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SOME CONSTANCY RESULTS FOR HARMONIC MAPS

FROM NON-CONTRACTABLE DOMAINS INTO SPHERES

Kewei Zhang

Abstract. We use the Pohozaev identity on sub-domains of a Euclidean r-neighbourhood

for a closed or broken curve to show that harmonic maps from such domains into

spheres with constant boundary value remain constant.

§1. Introduction

In this paper we generalize a constancy result for harmonic maps from a non-star
shaped domain in R3 to the sphere S2 obtained by Chou and Zhu [CZ]. In [CZ] a
special class of non-star shaped domains was constructed by rotating a curve which
is carefully designed by using inversions in Euclidean spaces. The first result of the
present paper is to generalize this result to domains including all smooth rotational
ones (Theorem 1). For domains in Rm withm ≥ 3, we can show that the same result
holds on a tubular neighbourhood (see e.g. [S, I. Cha.9]) of a closed planar curve
under a nondegeneracy condition for closed geodesic in planar domains (Theorem
3). One such example is the tubular neighbourhood of a closed convex curve such
as the solid torus. When m ≥ 4, we can show that the same claim is true for a thin
tubular neighbourhood of any smooth embedded curve with an orthogonal moving
frame. We state the results only for u : Ω ⊂ R3 → S2 although they can be easily
proved for higher dimensional cases. The only exception is Theorem 4 where we
can only prove the result for domains at least in R4.
It is well known that if either Ω ⊂ R2 is contractable [L] or Ω ⊂ Rm is star-shaped

with m ≥ 3 [W], the constancy result holds. If one perturb a star-shaped domain
in a C2 manner, one expect to have the so-called ‘nearly star-shaped’ domains and
the constancy result is still true [DZ]. It is also known that if the boundary of the
domain ∂Ω is disconnected, the constancy result fails [BBC].
The method we use is the Pohozaev identity (see [P,PS,CZ]). We carefully divide

the original domain into sub-domains which are thin slices of the original domain
such that each sub-domain is star-shaped with respect to some specific point on
a curve. We apply Pohozaev identity on each of these sub-domains and use the
the constacy condition u = u0 only on part of its boundary. We then obtain
an inequality on each sub-domains. We sum up the resulting terms and use the
definition of Riemann integral. In the limit, we obtain an inequality connecting two
volume integrals. We reach our conclusions by comparing quatities on both sides
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of the inequality. Some results on shortest path in an Euclidean domain in R2 (or
geodesics in such a domain) are used.
A smooth mapping u : Ω ⊂ Rm → Sn is harmonic if

−∆u = u|Du|2 in Ω (1)

and u is a critical point of the total energy E(u) =
∫
Ω
|Du|2dx.

Let Ω ⊂ Rm be piecewise smooth and u ∈ C2(Ω, Sn) ∩ C1(Ω̄, Sn) be a smooth
solution of (1). Let ν(x) = (ν1(x), · · · , νm(x)) be the outward normal vector at
x ∈ ∂Ω, and let h = (h1, h2, · · · , hm) be a smooth vector field on Ω̄. Then (see
[CZ])

∂

∂xα

(
hα|Du|

2 − 2hβ
∂uk
∂xα

∂uk
∂xβ

)
=
∂hα
∂xα
|Du|2 − 2

∂hβ
∂xα

∂uk
∂xα

∂uk
∂xβ
, (2)

where the summation convention is assumed with 1 ≤ α, β ≤ m and 1 ≤ k ≤ n+1.
Recall that a domain Ω is star-shaped if there is a point x0 ∈ Ω such that the line
segment x0x is contained in Ω. For convenience, we call x0 the central point of Ω if
Ω is star-shaped with respect to x0.

§2. Main Results

Theorem 3 below covers Theorems 1 and 2. However, since the proofs of both
theorems are needed for establishing Theorem 3, we prove them separately.

Theorem 1. Suppose Ω ⊂ R3 is a smooth domain and the orthogonal projection
of the domain to the first component is an interval [a, b]. We assume that there is
a δ > 0, such that for all a ≤ t1 < t2 ≤ b, |t2 − t1| ≤ δ, the set

Ωt1,t2 = {x = (x1, x2, x3) ∈ Ω, t1 ≤ x1 ≤ t2}

is star shaped and there is some t0 ∈ [t1, t2] such that x0 = (t0, 0, · · · , 0) is a central
point. Let u : Ω̄ → S2 ⊂ R3 be a smooth harmonic map such that u(x) = u0 ∈ S2

on ∂Ω for some constant u0. Then u ≡ u0 in Ω̄.

Remark 1. The rotational domains are a special case of those defined in Theorem
1. More precisely, suppose x2 = f(x1) > 0 is a smooth function defined in [a, b],
then the rotation of the the two dimensional region bounded by f and x1 axis
around Rm−2 defines the domain. In particular, the domain we defined is much
more general that the one given by [CZ].
Let γ : [0, l] → R

m be an simple, smooth and convex curve with bounded
curvatures. Then it is easy to see that the r-neighbourhood

Ωr = {x ∈ R
m, dist(x, γ) < r}

is a tubular neighbourhood of γ with (m−1)-dimensional open balls of radius r as its
fibres. If γ is a broken curve, Ωr is the union of a tubular neighbourhood ∪0<s<lBs
and two half-balls at each end of the curve, where Bs is an m− 1-dimensional open
ball lying in the normal hyperplane of γ(s) and is centred at γ(s).



EJDE–2000/45 Some constancy results for harmonic maps 3

Theorem 2. Let γ ⊂ R2 be a smooth, closed convex curve with maximal curvature
k0 > 0. Let Ωr be the r-neighbourhood of γ in R

3 with 0 < rk0 < 1. Suppose
u : Ω̄r → S2 is a smooth harmonic map such that u = u0 on the boundary. Then
u ≡ u0 in Ω̄r.

Remark 2. Let R3 = R2×R, and Ωr be the tubular domain of γ defined in Theorem
2. We see that the boundary of the two-dimensional domain Ωr∩R2×{0} consists of
two disconnected convex curves. The inner curve is a closed geodesic of Ωr∩R2×{0}
with curvature 1 − rk(s). The intersection of the normal plane in R3 of the inner
curve and Ωr is a disc with radius r, so it is a convex two dimensional set. In fact,
use these two properties of Ωr to prove Theorem 1. In the proof we shall see that
if the intersection is a copy of the same convex set up to a rigid motion, the proof
can still go through. We have

Corollary 1. Suppose γ is defined as in Theorem 2. Let [a, b] × γ be a closed
cylinder and Gr be the r-neighbourhood of γ× [a, b] with rk0 < 1. Then any smooth
harmonic map from Ḡr to S

2 with constant boundary value remains a constant in
Ḡr.

The following result is more general than Theorem 1 and 2. We need some
technical assumptions on the geodesic (locally shortest path) in the tubular neig-
bourhood Ωr of the curve. It is known that for a smooth, compact and connected
manifold M with boundary, there is a geodesic of class C1,1 connecting any two
points in M . If the fundamental group of M is nontrivial, that is π1(M) 6= {0},
then there is a nontrivial geodesic of class C1,1 ([A,S,ABB,ABL,AB,C1,C2] and the
references therein). In a closed Jordan region on the plane, the geodesics are known
as the locally shortest paths [BR, BH].

We are interested in tubular neighbourhoods of an embedded planar curve γ.
(closed or broken). If γ is closed, it is not hard to show that there is a closed geodesic
(or locally shortest curve) which is homotopic to γ, following the arguments in [BR]
or [S]. If γ : [0, l] → R2 is broken, the r-neighbourhood Ωr ∩ R2 × {0} of γ is a
Jordan region for small r > 0 and the shortest path connecting γ(0) and γ(l) is
unique [BR]. Furthermore, in both cases, the geodesics are of class C1,1 (see, for
example [C1,C2]).

The geometric descriptions for geodesics in domains of Rn can be found, for
example, in [AB]: A geodesic contacting the boundary in a segment is a geodesic of
the boundary (in R2, it is part of the boundary); a geodesic segment not touching
the boundary is a straight line segment. A segment on the boundary joins a segment
in the ambient space in a differentiable join. An endpoint on the boundary of a
segment not touching the boundary is called a switching point. The accumulation
points of switching points are called intermittent points.

We need some technical conditions on the tubular domains which exclude the
intermittent points. The reason for such assumptions is purely for avoiding technical
complications.

Hypothesis (H1). If γ ⊂ R2 × {0} is closed and γ0 is a closed geodesic in Ω̄r ∩
R
2 × {0} which is homotopic to γ, where Ωr ⊂ R3 is a tubular neighbourhood of γ.
Then

(i) γ0 has finite number of switching points, hence it does not have intermittent
points;
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(ii) there is a δ > 0, such that for every straight line segment µ ⊂ γ0 lying
inside Ωr ∩ R2 × {0} and any p, q ∈ µ with |p − q| ≤ δ, the sub-domain of
Ωr bounded by normal planes of µ passing through p and q respectively is a
star-shaped domain with any point on µ between p and q a central point.

Hypothesis (H2). If γ : [0, l] → R2 is broken with γ(0) = p 6= q = γ(l). Let p′ =
p− γ̇(0)r, q′ = q+ γ̇(l)r. Then for r > 0 sufficiently small, p′, q′ ∈ ∂(Ωr∩R2×{0}).
Let γ0 be the geodesic in Ωr ∩R2 × {0} connecting p′ and q′. Then

(i) γ0 has finite number of switching points, hence it does not have intermittent
points;

(ii) there is a δ > 0, such that for every straight line segment µ ⊂ γ0 lying
inside Ωr ∩ R2 × {0} and any a, b ∈ µ with |a − b| ≤ δ, the sub-domain of
Ωr bounded by normal planes of µ passing through p and q respectively is a
star-shaped domain with any point on µ between p and q a central point.

Theorem 3. γ ⊂ R2 be a smooth closed or broken curve with maximal curvature
k0 > 0. Let Ωr be the r-neighbourhood of γ in R

3 with 0 < rk0 < 1 satisfying (H1)
(or (H2) respectively). Then, if u : Ω̄r → S2 is a smooth harmonic map such that
u is a constant u0 on the boundary, Then u ≡ u0 in Ω̄r.

Notice that if γ is not a closed curve, Ωr is not a C
2 domain. However, we can

perturb it slightly near both ends of Ωr to make it C
2. For simplicity, we just

prove the result on Ωr. Theorem 4 below deals with the constancy problem in
general tubular neighbourhoods of embedded curves under a technical condition.
We assume that there is a smooth orthogonal moving frame along the curve [S, Ch
1]. Suppose that γ : [0, l]→ Rm is a smooth curve parameterized by its arc-length
s ∈ [0, l]. We also assume that there is a smooth orthogonal basis e2(s), · · · , en(s)
on the normal hyperplane of γ(s). Let γ̇(s) = e1(s). Then

ė1(s) = −k1(s)e2,

ėj(s) = kj−1(s)ej−1 − kj(s)ej+1, 2 ≤ j ≤ m− 1,

ėm(s) = km−1em−1.

We call k1(s) the first curvature of γ and E(s) a moving orthogonal frame along γ.
We have

Theorem 4. Suppose n ≥ 2 and m ≥ 4. Suppose that γ is an embedded smooth
curve (closed or not closed) in Rm with a smooth orthogonal moving frame. Let
k1(s) be the first curvature of γ and Ωr be its r-neighbourhood in R

m. Then for
sufficiently small r > 0, the only smooth harmonic map u from Ω̄r to S

n with
constant boundary value u0 is u ≡ u0.

§3. Proofs of the main results

Proof of Theorem 1. We divide [a, b] evenly as a = t0 < t1 < · · · < tN = b, with
tk+1 − tk = (b− a)/N , i = 0, 1, 2, . . . ,N such that (b− a)/N < δ. Let

Ωi = {x ∈ Ω, ti ≤ x1 ≤ ti+1}

for i = 0, 1, · · · ,N − 1. From the property of Ω, we see that Ωi is star-shaped and
there is some t′i ∈ [tk, tk+1] such that x

i = (t′i, 0, · · · , 0) is a central point of Ωi. We
divide the boundary of Ωi into three parts:

∂Ωi = Γi ∪ Γi+1 ∪ Si,
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where Γi = {x ∈ Ω̄, x1 = ti}, and Si = ∂Ω ∪ Ω̄i. Notice that both Γ0 and ΓN are
contained in ∂Ω. Now, we apply (2) with m = 3 to u over the domain Ωi for each
fixed i with h = x− xi. Since ∂hα

∂xβ
= δα,β and

∂hα
∂xα
= 3,, we have,

∂

∂xα

(
hα|Du|

2 − 2hβ
∂uk
∂xα

∂uk
∂xβ

)
= |Du|2 (3)

for x ∈ Ωi. Integrating both sides of (3) and applying the divergence theorem, we
obtain ∫

∂Ωi

(
(xα − x

i
α)|Du|

2 − 2(xβ − x
i
β)
∂uk
∂xβ

∂uk
∂xα

)
ναdS =

∫
Ωi

|Du|2dx. (4)

Since on Sk, Γ0 and ΓN , we have assumed that u = u0, we have

(xβ − x
i
β)
∂uk
∂xβ

∂uk
∂xα
να = |Du|

2〈(x− xi), ν〉,

where 〈·, ·〉 denotes the inner product in R3. Therefore (4) can be rewritten as∫
∂Ωi

(
|Du|2〈x− xi, ν〉 − 2〈Duk, x− x

i〉〈Duk, ν〉
)
=

∫
Ωi

|Du|2dx. (4’)

Now, if 0 < i < N − 1, we have∫
∂Ωi

(
|Du|2〈x− xi, ν〉 − 2〈Duk, x− x

i〉〈Duk, ν〉
)
dS

=−

∫
Si

|Du|2〈x− xi, ν〉dS

+

∫
Γi+1

(
|Du|2〈x− xi, ν〉 − 2〈Duk, x− x

i〉〈Duk, ν〉
)
dS

−

∫
Γi

(
|Du|2〈x− xi, ν〉 − 2〈Duk, x− x

i〉〈Duk, ν〉
)
dS

≤

∫
Γi+1

(
|Du|2〈x− xi, ν〉 − 2〈Duk, x− x

i〉〈Duk, ν〉
)
dS

−

∫
Γi

(
|Du|2〈x− xi, ν〉 − 2〈Duk, x− x

i〉〈Duk, ν〉
)
dS,

(5)

where we choose the normal direction of Γi as towards the positive side of the
x1-axis. If i = 0, we have∫

∂Ω0

(
|Du|2〈x− x0, ν〉 − 2〈Duk, x− x

0〉〈Duk, ν〉
)
dS

=−

∫
S0

|Du|2〈x− x0, ν〉dS

+

∫
Γ1

(
|Du|2〈x− x0, ν〉 − 2〈Duk, x− x

0〉〈Duk, ν〉
)
dS

−

∫
Γ0

|Du|2〈x− x0, ν〉dS

≤

∫
Γ1

(
|Du|2〈x− x0, ν〉 − 2〈Duk, x− x

0〉〈Duk, ν〉
)
dS,

(6)
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where the normal direction of Γ0 is the outward normal direction of Ω0. Similarly,
When i = N − 1, we have,∫

∂ΩN−1

(
|Du|2〈x− xN−1, ν〉 − 2〈Duk, x− x

N−1〉〈Duk, ν〉
)
dS

≤ −

∫
ΓN−1

(
|Du|2〈x− xN−1, ν〉 − 2〈Duk, x− x

N−1〉〈Duk, ν〉
)
dS.

(7)

Now we sum up (5), (6) and (7) for i = 0, 1, · · · ,N − 1 and compare the resulting
inequality with (4’), we have

N−1∑
i=0

∫
Ωi

|Du|2dx =

∫
Ω

|Du|2dx

≤
N−1∑
i=0

∫
Γi+1

(
|Du|2〈xi+1 − xi, ν〉 − 2〈Duk, x

i+1 − xi〉〈Duk, ν〉
)
dS.

(8)

Since xi+1 − xi = (t′i+1 − t
′
i, 0, 0) and the normal vector ν on Γi+1 is (1, 0, 0), we

have, from (8) that

∫
Ω

|Du|2dx ≤
N−1∑
i=0

[∫
Γi+1

(
|Du|2 − 2

∣∣∣∣ ∂u∂x1
∣∣∣∣
2
)
dS

]
(t′i+1 − t

′
i).

Now we let N →∞ and use the definition of Riemann integral to obtain

∫
Ω

Du|2dx ≤

∫
Ω

|Du|2dx− 2

∫
Ω

∣∣∣∣ ∂u∂x1
∣∣∣∣
2

dx.

Hence ∫
Ω

∣∣∣∣ ∂u∂x1
∣∣∣∣
2

dx = 0, so that
∂u

∂x1
= 0

in Ω. Thus u ≡ u0.

Proof of Theorem 2. Let γ : [0, l]→ R2 be a C2 closed embedded convex curve pa-
rameterized by its arc-length, γ(0) = γ(l). We take the curve as along the counter-
clockwise direction so that when travelling along the curve, the region bounded by
it is on the left side. We assume that the curvature bound 0 ≤ k(s) ≤ k0. We write

γ = (x1(s), x2(s)) and β(s) = (−ẋ2(s), ẋ1(s)),

where β(s) is the unit normal vector pointing towards the interior of the region.
Let Ω̄r be the closed r-neighbourhood in R

3 = R2 × R, where 0 < rk0 < 1 so that
the mapping

F : (s, t, z)→ γ(s) + tβ(s) + ze23

is periodic in s with period l. F is smooth and is both one-to-one and onto from
[0, l)× B̄r(0) to Ω̄r, with F (0, ·) = F (l, ·) where e3 is the unit vector normal to the
plane and

B̄r(0) = {(t, z) ∈ R
2, t2 + z2 ≤ r2}



EJDE–2000/45 Some constancy results for harmonic maps 7

is the closed disc in R2. The Jacobian of this mapping is 1 − tk(s), where k(s) is
the curvature of γ. Now we take the inner curve of the tubular domain defined as
γr(s) = γ(s) + rβ(s) and divide [0, l] evenly as

0 = s0 < s1 < · · · sN−1 < sN = l, sk+1 − sk =
l

N
, k = 0, 1, · · ·N − 1

and let s′k be the mid-point of [sk, sk+1]. We let Γi be the intersection of the normal
plane of γr at s = si and Ωr. We then define Ω̄i be the closed sub-domain of Ωr
bounded by Γi and Γi+1. Notice that γr is a closed convex curve so that ΓN = Γ0
and ΩN = Ω0. Similar to the proof of Theorem 1, we apply (4’) to each Ωi with
hi(x) = x− γr(s′i). We have∫

∂ωi

(
|Du|2〈hi(x), ν〉 − 2〈Duk, h

i(x)〉〈Duk, ν〉
)
dS =

∫
ωi

|Du|2dx. (9)

As in the proof of Theorem 1, we let Ii and Ji be the left and right hand sides of
(9) and let ∂Ωi = Γi ∪ Γi+1 ∪ Si, where Si = ∂Ωi ∩ ∂Ωr. Let us first consider the
surface integral over Si ⊂ ∂Ωr and notice that u = u0 which is a constant on Si, so
(5) gives

∫
Si

(
|Du|2〈hi(x), ν〉 − 2〈Duk, h

i(x)〉〈Duk, ν〉
)
dS = −

∫
Si

∣∣∣∣∂u∂ν
∣∣∣∣
2

〈hi, ν〉dS. (10)

Since 〈hi, ν〉 is not necessarily positive on Si from our choice of the centre γr(s′i),
we need to find a bound. A general point x ∈ Si can be written as

x = γ(s) + tβ(s) + ze3

with t2 + z2 = r2, for some s ∈ [si, si+1] and the outward normal vector at x is

ν = tβ(s) + ze3.

Recall that γr(s
′
i) = γ(s

′
i) + rβ(s

′
i), we then have

〈hi, ν〉 = 〈x− γr(s
′
i), ν〉

= 〈γ(s) + tβ(s) + ze3 − [γ(s
′
i) + rβ(s

′
i)], tβ(s) + ze3〉

= 〈γ(s)− [γ(s′i) + rβ(s
′
i)], tβ(s)〉 + t

2 + z2

= 〈γ(s)− γ(s′i), tβ(s)〉 + r
2 − rt〈β(s), β(s′i)〉

≥ t〈γ(s)− γ(s′i), β(s)〉.

Here we have used the fact that |t| ≤ r and |〈β(s), β(s′i)〉| ≤ 1 because |β| = 1.
Now, by using Taylor’s expansion we have,

t〈γ(s)− γ(s′i), β(s)〉

= t〈γ(s)− γ(s′i), β(s)− β(s
′
i)〉+ t〈γ(s)− γ(s

′
i), β(s

′
i)〉

= t〈

∫ s
s′i

γ̇(τ)dτ,

∫ s
s′i

β̇(η)dη〉 + t〈γ̇(s′i)(s− s
′
i) +

1

2
γ̈(ξi)(s − s

′
i)
2, β(s′i)〉

≥ −tk0(s− s
′
i)
2 −
k0
2
(s− s′i)

2 ≥ −
3rk0
2

(
l

2N

)2
,

(11)
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where we have used the facts that γ̇(s′i) ⊥ β(s
′
i), |β̇(η)| = k(η) ≤ k0, and |γ̈(ξi)| =

|k(xi)| ≤ k0, with xi a point between s and s′i given by the Taylor expansion. Thus
the right hand side of (10) has the following upper bound

−

∫
Si

∣∣∣∣∂u∂ν
∣∣∣∣
2

〈hi, ν〉dS ≤
3rk0l

2

16N2

∫
Si

∣∣∣∣∂u∂ν
∣∣∣∣
2

dS.

Now we sum up Ii’s as in the proof of Theorem 1 to obtain

N−1∑
i=0

Ii ≤
3rk0l

2

8N2

N−1∑
i=0

∫
Si

∣∣∣∣∂u∂ν
∣∣∣∣
2

dS

+
N−1∑
i=0

∫
Γi+1

(
|Du|2〈γr(s

′
i+1)− γr(s

′
i), ν〉 − 2〈Duk, γr(s

′
i+1)− γr(s

′
i)〉〈Duk, ν〉

)
dS

= A1 +A2,
(12)

where

A1 =
3rk0l

2

8N2

N−1∑
i=0

∫
Si

∣∣∣∣∂u∂ν
∣∣∣∣
2

dS =
3rk0l

2

16N2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣
2

dS → 0 (13)

as N →∞;

A2 =
N−1∑
i=0

∫
Γi+1

(
|Du|2〈γr(s

′
i+1)−γr(s

′
i), ν〉−2〈Duk, γr(s

′
i+1)−γr(s

′
i)〉〈Duk, ν〉

)
dS.

Notice that ΓN = Γ0, ν = γ̇(si+1),

〈γr(s
′
i+1)− γr(s

′
i), ν〉 =〈γ̇r(si+1)(s

′
i+1 − s

′
i), γ̇(si+1)〉+ 〈

1

2
γ̈r(xi+1)(s

′
i+1 − si+1)

2

−
1

2
γ̈r(ηi+1)(si+1 − s

′
i)
2, γ̇(si+1)〉,

where ξi+1 and ηi+1 are two points in (si+1, s
′
i+1) and (s

′
i, si+1) respectively. Now

we have

〈γ̇r(si+1)(s
′
i+1 − s

′
i), γ̇(si+1)〉 = 〈γ̇(si+1) + rβ̇(si+1), γ̇(si+1)〉(s

′
i+1 − s

′
i)

= [1− rk(si+1)](s
′
i+1 − s

′
i).

(14)

Since γ is of C2, there is a constant C0 > 0 such that |γ̈(s)| ≤ C0 for all s ∈ [0, l].
Therefore we also have∣∣∣∣〈12 γ̈r(xi+1)(s′i+1 − si+1)2 − 12 γ̈r(ηi+1)(si+1 − s′i)2, 〉

∣∣∣∣
≤
1

2
C0
[
(s′i+1 − si+1)

2 + (si+1 − s
′
i)
2
]

≤ C0(s
′
i+1 − s

′
i)
2.

(15)
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Similarly, we have

〈γr(s
′
i+1)− γr(s

′
i),Duk〉

= 〈γ̇(si+1),Duk〉(1− rk(si+1)(s
′
i+1 − s

′
i)

+ 〈
1

2
γ̈r(x

′
i+1)(s

′
i+1 − si+1)

2 −
1

2
γ̈r(η

′
i+1)(si+1 − s

′
i)
2,Duk〉,

(16)

with ∣∣∣∣〈12 γ̈r(xi+1)(s′i+1 − si+1)2 − 12 γ̈r(ηi+1)(si+1 − s′i)2,Duk〉
∣∣∣∣

≤ C0|Duk|(s
′
i+1 − s

′
i)
2.

(17)

Now we can estimate the second sum in (12) as follows

A2 =

N−1∑
i=0

∫
Γi+1

(
|Du|2〈γr(s

′
i+1)− γr(s

′
i), ν〉 − 2〈Duk, γr(s

′
i+1)− γr(s

′
i)〉〈Duk, ν〉

)
dS

≤

∫
Γi+1

(
|Du|2 − 2〈Duk, γ̇(si+1)〉

2
)
dS[1 − rk(si+1)](s

′
i+1 − s

′
i)

+ C0(s
′
i+1 − s

′
i)
l

N

∫
Γi+1

3|Du|2dS,

(18)
where we have used the fact that |〈Duk, ν〉| ≤ |Duk|. Now we can estimate the two
sums A1 and A2 in (12).

N−1∑
i=0

Ii ≤A1 +A2

≤
3rk0l

2

16N2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣
2

dS

+

∫
Γi+1

(
|Du|2 − 2

3∑
k=1

〈Duk, γ̇(si+1)〉
2

)
dS[1 − rk(si+1)](s

′
i+1 − s

′
i)

+ C0(s
′
i+1 − s

′
i)
l

N

∫
Γi+1

3|Du|2dS.

(19)
Passing to the limit N →∞ in (19) and noticing that

lim
N→∞

A1 → 0, lim
N→∞

C0

N−1∑
i=0

(s′i+1 − s
′
i)
l

N

∫
Γi+1

3|Du|2dS = 0

because
N−1∑
i=0

(s′i+1 − s
′
i)

∫
Γi+1

3|Du|2dS
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converges to an integral while l/N → 0, we have

lim sup
N→∞

N−1∑
i=0

Ii

≤

∫ l
0

∫
Γs

|Du|2(1− rk(s))dS ds− 2

∫ l
0

∫
Γs

3∑
k=1

〈Duk, γ̇〉
2(1− rk(s))dS ds,

(20)

where
Γs = {γ(s) + tβ(s) + ze3, t

2 + z2 ≤ r2}.

Now we sum up the right hand side of (10):

N−1∑
i=0

Ji =

∫
ωi

|Du|2dx =

∫
Ωr

|Du|2dx. (21)

We now change variables
x = γ(s) + tβ(s) + ze3,

to obtain ∫
Ωr

|Du|2dx =

∫ l
0

∫
Γs

|Du|2(1− tk(s))dS ds. (22)

Finally we obtain, from (20) and (22),

∫ l
0

∫
Γs

|Du|2(1− tk(s))dS ds

≤

∫ l
0

∫
Γs

|Du|2(1− rk(s))dS ds− 2

∫ l
0

∫
Γs

3∑
k=1

〈Duk, γ̇〉
2(1− rk(s))dS ds,

so that

∫ l
0

∫
Γs

|Du|2(r − t)k(s)dS ds ≤ −2

∫ l
0

∫
Γs

3∑
k=1

〈Duk, γ̇〉
2(1− rk(s))dS ds. (23)

The first consequence of (23) is

∫ l
0

∫
Γs

3∑
k=1

〈Duk, γ̇〉
2(1− rk(s))dS ds = 0,

so that 〈Duk, γ̇〉 = 0 hence for each fixed (t, z), u(γ(s)+ tβ(s)+ze3) is independent
of s. Now, at least in an interval [a, b] ⊂ [0, l] with a < b, k(s) > 0 hence the left
hand side of (23) gives |Du|2 = 0 for s ∈ [a, b]. Therefore in

{γ(s) + tβ(s) + ze3, s ∈ [a, b], t
2 + z2 ≤ r},

we have u = u0. Since u is independent of s, we see that u ≡ u0.
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Proof of Theorem 3. If the curve γ is closed and Ωr ⊂ R3 is its open r-neighbourhood
with rk0 < 1, we let γ0 be a closed geodesic homotopic to γ. If γ0 does not have
switching point, γ0 must be the inner curve γr of Ωr defined in the proof of Theorem
2 and it must be convex. Otherwise it is not the locally shortest geodesic. Therefore,
from Theorem 2, u ≡ u0. It is also obvious that if γ0 has switching points, it must
have at least two such points. Since we assumed that γ0 has finitely many switch-
ing points, we denote them by p1, p2, · · · pm, pm+1 with p1 = pm+1 such that pk
and pk+1 are two consequent switching points along γ0. We parameterize γ0 by its
arc-length γ0 : [0, l] → Ω̄r with γ0(0) = p1. let 0 = s1 ≤ s2 < · · · < sm < sm+1 = l
be such that γ0(sk) = pk, k = 1, 2, · · ·m + 1. Let Ak be the sub-domain of Ωr
between the normal plane of γ0 at pk and pk+1. The part of γ0 in Ak is either a
line segment or the shorter part of the boundary of R2 ∩ Ω̄r ∩ Āk and is convex.
We let γ0 ∩ D̄k = γk with k = 1, 2, · · · ,m. If γk is a line segment, we set Bk = Ak.
Otherwise we simply set Bk = ∅. On Bk we may use the proof of Theorem 1. If it
is part of the boundary of Ωr ∩R2 in the plane, we let Ck = Ak. Otherwise, we let
Ck = 0. We can use the method for proving Theorem 2. If we further divide each
Ak along γ0 and pass to the limit as in the proof of Theorem 1 or Theorem 2, we
obtain

m∑
k=1

µ(k)

∫
Bk

|Du|2dx+
m∑
k=1

(1− µ(k)

∫ sk+1
sk

∫
Γs

|Du|2(1− tk(s))dS ds

≤
m∑
k=1

µ(k)

∫
Bk

|Du|2dx+
m∑
k=1

(1− µ(k))

∫ sk+1
sk

∫
Γs

|Du|2(1− rk(s))dS ds

− 2(1 − rk0)
m∑
k=1

∫ sk+1
sk

∫
Γs

3∑
j=1

〈Duj , γ̇〉
2dS ds,

(24)

where µ(k) = 1 if Ak = Bk, µ(k) = 0 otherwise. We have also used the estimate
1− tk(s) ≥ 1− rk0 and 1 ≥ 1− rk0 for the last sum on the right hand side of (24).
A similar argument as in the proof of Theorems 1 and 2 can conclude the proof.
If γ is a broken curve, the proof is similar. Let γ(0) = p, γ(l) = q. We define two
half-balls as

B−r = {−sγ̇(0) + tβ(0) + ze3, s ≥ 0, s
2 + t2 + z2 < r2},

B+r = {sγ̇(l) + tβ(0) + ze3, s ≥ 0, s
2 + t2 + z2 < r2}

and let
Ω = {γ(s) + tβ(s) + ze3, t

2 + z2 ≤ r2},

we have Ω̄r = B̄
−
r ∪ Ω̄ ∪ B̄

+
r , B

±
r ∩Ω = ∅, and B

−
r ∩B

+
r = ∅ at least when r > 0 is

sufficiently small. We now extend γ to ∂Ω smoothly (C1) by defining

γ−(s) = p− sγ̇(0), 0 ≤ s <≤ r,

γ+(s) = q + sγ̇(l), 0 ≤ s ≤ r.

Then γ− ⊂ B̄−r , and γ+ ⊂ B̄
+
r . We see that γ−(r), γ+(r) ∈ ∂Ωr. If we divide B

−
r

along γ− by using normal planes of γ−, each sub-domain between two planes is
star-shaped with respect to points on γ− in the sub-domain. Similarly, we can do
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the same for B+r . Let γ0 = γ− ∪ γ ∪ γ+. Then if we divide Ωr along γ0 by using
normal planes of γ0 and use the Pohozaev identity on each sub-domain and follow
the argument for the case of closed curves, we may conclude the proof.

Proof of Theorem 4. We use a similar idea as that in the proof of theorem 2 and
theorem 3. If γ is closed, we divide Ωr along γ itself instead of γr. if Ω ⊂ Rm with
m ≥ 4, formula (4’) should be changed into∫

∂Ωi

(
|Du|2〈x− xi, ν〉 − 2〈Duk, x− x

i〉〈Duk, ν〉
)
= (m− 2)

∫
Ωi

|Du|2dx.

Recall that the Jacobian of the mapping

(s, x2, x3, · · · , xm)→ γ(s) + x2e2(s) + · · · , xmem(s)

is 1 − x2k1(s), we may follow the arguments similar to the proof of Theorem 2 by
using γ as the central curve of Ωr to obtain

(m− 2)

∫
Ωr

|Du|2dx =(m− 2)

∫ l
0

∫
Γs

|Du|2(1− x2k1(s))dS ds

≤

∫ l
0

∫
Γs

|Du|2dS ds− 2

∫ l
0

∫
Γs

n+1∑
k=1

〈Duk, γ̇〉
2dS ds,

(25)

where
Γs = {γs + x2e2(s) + · · · , xmem(s), x

2
2 + · · ·+ x

2
m ≤ r}.

Since 1− rk0 ≤ 1− x2k1(s) ≤ 1, we estimate the right hand side of (25) as follows:∫ l
0

∫
Γs

|Du|2dS ds− 2

∫ l
0

∫
Γs

n+1∑
k=1

〈Duk, γ̇〉
2dS ds

≤
1

1− rk0

∫ l
0

∫
Γs

|Du|2(1− x2k1(s))dS ds− 2

∫ l
0

∫
Γs

n+1∑
k=1

〈Duk, γ̇〉
2dS ds

=
1

1− rk0

∫
Ωr

|Du|2dx− 2

∫ l
0

∫
Γs

n+1∑
k=1

〈Duk, γ̇〉
2dS ds,

(26)

Combining (25) and (26) we obtain(
m− 2−

1

1− rk0

)∫
Ωr

|Du|2dx ≤ −2

∫ l
0

∫
Γs

n+1∑
k=1

〈Duk, γ̇〉
2dS ds. (27)

Now, since m ≥ 4, m− 2 ≥ 2, we may have

m− 2−
1

1− rk0
> 0, if 0 < r <

m− 3

k0(m− 2)
.

This is possible if r > 0 is sufficiently small, so that |Du|2 = 0 in Ωr hence u = u0
in Ω̄r.

Remark 3. The methods for proving Theorem 4 can be used to establish similar
uniqueness results for the Dirichlet problem−∆u+|u|p−1u = 0 with u = 0 on ∂Ω [Z]
at least for p > (n+1)/(n−3) in a tubular neighbourhood of a closed or broken curve
in Rn with n ≥ 4. One can only divide the domain along the central curve because
the corresponding energy density is F (u,Du) = |Du|2/2 − |u|p+1/(p + 1) which is
not necessarily positive. Therefore the approach in Theorem 2 and Theorem 3 of
using the shortest path does not improve the result.
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