs. When compared to 

ParSe 1.0, ParSe 2.0 produced similar predictions of protein regions that drive LLPS, 

across different LLPS mechanisms. This may be expected, as there was not a 

fundamental change in the methodology of prediction; ParSe 2.0 employed both 

physiochemical (vmodel and hydrophobicity) and conformational (alpha-helix propensity) 

characteristics of polypeptides. Consistent with these results, ParSe 2.0 continues to 

identify long regions of predicted PS-IDR as rare within the human proteome (~5% of the 

human proteome contains PS-IDR regions of at least 50 residues). In contrast, 90% of the 

experimentally verified proteins that drive phase separation in vitro have PS-IDR regions 

of at least 50 residues.  

 These results support the idea that additional intrinsic properties of amino acids 

and polypeptide sequences can be associated with LLPS, beyond the β-turn propensity 

and vmodel that were used in ParSe 1.0. Additionally, those properties found to be 

associated with phase-separating proteins may give insight into the physical mechanisms 

underlying LLPS. For example, the polymer scaling exponent describes the balance of 

self-interaction and solvent interaction of a polypeptide. Additionally, ParSe 2.0 now 

incorporates two orthogonal classes of amino acid properties that were identified by 

PCA: a physiochemical dimension (i.e., hydrophobicity, charge, flexibility) and a 

conformational dimension (i.e., measures of secondary structure propensity, such as beta-

turn propensity or alpha-helix propensity).  
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 IDPs are frequently involved in promoting protein phase separation. However, not 

all IDPs, nor all IDRs within an IDP, necessarily contribute to this behavior. Many IDRs 

that phase separate consist of low-complexity sequences. Electrostatic interactions, pi-pi 

contacts, hydrophobic-driven burial are examples of various multivalent interactions of 

IDRs that promote phase separation. These interactions can be related to two of the 

sequence-based properties of ParSe 2.0: vmodel and hydrophobicity. As previously 

mentioned IDPs are highly predictable from sequence, in part, because many of them 

contain low-complexity sequences. The contribution of hydrophobic, electrostatic, and 

pi-pi contacts have significant impact on folded protein structures, conformational 

distributions of IDPs, and phase separation properties.   

Mutations in IDRs have been implicated in a wide variety of disease states, 

including neurodegeneration and carcinogenesis. Because IDRs lack a fixed three-

dimensional structure, it is difficult to study how mutations in IDRs lead to disease states. 

While not every mutation in an IDR will affect its propensity for driving phase 

separation, ParSe 2.0 is a tool that can now be tested for its ability to predict how a 

particular mutation may alter the phase-separation propensity of an IDR.  

 This predictive power can be used not only to characterize disease-associated 

mutations, but also to systematically probe how IDR sequence can give rise to phase-

separation behavior, as well as to investigate what sequence changes in PS-IDRs are 

sufficient to disrupt LLPS. Furthermore, the presence or absence of these interactions can 

enable us to understand the biological consequences of changing the phase-separation 

propensity of IDRs This will ultimately enable us to better understand both the 

underlying biophysics and disease-associated properties of IDRs.  
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APPENDIX SECTION 

Table 4. Expanded IDR sequence set (IDPs that are not known to exhibit phase separation). 

Name Database a Entry number 

UniProt 

accession 

number 

ID region 

(N) 

pknG BMRB 26027 P9WI73 1-75 (75) 

HCK BMRB 27554 P08631 2-79 

SIC1 BMRB 16657 P38634 1-90 (90) 

SLC9A1 BMRB 26557 P19634 
680-815 

(136) 

ERD14 BMRB 16876 P42763 1-185 (185) 

Spp1 DisProt DP01448 P10923 17-294 (278) 

PAGE4 DisProt DP01435 O60829 1-102 (102) 

MAP2K4 DisProt DP01400 P45985 1-86 (86) 

Sufu DisProt DP01397 Q9Z0P7 279-359 (81) 

HCN1 DisProt DP01317 O60741 1-93 (93) 

SUFU DisProt DP01312 Q9UMX1 279-360 (82) 

PQBP1 DisProt DP01308 O60828 82-265 (184) 

HIRD11 DisProt DP01300 Q9SLJ2 1-98 (98) 

LEA18 DisProt DP01299 Q96273 1-97 (97) 

PSEN1 DisProt DP01292 P49768 1-77 (77) 

Prothymo

sin a14 
DisProt DP01228 Q9UMZ1 1-101 (101) 

Ppp1r10 DisProt DP01202 O55000 
309-433 

(125) 

NOLC1 DisProt DP01178 Q14978 1-699 (699) 

Gja4 DisProt DP01175 P28235 
233-333 

(101) 

DCLRE1

C 
DisProt DP01162 Q96SD1 480-575 (96) 

ptkA DisProt DP01160 P9WPI9 1-81 (81) 

H1-0 DisProt DP01156 P07305 105-194 (90) 

Ttn-1 DisProt DP01090 A0A2I2LG13 
2793-6678 

(3886) 

PM28 DisProt DP01088 Q9XES8 1-89 (89) 
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YRB2 DisProt DP01079 P40517 1-203 (203) 

Ahn-1 DisProt DP01074 Q7YUB9 1-86 (86) 

MSA2 DisProt DP01067 P19599 21-238 (218) 

LMP2A DisProt DP01060 A8CDV5 1-118 (118) 

Omega 

gliadin 

storage 

protein 

DisProt DP01040 Q9FUW7 1-280 (280) 

SLE2 DisProt DP01036 I1JLC8 1-105 (105) 

pscP DisProt DP00993 Q9I332 1-253 (253) 

Small 

delta 

antigen 

DisProt DP00965 P0C6L3 60-195 (136) 

SBDS-

like 

protein 

DisProt DP00957 C0J347 
264-464 

(201) 

GAP43 DisProt DP00955 P06836 1-242 (242) 

N DisProt DP00948 P59595 182-259 (78) 

Ppp1r9b DisProt DP00943 O35274 1-154 (154) 

BASP1 DisProt DP00930 P80723 1-227 (227) 

NABP2 DisProt DP00864 Q9BQ15 
110-211 

(102) 

trm10 DisProt DP00798 O14214 1-83 (83) 

CNGB1 DisProt DP00768 Q28181-4 

14-99 (86) 

272-590 

(319) 

Smtnl1 DisProt DP00742 Q99LM3 1-341 (341) 

dre4 DisProt DP00721 Q8IRG6 
889-1044 

(156) 

Ssrp DisProt DP00720 Q05344 

437-554 

(118) 

625-723 (99) 

N DisProt DP00698 O89339 
400-532 

(133) 

RYBP DisProt DP00694 Q8N488 1-228 (228) 

L1CAM DisProt DP00666 P32004 
1144-1257 

(114) 

GMPM1 DisProt DP00664 Q01417 1-173 (173) 
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ALB3 DisProt DP00662 Q8LBP4 
339-462 

(124) 

MAC-

41A 
DisProt DP00659 P16458 

233-385 

(153) 

COR47 DisProt DP00657 P31168 1-265 (265) 

N DisProt DP00640 Q89933 
400-525 

(126) 

ERD10 DisProt DP00606 P42759 1-260 (260) 

Genome 

polyprote

in 

DisProt DP00588 P27958 1-82 (82) 

stm DisProt DP00584 A2VD23 1-613 (613) 

SEPTIN4 DisProt DP00537 O43236 1-119 (119) 

DHN1 DisProt DP00530 P12950 1-168 (168) 

MYOM1 DisProt DP00517 P52179 836-931 (96) 

NUPR1 DisProt DP00510 O60356 1-82 (82) 

UBA2 DisProt DP00486 Q9UBT2 551-640 (90) 

HY5 DisProt DP00469 O24646 1-77 (77) 

cna DisProt DP00461 P08083 1-90 (90) 

Chm DisProt DP00458 P37727 
108-208 

(101) 

PPP1R1

B 
DisProt DP00421 P07516 1-202 (202) 

JAG1 DisProt DP00418 P78504 
1094-1218 

(125) 

URE1 DisProt DP00353 P23202 1-90 (90) 

DNAJC6 DisProt DP00351 Q27974 
547-813 

(267) 

col DisProt DP00342 P09883 1-83 (83) 

Trl DisProt DP00328 Q08605 368-444 (77) 

PPP1R1

A 
DisProt DP00325 P01099 1-166 (166) 

ADD2 DisProt DP00241 P35612 
409-726 

(318) 

ADD1 DisProt DP00240 P35611 
430-737 

(308) 

SSB DisProt DP00229 P05455 326-408 (83) 
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Nucleopl

asmin 
DisProt DP00217 P05221 120-200 (81) 

CAST DisProt DP00196 P20810 
137-277 

(141) 

HMGN2 DisProt DP00195 P02313 1-89 (89) 

Late 

embryog

enesis 

abundant 

protein 1 

DisProt DP00186 Q95V77 1-143 (143) 

CTDP1 DisProt DP00177 Q9Y5B0 879-961 (83) 

TCF7L2 DisProt DP00175 Q9NQB0 1-130 (130) 

zipA DisProt DP00161 P77173 86-185 (100) 

RAD23A DisProt DP00156 P54725 79-160 (82) 

NEFL DisProt DP00151 P02547 
444-549 

(106) 

Slbp DisProt DP00144 Q9VAN6 97-175 (79) 

PTHLH DisProt DP00138 P12272 68-144 (77) 

H1-4 DisProt DP00136 P15865 1-217 (217) 

PRB4 DisProt DP00119 P10163 17-310 (294) 

H1-0 DisProt DP00097 P10922 96-193 (98) 

TOP2 DisProt DP00076 P06786 
1178-1428 

(251) 

TOP1 DisProt DP00075 P11387 1-214 (214) 

Structural 

polyprote

in 

DisProt DP03350 P03316 1-113 (113) 

RPA1 DisProt DP00061 P27694 105-180 (76) 

HMGA1 DisProt DP00040 P17096 1-107 (107) 

HMGN2 DisProt DP00039 P05204 1-90 (90) 

RAP1 DisProt DP00020 P11938 1-123 (123) 

a The Biological Magnetic Resonance Data Bank (BMRB) and DisProt were used to identify IDPs not 

known to exhibit phase separation behavior.69,70,73 This list of verified IDPs, where duplicates were 

removed and was combined with a list of 23 verified IDPs that are identified and published elsewhere.43 
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Table 5. Normalized frequency for β-turn. 

Amino Acid Scale value a 

Alanine 0.770 

Arginine 0.880 

Asparagine 1.280 

Aspartic Acid 1.410 

Cysteine 0.810 

Glutamine 0.980 

Glutamic Acid 0.990 

Glycine 1.640 

Histidine 0.680 

Isoleucine 0.510 

Leucine 0.580 

Lysine 0.960 

Methionine 0.410 

Phenylalanine 0.590 

Proline 1.910 

Serine 1.320 

Threonine 1.040 

Tryptophan 0.760 

Tyrosine 1.050 

Valine 0.470 
a From Levitt.51 
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Table 6. Intrinsic PPII bias measured in peptides. 

Amino Acid Scale value a 

Alanine 0.37 

Arginine 0.38 

Asparagine 0.27 

Aspartic Acid 0.30 

Cysteine 0.25 

Glutamine 0.53 

Glutamic Acid 0.42 

Glycine 0.13 

Histidine 0.20 

Isoleucine 0.39 

Leucine 0.24 

Lysine 0.56 

Methionine 0.36 

Phenylalanine 0.17 

Proline 1.00 

Serine 0.24 

Threonine 0.32 

Tryptophan 0.25 

Tyrosine 0.25 

Valine 0.39 
a From Hilser Group.87 
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Table 7. Hydrophobicity scale used for optimized simulation methods for LLPS. 

Amino Acid Scale value a 

Alanine 0.51507 

Arginine 0.24025 

Asparagine 0.78447 

Aspartic Acid 0.30525 

Cysteine 0.46169 

Glutamine 0.29516 

Glutamic Acid 0.342621 

Glycine 01.24153 

Histidine 0.55537 

Isoleucine 0.83907 

Leucine 0.51207 

Lysine 0.47106 

Methionine 0.64648 

Phenylalanine 1.17854 

Proline 0.34128 

Serine 0.11195 

Threonine 0.27538 

Tryptophan 0.97588 

Tyrosine 1.04266 

Valine 0.55645 
a From Robert Best.80 
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Table 8. Normalized frequency of alpha-helix. 

Amino Acid Scale value a 

Alanine 1.29 

Arginine 0.83 

Asparagine 0.77 

Aspartic Acid 1.00 

Cysteine 0.94 

Glutamine 1.10 

Glutamic Acid 1.54 

Glycine 0.72 

Histidine 1.29 

Isoleucine 0.94 

Leucine 1.23 

Lysine 1.23 

Methionine 1.23 

Phenylalanine 1.23 

Proline 0.70 

Serine 0.78 

Threonine 0.87 

Tryptophan 1.06 

Tyrosine 0.63 

Valine 0.97 
a From Scheraga.84 
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Table 9. Structure-based Hydrophobicity scale. 

Amino Acid Scale value a 

Alanine 0.0728 

Arginine 0.0394 

Asparagine 0.0390 

Aspartic Acid 0.0552 

Cysteine 0.3557 

Glutamine 0.0126 

Glutamic Acid 0.0295 

Glycine 0.0589 

Histidine 0.0874 

Isoleucine 0.3805 

Leucine 1.23 

Lysine 0.0053 

Methionine 0.1613 

Phenylalanine 0.4201 

Proline 0.0492 

Serine 0.0282 

Threonine 0.0239 

Tryptophan 0.4114 

Tyrosine 0.3113 

Valine 0.2947 
a From Vendruscolo and coworkers.85 
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