
SOCIAL NETWORK ANALYSIS AT SCALE: GRAPH-BASED ANALYSIS OF

TWITTER TRENDS AND COMMUNITIES

by

Lia Nogueira de Moura, B.A.

A thesis submitted to the Graduate College of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
December 2020

Committee Members:

Jelena Tešić, Chair

Vangelis Metsis

Adrienne Hall-Phillips



COPYRIGHT

by

Lia Nogueira de Moura

2020



FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief
quotations from this material are allowed with proper acknowledgement. Use of this
material for financial gain without the author’s express written permission is not
allowed.

Duplication Permission

As the copyright holder of this work I, Lia Nogueira de Moura, refuse permission to
copy in excess of the "Fair Use" exemption without my written permission.



DEDICATION

To my wonderful husband, Jeremy Trahan, who has supported me every step

of the way. From helping me brainstorm ideas and proofread my writing, to being

patient with my frustrations along the way and helping me with my work/school/life

balance. Thank you for supporting me in the tough moments, and enthusiastically

celebrating my accomplishments as if they were your own.



ACKNOWLEDGEMENTS

Thank you to my amazing advisor, Dr. Jelena Tešić, who has guided and inspired

me throughout my graduate studies from the very beginning. Thank you for being

supportive, responsive, flexible with my schedule, and patient with my limitations. I

am so grateful to have women in computer science that I can look up to.

Thank you to Mirna Elizondo, a positive, driven, and hard-working undergrad-

uate student at Texas State University, for her assistance with running experiments

and testing my code.

I would also like to thank Dr. Hall-Phillips and Dr. Metsis, for participating in

my defense committee.

A special thanks to Dr. Hall-Phillips for contributing one of the datasets used in

this thesis (MeToo dataset).

And last, an additional thanks to my husband, Jeremy Trahan, for helping with

proofreading my writing.

v



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

III. GRAPH ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Graph Network Construction . . . . . . . . . . . . . . . . . . . . 9
Community Discovery in Social Network Graphs . . . . . . . . . . 11
Performance Baseline . . . . . . . . . . . . . . . . . . . . . . . . . 17
Data Aggregation and Visualizations . . . . . . . . . . . . . . . . 23
Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

IV. TOPIC MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Pre-Processing Methods . . . . . . . . . . . . . . . . . . . . . . . 29
Topic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Aggregation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 31
Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Colloquial Language Analysis . . . . . . . . . . . . . . . . . . . . 34
Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

V. DATA MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . 39

Twitter Data Structure . . . . . . . . . . . . . . . . . . . . . . . . 40
Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DB Performance Tuning . . . . . . . . . . . . . . . . . . . . . . . 46

VI. DATA ANALYTICS PIPELINE . . . . . . . . . . . . . . . . . . . . 49

Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Data Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
The Python Package . . . . . . . . . . . . . . . . . . . . . . . . . 71
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

VII. DATA AND EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . 73

Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Topic Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

VIII. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . 100

Implications and Future Work . . . . . . . . . . . . . . . . . . . . 103

APPENDIX SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

vii



LIST OF TABLES

Table Page

1. Graph terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Number of users and communities available for each of the ground truth
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Baseline data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Tweets and word counts with % per FK score level . . . . . . . . . . . . . 36

5. Core collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6. Aggregate collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7. Administrative collections . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8. Temp collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9. List of indexes created in the MongoDB collections . . . . . . . . . . . . . 47

10. Tweet counts - Austin dataset . . . . . . . . . . . . . . . . . . . . . . . . 75

11. User counts - Austin dataset . . . . . . . . . . . . . . . . . . . . . . . . . 75

12. Tweet counts - BJJ-en dataset . . . . . . . . . . . . . . . . . . . . . . . . 76

13. User counts - BJJ-en dataset . . . . . . . . . . . . . . . . . . . . . . . . . 76

14. Tweet counts - BJJ-pt dataset . . . . . . . . . . . . . . . . . . . . . . . . 77

15. User counts - BJJ-pt dataset . . . . . . . . . . . . . . . . . . . . . . . . . 78

16. Tweet counts - Covid dataset . . . . . . . . . . . . . . . . . . . . . . . . . 79

17. User counts - Covid dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 79

18. Tweet counts - MeToo dataset . . . . . . . . . . . . . . . . . . . . . . . . 80

19. User counts - MeToo dataset . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



20. Tweet counts - Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

21. User counts - Random dataset . . . . . . . . . . . . . . . . . . . . . . . . 81

22. Network creation terminology . . . . . . . . . . . . . . . . . . . . . . . . . 82

23. Austin dataset graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

24. BJJ-en dataset graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

25. BJJ-pt dataset graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

26. Covid dataset graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

27. MeToo dataset graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

28. Random dataset graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

29. Different clustering methods measures . . . . . . . . . . . . . . . . . . . . 91

30. Different clustering method measures for Austin dataset with the different
types of networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

31. Graph reductions comparison . . . . . . . . . . . . . . . . . . . . . . . . . 94

32. Execution time of the different insert methods for different collections in
the MeToo dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



LIST OF FIGURES

Figure Page

1. Distribution of the sizes of the connected components for a graph with a
total of 150K vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Louvain algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Spectral Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. TN-Neighborhoods algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. The average metrics of all the communities found using the ground truth
communities and the different clustering methods executed on the differ-
ent datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6. Network example with no reduction . . . . . . . . . . . . . . . . . . . . . 23

7. Sample graph reductions using the Vertex Degree and the Community Per-
centage techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8. Sample graph reductions using the Edge Weight, the Vertex Degree and the
Community Percentage techniques . . . . . . . . . . . . . . . . . . . . . 25

9. Sample topics discovered using the LDAmodel before (left) and after (right)
using cleaning techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10. Visualizations for a topic discovered in the Austin dataset . . . . . . . . . 32

11. Barchart and word cloud visualizations for a topic discovered in the Austin
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12. Sample hashtags graph visualization for a topic discovered in the Austin
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

13. Two sample Twitter documents . . . . . . . . . . . . . . . . . . . . . . . . 41

14. Various Tweet object fields are used to create different connections between
users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

15. Data pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



16. Data acquisition block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

17. Data integration block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

18. Data analytics block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

19. EDA sample output for the Austin dataset . . . . . . . . . . . . . . . . . 57

20. Data presentation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

21. Sample graph output using the Austin dataset . . . . . . . . . . . . . . . 62

22. Sample distribution of the connected components of the graph extracted
from the Austin dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

23. Sample Louvain community distribution for the Austin dataset . . . . . . 64

24. Sample word clouds extracted from Austin dataset . . . . . . . . . . . . . 65

25. Sample barcharts for hashtags and word frequency extracted from the
Austin dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

26. Tweet count by day for the Austin dataset . . . . . . . . . . . . . . . . . 66

27. Top 5 hashtags count by day for the Austin dataset . . . . . . . . . . . . 66

28. Sample output of the plot_topics method . . . . . . . . . . . . . . . . . . 67

29. Tweet counts for all datasets . . . . . . . . . . . . . . . . . . . . . . . . . 74

30. Unique users for all datasets . . . . . . . . . . . . . . . . . . . . . . . . . 74

31. Tweet count by day for all datasets . . . . . . . . . . . . . . . . . . . . . . 74

32. Hashtag frequency - Austin dataset . . . . . . . . . . . . . . . . . . . . . 75

33. Hashtag frequency - BJJ-en dataset . . . . . . . . . . . . . . . . . . . . . 76

34. Hashtag frequency - BJJ-pt dataset . . . . . . . . . . . . . . . . . . . . . 77

35. Hashtag frequency - Covid dataset . . . . . . . . . . . . . . . . . . . . . . 78

36. Hashtag frequency - MeToo dataset . . . . . . . . . . . . . . . . . . . . . 80

xi



37. Hashtag frequency - Random dataset . . . . . . . . . . . . . . . . . . . . . 81

38. Number of vertices and edges for all datasets with the different ways of
creating the networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

39. The average degree of the vertices for all datasets with the different ways
of creating the networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

40. Number of separate connected components with at least 50 vertices for all
datasets with the different ways of creating the networks . . . . . . . . . 84

41. Execution time comparison for the different clustering methods . . . . . . 87

42. Execution time in seconds for each of the clustering methods as the number
of vertices in the graph grows . . . . . . . . . . . . . . . . . . . . . . . . 87

43. Metric averages for the communities found using the different clustering
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

44. Metrics average of the communities found using the different clustering
methods for Austin dataset for the different types of networks . . . . . . 90

45. Comparison of the different reduction techniques for three graphs of differ-
ent sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

46. Graph reduction samples from the Austin dataset . . . . . . . . . . . . . 95

47. Coherence values as the number of topics grows . . . . . . . . . . . . . . . 95

48. The execution time for training the LDA model using different numbers of
tweets for input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

49. The average c_v coherence values for the different aggregation methods,
evaluated using the hashtags connections network for the different datasets 96

50. LDA model results before and after cleaning techniques . . . . . . . . . . 97

51. Three sample topics discovered using only the LDA model, without any
aggregation techniques or additional visualizations . . . . . . . . . . . . 97

52. Three sample visualizations for a topic discovered using a graph-based ag-
gregation technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xii



53. Execution time improvements for each collection after implementing the
performance improvement methods . . . . . . . . . . . . . . . . . . . . . 98

xiii



ABSTRACT

Twitter’s influence on society and communication has motivated research work

in the past decade. A large percentage of existing research focuses on specific

Twitter datasets bound by time, location, topic, hashtag, and the analysis of the

content of tweet messages of said datasets, and their influence on the fields of

business, education, geography, health, linguistics, social sciences, and public

governing. Researchers have attempted to answer a variety of questions, e.g. "What

topics are being discussed in the Twitter dataset?", "What communities are formed

within the set of users?", "Which users are at the center of a particular

discussion?", "How are users reacting to real-time events?", and more important,

"How can we combine and refine existing data science techniques that can be used

in other Twitter research related work?" There have been very few attempts to

address the scale and design of an end-to-end data processing and analysis pipeline

at scale. This body of work offers one solution for a scalable way to gather, discover,

analyze, and summarize joint sentiment of Twitter trends (topics, hashtags), and

communities (groups of users that are bound by connection, topic, time period, or

possibly location/language/interest) in the larger subspace of the Twitterverse.

Topic discovery is improved by contextual network construction and tweet

aggregation. The work offers an overarching pathway on how to construct an

end-to-end data science pipeline for meaningful analysis of Twitter datasets at scale,

namely data management, graph network construction, clustering, topic modeling,

and graph data compression for meaningful visualization. We evaluate the data

science package and different methods for graph construction and tweet data

processing on over 12 million tweets over six different Twitter datasets.
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I. INTRODUCTION

Consumers lead rich digital lives, and demand real-time personalized service

and delivery of content. Brands and companies are continuously calibrating their

strategies to win over informed and impatient connected consumers by expanding

their portfolio to include more on-demand and personalized products and services.

Companies and governments share official announcements, handle customer service,

issue clarifications, and use Twitter trends to promote the brand. Social media has

increasingly taken a bigger role in shaping public opinion and public policies in the

past decade. The Twitter platform provides a fast condensed exchange of

information, opinions, and data, as Twitter’s discussions and topic trends are

increasingly responsible for shaping campaigns, policy issues, and marketing

strategies for businesses and governments. Social media users express their opinions,

communicate with each other, discuss topics, spread news, and influence each other

all over the globe. The large number of users, and even larger number of messages

shared, commentated, and propagated create interesting data, and bring important

insights about human behavior, marketing, linguistics, industry trends, brand

monitoring, politics, etc. How do we separate the useful information from the

millions of content items the consumer shares online from the background noise, or

irrelevant trolling? Here, we propose to scale social data analysis, and allow the user

to distinguish the relevant content and guide the inquiry. We introduce a scalable

way to gather, discover, analyze, and summarize joint sentiment of the Twitter

communities. The contribution of the thesis is (i) a software package for general use

[1] that implements a data science processing pipeline for Twitter data, and (ii) a

suite of graph-clustering and topic modeling techniques improved for large datasets,

and robust content analysis of noisy communities on Twitter [2].

The thesis is organized as follows: Chapter II summarizes state-of-the-art

1



efforts in social network analysis, graph clustering, topic modeling, and Twitter data

processing at scale. Chapter III covers graph network construction, introduces

methods for multi-modal network construction where an edge in the graph can be

constructed from a variety of connection modes (e.g. retweets, replies, quotes,

mentions, and hashtag). We implement a set of graph-based community detection

approaches and propose methods for community discovery at scale. We introduce a

suite of visualization and graph reduction techniques to help interpret the meaning

of the resulting communities. Chapter IV focuses on topic discovery in Twitter

communities. Here, we address the semi-structured nature of tweets e.g. short,

slang-, acronym-, and symbol- rich modes of expression, bursting with misspellings,

icons, and symbols. Chapter V focuses on the data science aspects of dealing with

semi-structured tweet data at scale, and introduces specific data management

(cleaning, ingestion, interpretation, and storage) techniques for improved

performance. Chapter VI summarizes the documentation of the released software

package pytwanalysis [1], namely outlining how to reproduce the work presented in

the thesis: tweet extraction, cleaning, storing of tweets in MongoDB,

graph-clustering, topic discovery, and visualization tasks. Chapter VII contains

experiments and results when the proposed system is used for analysis of six

different Twitter databases of over 12 million tweets combined. The thesis concludes

with Chapter VIII.
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II. RELATED WORK

With the rise of Twitter social media platform influence, data science

researchers started to take notice. Williamns et al. (2013) [3] collected over 1000

papers related to microblogging and Twitter published between 2007 and 2011 to

classify the emerging research trends on tweet data analysis, and classified the work

along four dimensions: message, user, technology, and concept. The bulk of the

research is focused on the message and the user, i.e. content of the tweets and

communication trends among users on the platform. Bruns et al. (2014) [4] expands

the survey and confirms that most of the research focus is on content analysis of the

tweets. Research work to date has used trends in Twitter for tracking the influenza

[5], detecting communities and opinions about climate change [6], and using Twitter

mood to predict stock market changes [7]. Twitter data have also been used to

understand the influence of fake news in Twitter during the 2016 US presidential

election [8], analyze the COVID-19 and the 5G Conspiracy Theory [9], and the

COVID-19 Twitter narrative among U.S. governors and cabinet executives [10].

Twitter communication trends, generated content, and interactions influenced a

variety of aspects of social life, and researchers focus on community analysis, and

topic discovery to model public opinion in geography [11], health [12], linguistics

[13], political sciences [14], economics [15], government policy [16], and political

consumerism [17].

The study of social networks is an essential component in the understanding of

the fake news phenomenon. Of particular interest is the network connectivity

between participants, since it makes communication patterns visible. These patterns

are hidden in the offline world, but they have a profound impact on the spread of

ideas, opinions and news. Among the major social networks, Twitter is of special

interest, as it offers the possibility to perform research without the risk of breaching

3



the expectation of privacy.

A variety of graph clustering algorithms identify different structures within a

network with the focus of how densely connected the vertices are [18, 19] or

discovering two opposing communities [20, 21]. The definition of communities on

Twitter is multi-dimensional, as users in the community can share one or more

commonalities. Communities can be formed based on: how similar the users are,

how close geographically they are to each other, how connected the users are to each

other by friendship, by replies and mentions, or communities of people talking about

the same subject [22]. The lack of ground-truth makes the evaluation challenging, as

it is difficult to know for sure if the groupings are correct [23]. The Latent Dirichlet

Allocation (LDA) topic modeling tool, from text analysis, gains its prominence in

social media topic discovery [24, 25]. Since tweet records are a relatively new form of

communication, current research focus is on improving and extending the

pre-processing of content, and the network of tweets to help LDA achieve better

results [26, 27].

Current tools used for Twitter analysis focus on the specific project, and fail to

generalize the end-to-end process. Tools such as Gephi [28] and Pajek [29] are useful

for visualizing networks and can be easily used by someone without programming

experience. Other tools, such as NodeXL [30], offer more than just visualizations,

and can extract data using Twitter API, run graph analysis, and create

visualizations, but it is limited to only Windows operating system and small subsets

of data. There are also more complex and comprehensive tools for network analysis

that are built for the more advanced user, such as the SNAP library [31].

Twitter content is semi-structured in its origin: while users and words are

consistent, content, use of hashtags, location information, and connections are

dynamic, noisy, and inconsistent. Different SQL data warehouse approaches have

been suggested for organizing Twitter data [32, 33, 34, 35] to make it fit into the

4



structured data mold. It works for a small subspace and specific tasks of the

Twitterverse, but it fails to generalize to scalable and subject agnostic systems.

Document driven solutions support the semi-structured and ever evolving nature of

tweet records, and scientists have moved to NoSQL solutions to support data

management for their projects. TweetCuriosity [36] retrieves tweets with given user

parameters, cleans retweets and location statements, stores clean tweets into NoSQL

MongoDB, and analyzes and visualizes the results on a quarter of a million tweets.

Saini et al. [37] proposed enrichment of electronic healthcare records (EHR) data

analysis using Twitter data source: MongoDB maps tweets to electronic healthcare

records, and enhances the medical domain data mining. Social media search app

Twoogle [38], built on top of Baqend’s real-time query API, allows searching Twitter

with MongoDB queries.

Researchers have proposed a data science pipeline for a limited dataset for the

specific application of integrating machine learning modules for fake news

identification [39]. While they achieve scalability for the Twitter dataset analysis by

parallelizing the process, the dataset and specific analysis (fake news) limit the

extension and generalization of the pipeline [39].

There has been no known attempt to create a scalable unified framework for

end-to-end gathering, processing, storing, multi-view analysis, community discovery,

topic analysis, and visualization tools that can support different directions of Twitter

research data at scale. In this thesis, we propose a scalable way to gather, discover,

analyze, and summarize the joint sentiment of the communities online, that can be

used in a variety of other future studies which, like many others, are interested in

understanding the content of the messages of a given Twitter dataset. The data

management part resulted in the data science analysis package pytwanalysis [1]

which can handle a variety of data science projects using Twitter data at scale, and

allow a high level of customization of the pipeline and MongoDB data storage. The

5



data analysis step improved upon existing graph-clustering and topic aggregation

methods to study the content of a Twitter dataset. The proposed approach takes a

fresh look at different topics being discussed within a Twitter dataset as it creates

multiple overlapping partitions in the data based on different criteria, but driven by

the same goal of grouping discussions together. We present a scalable framework for

gathering the graph structure of follower networks, posts and profiles, and show how

to use the collected data for high-performance social network analysis.

6



III. GRAPH ANALYSIS

Social network analysis (SNA) investigates social structures through the use of

networks and graph theory. Graphs contain vertices (nodes) and edges

(connections); in SNA, vertices can be users, groups of users, and communities. The

vertices in the network can be tied together by specific types of relations, such as

friendships, belonging to an organization together, or even having similar interests.

These relationships are the edges of the network. Studying such structures may help

us understand how the network is organized, and may lead to the discovery of

patterns among the participants, communities, and possibly to new insights in

answering questions for a variety of disciplines. From analyzing the social behavior

of criminal networks as an investigative tool [40], to analyzing the potential

applications for logistics and supply chain management research [41], or

understanding American politics [42].

In social media services, such as Twitter, users can connect in many different

ways: following other users, re-tweeting or liking the content of other users, and

replying and/or mentioning users in discussion threads. Hashtag (#) labels of social

media content are a streamlined way to "attach" a user’s content to a trend and/or

topic. A recent study [43] treats hashtags as a functional means to structure

content, and outlines evidence that the role of hashtags in social media content

expands from structuring (spreading) content to an integral role of contemporary

communication in the media. The study presents a series of six empirical studies to

systematically assess motivations for using hashtags, and uncovers the existence of

roughly 10 categories of hashtag use: entertainment, content organization, design,

engaging in trend topic, bonding over social cause/event, inspiring social or policy

response in real life, reaching a wider audience, summarizing the content, and

endorsing a specific product, cause, lifestyle, etc. The authors demonstrate how
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these motivations differ between platforms, and how they relate to different patterns

of social media behavior [43]. Twitter trending hashtags have changed the way we

consume and actively search for the relevant news in all domains. Social impact

theory on the consumption practices of individuals discovers an important role when

applied to hashtag analysis in Twitter data related to political consumerism [17],

and hashtag analysis uncovers flavors of political consumerism that change the

sentiment of the tweet and subsequent actions. Hashtags have become an important

means of communication and connection on Twitter. Hashtags influence trends and

exploit the meaning of trends through hashtags in social, political, economic, and

sociological realms [43, 17].

Each of the connections mentioned (user initiated or hashtag inferenced) and

their combination is an opportunity to create a different social analysis network for

in-depth analysis. In this chapter, we introduce methods for multi-modal network

construction for Twitter data where edges in the graph can be constructed from a

variety of connection modes. We implement a set of graph-based community

detection approaches and propose a community discovery at scale. We introduce a

suite of visualization and graph reduction techniques to help interpret the meaning

of the resulting communities. Social network graphs can go from a few vertices to a

few million vertices [44]. For large complex graphs, it is hard to see the tree from

the forest. Graph summarizing (aggregation, compression, reduction) techniques

were proposed to simplify the graphs for better understanding. Proposed work on

summarization focuses on techniques that allow for • discovering a high-level

description of the influence propagation of users and topics [45], • visualization that

is time and processing power bound [45].
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Graph Network Construction

Twitter data is provided in the form of Twitter documents, as described in

Chapter V. The different Twitter APIs have different information available. Since

the focus of this work is on the content of the tweets, we use the APIs that provide

the tweet content with additional information about each tweet [46, 47, 48]. From

the documents retrieved from the APIs, it is possible to know the text of the tweets,

the hashtags used, the user that created each tweet, the users that were mentioned,

as well as the user of the original tweet in case of retweets, quotes, and replies. Even

though each record does provide a count of how many times that tweet was liked,

and how many friends and followers each user has, it does not contain the list of all

followers, friends, or people that liked the tweet. A separate API that focus on the

user account activity [49] is available and returns the information and relationships

for a particular user, but separate requests to the account activity API are required

to retrieve the additional information for each of the users found from tweet content

APIs. Although these requests could be automated, the API’s rate limits make this

process impractical. And the relationships (follows, friendships, likes) alone don’t

tells us about the content we want to focus on.

We propose different ways of creating undirected networks based on the

information available in each tweet document. The graph terminology used in this

chapter is outlined in Table 1. The networks were built by creating users and

hashtags as vertices and the following connections as edges:

• The Retweets Only network creation method creates a connection between

users based on their retweets. Let x and y be two Twitter users. An edge (x, y) gets

created in G when either x retweets a tweet from y, or y retweets a tweet from x.

The weight(x, y) will be the total number of retweets from each direction. A

self-loop (x, x) is created when user x retweets their own tweet. Vertices with a high
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Table 1: Graph terminology

Notation Description

G An undirected graph G.
G[S] An induced subgraph of graph G for vertex subset S.
V, n Vertex v ∈ V vertex-set; n = |V |, number of vertices.
E, m Edge e, e ∈ E edge-set, m = |E|, number of edges.
k Number of clusters.
deg(u) The degree of vertex u.
weight(u,v) The weight of edge (u, v).
N[u] Closed neighborhood of u, a sub-graph induced by all

vertices that are adjacent to u.

degree will represent users that were retweeted frequently. The weight of each edge

was calculated based on the number of retweets between two users (undirected).

• The Quotes Only network creation method creates a connection between

users based on their quotes. Let x and y be two Twitter users. An edge (x, y) gets

created in G when either x quotes a tweet from y, or y quotes a tweet from x. The

weight(x, y) will be the total number of quotes in each direction. A self-loop (x, x) is

created when user x quotes themselves. The main difference between a retweet and

a quote is that in a quote more content is added to the tweet. It usually expands on

the content of the original tweet. The weight of each edge was calculated based on

the number of quotes between two users (undirected).

• The Replies Only network creation method creates a connection between

users based on their replies. Let x and y be two Twitter users. An edge (x, y) gets

created in G when either x replies to a tweet from y, or y replies to a tweet from x.

The weight(x, y) will be the total number of replies in each direction. A self-loop (x,

x) is created when user x replies to their own tweet. The weight of each edge was

calculated based on the number of replies between two users (undirected).

• The Mentions Only network creation method creates a connection between

users based on their mentions. Let x and y be two Twitter users. An edge (x, y) gets

10



created in G when either x mentions y in a tweet, or y mentions x in a tweet. The

weight(x, y) will be the total number of mentions in each direction. A self-loop (x,

x) is created when user x mentions themselves. In the the mentions only network,

even if a user y doesn’t tweet, retweet, or reply to anybody, they can still show up

as a high degree vertex in the mentions network in case thousands of other people

mentioned them in their tweets. The weight of each edge was calculated based on

the number of mentions between two users (undirected).

• The All User Connections network creation method combines all user

connections together: retweets, quotes, replies, and mentions. The weight of each

edge was calculated based on the number of retweets, quotes, replies, and mentions

interactions total.

• The Hashtag Connections network creation method identifies hashtags

that are frequently used together. Let #x, #y, and #z be the hashtags used in a

single tweet. The hashtag connections network method will create the pairs {#x,

#y}, {#x, #z}, and {#y, #z} for this single tweet. Edge weight indicates how

many times two hashtags were used together.

Note that we are focusing only on undirected graphs for the simplification of

the problem, but the presented analysis could be extended to include directed

graphs as well.

Community Discovery in Social Network Graphs

The use of social network analysis to find community structures can give us a

better understanding of that network and can give us new insights about how it is

organized [50]. Clustering algorithms can be useful for finding such structures, as

they focus on the task of grouping members that are close to each other in some

way, creating clusters (or groups). Clusters retrieved from social networks are called

communities, and the clustering algorithms to find these communities are called
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community discovery.

In a social network graph, a community is a subset of vertices within the graph,

and the connections between those vertices are discriminant (denser, stronger) with

respect to the rest of the network. There are several types of clustering algorithms

that can be applied to different tasks. We focus on algorithms that can perform

better on network data.

Twitter communities are loosely defined, and can be very different depending

on what the research question is: users based on location, message content, hashtag,

following, retweets, etc. Context drives both network construction and community

discovery [51], and results can vary based on the selection. We adopt the approach

of comparing community discovery algorithms based on what the goal of the data

analysis is.

Connected Components

A connected component of a network graph is a subset of vertices in the graph

such that each pair of vertices is connected by a path. Social networks can have

several separate connected components, which would indicate that there is no path

of connection among the members of one component to the other, even though they

belong to the same network. That information can be helpful when trying to get a

first understanding about the network and selecting the correct algorithms for

finding communities. For real world graphs and network graphs where connections

are guided by a specific subject, we observe very large connected components along

with a few very small ones. The largest component can contain over 90% of the

vertices, and the rest of the network is divided into a large number of small

components disconnected from the rest [44].

Depending on how the network is constructed, there could be different numbers

of disjointed graphs of a similar size. The different scenarios require different
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community discovery approaches, and to make a correct decision, the first step in

exploratory data analysis is to identify the total number of connected components,

their sizes, and plot the connected component size histogram. An example of the

disconnected graph distribution of a network with a total of 150K vertices is

illustrated in Figure 1, where there is one very large connected component, and the

second largest connected component has less than 300 vertices. Connected

component separation is the first step in the community analysis, and if the largest

one has over 90% of the vertices, we focus only on the analysis of that component

and group the small ones in the outlier community. If a graph has multiple large

connected components, we analyze them separately.

Figure 1: Distribution of the sizes of the connected components for a graph with a total
of 150K vertices. The left image shows all connected components, and the right
image only excludes the largest connected component.

The method connected_component_subgraphs from the networkX package [52]

was used to find the list of connected components for the undirected graphs.

Louvain Community Detection

The Louvain Community Detection method [53] is a widely used approach to

identify communities in large network graphs. It was introduced specifically for the

task of finding communities in networks, and it has already been implemented in

available libraries that can integrate with existing graph analysis tools such as the
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networkX [52] python package. These are the reasons why it was chosen as one of

the algorithms used for this analysis.

It is a heuristic method based on modularity optimization that has been shown

to outperform other known community detection methods in terms of computation

time without losing quality. The Louvain method is a greedy optimization method

with a runtime that increases close to linearly with the number of vertices in the

network, and it has exhibited good summarization power compared to other

methods [54]. The outcome of the Louvain Community Detection is a set of

disjointed communities with densely connected vertices. The weight of the vertices is

not considered in the algorithm. Figure 2 shows the visualization of the steps of the

algorithm as shown in the original paper [53].

Figure 2: Louvain algorithm. In each iteration modularity is optimized for local community
changes first, and newfound communities aggregation second. Iterations stop when
it is impossible to increase modularity.

Spectral Clustering

Spectral Clustering can be used for cases where the strength of the connection

between vertices is important. The Spectral Clustering approach performs the

kmeans clustering method on k eigenvectors corresponding to the smallest
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eigenvalues (not 0) of the Laplacian of the adjacency matrix of the graph.

Laplacians can be defined in multiple ways, and based on that, there exist many

different implementations. Spectral Clustering depends on the k, the number of

clusters desired, and we select k that maximizes the eigengap [55]. The output is a

set of disjointed communities with densely connected vertices. The method has a

high computation time and can only be used in fully connected networks, but it uses

a similarity matrix to identify how similar the vertices are.

Using the method SpectralClustering from the sklearn [56] package, each vertex

gets assigned to a cluster. To transform the graphs into adjacent matrices that can

be sent as parameters to the SpectralClustering method, the

to_scipy_sparse_matrix method from the networkX package [52] was used.

Figure 3: Spectral Clustering algorithm. Original graph without clustering (left); the matri-
ces calculation (middle); eigenvector example, and cluster-colored resulting graph
(right).
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Top k Degree Vertices’ Neighborhoods (TN-Neighborhoods)

The majority of tweets come from a small group of extremely active Twitter

users [57]. According to the Pew Research Center Study, 80% of all tweets come from

just 10% of all U.S. Twitter users. These super users tweet 138 times per month,

while the median Twitter user tweets twice per month [57]. There is a great need for

understanding how these super users shape Twitter communities and guide topic

discovery and development. In addition, one super user can be active in multiple

communities, based on the tweet content, and can be connected to various users

depending on the overlapping commonalities. Here, we propose a novel approach for

building communities around super users with relaxation criteria that a user can

belong to multiple communities. Graph-theoretic relaxation of the concept of cluster

graphs introduced overlaps between the clusters [58], and an adaptive K-means

algorithm was proposed for overlapped graph clustering [59]. We propose the cluster

overlap approach based on the most influential users in the dataset. We measure the

influence of vertex v by its degree in the graph. For a network graph G, and a vertex

v, v ∈ V , create a neighborhood sub-graph N(v). The sub-graph will contain all

vertices that are connected to v and all the edges that connect the vertices in the

sub-graph together. We grow these communities around the highest degree vertices

in the dataset. Since users can be connected to multiple high degree vertices, the

result of this method is a set of overlapping communities, and the communities

capture discussions initiated or related to a set of high influence vertices v.
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Figure 4: TN-Neighborhoods algorithm. Visualization of the high level steps of the method.

Performance Baseline

In order to evaluate the community discovery methods, manually annotated

ground truth data were used to establish a baseline. Ground truth data can be used

as an ideal expected outcome, and can be helpful for observing the behaviour of real

communities.

Graph characteristics for each dataset were recorded and compared.

Separability, Density, and Clustering Coefficient were used as the goodness metrics

[23], and Power Nodes Score metric was introduced to score the communities on

how well connected the top degree vertices are. The average degree of vertices,

graph clique size, and number of cliques were also recorded for comparison.

Measures of Performance

Separability measures the ratio between the edges of the community (internal

vertices) and the edges of the vertices of the community that are pointing to the

outside, under the assumption that solid communities would be well-separated from

the rest of the network. Let G[V] be the induced sub-graph of graph G for vertex
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subset V, where V was created from one of the clustering methods. And let Em be

the number of edges in G[V], and Ec the number of edges on the boundary of G[V].

Then we calculate separability as sep = Em

Ec
. Density measures how well connected

the vertices are. Let G[V] be the induced sub-graph of graph G for vertex subset V,

where V was created from one of the clustering methods. And let Em be the

number of edges in G[V], and Vn the number of vertices in V. Then we calculate

density as den = 2∗Em

Vn∗(Vn−1)
. Power Nodes Score identifies graphs that are highly

connected through a set of highly connected vertices. A high score will indicate that

the top degree vertices of the graph are highly connected to all other vertices in the

graph. Let G[V] be the induced sub-graph of graph G for vertex subset V, where V

was created using the TN-Neighborhoods approach for the highest-degree k vertices.

If Vn is the number of vertices in V, and n the number of vertices in the original

graph G, the power vertices score is calculated as pns = Vn

n
. Note that k is the

number of clusters for all clustering methods, and we use the same k in all methods

for comparison. Average Clustering Coefficient is the average of the local

clustering measures for each vertex. The local clustering of each vertex in G is the

ratio between the triangles that actually exist and all possible triangles in its

neighborhood [60]. It was proposed as a goodness metric on the premise that pairs of

vertices with the same neighbors are likely to be connected to each other. Average

Degree of Vertices quantifies the average degree of all vertices in G, and measures

graph connectivity. Let V be the vertex-set of G, and n the number of vertices in V.

Then calculate the average degree of vertices as avn =
∑n

i=1 Vi=deg(Vi)

n
. Graph

Clique Size measures the number of vertices in the largest clique of G. A clique C

in an undirected graph G, is the induced sub-graph of G where every two distinct

vertices in C are adjacent [61]. In social networks, cliques could represent groups of

people where everyone in the group has a connection with every other person in

that same group. Number of Cliques is the number of maximal cliques in G.
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Datasets

Datasets with manually-curated ground truth communities are used as a

baseline [62]: • football: A dataset with football players and clubs from the English

Premier League. The data contains 248 Twitter users grouped into 20 clubs in the

league. Each user belongs to only one club; • olympics: A dataset with athletes

and organisations that were part of the London 2012 Summer Olympics. The data

contains 464 Twitter users grouped into 28 different sports. Each user belongs to

only one sport; • politics-ie: A dataset with Irish politicians and political

organisations. The data contains 348 Twitter users grouped into 7 different groups

based on the user’s affiliation. Each user belongs to only one affiliation; •

politics-uk: A dataset with Members of Parliament (MPs) in the United Kingdom.

The data contains 419 Twitter users grouped into 5 different political parties; and

rugby: A dataset with international Rugby Union players. The data contains 854

Twitter users grouped into 15 overlapping countries;

Table 2: Number of users and communities available for each of the ground truth datasets

Dataset # of users # of communities

football 248 20
olympics 464 28
politics-ie 348 7
politics-uk 419 5
rugby 854 15

Baseline Findings

For each of the 5 datasets [62], the Louvain, Spectral Clustering, and

TN-Neighborhoods methods were run. Their performance was measured using

clustering measures and ground truth data. Table 3 summarizes findings for all 5

datasets, ground truth data analysis, and clustering methods.
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Table 3: Baseline data. db is the dataset name, n is the number of vertices in the graph,
k is the number of communities, ave_deg is the average degree of vertices across
communities, sep is separability measure, den is density measure, acc is the average
clustering coefficient, pns is the power nodes score for the top k = 3 users, gcs is
the graph clique size, and nc is the number of cliques.

Ground truth data
db k n ave_deg sep den acc pns gcs nc

football 20 248 9.313 0.324 0.188 0.886 0.994 8.800 6.600
olympics 28 464 11.752 0.285 0.210 0.838 0.990 10.500 36.857
politics-ie 7 348 28.294 0.492 0.119 0.840 0.986 18.714 17150.571
politics-uk 5 419 45.482 0.937 0.154 0.729 0.961 26.600 6141372.6
rugby 15 854 21.039 0.361 0.334 0.464 0.800 13.200 2094.800

Louvain Clustering
DB k n ave_deg sep den acc pns gcs nc

football 13 248 10.076 0.359 0.131 0.811 0.936 9.692 15.231
olympics 9 464 17.907 0.496 0.062 0.715 0.870 14.889 318.778
politics-ie 5 348 37.740 0.674 0.041 0.777 0.971 23.800 24175.800
politics-uk 3 419 71.563 1.525 0.020 0.777 0.973 41.667 5950766
rugby 9 854 35.330 0.636 0.026 0.690 0.914 22.333 2529.444

Spectral Clustering
DB k n ave_deg sep den acc pns gcs nc

football 20 248 7.899 0.287 0.330 0.811 0.991 7.500 13.450
olympics 28 464 9.201 0.315 0.466 0.710 0.989 8.036 240.464
politics-ie 7 348 25.800 0.487 0.400 0.717 0.996 17.286 21740.143
politics-uk 5 419 43.723 0.969 0.548 0.483 0.944 25.400 6164034.200
rugby 15 854 25.437 0.442 0.080 0.798 0.972 17.133 3215.133

TN-Neighborhoods
DB k n ave_deg sep den acc pns gcs nc

football 20 248 17.146 0.483 0.032 0.602 1.000 10.450 280.750
olympics 28 464 35.632 0.640 0.015 0.584 1.000 18.929 4091.071
politics-ie 7 348 77.600 2.207 0.009 0.643 1.000 35.143 242155.571
politics-uk 5 419 104.169 2.259 0.007 0.672 1.000 58.400 15649452.400
rugby 15 854 43.199 0.480 0.009 0.518 1.000 21.267 11138.067
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Figure 5 visualizes the comparison between the average goodness metrics of all

the communities found using the different clustering methods, executed on the

different datasets.

Figure 5: The average metrics of all the communities found using the ground truth commu-
nities and the different clustering methods executed on the different datasets

Focusing first on the ground truth data that were taken from real communities,

we can observe that each dataset performs differently among the different metrics as
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shown in Figure 5. The politics-uk dataset has higher Separability than all other

datasets, while the olympics dataset has the lowest with a very low score. The

football dataset has a very high Average Clustering Coefficient and a very high

Power Nodes Score, while the rugby dataset has very low score for the same metric.

Even though these communities are real, they do not necessarily receive a high score

for the goodness metrics, which could indicate that the metrics, rather than

indicating whether a community is good or not, give us an intuition about the

characteristic differences among the different datasets. The politics-uk dataset

appears to have the most connected and well separated communities and have a

large number of groups within the communities that are all connected to each other.

The rugby dataset on the other hand, even though it is very dense, it has a very low

Average Clustering Coefficient and Power Nodes Score, which could infer that there

are not many pairs of members in the communities with the same neighbors.

Comparing the ground truth metrics with the metrics from the clustering

algorithms, we can observe that the TN-Neighborhoods method has the highest

scores for Separability and Power Nodes Score, and the the largest clique sizes and

number of cliques, but the lowest Density. Even though the TN-Neighborhoods

method performed well in many of the metrics, it was also the method with the

largest distance from the ground truth metrics, which could indicate that it was the

method that created communities that are the farthest apart from the

manually-annotated communities. The Spectral Clustering method found

communities that are very dense, and the Louvain method communities that are

better separated than the Spectral Clustering. Both the Spectral Clustering and

Louvain method metrics are closer to the metrics in the ground truth data than the

TN-Neighborhoods method, which could indicate that they were able to find

communities that are closer to the real communities. Analyzed clustering algorithm

performance varies depending on the dataset, as communities in the different
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datasets contain different characteristics. Experiments to measure the detailed

differences between the algorithms on multiple datasets are presented in

Chapter VII.

Data Aggregation and Visualizations

Large networks can contain millions of vertices that connect to each other in

some way. Community discovery allows us to analyze one community at a time.

When a community contains tens of thousands of vertices, visualizing the network

as an entity does not provide a lot of information, as shown in Figure 6.

Data aggregation and grouping of vertices enable meaningful community

analysis. The specific technique employed depends on the research question we are

trying to answer, what will have a low cost if discarded, and what the aggregation is

meant to accomplish, as they can focus on graph aggregation to maintain the same

structure, identify patterns, maintain the most salient information of the original

graph, or focus on the most influential vertices. Various graph aggregation

approaches have succeeded in reducing the graphs without major structural changes

[54, 63], while reducing the high processing cost.

Figure 6: Network example with no reduction. Graph with 34K vertices and 41K edges.
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We propose and implement context-aware graph reduction methods that allow

for fast and meaningful visualization: • Community Percentage: A percentage of

vertices of every community found in a given graph is removed, starting from the

lower degree vertices. This approach reduces the number of vertices to plot, without

changing the overall structure of the data. The Louvain method was the chosen

algorithm to calculate the communities, as it has been shown to have good

summarization power and excellent execution time [54]; • Edge Weight: Given a

number x, we remove all edges (u, v) with a weight less than or equal to x,

weight(u, v) <= x. Removing "weak links," edges with a small weight allow a visual

analysis of vertices with stronger connections; and • Vertex Degree: Given a

number x, we remove all vertices v with degree less than or equal to x. Removing

edges related to low degree vertices will allow the visualization to reveal vertices

that interact with more vertices.

Figures 7 and 8 show six graphs created from the exact same vertices and

edges, but using different reduction techniques. The data to create the graphs were

extracted from the month of May, for retweet connections from the Austin dataset

(More details about this dataset are available in Chapter VII). The original graph

without any reductions has a total of 10,448 vertices and 11,977 edges. If no

reduction is used, the graph is incomprehensible and does not produce useful

insights, as shown in the first image of Figure 7. The Vertex Degree reduction

technique with a large number will put the emphasis on the highest degree vertices,

as shown in the third graph of Figure 8. In the Community Percentage reduction

technique the graph emphasises vertices that are the centers of communities. To

better understand the impact of the reduction techniques to the original graph, we

have conducted extensive analysis, as presented in Chapter VII. The measures

calculated are (i) the number of vertices, (ii) the number of edges, (iii) the average

degree vertex, (iv) density, (v) the power nodes score, and (vi) the similarity
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between the top 1% of vertices between the reduced and original graph. Figure 45 in

Chapter VII shows the comparison of the graph reduction experiments.

Figure 7: Sample graph reductions using the Vertex Degree and the Community Percentage
techniques. Austin dataset: the original graph with no reduction (left); the Vertex
Degree graph outcome: filtered all edges connecting two vertices with degree less
than 115 (center); the Community Percentage and the Vertex Degree graph out-
come: every community found in the graph reduced by 70%, and then every edge
with degree less than 25 removed (right). (High resolution in Figures A.1, A.3,
and A.4).

Figure 8: Sample graph reductions using the Edge Weight, the Vertex Degree and the Com-
munity Percentage techniques. Austin dataset: the original graph with no reduc-
tion with the size of the vertices scaled by degree (left); the Edge Weight and the
Community Percentage aggregation: every edge with weight 1 removed, followed
by the community reduction by 2% (center); the Vertex Degree aggregation: re-
moving every edge connecting two vertices with degree less than 355 (right). (High
resolution in Figures A.2, A.5, and A.6).

Discussions

Different ways of creating networks from Twitter data were proposed. Studying

the different network types separately can be helpful for discovering different

insights from the same data. The retweet connections network, for example, could

potentially help highlight users with high influence [22]. Intuitively, we could also
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reason that the replies network could help highlight users that can generate a lot of

discussions, and the mentions network highlights people that are often brought into

conversations, even if they were not necessarily participating in the discussions. The

hashtag network can be helpful for finding communities of people discussing similar

topics. The use of the hashtag network proved to be helpful for topic analysis, as

shown in the details of Chapter IV and on the topic discovery experiments in

Chapter VII. Scientists that are interested in studying Twitter data can choose what

type of network fits better for their research question(s).

The clustering algorithms evaluated help us find communities within the

networks and can be used for different objectives. The Spectral Clustering algorithm

is helpful for cases where we are interested in how strong the relationship between

vertices are. But Spectral Clustering has its limitations, as it has a high

computational time and can only be applied to fully connected components. The

Louvain method, on the other hand, which has a better computational time, was

created specifically for the task of finding communities in the networks, and can be

used for networks with separate connected components, but it does not consider the

strength of the vertices connectivity and focuses only on maximizing the modularity

of the network. Both the Spectral Clustering and the Louvain methods find disjoint

communities. The novel super user centric approach, the TN-Neighborhoods method,

finds overlapping communities around a set of high degree vertices, the super users.

The TN-Neighborhoods method can be helpful for understanding the connections

and discussions around particular influential vertices [57]. The different clustering

performance evaluation metrics are helpful for understanding the characteristics of

the networks, as they can show us how connected, dense, or well separated the

communities in the network are. More experiments and discussions about the

different performance metrics for each of the clustering algorithms are available in

Chapter VII. The proposed reduction techniques allow the simplification of complex
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and large graphs, making their visualization possible. The simplification comes with

a cost, as some information gets lost with the reduction, so each technique can be

useful for answering different questions. The Community Percentage technique

should be used when we want to preserve the community structures and keep the

emphasis on the centers of each community. The Vertex Degree technique should be

used to keep the emphasis on vertices with the highest degrees. And the Edge

Weight technique should be used to keep edges with the strongest connections. All

the different techniques proposed can be used by themselves or in combination, so

that the analysis can be shaped based on the available dataset, and towards

answering a particular research question.
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IV. TOPIC MODELING

Topic modeling (analysis and detection are often used as synonyms in this

context) is a text mining technique that uses machine learning to automatically

process text and categorize it by topic or subject. Topic modeling in Natural

Language Processing (NLP) automates the identification of recurrent themes

(topics) in the collection of text documents. Originally developed as a text-mining

tool, topic models have been used to detect instructive structures in social networks.

The optimized Latent Dirichlet Allocation (LDA) module is a popular generative

statistical model for topic detection [24] that allows sets of observations to be

explained by unobserved groups that explain why some parts of the data are

similar. LDA relies on word frequency to find the mixture of topics for a given set of

documents, and it was tuned to perform well on the natural language processing

data of a set of large text documents.

Topic modeling in the age of social distancing has increased in relevance, as

topic trending on Twitter arose as one of the most relevant resources of

(mis)information. Increasing numbers of people rely on Twitter to receive news and

form opinions on ongoing social, political, and economic policies, movements, and

changes. Twitter data is different than a set of traditional documents. Tweets are a

form of expressions that are short (up to 280 characters) and tend to be very

colloquial in nature: acronyms, slang, misspellings, and bad or no punctuation are

common. Thus, most of the research in LDA topic detection in Twitter datasets

focuses on the use of different types of aggregations for input [26], or graph-based

methods for clustering topics [27] to improve the topic discovery performance [25].

Hashtag analysis in Twitter data related to political consumerism [17] uncovers

interesting trends. There are generally three types of political consumerism

sentiment (i.e., political-, civic-, and consumption-related) that change the
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sentiment of a tweet and its over arching purpose or relevance in the discussion [17].

The spread of digital wildfires in the form of misinformation, purposely fake and

harmful tweets and quotes, have become a major concern in the past few years.

Topic analysis helps separate misinformation tweets from the relevant ones, and

researchers have recently published a dashboard of the daily list of identified

misinformation tweets, along with topics, sentiments, and emerging trends in the

COVID-19 Twitter discourse, as well as the spreading patterns of prominent

misinformation tweets [64].

We propose to access the level of colloquialism in Twitter data, and to use tweet

aggregation approaches outlined in Chapter III to improve discovery of Twitter

dataset topics that are more human interpretable, and automate underlying analysis

introduced in [17, 64] to help social scientists gain better insights into data patterns.

Pre-Processing Methods

A series of steps for cleaning the data and pre-processing the text were used

before sending it as input to the topic model. Hashtags, user screen names, links,

special characters, stop words, and numbers are removed. Then the words are

lemmatized. Removal steps are as follows: (i) Remove links by cleaning everything

that starts with http, (ii) remove hashtags by cleaning everything that starts with

#, (iii) remove mentions by cleaning everything that starts with @,(iv) remove

retweet symbols at the beginning of retweet messages, (v) remove any symbols,

punctuation, return characters, extra spaces, special characters, and numbers, (vi)

remove stop words, and (vii) lemmatize words.

Figure 9 shows a comparison of topics found before and after the cleaning steps

using the same input.
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Figure 9: Sample topics discovered using the LDA model before (left) and after (right) using
cleaning techniques. Data extracted from a community in the Covid dataset.

Topic Model

The gensim package [65] implementation was used for the topic model task, in

particular the Optimized Latent Dirichlet Allocation (LDA) module [24].

Given a set of documents, the LDA model returns a set of topics, each with a

set of words with a probability score that shows how likely each word can describe

the topic. Such a model can be useful for predicting the topics of a new input text

that was not part of the training set, classifying documents into categories, or

retrieving insights about the main subject of a document. For the purpose of the

work in this thesis, we are only interested in understanding what is being discussed

with a given dataset, so all efforts in improving performance are towards that goal.

The following steps were done to train the models: (i) create a set of documents

where each document corresponds to one tweet, (ii) pre-process the content of each

document as explained in section Pre-Processing Methods, (iii) create a term

dictionary of the corpus, where every unique term is assigned an index, (iv) convert

the list of documents into a Document Term Matrix using the dictionary prepared

in the previous step, (v) choose the number of topics, (vi) and train the model using

the gensim package.
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Evaluation

To evaluate the topics, human intuition and coherence metrics were used. Since

the goal is to achieve human interpretability in the topics found, manual evaluation

can be the best indicator, but we added the coherence metric c_v proposed in [66]

to help in the evaluation of a large number of experiments. The c_v coherence was

shown to outperform other existing coherence metrics [66].

Aggregation Methods

Large social networks can have a substantial amount of different parallel

discussions. Even in the cases where the datasets were filtered based on a certain

hashtag, different people can use the same hashtag for different discussions. The

LDA model does an adequate job classifying topics for well defined documents, but

it can be challenging to deal with the colloquial nature of Twitter data.

We propose an approach to pre-aggregate the tweets before using any topic

prediction or visualization. The aggregation itself is already the first level of topic

discovery, as it clusters the topics based on the specific aggregation.

The aggregation methods are as follows: (i) graph-based hashtag communities,

(ii) graph-based user connection communities, (iii) and filters by time period, user’s

screen_names, or hashtags.

The graph-based hashtag communities aggregation uses the methods described

in Chapter III to create a network of hashtag connections and separate them using

the clustering techniques. Even though the hashtags themselves can be difficult to

interpret, they can be great indicators of topics.

The graph-based user connections aggregation also uses the methods described

in Chapter III to create a network of user connections and separate them using the

clustering techniques. Users that are very connected to each other tend to share
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similar topics.

The filters aggregation separates the tweets into groups that are bound based

on the filter used. Time period filter, for example, separates the dataset into tweets

that were created within a date range. That way it will be possible to see the topics

being discussed for that specific period.

The three aggregation techniques can be used by themselves or in combination.

The graph-based methods also have multiple options of clustering techniques and

network creation, as explained in Chapter III. An example of this combination

would be to aggregate the tweets based on the Louvain communities found in the

replies only networks for a certain time period.

Visualizations

In order to visualize the topics for each of the approaches described in the

previous sections, four different types of visualization were used: a LDA probability

barchart, word clouds for the most frequent hashtags and words, barcharts showing

the most frequent hashtags and words, and a hashtag connections graph.

Figures 10, 11, and 12 show a sample of a topic found for one of the

communities in the Austin dataset. The text of the tweets were aggregated by the

hashtag network and community Louvain method.

Figure 10: Visualizations for a topic discovered in the Austin dataset
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Figure 11: Barchart and word cloud visualizations for a topic discovered in the Austin
dataset

Figure 12: Sample hashtags graph visualization for a topic discovered in the Austin dataset
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Colloquial Language Analysis

In order to understand the colloquialism of Twitter data and how it could affect

the performance of traditional topic models, we investigate the readability ease of

each tweet. There are different ways to score the readability of texts. The FK score

(Flesch-Kincaid) is a common way of calculating this. Its formula takes into

consideration the number of words, sentences, and syllables in a text. A slightly

modified version of the FK score, as proposed on Davenport, 2014 [67], was used in

order to accommodate Twitter’s short format.

Flesch-Kincaid Score

The Flesch-Kincaid score is a readability test designed to indicate how difficult

a passage in English is to understand. This score was used in this work to evaluate

the readability ease of each of the tweets in the hope of finding and understanding

the different levels of colloquialism of different tweets. Higher scores indicate greater

ease in readability and lower scores indicate difficult or complex writing.

The standard FK score formula is:

206.835− 1.015(
#Words

#Sentences
)− 84.6(

#Syllables

#Words
)

The modified version proposed on Davenport, 2014 [67] uses the same concept,

but it considers the entire tweet text as one sentence, and suggests a cleaning

method to overcome the unconventional punctuation of the text.

Auxiliary Datasets

In order to get some additional information about the texts in the hope of

getting more insight about how colloquial a text is, we also use the following

datasets:
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UrbanDictionary.com: A dataset with words from UrbanDictionary.com.

Urban Dictionary is an online dictionary that captures crowd-sourced slang words

and phrases. Even though it was originally focused on slang, now it can be used to

define a more comprehensive set of words. This dataset was retrieved from Kaggle

and includes 2.6 million words from UrbanDictionary.com.

Social Media Acronyms: A list of the most common social media acronyms

was also used. A total of 140 acronyms were retrieved from an article on buffer.com

[68].

Spelling Errors: A set of corpora were retrieved from an archive from the

University of Birkbeck [69]. Three of their corpora were used: Birkbeck (36,133

misspellings of 6,136 words), Aspell (531 misspellings of 450 words), and Wikipedia

(2,455 misspellings of 1,922 words).

NLTK Corpus - (Words): The NLTK [70] Words Corpus is the

/usr/share/dict/words file from Unix, used by some spell checkers. It can be used to

find unusual or misspelled words in a text corpus. This corpus was used to tag

words as English or not.

FK Score Evaluation

The datset MeToo was used to evaluate the FK score for each tweet and to

cross reference it with the additional datasets. More details about the MeToo

dataset are available in Chapter VII. The tweets were split by the different ranges of

FK scores, and percentages were calculated for each range based on the additional

datasets. The results are presented in Table 4.

As shown in Table 4, the percentage of tweets with a least one acronym is

higher for tweets with lower FK scores and the percentage decreases as the FK score

increases. The percentage of total words with a least one acronym grows in the

opposite direction, with greater percentages for higher FK scores. All FK score
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Table 4: Tweets and word counts with % per FK score level. Data extracted from the MeToo
dataset. FK score Level: The range the FK score; Tweets: the total number of tweets
in millions; Words: the total number of words in millions; Acronym dic %T: The
percentage of tweets with an acronym; Acronym dic %W: The percentage of words
with an acronym; Not English %T: The percentage of tweets with a word that is not
English; Not English %W: The percentage of words that are not English; Urban
dic %T: The percentage of tweets with a word found in the Urban Dictionary;
Urban dic %W: The percentage of words found in the Urban Dictionary; Spelling
error %T: The percentage of tweets with a word found in the spelling error dataset;
Spelling error %W: The percentage of words found in the spelling error dataset.

FK score Total Acronym dic Not English Urban dic Spelling error
level Tweets Words %T %W %T %W %T %W %T %W

<0 310 20,051 11.73 0.36 99.99 29.71 98.7 80.35 77.26 7.09
0-30 969 44,942 9.92 0.43 99.99 27.66 99.96 82.86 77.04 7.04
30-50 1,101 45,878 9.73 0.48 9.99 26.1 99.99 86.17 71.93 7.17
50-70 551 18,197 9.07 0.56 99.99 26.79 99.99 87.74 68.82 7.82
70-90 116 2,634 7.8 0.69 99.88 27.5 99.98 89.78 55.42 7.63
>90 37,310 505,833 5.89 0.88 99.63 31 99.95 91.71 37.26 7.16
Total 3,087 132,210 9.76 0.46 99.98 27.32 99.85 84.47 72.47 7.21

levels show a percentage of almost 100 for tweets with at least one word that was

not recognized as English, and similar percentages between the different levels for

the number of words in that same category. Almost 100% of tweets that had at least

one word found in the UrbanDictionary, and a high percentage of total words as

well. The total number of words found in the UrbanDictionary is also high, and it

seems to increase as the FK score increases. The number of words found in the

spelling error dataset was about 7% for the different FK score levels.

The auxiliary datasets were less helpful than initially expected. The

UrbanDictionary dataset was not a reliable way to find slang words. The same word

was saved with many different definitions and there were also many words that were

not slang, but were still part of the dataset. Notice in Table 4 that a very large

percentage of words were found in the slang dictionary, which makes the likelihood

of every word actually being slang very small. The UrbanDictionary dataset turned

out not to be a good indicator of colloquialism. The spelling error dictionary was
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also not completely useful. Not a lot of words were able to be corrected properly.

Finding better datasets in the future may improve the analysis.

Manually looking at some sample tweets for the different levels of FK score and

the different values in Table 4, the results are actually counterintuitive. Low scores

are supposed to be college graduate level and difficult to read, and high scores are

supposed to be very easy to read. These levels did not seem to agree with the actual

results. Very low and very high scored tweets had almost non intelligible text. Low

to medium scores had the most intelligible sentences. And the different measures

didn’t seem to show a significant pattern between the different FK score levels.

Due to the nature of the tweets, it seems like the FK score does not translate

on the same scale. But a unique scale could potentially be created for tweets if one

wants to use this score to filter out non-useful text.

Even though this analysis didn’t prove useful for a true understanding of the

levels of colloquialism in Twitter data, it reiterated how challenging processing tweet

texts can be.

Discussions

Different aggregation techniques and visualizations were proposed to improve

the human interpretability of the topic discovery task. The different techniques can

be used according to the research question. The filters technique can be useful for

finding topics for a particular time range, a particular user, or hashtag. The

graph-based user connection communities technique can be useful for finding topics

that belong to a certain group of users that are related to each other. The

graph-based hashtag communities aggregation technique was found to be especially

helpful for separating the topics in a dataset.

The visualizations were also helpful in evaluating the topics being discovered.

The graph visualization created from the connections between hashtags for a certain
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topic proved to be particularly helpful in increasing human interpretability of the

topics.

The topic coherence also showed improvements after the usage of the

aggregation techniques. Details of the experiments done to evaluate the topics’

coherence are available in Chapter VII.

Even though the proposed methods did make improvements in finding coherent

topics, Twitter data still presents many challenges because of its colloquial nature.

More efforts can be put into addressing those challenges.
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V. DATA MANAGEMENT

Tweet data format is semi-structured. There might be a tag, mention, hashtag,

text, reply, quote, image, link... or not. All the knowledge that tweets and the

network of tweets contain cannot be easily analyzed and extracted using analytics

tools designed for structured data. Traditional SQL data warehouses have been

extended to support semi-structured data, and researchers have successfully used it

as a supporting database for Twitter analysis [32, 33, 34, 35]. The problem with a

relational database implementation for Twitter data is that it has a rigid schema

definition making it difficult to adapt to the dynamic nature of Twitter data and the

volume and scope of data analysis.

We propose to implement a NoSQL solution using MongoDB. MongoDB is a

schemaless document-oriented database that has been proven to scale better for

big-data, and perform better for inserts, updates, and simple queries [71]. The data

does not have to have a particular structure limit, which increases the flexibility of

the implementation for the dynamic fields from Twitter documents. Each document

in MongoDB is capable of holding complex structures. MongoDB has been used

before in different Twitter related research [72, 73, 74], and the overall processing

pipeline has been explored in limited scope [75]. The challenge with a MongoDB

implementation is that such databases do not perform well on aggregation queries,

and do not have simple functionality for joining collections together [71, 76], as SQL

databases do. We could use both systems for different parts of the pipeline, to take

advantage of both SQL and NoSQL approaches. Implementation complexity does

not warrant us to pursue this idea any further, as the system we have developed

scales with millions of tweets, it adapts to the dynamic nature of Twitter data, it is

user friendly, and supports data analytics. We propose to use MongoDB and take

advantage of the flexibility with unstructured data, and to create multiple data

39



aggregation collections to address aggregated data retrieval and joins. The proposed

approach scales and facilitates analysis while improving data retrieval performance.

Twitter Data Structure

A tweet document is comprised of multiple objects. The main object is called

Tweet and it contains: (i) static information: data fields available for all tweets, even

if empty, such as the tweet content, unique ID, post timestamp, and geo location if

provided, and (ii) dynamic information: different fields of information that are

available for different tweets and versions of client and server software used; there

could be over 150 attributes associated with it [77]. The Tweet object is also a

parent to other child objects, such as the User object that describes who authored

the tweet and contains fields such as the username, user ID, the number of followers,

and the account bio (even if empty); the Place object that exists when the tweet is

geo-tagged; the Entities object that encapsulates arrays of hashtags, user mentions,

URLs, and native media; and the extended_entities object for cases where there are

attached media such as photo or video.

Objects retrieved at different dates and with different APIs can have a different

set of fields; e.g. deprecated fields still exist in old retrieved files. The introduction of

the extended_tweet field in 2017 holds 280 characters, an upgrade from 140. To

make that transition work with backward compatibility, Twitter introduced the

extended_tweet field that would contain the full message while the original tweet

field would have the truncated information. So if the extended_tweet field exists, we

should ignore the truncated values and use the extended ones. Two tweet documents

can potentially have very different fields available, and Twitter’s data dictionary

explains each of the existing fields on the root-level Tweet object as well as the

fields on the child objects [77]. Figure 13 illustrates an example of two tweet

documents and their fields.
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Figure 13: Two sample Twitter documents

Extracting Useful Information

Focused Tweet Info: In this study, we focus on the subset of fields from the

original document, and treat them as an object. Core fields are always kept, and

optional fields can be chosen based on the research question asked and the research

need.

Tweet Message Field: The message of the tweet can be found (a) in the root

of the tweet document, (b) in the quote_status or in the (c) retweet_status child

objects in case the tweet was a retweet or contained a quote. The fields can be

named text, full_text, or extended_tweet.full_text. We combine all available texts

into a text_combined field, as having all content concentrated into one field

facilitates later analysis on the tweet dataset topics.

Edges - Tweet Connections: Let x, y, z, w, and v be Twitter users, and let x

be the user that created the tweet of interest. Edges are created between x and the

other users when user x retweeted, quoted, replied to, or mentioned the other users.

The following fields are used from the tweet document to create edges: the user

object from the Retweeted_Status field, the user object from the Quoted_Status
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field, the user_mentions field from the entities object, and the

in_reply_to_user_id_str field. Figure 14 illustrates how the connections can be

extracted from the tweet document, as our distinct connections can be established:

{x,y} if x retweeted y, {x,z} if x quoted z, {x,w} if x mentioned w, and {x,v} if x

replied to v.

Edges - Tweet Hashtags: Useful information can also be extracted from the

connections between hashtags. Here, we extract pairs of hashtags that were used in

the same tweet. So, for example, if a tweet contains the hashtags #x, #y, and #z,

we create the pairs {#x, #y}, {#x, #z}, and {#y, #z} to be used later in the

pipeline for analyzing the graph of hashtag connections.

Words: The combined version of the message content is in text_combined field,

and we use NLTK [70] library to extract information about each word: if a word is

in English or not, if it is a stop word or not, if it is a verb, noun, adjective, or

adverb. The words are also broken down into syllables to help with the semantic

analysis. Breaking the tweet messages into words provides a sentiment analysis base.

Figure 14: Various Tweet object fields are used to create different connections between users
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Data Dictionary

The collection tweet stores the raw data from the Twitter JSON files, with no

modification, and the collection focusedTweet stores the focused data extracted from

the original documents. It is useful to have a separate collection for the focus data

as it (i) decreases the amount of data stored in one collection and increases the

query’s performance, and (ii) enables core columns with a standard name

processing. The field that contains the original tweet message can have different

names, and standardizing that name in the focused collection streamlines the

pipeline processing. We create a handful of collections to store cleaned and

transformed data in the data pipeline process. Few of the collections share similar

fields by design, as it enables post-processing queries to run easier and faster.

Table 5 summarizes the core collections. Table 6 summarizes optional aggregate

collections that store summary data for easy EDA. Table 7 summarizes the

administrative collections. Administrative collections keep track of the records that

have already been loaded and processed, save the searches that have already been

done to the Twitter APIs, and control the recovery process. Table 8 shows the

details of the temporary collections that get dropped and re-created to facilitate

analysis and improve aggregate query performance. More details about each of the

core collections are available in the Appendix section.
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Table 5: Core collections

Core collections

Collection Description

tweet This collection stores the full raw Twitter data. The fields available may
vary, and are dependant on the content of the JSON files and APIs used
as the source. A few additional fields were created in this collection to
keep track of what file the tweet came from, the load timestamp, and to
facilitate the recovery process.

focusedTweet This collection stores only the most interesting information about the
tweet. The definition of interesting can be different depending on the
research question, so settings can be updated to drive what fields are in-
teresting. Some core fields will always be available no matter the settings.

tweetWords This collection stores each word separately for every tweet, and some
additional information about the tweet. It also includes interesting tags
about that word. (e.g English or not, verb or not, etc.)

tweetConnections This collection stores the edges that connect two tweets together, either
by retweets, quotes, replies, or mentions. It contains information about
the tweet, where the connection came from, and about the two users that
were connected. This collection is later used to build the edges for the
graph analysis.

tweetHTConnections This collection stores the edges that connect two hashtags together. If
two hashtags were used in the same tweet, a record will be created in this
collection. It contains information about the tweet where the connection
happened, and about the two hashtags. This collection is later used to
build the edges for the graph analysis.

users This collection stores interesting information about the tweet user. Some
core fields will always exist, but similar to the focusedTweet collection,
settings are available to drive what fields are considered interesting. The
same user can appear multiple times in a dataset with different values;
for example, the same user can exist with two separate descriptions. This
collection will not store multiple records for the same user and it will have
only the first values found for each user. Other records for the same user
will be ignored.

Table 6: Aggregate collections

Aggregate collections

Collection Description

agg_tweetCountByFile This collection stores the count of all tweets in the dataset by
files loaded.

agg_tweetCountByLanguage This collection stores the count of all tweets in the dataset by
language.

agg_tweetCountByMonth This collection stores the count of all tweets in the dataset by
month and year.
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Table 7: Administrative collections

Administrative collections

Collection Description

adm_loadStatus This collection stores the status of each collection’s load. and how many
tweets have already been inserted. In the case of a failure, it will be used to
know which records have already been inserted and which ones haven’t. This
was created as part of the recovery process.

adm_loadedFiles This collection stores the directory and file names that have already been
loaded to the database. The load timestamp and the file path are the columns
available. This is to make sure the same file doesn’t get loaded multiple times.
This was created as part of the recovery process.

searches This collection stores all the requested searches to the Twitter APIs. The
fields in this collection will vary, and will depend on the the result returned
from the API. The time of the search and the name of the API used will
always be available.

Table 8: Temp collections

Temp collections

Collection Description

tmpEdges Temporarily saves edges of a graph so they can be used as lookup values
in different queries.

tmpEdgesTweetIds Temporarily saves tweets’ Ids that refer to the edges saved on tmpEdges.
This collection is used as lookup values in different queries.

tmpEdgesHTFreq Saves the hashtags used in tweets for certain edges (Ids saved on
tmpEdgesTweetIds). This is used in aggregate queries to count the fre-
quency of hashtags for specific edges.

tmpEdgesWordFreq Saves the words used in tweets for certain edges (Ids saved on tmpEdgesT-
weetIds). This is used in aggregate queries to count the frequency of words
for specific edges.

It would be possible to create queries without these temporary tables and get the same results,
but when querying a high volume of data it becomes nearly impossible to return aggregate
queries using lookups from multiple tables in a reasonable amount of time.
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Recovery Process

The pipeline includes a recovery logic to make sure that the processes don’t

have to be re-run from the beginning in case of a failure. While inserting into the

tweet collection, a sequence number gets attached to each tweet. Then every time

any processes need to run, that sequence number is used to control what has already

been processed or not. If something fails, the logic will be able to identify the last

sequence number processed and continue from there. That logic is available for all

the core collections and is driven by the values stored on adm_loadStatus.

DB Performance Tuning

In order to deal with the performance challenges while inserting and retrieving

data from the collections, a series of techniques were used to improve the execution

time.

InsertOne vs InsertMany: MongoDB gives users the flexibility to insert

records one by one (insertOne method), or insert multiple records at a time

(insertMany). When you insert records one by one, a request to change the

collection gets sent to the database and the completion status is returned back for

every single record. That means if we are inserting 3 million records, the database

will be hit 3 million times, which could take some time. It is possible to solve that

problem by inserting all records at the same time, that way the database would get

hit only once. The problem with that solution is that in order to save all records at

once, all data must be stored in memory first and then saved in the database. To

avoid both problems and take into consideration the possible differences in hardware

specification, a numeric parameter is used to drive how many records will be

inserted at a time. For powerful computers, a large number may be appropriate, but

a smaller number may be used for computers that are less powerful.
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Indexes: Retrieving data for visualization purposes or for inserting into other

collections can take a long time depending on the amount of data and filters used.

To improve query performance, indexes were created in strategic fields that are used

frequently and in many processes. The times to execute queries and to create the

derived collections had significant improvement after creating the indexes. All

indexes are created automatically when the collections get created. Table 9 show the

list of all the indexes created.

Table 9: List of indexes created in the MongoDB collections

Collection Field(s)

tweet seq_no
focusedTweet seq_no
focusedTweet id_str
tweetConnections tweet_id_str
tweetConnections edge_screen_name_undirected_key
tweetHTConnections tweet_id_str
tweetHTConnections ht_key
tweetWords tweet_id_str
tweetWords tweet_seq_n
users user_id_str & screen_name

Temporary Tables: Some of the more advanced queries that require lookups

and aggregations can take too much time to run for large datasets. To deal with this

challenge, temporary tables are created as part of the query requests to facilitate

the lookup process without having to create nested aggregation in MongoDB. For

example, when looking for hashtags that were used by users from specific edges in a

graph, we can first create a temporary collection with all the edges for that specific

graph. Then another temporary collection will save all the tweet Ids for those edges.

With that information, data can be aggregated to count the hashtags used for those

tweets. Even though it is possible to create one single query that will return that

same result, it can be nearly impossible to return the result in a reasonable amount

of time when dealing with a high volume of data. After implementing these
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methods, the average execution time decreased by approximated 60%. Table 32 in

Chapter VII shows the execution time improvements after implementing each of

these methods.
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VI. DATA ANALYTICS PIPELINE

Figure 15: Data pipeline

In this section, we present the underlying design of the pipeline, and provide

functionalities in pytwanalysis package [1]. The package provides a streamlined way

for users to access the functionalities of all pipeline blocks. Twitter data analysis

pipeline consists of several sequential analytics blocks, as illustrated in Figure 15. In

the Data Acquisition block, tweets are downloaded from the source and saved as

JSON objects. The criteria for acquiring data is pre-determined as described in

Chapter VII, and motivated by the research questions asked. Next, in the Data

Integration block, the Twitter JSON objects are cleaned, organized, and loaded into

MongoDB database. The Data Analytics block supports exploratory data analysis,

and offers graph analysis, clustering, topic discovery, time series, and community

modeling functionalities. The Data Presentation block supports result validation,

visualization, exploration, and output automation methods. The pipeline is subject

agnostic: data acquisition and processing are determined by the end user based on

the research question they try to answer. The pytwanalysis package can be installed

via pip and imported as:

pip install pytwanalysis

import pytwanalysis as ta
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For illustration purposes in this chapter, we create an exemplar object

myAnalysis of type ta. The myAnalysis object can now call all pytwanalysis

methods. Parameter base_path specifies where all the output files will be saved, and

db parameted specifies the MongoDB connection to be used for processing the data:

# initialize object of type ta.TwitterAnalysis

myAnalysis = ta.TwitterAnalysis(BASE_PATH , db)

Data Acquisition

Figure 16: Data acquisition block

The pytwanalysis package supports two data acquistion modes: (i) collect data

using Twitter’s API and (ii) collect data from offline Twitter JSON objects. For (i),

the pytwanalysis package supports calls to three different endpoints of the Twitter’s

Search API: the 7-Day search product from the Standard API [46], the 30-day

search product from the Premium API [47], and the Full-archive search product

from the Premium API [48]. The end user needs to provide the following items to

pytwanalysis package: Authentication - the authentication keys that can be

generated by getting a Twitter Developer account [78]; Twitter API endpoint - the

twitter API product to use, in our case, either the Standard 7-Day search, Premium

30-day search, or Premium Full-archive search; and Query - the query that will be

used to filter the tweets. Twitter provides an extensive documentation explaining

how to build queries, use available parameters, and generate authentication keys.

The documentation also explains the limitations of each API and their rate limits
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[79]. For (ii), offline support, the pytwanalysis package provides functionality to load

the data from files instead of straight from Twitter.

pytwanalysis Data Acquisition Methods

API Request Methods:

Sample Standard API 7-day search call:

# send request to 7-day search API

response = myAnalysis.search7dayapi(

consumer_key = ’[key]’,

consumer_secret = ’[secret]’,

access_token = ’[token]’,

access_token_secret = ’[token_secret]’,

query = ’austintexas OR atx OR austintx OR atxlife ’,

result_type = ’mixed ’,

max_count = ’100’,

lang = ’en’

)

Sample Premium API - (30-day or fullarchive) search call:

# send request to premium API

response , next_token = myAnalysis.searchPremiumAPI(

twitter_bearer = ’[bearer]’,

api_name = ’30day’,

dev_environment = ’myDevEnv.json’,

query = ’(coronavirus OR COVID19) lang:en’,

date_start = ’202002150000 ’,

date_end = ’202002160000 ’,

next_token = None ,

max_count = ’100’

)

The definition of the parameters used in the search7dayapi and

searchPremiumAPI methods are available in the Appendix section in Table C.1.

The process is as follows: The methods search7dayapi and searchPremiumAPI

will send a request to the API based on the given query; the API will return the

JSON documents matching the results, or an error message if any; pytwanalysis
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inserts the JSON documents into MongoDB; a record with the metadata of that

search gets created for future reference. The premium search API will also return a

token value that can be used for a next request with the same query, that way it is

possible to avoid getting duplicate records.

Scheduled Processing Script:

The pytwanalysis package supports unbiased sampling of Twitterverse by

issuing Twitter API requests as schedules using a .bat file.

Sample call to create the .bat file:

# create python script and .bat file for scheduled processing

myAnalysis.create_bat_file_apisearch(

mongoDBServer=’mongodb :// localhost :27017 ’,

mongoDBName=’myDBName ’,

file_path=’C:\\ Data\\ myScriptsFolder \\ MyScriptName.py’,

python_path=’C:\\ Users\\Me\Anaconda3\envs\myEnv\python.exe’,

consumer_key = ’[key]’,

consumer_secret = ’[secret]’,

access_token = ’[token]’,

access_token_secret = ’[token_secret]’,

query = ’austintexas OR atx OR austintx OR atxlife ’,

result_type = ’mixed ’,

max_count = ’100’,

lang = ’en’)

The create_bat_file_apisearch method expects the same parameters as the

Standard Search - 7-Day API method, plus four additional parameters: (i) the

MongoDB server, (ii) the database name that will be used to insert the new tweets,

(iii) the path where the script files should be saved, (iv) and the path where the

python.exe is installed. Note that the package provides this extended functionality

for the 7-day search API only. It will create two files; a .bat file and a python script

containing the code necessary to make the requests. The end user determines the

sampling schedule and may have to change the .bat file to include more steps in case

additional logic is required for respective operating systems. Windows users can call

the .bat file from the Windows Task Scheduler.
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Loading JSON Files:

For the situation where there are physical JSON files saved in a certain path,

the pytwanalysis package provides functionality for loading those files into

MongoDB. The method expects the path where the JSON files are stored.

Sample call:

# load tweets from JSON files

myAnalysis.loadDocFromFile(’C:\\ Data’)

The path of the files get stored in MongoDB as well so that it can be used to

make sure the same file does not get loaded twice.

Data Integration

Figure 17: Data integration block

The Data Integration block is in charge of extracting useful information from

the raw Twitter data, cleaning, organizing, and loading the data into MongoDB.

The details of the structures created in MongoDB to support the pipeline are

described in Chapter V.

Setting the Definition of Interesting

In order to tell the pipeline that certain fields in the Twitter data are useful for

analysis, the package provides a method to configure what fields the end user
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considers important. The settings will be used when loading the data into the

focusedTweet collection. (Refer to Chapter V for more details).

Sample call to configure the fields that are interesting:

# set configuration to decide the fields to keep

focusedTweetFields=’lang;retweet_count;in_reply_to_screen_name ’

focusedTweetUserFields=’name;description;location;friends_count;verified ’

myAnalysis.setFocusedDataConfigs(focusedTweetFields , focusedTweetUserFields)

The following fields are always kept independent of the end user’s choice:

id_str, text, quote_text, retweeted_text, hashtags, created_at, and user_id.

And the following fields are kept as default but can be overwritten by setting

the fields in the configuration: lang, in_reply_to_status_id_str,

in_reply_to_screen_name, user_screen_name, and user_name.

Cleaning Methods

In order to improve the performance of the semantic analysis, the ptwanalysis

package provides functionalities for cleaning the tweet messages based on the

findings from the topic analysis portion of this thesis. The messages get cleaned

while creating the collections in MongoDB to avoid having to execute the same

steps multiple times. The cleaned messages get stored in a separated field. Hashtags,

user screen names, links, and special characters are removed from the text field.

Stop words are not removed, but get flagged as such and can be removed if

necessary later.

Removal steps:

• Remove links by cleaning everything that starts with http.

• Remove hashtags by cleaning everything that starts with #.

• Remove mentions by cleaning everything that starts with @.

• Remove retweet symbols at the beginning of retweet messages.
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• Remove any symbols, punctuation, return characters, extra spaces, and special

characters.

For topic analysis it can also be useful to exclude numbers and stop words, but

that piece only happens in the semantic analysis step.

Even though the cleaning happens as the collections get created, it is also

possible to call the cleaning method manually.

Sample call:

myAnalysis.cleanTweetText(’re The text to Clean for @Jane !!! :) #python ’)

The method receives a text as parameter and returns a clean version of that

text. For the example above, the method would return:

’The text to Clean for’

The original information does not get lost, and mentions, hashstags, and links

can still be retrieved if necessary.

Loading Data into MongoDB

With the raw information loaded into the database as part of the acquisition

block, new collections are created to facilitate future data retrieval.

The build_db_collections method is in charge of extracting, cleaning, and

loading the data into all the collections in MongoDB. The parameter inc is used to

determine how many tweets will be processed at a time - the default is 100000. A

large inc number may cause out of memory errors, and a low number may take a

long time to run, so the decision of what number to use should be made based on

the hardware specification.

Sample call:

# Load all data into all collections

inc = 10000

myAnalysis.build_db_collections(inc)
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The different collections can also be built separately in case there is no need to

build them all at once. The following are the separate methods that are executed as

part of build_db_collections : loadFocusedData, loadUsersData, loadWordsData,

loadTweetConnections, and loadTweetHTConnections. Refer to the package

documentation [2] for more details on how to use each of these methods.

The recovery process explained in Chapter V is embedded into the methods

that load the data into MongoDB. No separate method calls are needed in order to

make sure the recovery process is activated.

Data Analytics

Figure 18: Data analytics block

With all the collections in MongoDB loaded with data, the next step is to start

understanding the data, and to generate the different analysis components.

Exploratory Data Analysis

The pipeline has logic to print a summary of the initial exploratory data

analysis for any dataset. The details of the metrics included in the output of method

eda_analysis are available in the Appendix section in Table C.2.

Sample call:

# print EDA & export EDA results to file

myAnalysis.eda_analysis ()
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Sample output:

Figure 19: EDA sample output for the Austin dataset

Graph Analysis

The pipeline uses the steps for analyzing the datasets’ social network and their

communities by using the methods described in Chapter III. The pipeline can create

the different networks, export measures for the graphs, export lists of vertices and

edges for the different networks, compress and plot graphs, and print the different

cluster metrics.

The first step is to create the edge files that will be used for the creation of the

graphs. There are different options for generating the edges: user_conn_all,

user_conn_mention, user_conn_retweet, user_conn_reply, user_conn_quote, and

ht_conn. Refer to Chapter III for details about the difference between these types of

graphs.

Sample call:

# in case there is a need to create edge files for separate periods

# Set period_arr=None in case there are no periods to analyze

period_arr = [[’P1’, ’10/08/2019 00:00:00 ’, ’10/15/2019 00:00:00 ’],

[’P2’, ’01/21/2020 00:00:00 ’, ’02/04/2020 00:00:00 ’],
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[’P3’, ’02/04/2020 00:00:00 ’, ’02/18/2020 00:00:00 ’]]

# export text files with edge information

myAnalysis.export_mult_types_edges_for_input(

period_arr=period_arr ,

type_of_graph=’user_conn_all ’)

Given an edge file created from the Twitter data, a networkX graph G can be

created.

Sample call:

# Load graph from edge file

G = myAnalysis.loadGraphFromFile(edge_file_path=’[edge file path]’)

Then, given a graph G, we can generate text files with the graph vertices and

their respective degree, and the graph edges and their respective weight (method

nodes_edges_analysis_files). We can cluster the vertices using the Louvain

Community algorithm (method calculate_louvain_clustering). We can cluster the

vertices using the Spectral Clustering algorithm (method

calculate_spectral_clustering). We can remove the isolated vertices, exclude

self-loops, and remove the disconnected graphs, keeping only the largest connected

component (method largest_component_no_self_loops). We can remove edges of

the graph based on the degree of the vertices connected to the edges (method

remove_edges). We can remove a percentage of the vertices and the edges of each

community of the graph (method contract_nodes_commty_per). We can create a

sub-graph to represent the Neighborhood of vertex v (method

create_node_subgraph). We can print some metrics about the graph, the number of

vertices, number of edges, diameter, radius, extrema bounding, and center vertices

(method print_Measures). We can print metrics about a community: separability,

density, average clustering coefficient, clique size of the graph, number of maximal

cliques in the graph, power nodes score, and average degree of all vertices (method

print_cluster_metrics).
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Refer to the package documentation [2] for more details and other available

graph functionalities.

Topic Detection

The pipeline uses the steps for analyzing the topics within the messages and

communities by using the methods described in the topic analysis portion of this

thesis. The pipeline will run the LDA model and print the visualization with the

results, it will also save text files, word clouds, and barcharts with hashtags and

word frequency lists.

Given a text file we can create an array of documents. Every line becomes a

document in the array.

Sample call:

# create one array of docs using a text file as source

myAnalysis.get_docs_from_file(file_path)

Given a document, in our case a tweet message, we want to add extra cleaning

before training the LDA model. The method can remove numbers, remove

stop-words, and lemmatize words in the documents. The end user can decide what

level of cleaning they want to do.

Sample call:

# clean documents for topic analysis

myAnalysis.clean_docs(

doc ,

delete_numbers=True ,

delete_stop_words=True ,

lemmatize_words=True)

Given a text file and the number of topics, we want to train a topic model that

can predict the topics being discussed. The end user can decide the type of model

that will be used for prediction: lda, lsi, or both. The end users can also decide if

they want to save the trained models in a file for future use, and if they want to
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save the results in MongoDB or in a text file. It also lets the end user decide the

methods of cleaning they want to use in the document.

Sample call:

# train model from file. Model_type options: LDA , LSI , or both

myAnalysis.train_model_from_file(

file_path=’C:\\ Data\\ tweet_messages.txt’,

num_topics =4,

model_name=’MyModel ’,

blnSaveinDB=False ,

blnSaveTrainedModelFiles=False ,

txtFileName=None ,

model_type=’lda’,

lda_num_of_iterations =150,

delete_stop_words=True ,

lemmatize_words=True ,

delete_numbers=True)

For the cases where the user already has an array of documents instead of a text

file, they can alternatively use the method train_model, that will do the same as

train_model_from_file, but will use an array of documents as the source.

Data Presentation

Figure 20: Data presentation block

The Data Presentation block supports data visualization options for the

analysis done in the previous block. The end user can create word clouds, barcharts,

different types of graphs, topic model visualization, and export data into text files.
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Graph Visualization

Given a graph G, we can plot a representation of the graph using the spring

layout. The end user can decide many of the details of the appearance of the graph,

but they can also decide to just use the default values.

Sample call:

# visualize graph with details

myAnalysis.plotSpringLayoutGraph(

G,

v_graph_name=’MyGraphName.png’,

v_scale=1,

v_k=1,

v_iterations =150,

cluster_fl=’N’,

v_labels=None ,

kmeans_k=’’,

v_node_color=’#A0CBE2 ’,

v_edge_color=’#A79894 ’,

v_width =0.05 ,

v_node_size =0.6,

v_font_size =0.4,

v_dpi =900,

v_alpha =0.6,

v_linewidths =0.6,

scale_node_size_fl=’Y’,

node_size_multiplier =6,

font_size_multiplier =7,

replace_existing_file=True)

# visualize graph using the default values

myAnalysis.plotSpringLayoutGraph(

G,

v_graph_name=’MyGraphName.png’,

v_scale=1,

v_k=1,

v_iterations =150)

Table C.3 in the Appendix section shows the parameters expected in the
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plotSpringLayoutGraph method. More details for these parameters are available in

the networkX [80] library documentation.

Sample output:

Figure 21: Sample graph output using the Austin dataset

Given a graph G, we can plot the distribution of the size of the different

connected components in G. Each dot in the plot represents a separate component

of the graph.

Sample call:

# plot the distribution of disconnected graphs

myAnalysis.plot_disconnected_graph_distr(

G,

file=’C:\\ Data\\ ConnectedComponents -( Graphs).png’,

replace_existing_file=True ,

size_cutoff=None)

Sample output:
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Figure 22: Sample distribution of the connected components of the graph extracted from
the Austin dataset

Given a graph G, we can plot the distribution of the graph based on an

attribute in G. After running the clustering algorithms, each vertex in G contains a

label pointing to the community that they belong to. There are two available

community related attributes: community_louvain and spectral_clustering. These

attributes can be used to plot the distribution. This method can also be used to plot

the distribution of manually added attributes.

Sample call:

# plot distribution of vertices based on graph attribute (e.g. community)

myAnalysis.plot_graph_att_distr(

G,

att=’community_louvain ’,

title=’Community Counts ’,

xlabel=’Community ID’,

ylabel=’Count’,

file_name=None ,

replace_existing_file=True)

Sample output:
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Figure 23: Sample Louvain community distribution for the Austin dataset

Word Clouds & Barcharts

Methods ht_analysis_files and words_analysis_files can be used to create

barcharts and word clouds for words and hashtag frequency lists that are saved in

the database. For the case where the frequency list is already saved in a text file, the

methods plot_word_cloud and plot_top_freq_list can be called instead and the

visualization will be based on the given frequency list.

Sample call:

# create word frequency list ,

# barcharts , and word cloud files from data in the db

myAnalysis.words_analysis_files(

path=’C:\\ Data’,

startDate_filter=None ,

endDate_filter=None ,

arr_edges=None ,

arr_ht_edges=None)

# creates hashtag frequency list ,

# barcharts , and word cloud files from data in the db

myAnalysis.ht_analysis_files(

path=’C:\\ Data’,

startDate_filter=None ,

endDate_filter=None ,
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arr_edges=None ,

arr_ht_edges=None)

Refer to the package documentation [2] for more details and other available

word clouds & barcharts functionalities.

Sample output:

Figure 24: Sample word clouds extracted from Austin dataset

Figure 25: Sample barcharts for hashtags and word frequency extracted from the Austin
dataset

Timeseries Graph

Every tweet document comes with a timestamp field that contains the time the

message was created. That field is used in the pipeline to group tweets and topics

into temporal buckets so that we can understand trends over a period of time.
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The pipeline has logic that will plot a timeseries graph representing the tweet

count by day, see example in Figure 26. It will also plot the count of how many

times a hashtag has been used by day. See example in Figure 27 with the count for

the top hashtags for the Austin dataset.

Sample call:

# create timeseries graph for tweet count and hashtag count

myAnalysis.time_series_files(

path=’C:\\ Data’,

startDate_filter=None ,

endDate_filter=None ,

arr_edges=None ,

arr_ht_edges=None)

Sample output:

Figure 26: Tweet count by day for the Austin dataset

Figure 27: Top 5 hashtags count by day for the Austin dataset
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LDA Model Visualization

After the LDA model has been trained, the pipeline can create a barchart

showing the possible topics and their probability.

Sample call:

# plot graph with lda topics

myAnalysis.plot_topics(

file_name=’LDA_Vis.png’,

no_of_topics =4,

model_type = ’lda’,

fig_size_x = 17,

fig_size_y =15,

replace_existing_file=True):

Sample output:

Figure 28: Sample output of the plot_topics method

Exporting Data

Even though this pipeline will have different options of visualizing the graphs,

one might want to use a different software for more visualization options. In that

case, the pipeline will also have an option of exporting vertices, edges, user

information, and other details to a tab delimited text file.

Sample calls:
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# set the path where the files will be saved

exportPath = ’C:\\ export_files \\’

# filter by period

start_date = ’10/08/2017 00:00:00 ’

end_date = ’10/09/2017 00:00:00 ’

# export clean tweet messages

myAnalysis.exportData(

’text_for_topics ’,

exportPath ,

startDate_filter = start_date ,

endDate_filter = end_date ,

replace_existing_file=False)

# hashtag frequency list

myAnalysis.exportData(

’ht_frequency_list ’,

exportPath ,

startDate_filter=start_date ,

endDate_filter=end_date ,

replace_existing_file=False)

Many other export functionalities are available. Refer to the package

documentation [2] for more details.

Filters

Filters are available for each of the components of this pipeline. It is possible to

filter by a specific period, by a hashtag, by an array of edges, or by the tweet being

from a bot or not. For example, by using the edge array filter, every file generated

will be for tweets that have the connections specified in the array. Frequency lists,

graphs, lda model, etc. Filters can be combined or used individually.
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Full Analysis Automation

Even though each small component of this pipeline can be executed separately,

the pipeline also has an automation process to facilitate the complete analysis by

creating all folders, edge files, and any other files based on given settings.

The Appendix section contains more details about the available configurations

that determine which files will be generated in the automation, and with what

characteristics (Tables C.4, C.5, C.6, and C.7). It also shows a list of possible files

that will get created as part of the automation (Table C.8), and a sample of the

folder structure that gets created after running the pipeline (Figure C.1).

Sample call:

# Set configurations

myAnalysis.setConfigs(

type_of_graph=TYPE_OF_GRAPH ,

is_bot_Filter=IS_BOT_FILTER ,

period_arr=PERIOD_ARR ,

create_nodes_edges_files_flag=CREATE_NODES_EDGES_FILES_FLAG ,

create_graphs_files_flag=CREATE_GRAPHS_FILES_FLAG ,

create_topic_model_files_flag=CREATE_TOPIC_MODEL_FILES_FLAG ,

create_ht_frequency_files_flag=CREATE_HT_FREQUENCY_FILES_FLAG ,

create_words_frequency_files_flag=CREATE_WORDS_FREQUENCY_FILES_FLAG ,

create_timeseries_files_flag=CREATE_TIMESERIES_FILES_FLAG ,

create_top_nodes_files_flag=CREATE_TOP_NODES_FILES_FLAG ,

create_community_files_flag=CREATE_COMMUNITY_FILES_FLAG ,

create_ht_conn_files_flag=CREATE_HT_CONN_FILES_FLAG ,

num_of_topics=NUM_OF_TOPICS ,

top_no_word_filter=TOP_NO_WORD_FILTER ,

top_ht_to_ignore=TOP_HT_TO_IGNORE ,

graph_plot_cutoff_no_nodes=GRAPH_PLOT_CUTOFF_NO_NODES ,

graph_plot_cutoff_no_edges=GRAPH_PLOT_CUTOFF_NO_EDGES ,

create_graph_without_node_scale_flag=CREATE_GRAPH_WITHOUT_NODE_SCALE_FLAG ,

create_graph_with_node_scale_flag=CREATE_GRAPH_WITH_NODE_SCALE_FLAG ,

create_reduced_graph_flag=CREATE_REDUCED_GRAPH_FLAG ,

reduced_graph_comty_contract_per=REDUCED_GRAPH_COMTY_PER ,

reduced_graph_remove_edge_weight=REDUCED_GRAPH_REMOVE_EDGE_WEIGHT ,
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reduced_graph_remove_edges=REDUCED_GRAPH_REMOVE_EDGES_UNTIL_CUTOFF_FLAG ,

top_degree_start=TOP_DEGREE_START ,

top_degree_end=TOP_DEGREE_END ,

period_top_degree_start=PERIOD_TOP_DEGREE_START ,

period_top_degree_end=PERIOD_TOP_DEGREE_END ,

commty_edge_size_cutoff=COMMTY_EDGE_SIZE_CUTOFF

)

# create all files based on the given configurations

myAnalysis.edge_files_analysis(output_path=OUTPUT_PATH)

Scalability

Scalability was taken into account when choosing each of the techniques used in

this pipeline. Performance tuning methods and the use of different parameters and

filters was imperative for helping the analysis to focus on only what is considered

interesting without wasting unnecessary time.

The subsection Performance Tuning in Chapter V shows some techniques used

to improve the performance of the database insertion and data retrieval.

The creation of multiple filters and parameters also helps the end user choose

only the pieces of information that are valuable to them. That way no time is

wasted generating analysis for pieces of information that will not be used.

Another important method used for performance improvement purposes was

exporting content into text files. While running the analysis files, some key data

points get created and exported to text files. These files are then used later in the

pipeline to load graphs, word clouds, and bar-charts. The time required to load data

from text files is significantly lower than retrieving the data over and over again

from the database.

The combination of these techniques allows the pipeline to be utilized even for

larger datasets.
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The Python Package

The pytwanalysis package is available for installation at:

https://pypi.org/project/pytwanalysis/ [1]

The code is available in gitHub at:

https://github.com/lianogueira/pytwanalysis [81]

And the documentation of the pytwanalysis package is available at:

https://github.com/lianogueira/pytwanalysis-documentation [2]

The pytwanalysis package contains 4 classes:

• TwitterDB: This class will take care of all the MongoDB activities. It will

load tweets from JSON files, create new collections, clean and transform data,

query data, and export data.

• TwitterGraphs: This class will take care of graph related tasks. It will

analyze graphs, export graph metrics, create sub-graphs, create clusters,

calculate cluster metrics, plot graphs, and reduce graphs.

• TwitterTopics: This class will take care of topic discovery related tasks. It

will train the LDA model, and print graphs with word and hashtag frequency.

• TwitterAnalysis: This class will inherit the methods of the other three

classes and will be in charge of automating the creation of the analysis files

and folder structure.

Tools

The following were the main tools used in this work:

Programming Language: Python 3.7

Database: MongoDB

Network Analysis: networkX library [52]
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Topic Analysis: gensim [65] and NLTK libraries [70]

Word Clouds: wordcloud library

Visualizations: matplotlib library

Clustering: sklearn [56] & community libraries
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VII. DATA AND EXPERIMENTS

Here, we apply the proposed pipeline to the analysis of the datasets with

different sizes, formats, and languages. Goal is to access how the proposed software

tool supports various Twitter datasets, fields available, and distribution of users and

discussions. These datasets were used as case studies for the experiments. The

datasets will be referenced as the following: Austin, a dataset with over 300,000

tweets that are related to the hashtags #austintexas, #atx, #austintx or #atxlife;

BJJ-en, a dataset in English with over 200,000 tweets that are related to the

hashtags #BJJ, #jiujitsu or #jiu-jitsu; BJJ-pt, a dataset in Portuguese with over

200,000 tweets that are related to the hashtags #BJJ, #jiujitsu or #jiu-jitsu;

Covid, a dataset with over 8 million tweets that are related to the hashtags

#Coronovavirus, #Covid19 or #Covid-19; MeToo, a dataset with over 3 million

tweets that are related to the hashtag #MeToo; and Random, a dataset with over

100,000 random tweets that are not related to any particular subject.

Datasets

This section describes the six datasets used in the experiments, and the

exploratory data analysis for each of them. Figures 29, 30, and 31 show a high

level comparison between the counts in each of the datasets.
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Figure 29: Tweet counts for all datasets Figure 30: Unique users for all datasets

Figure 31: Tweet count by day for all datasets

Austin

This dataset contains a total of 310,601 tweets related to the hashtags

#austintexas, #atx, #austintx, or #atxlife. All tweets in the dataset are in English

and were created between March, 2020 and September, 2020. Within this data,

there are almost 100 thousand users that either created original tweets, retweeted,

quoted, or replied to other tweets.
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Figure 32: Hashtag frequency - Austin dataset

Table 10: Tweet counts - Austin dataset

Tweet counts

Original Tweets 68,812
Replies 92,469
Retweets 149,320
Total Tweets 310,601

Year Month # of tweets

2020 3 24,362
2020 4 59,030
2020 5 50,219
2020 6 59,718
2020 7 61,253
2020 8 54,030
2020 9 1,989
Total 310,601

Table 11: User counts - Austin dataset

Type of user Count

tweet Users with at least one document in this db. 96,019
retweet Users that were retweeted, but are not part of previous group. 25,044
quote Users that were quoted, but are not part of previous groups. 2,885
reply Users that were replied to, but are not part of previous groups. 12,120
mention Users that were mentioned, but are not part of previous groups. 24,687

BJJ-en

This dataset contains a total of 242,956 tweets related to the hashtags #BJJ,

#jiujitsu or #jiu-jitsu. All tweets in the dataset are in English and were created

between March, 2020 and September, 2020. Within this data, there are over 100
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thousand users that either created original tweets, retweeted, quoted, or replied to

other tweets.

Figure 33: Hashtag frequency - BJJ-en dataset

Table 12: Tweet counts - BJJ-en dataset

Tweet counts

Original Tweets 74,383
Replies 75,652
Retweets 92,921
Total Tweets 242,956

Year Month # of tweets

2020 3 18,066
2020 4 42,932
2020 5 38,361
2020 6 48,803
2020 7 49,828
2020 8 43,322
2020 9 1,644
Total 242,956

Table 13: User counts - BJJ-en dataset

Type of user Count

tweet Users with at least one document in this db. 108,845
retweet Users that were retweeted, but are not part of previous group. 6,582
quote Users that were quoted, but are not part of previous groups. 2,739
reply Users that were replied to, but are not part of previous groups. 20,416
mention Users that were mentioned, but are not part of previous groups. 21,950
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BJJ-pt

This dataset contains a total of 267,101 tweets related to the hashtags #BJJ,

#jiujitsu, or #jiu-jitsu. All tweets in the dataset are in Portuguese and were created

between March, 2020 and September, 2020. Within this data, there are over 50

thousand users that either created original tweets, retweeted, quoted, or replied to

other tweets. The different language will allow us to test the pipeline for tweets with

other than English content.

Figure 34: Hashtag frequency - BJJ-pt dataset

Table 14: Tweet counts - BJJ-pt dataset

Tweet counts

Original Tweets 73,497
Replies 69,099
Retweets 124,505
Total Tweets 267,101

Year Month # of tweets

2020 3 22,785
2020 4 53,658
2020 5 45,933
2020 6 49,891
2020 7 49,918
2020 8 43,261
2020 9 1,655
Total 267,101
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Table 15: User counts - BJJ-pt dataset

Type of user Count

tweet Users with at least one document in this db. 55,866
retweet Users that were retweeted, but are not part of previous groups. 31,237
quote Users that were quoted, but are not part of previous groups. 4,236
reply Users that were replied to, but are not part of previous groups. 9,221
mention Users that were mentioned, but are not part of previous groups. 7,487

Covid

This dataset contains a total of 8,123,104 tweets related to the hashtags

#Coronovavirus, #Covid19, or #Covid-19. All tweets in the dataset are in English

and were created between March, 2020 and September, 2020. Within this data,

there are over 3.2 million users that either created original tweets, retweeted,

quoted, or replied to other tweets.

Figure 35: Hashtag frequency - Covid dataset
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Table 16: Tweet counts - Covid dataset

Tweet counts

Original Tweets 1,170,547
Replies 360,232
Retweets 6,592,325
Total Tweets 8,123,104

Year Month # of tweets

2020 3 1,651,431
2020 4 2,166,999
2020 5 1,261,279
2020 6 1,030,790
2020 7 1,159,296
2020 8 827,408
2020 9 25,901
Total 8,123,104

Table 17: User counts - Covid dataset

Type of user Count

tweet Users with at least one document in this db. 3,235,435
retweet Users that were retweeted, but are not part of previous groups. 260,570
quote Users that were quoted, but are not part of previous groups. 11,613
reply Users that were replied to, but are not part of previous groups. 61,972
mention Users that were mentioned, but are not part of previous groups. 237,199

MeToo

This dataset contains a total of 3,087,475 tweets that are related to the hashtag

#MeToo. All tweets in the dataset are in English and were created between Oct,

2017 and March, 2018. Within this data, there are over 1.1 million users that either

created original tweets, retweeted, quoted, or replied to other tweets.
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Figure 36: Hashtag frequency - MeToo dataset

Table 18: Tweet counts - MeToo dataset

Tweet counts

Original Tweets 733,608
Replies 205,999
Retweets 2,147,868
Total Tweets 3,087,475

Year Month # of tweets

2017 10 870,775
2017 11 373,507
2017 12 723,944
2018 01 993,778
2018 02 75,553
2018 03 47,918
Total 3,087,475

Table 19: User counts - MeToo dataset

Type of user Count

tweet Users with at least one document in this db. 1,142,026
retweet Users that were retweeted, but are not part of previous groups. 8,578
quote Users that were quoted, but are not part of previous groups. 18,230
reply Users that were replied to, but are not part of previous groups. 28,816
mention Users that were mentioned, but are not part of previous groups. 78,044

Random

This dataset contains a total of 160,066 tweets that are not related to any

particular subject. All tweets in the dataset are in English and were created between

July, 2020 and September, 2020. Within this data, there are over 150 thousand users

that either created original tweets, retweeted, quoted, or replied to other tweets. We
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want to evaluate the performance of the methods proposed in this study for sparse

datasets with a network that is not necessarily largely connected.

Figure 37: Hashtag frequency - Random dataset

Table 20: Tweet counts - Random

Tweet counts

Original Tweets 24,548
Replies 31,984
Retweets 103,534
Total Tweets 160,066

Year Month # of tweets

2020 7 30,102
2020 8 125,287
2020 9 4,677
Total 160,066

Table 21: User counts - Random dataset

Type of user Count

tweet Users with at least one document in this db. 154,241
retweet Users that were retweeted, but are not part of previous groups. 54,743
quote Users that were quoted, but are not part of previous groups. 2,663
reply Users that were replied to, but are not part of previous groups. 21,732
mention Users that were mentioned, but are not part of previous groups. 35,042

Graphs

Different experiments were done to understand and compare the different types

of network creation and the different clustering approaches. For more details on the

methods and metrics used in the experiments, refer to Chapter III.
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The terminology used in this chapter to represent the types of network is

outlined in Table 22.

Table 22: Network creation terminology

Notation Description

UC_A All user connections.
UC_M Mentions user connections only.
UC_RT Retweets user connections only.
UC_RP Replies user connections only.
UC_Q Quotes user connections only.
HC Hashtag connections.

Network Creation Experiments

In order to understand the different types of network creation, multiple

networks were created using all six datasets with all the different network types.

Figures 38, 39, and 40 show the comparison between the different types of

networks for each of the datasets. And Tables 23, 24, 25, 26, 27, and 28 show the

details of the results. By observing the differences between the types of networks

and datasets, we can draw some conclusions about the nature of the data.

As shown in Figure 38, the number of vertices and edges are larger for the

Covid and MeToo datasets, which is expected since they have a larger number of

tweets and users. The number of edges for each of the networks seems to follow a

pattern, with the smallest network always being the quotes network, followed by the

replies network, then retweets, mentions, and all connections. The only type of

network that separates from the growth slope of the networks is the hashtag

connections. The number of edges for hashtag connections grows more rapidly than

all other networks. Another observation is that the slope of the growth for the

Random dataset is slower than the others, which is expected for the Random

dataset because the tweets were chosen randomly, so even as the number of vertices
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(users, hashtags) increases, the number of edges between them won’t increase as

much since there are less connections between them.

Figure 38: Number of vertices and edges for all datasets with the different ways of creating
the networks. All datasets (top); Only smaller datasets (bottom).

Similarly, the average degree vertex for the different types of networks follows a

similar pattern among the different datasets as shown in Figure 39, with the hashtag

connections network having the highest average degree, followed by the all

connections network, then mentions, retweets, replies, and quotes. As expected, the

average degree vertex of the Random dataset is lower than all the others, since the

tweets were chosen randomly, making it more unlikely that the users and subjects

are connected. One interesting thing to notice is that even though the Covid and

Metoo datasets are larger than the others, the average degree vertex is not that

different from the other datasets.
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Figure 39: The average degree of the vertices for all datasets with the different ways of
creating the networks

Another way of understanding how well connected a network is, is to find the

number of disconnected sub-graphs within the main graph. Figure 40 shows how

disconnected the networks are among the different datasets and network types.

Sub-graphs that had less than 50 vertices were ignored in the analysis. The Random

dataset has the largest number of disconnected components, which again proves

that since the tweets were chosen randomly it is less likely that the users and

subjects are connected.

Figure 40: Number of separate connected components with at least 50 vertices for all
datasets with the different ways of creating the networks
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Table 23: Austin dataset graphs. Type: type of network; m: # of vertices; n: # of edges;
LCCm: # of vertices in the largest connected component; LCCn: # of edges in
the LCC; deg(T1): the degree of the most connected vertex; avgd: the average de-
gree vertex; DCC: #of disconnected components(components with 50+ vertices);
LVC:# of Louvain communities.

Type m n LCCm LCCn deg(T1) avgd DCC LVC

UC_A 152935 382197 138299 367299 9865 5.31 5146(8) 163
UC_M 148747 371854 134570 359310 9829 5.34 4733(8) 153
UC_RT 87156 104723 75166 95645 3214 2.54 3642(10) 138
UC_RP 49273 52695 34108 41431 3934 2.42 6311(11) 95
UC_Q 8459 8185 5153 6038 285 2.34 1425(1) 50
HC 33475 290486 31692 287822 18352 18.16 687(1) 96

Table 24: BJJ-en dataset graphs. Type: type of network; m: # of vertices; n: # of edges;
LCCm: # of vertices in the largest connected component; LCCn: # of edges in
the LCC; deg(T1): the degree of the most connected vertex; avgd: the average de-
gree vertex; DCC: #of disconnected components(components with 50+ vertices);
LVC:# of Louvain communities.

Type m n LCCm LCCn deg(T1) avgd DCC LVC

UC_A 149631 214338 116147 184985 2407 3.18 11613(18) 237
UC_M 143855 203109 111386 177315 2405 3.18 10536(18) 225
UC_RT 71848 77399 56501 65529 2384 2.31 4113(18) 129
UC_RP 58255 53595 24617 31054 1305 2.52 14801(6) 130
UC_Q 9136 7166 3498 3744 175 2.14 2459(1) 47
HC 25716 293831 24291 291618 16315 24.01 504(1) 145

Table 25: BJJ-pt dataset graphs. Type: type of network; m: # of vertices; n: # of edges;
LCCm: # of vertices in the largest connected component; LCCn: # of edges in
the LCC; deg(T1): the degree of the most connected vertex; avgd: the average de-
gree vertex; DCC: #of disconnected components(components with 50+ vertices);
LVC:# of Louvain communities.

Type m n LCCm LCCn deg(T1) avgd DCC LVC

UC_A 97582 151783 75961 135597 3027 3.57 8954(4) 123
UC_M 89126 139251 71365 126993 2805 3.55 6904(4) 113
UC_RT 57140 88940 52227 85592 2780 3.27 1754(2) 71
UC_RP 32608 28784 13924 16520 473 2.37 8699(3) 115
UC_Q 13560 12406 6806 8338 732 2.45 2816(2) 58
HC 6447 51393 5547 49893 3624 17.98 292(1) 49
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Table 26: Covid dataset graphs. Type: type of network; m: # of vertices; n: # of edges;
LCCm: # of vertices in the largest connected component; LCCn: # of edges in
the LCC; deg(T1): the degree of the most connected vertex; avgd: the average de-
gree vertex; DCC: #of disconnected components(components with 50+ vertices);
LVC:# of Louvain communities.

Type m n LCCm LCCn deg(T1) avgd DCC LVC

UC_A 3502121 8307228 3208768 8053031 127238 5.01 130470(2) 5122
UC_M 3459276 8154948 3176137 7942162 125338 5.00 120750(2) 2981
UC_RT 2991359 5989652 2673207 5785400 37570 4.32 138009(9) 2687
UC_RP 385982 333603 156648 179977 14985 2.29 113433(10) 290
UC_Q 116924 91305 40134 44127 1710 2.19 34698(1) 145
HC 252420 2247271 242357 2228628 154393 18.39 4316(1) 953

Table 27: MeToo dataset graphs. Type: type of network; m: # of vertices; n: # of edges;
LCCm: # of vertices in the largest connected component; LCCn: # of edges in
the LCC; deg(T1): the degree of the most connected vertex; avgd: the average de-
gree vertex; DCC: #of disconnected components(components with 50+ vertices);
LVC:# of Louvain communities.

Type m n LCCm LCCn deg(T1) avgd DCC LVC

UC_A 1170036 3644240 1120115 3576906 87063 6.38 21545 780
UC_M 1099694 2912935 1046430 2862548 83970 5.47 21212 593
UC_RT 919341 1862352 876094 1830406 82783 4.17 18214 480
UC_RP 150996 171676 96957 132245 4903 2.72 29345 127
UC_Q 389200 595269 363981 572835 14503 3.14 11251 166
HC 110789 1020348 110737 1015550 1142026 18.34 26 339

Table 28: Random dataset graphs. Type: type of network; m: # of vertices; n: # of edges;
LCCm: # of vertices in the largest connected component; LCCn: # of edges in
the LCC; deg(T1): the degree of the most connected vertex; avgd: the average de-
gree vertex; DCC: #of disconnected components(components with 50+ vertices);
LVC:# of Louvain communities.

Type m n LCCm LCCn deg(T1) avgd DCC LVC

UC_A 246162 197479 65089 76148 1968 2.33 65419(27) 263
UC_M 237641 188540 62731 73378 1904 2.33 61948(27) 206
UC_RT 156196 103446 9084 9142 341 2.01 53667(45) 88
UC_RP 56954 31909 294 293 289 1.99 28018(2) 5
UC_Q 8608 4706 97 96 51 1.97 4198(1) 10
HC 11228 24681 5387 16987 169 6.30 1875(2) 61

86



Clustering Experiments

In order to understand the different clustering methods, multiple experiments

were done using all six datasets.

Figure 41 and 42 show a comparison of the execution time of each clustering

method. The Spectral Clustering method clearly has the highest execution time,

followed by the Louvain method, and then TN-Neighborhoods. Both the Louvain

and TN-Neighborhoods methods seem linear, but the TN-Neighborhoods has a much

slower slope. The Spectral Clustering method ran in the MeToo dataset for over 24

hours and then returned a memory error. The execution time experiments were

done on a Windows machine, with the Intel(R) Core(TM) i-9900K CPU @3.60GHz,

and 64G of RAM.

Figure 41: Execution time comparison for the different clustering methods

Figure 42: Execution time in seconds for each of the clustering methods as the number of
vertices in the graph grows
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Figure 43 shows the average metrics values for the three types of clustering

methods, using all six datasets. The details of the results are shown in Table 29. By

analysing the goodness metrics shown in Figure 43, it is possible to observe that the

Spectral Clustering method outperforms the other methods in separability and

density, followed by the Louvain method, and then TN-Neighborhoods. The average

clustering coefficient is higher for the TN-Neighborhoods method, and performs

similarly to the other two methods, with the Louvain method having slightly higher

values. The TN-Neighborhoods method has the highest Power Nodes Score, followed

by the Spectral Clustering method, and then Louvain. So, we can conclude that the

Spectral Clustering method seems to have the most well separated and dense

communities, the TN-Neighborhoods method the best well connected the

neighborhoods, and the Louvain method sits in the middle of the two for all

categories.

Figure 44 shows the metrics for the three types of clustering methods for the

Austin dataset for all types of networks. The details of the results are shown in

Table 30. The hashtag connections network has the highest score for separability

and average clustering coefficient, but has lower density. Separability is similar for

all other network types. All six types of networks follow similar values for the power

nodes score.
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Figure 43: Metric averages for the communities found using the different clustering methods.
No results available for Spectral Clustering for the Covid and MeToo datasets due
to the high execution time.
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Figure 44: Metrics average of the communities found using the different clustering methods
for Austin dataset for the different types of networks
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Table 29: Different clustering methods measures. Dataset: the name of the dataset; C: the
clustering method (S=Spectral Clustering, L=Louvain, T=TN-Neighborhoods);
E(sec): the execution time in seconds; k(n>100): the number of clusters (the num-
ber of cluster with 100 or more vertices); ad: the average vertex degree; sep: sep-
arability; den: density; acc: average clustering coefficient; pns: power nodes score;
gcs: graph clique size; nc: number of cliques.

Dataset C E(sec) k(n>100) ad sep den acc pns gcs nc

Austin S 1388.4 148(36) 3.412 33.67 0.007 0.198 0.78 6.66 6919
Austin L 17.9 148(66) 3.973 19.41 0.004 0.229 0.63 7.75 3436
Austin T 0.3 25(25) 18.044 1.54 0.001 0.625 1.00 20.04 10907
BJJ-en S 1864.2 238(63) 2.729 45.70 0.009 0.163 0.81 4.25 2238
BJJ-en L 35.2 238(118) 2.750 32.85 0.005 0.156 0.58 4.97 1067
BJJ-en T 0.2 25(25) 2.732 13.75 0.002 0.207 1.00 5.52 1106
BJJ-pt S 427.9 121(17) 2.546 22.84 0.008 0.071 0.81 4.05 6486
BJJ-pt L 7.1 121(70) 2.658 8.03 0.007 0.146 0.71 5.77 1173
BJJ-pt T 0.2 25(25) 2.718 0.26 0.001 0.203 1.00 6.52 1724
Covid S Not available - too large
Covid L 1209.8 5517(96) 2.653 10.37 0.003 0.034 0.36 5.06 62793
Covid T 6.7 25(25) 3.943 0.11 0.000 0.310 1.00 6.92 43321
Random S 1250.9 265(55) 2.309 31.89 0.011 0.032 0.41 2.89 1170
Random L 5.5 265(177) 2.172 20.69 0.008 0.017 0.36 2.58 375
Random T 0.1 25(25) 2.122 0.78 0.009 0.062 1.00 2.84 324
MeToo S Not available - too large
MeToo L 418.7 806(68) 3.577 3.76 0.002 0.177 0.44 7.20 29399
MeToo T 3.5 25(25) 6.418 0.21 0.000 0.612 1.00 10.44 52013
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Table 30: Different clustering method measures for Austin dataset with the different types of
networks. Type: the type of network; C: the clustering method (S=Spectral Clus-
tering, L=Louvain, T=TN-Neighborhoods); E(sec): the execution time in seconds;
k(n>100): the number of clusters (the number of cluster with 100 or more ver-
tices); ad: the average vertex degree; sep: separability; den: density; acc: average
clustering coefficient; pns: power nodes score; gcs: graph clique size; nc: number
of cliques.

Type C E(sec) k(n>100) ad sep den acc pns gcs nc

UC_A S 1388.4 148(36) 3.412 33.67 0.007 0.198 0.78 6.66 6919
UC_A L 17.9 148(66) 3.973 19.41 0.004 0.229 0.63 7.75 3436
UC_A T 0.3 25(25) 18.044 1.54 0.001 0.625 1.00 20.04 10907
UC_M S 1271.1 157(38) 3.318 34.65 0.006 0.198 0.77 6.60 6352
UC_M L 19.7 157(62) 4.181 19.75 0.005 0.232 0.63 7.83 3616
UC_M T 0.3 25(25) 18.195 1.77 0.001 0.651 1.00 20.60 10873
UC_Q S 4.8 50(5) 2.162 8.03 0.007 0.007 0.60 2.80 812
UC_Q L 0.3 50(19) 2.053 4.21 0.014 0.005 0.77 2.31 173
UC_Q T 0.0 25(25) 2.041 2.18 0.023 0.025 1.00 2.40 105
UC_RP S 117.8 97(31) 2.229 35.04 0.010 0.058 0.75 3.54 1115
UC_RP L 2.9 97(53) 2.198 34.09 0.007 0.049 0.69 3.56 638
UC_RP T 0.1 25(25) 2.416 1.06 0.005 0.107 1.00 4.28 643
UC_RT S 442.6 143(38) 2.171 28.46 0.008 0.014 0.78 3.15 2229
UC_RT L 5.6 143(70) 2.149 19.07 0.006 0.013 0.71 3.21 1170
UC_RT T 0.2 25(25) 2.233 2.05 0.002 0.058 1.00 3.76 1178
HC S 1796.5 103(2) 11.091 163.42 0.004 0.550 0.86 21.50 44793
HC L 11.4 103(27) 10.447 0.87 0.004 0.798 0.47 19.29 810
HC T 0.2 25 (25) 31.042 0.43 0.002 0.768 1.00 28.84 18819
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Graph Reduction Experiments

Here, we compare the graphs before and after the reduction. The number of

vertices, number of edges, average degree vertex, density, power nodes score, vertices

and edges compression percentage, and the top 1% vertices similarity calculations

are compared. Figure 45 shows a comparison of the different reduction techniques

and the effect caused on the resulting compressed graph. Table 31 details results of

the experiments for a sample graph.

Figure 45: Comparison of the different reduction techniques for three graphs of different
sizes. Data was extracted from the Austin dataset.

The number of vertices and edges decreases as the level of reduction for each

method increases, as shown in Figure 45. The compression occurs more gradually

for the Community Percentage method compared to the others. The average degree
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Table 31: Graph reductions comparison. Original graph extracted from the users
connections in the Austin dataset. GReduction(Par): Graph Reduction
Method(ParameterUsed); n: number of vertices; m: number of edges; avgd: av-
erage vertex degree; den: density; pnc: power nodes score; ts: top1% similarity;
n%: vertex compression percentage; m%: edge compression percentage.

GReduction(Par) n m avgd den pnc ts n% m%

Original 152935 382197 4.998 0.000013 0.106 - - -
Comty Perc(20%) 110561 336457 6.086 0.000018 0.125 95.83 27 11
Comty Perc(60%) 55153 249209 9.037 0.000036 0.088 85.29 63 34
Comty Perc(90%) 27210 162320 11.931 0.000074 0.095 78.67 82 57
Edge Rem Weight(1) 112375 182367 3.246 0.000018 0.098 73.73 26 52
Edge Rem Weight(2) 20403 45139 4.425 0.000098 0.141 74.51 86 88
Edge Rem Weight(4) 8292 19854 4.789 0.000241 0.174 58.53 94 94
Vertex deg Rem(10) 11774 154023 26.163 0.000170 0.515 63.24 92 59
Vertex deg Rem(30) 2674 65005 48.620 0.000748 0.503 15.38 98 82
Vertex deg Rem(50) 1592 42578 53.490 0.001257 0.579 20.00 98 88

vertex increases for the Vertex Degree method as the graph becomes more

compressed. This behaviour is expected, since the vertices that are only connected

to lower degree vertices are getting removed from the graph. The opposite seems to

occur for the Edge Weight method. Since the edges with low weight are getting

removed, vertices that had high connectivity because of the pendant vertices will

have their degree lowered. The density of the graph actually increases as the

reduction methods are applied, and the top vertices’ similarity decreases. Figure 46

shows three graphs created from the exact same vertices and edges, but using

different reduction techniques. The data to create the graphs were extracted from

the month of May, for retweet connections from the Austin dataset. The original

graph without any reductions has a total of 10,448 vertices and 11,977 edges. A

larger version of the graphs in Figure 46 is available in the Appendix section.
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Figure 46: Graph reduction samples from the Austin dataset. Vertex Degree graph outcome:
filtered all edges connecting two vertices with degree less than 115 (left); Commu-
nity Percentage and the Vertex Degree graph outcome: every community found
in the graph reduced by 70%, and then every edge with degree less than 25 re-
moved (center). Edge Weight and the Community Percentage aggregation: every
edge with weight 1 removed, followed by the community reduction by 2% (right);
(High resolution in Figures A.3, A.5, and A.6).

Topic Discovery

Here, we access the quality of the topics found by experimenting with proposed

types of aggregation methods (Chapter IV). First we vary the number of topics set

for the LDA model. Figure 47 shows the c_v coherence metric change as the number

of topics increases. The coherence appears to grow as the number of topics grows.

Figure 47: Coherence values as the number of topics grows. Experiments include multiple
datasets.

Figure 48 shows the execution time for training the LDA model using different

numbers of tweets for input. The training time seems to increase linearly as the
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number of tweets increases. The execution time experiments were done in a

Windows machine, with the Intel(R) Core(TM) i-9900K CPU @3.60GHz, and 64Gb

of DDR4 RAM.

Figure 48: The execution time for training the LDA model using different numbers of tweets
for input

Figure 49 shows the average coherence values for the different aggregation

methods. The different datasets show slightly different behaviors for each

aggregation method, but it’s clear that the aggregation methods do increase topic

coherence.

Figure 49: The average c_v coherence values for the different aggregation methods, evalu-
ated using the hashtags connections network for the different datasets
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Fig. 50, Fig. 51, and Fig. 52 visualize Austin dataset analysis. Figure 50 shows

a comparison of topics found before and after the cleaning steps using the same

input. Figure 51 shows three different topics found using only the LDA model

without any aggregation techniques or additional visualization. And Figure 51

shows three sample visualizations for a topic discovered using the graph-based

aggregation techniques. The words found in the LDA model without any additional

aggregation are less specific and less descriptive as shown in Figure 51. But the

topic found using the graph-based topic discovery method and the additional

visualizations show a more clear and easy to interpret topic, as shown in Figure 51.

Figure 50: LDA model results before and after cleaning techniques. Initial result (left); result
after cleaning techniques (right). Data extracted from a community in the Covid
dataset.

Figure 51: Three sample topics discovered using only the LDA model, without any aggre-
gation techniques or additional visualizations. Topics extracted from the Austin
dataset.
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Figure 52: Three sample visualizations for a topic discovered using a graph-based aggrega-
tion technique. Topics extracted from a community found in the hashtags network
in the Austin dataset. Figure 12 shows a larger version of the graph.

Pipeline

All experiments were conducted using the pytwanalysis package built for the

thesis work, as outlined in Chapter VI: loading data into MongoDB, printing EDA,

building graphs, identifying clusters and topics, and calculating metrics. Those

experiments by themselves prove the performance and usability of the package.

Additional experiments were done to show the execution times for loading data in

the data management system to prove the performance improvements. Figure 53

and Table 32 show the execution time improvements for each collection after

implementing the performance improvement methods described in Chapter V. The

average execution time decreased by approximated 60%.

Figure 53: Execution time improvements for each collection after implementing the perfor-
mance improvement methods
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Table 32: Execution time of the different insert methods for different collections in theMeToo
dataset

Collection #of docs Execution time (in minutes)
InsOne InsM(100K) After index % decrease

focusedTweet 3,087,475 24.97 14.31 12.87 48.44%
tweetWords 65,664,493 352.47 100.23 99.12 71.87%
tweetConnections 6,920,655 38.64 16.36 13.16 65.94%
tweetHTConnections 6,155,025 23.52 4.81 3.88 83.484%
users 1,275,694 78.21 43.46 35.15 55.04%
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VIII. SUMMARY AND CONCLUSIONS

This thesis work proposes a scalable way to gather, discover, analyze, and

summarize large datasets from the Twitter social media platform. The system

foundation is a suite of state-of-the-art techniques in social network analysis, and

the final product is a scalable end-to-end data science pipeline that adapts to the

dynamic and semi-structured nature of Twitter data.

The product of the thesis work is a released software package for general use

that supports a data science pipeline for loading, storing, and analyzing Twitter

data; a full NoSQL record-centric data management system for semi-structured

dynamic data; a suite of improved and integrated techniques for multimodal graph

creation, graph clustering, graph compression techniques, semantic analysis, and

visualization tools to improve topic discovery.

The released python package pytwanalysis is available for installation via pip

[1]. The package contains functionalities for acquiring data from Twitter’s APIs

[47, 46, 48], loading Twitter data from offline JSON files, storing and transforming

the data in MongoDB, and printing exploratory data analysis. It also supports

graph creation methods, graph clustering methods, graph compression for improved

visualization, topic discovery methods, visualizations, and metrics calculation to

evaluate clustering performance. The pytwanalysis package is designed as a modular,

highly-customizable, and flexible software item that can adapt to the users’ unique

research question, dataset, and hardware specifications, as outlined in the package

documentation [2]. Each method can be executed separately or in a series as an

automation process option in the package. Each step of the data science pipeline can

be customized in the automation process, but the default values for each method

were set to optimize performance based on the findings of this thesis work.

We propose a data-management system that addresses the scalability with
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number of records, being able to adapt to the dynamic nature of Twitter data,

simplicity for end users, and support for data analytics. We outlined a record-centric

data management system that stores the data and facilitates the different pieces of

analysis, where MongoDB is used to store tweet records. This system addresses the

shortcomings of MongoDB when retrieving aggregated data and joins by providing

alternatives for data retrieval, and by organizing the data into multiple collections

to improve data retrieval performance.

The multi-modal approach to creating networks using the Twitter data allows

multi-purpose network analysis of the same dataset: connections based on retweets,

mentions, replies, quotes, all types of user connections combined, and hashtag

connections. Each of these types of networks can be used for a different purpose.

Studying the different network types separately can be helpful for discovering

different insights from the same data. The hashtags network was shown to have the

highest connectivity compared to all other types of networks and was proven

especially useful for helping with the topic analysis task.

Graph clustering implementation of Spectral Clustering, Louvain, and

TN-Neighborhoods were evaluated with the existing metrics Separability, Density,

Average Clustering Coefficient, and computation time on large Twitter datasets.

None of these measures represented the true value of identifying communities that

are highly connected through a few top degree vertices, so we introduced Power

Nodes Score as a complementary measure. In conclusion, the Spectral Clustering

method appears to have the most well separated and dense communities, the

TN-Neighborhoods method the most well connected neighborhoods, and the Louvain

method is a good general option that lives in between the other two methods. Even

though the Spectral Clustering method outperforms the other methods in some

categories, it lacks efficiency and it is not recommended to be used with large

datasets. The Spectral Clustering algorithm is helpful for cases where we are
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interested in how strong the relationship between vertices are. The Louvain method,

on the other hand, which has better computation time, was created specifically for

the task of finding communities within the networks, and can be used for networks

with separate connected components, but it does not consider the strength of the

vertices connectivity and focuses only on maximizing the modularity of the network.

Both the Spectral Clustering and the Louvain methods find disjoint communities. In

contrast, the TN-Neighborhoods method finds overlapping communities. These

communities capture the connections around a set of high degree vertices. The

TN-Neighborhoods method can be helpful for understanding the connections and

discussions around particular influential vertices.

We have introduced graph reduction techniques to improve visualization.

Twitter graphs are large, with highly varying vertex degrees and connectivity.

Visualizations of large graphs are incomprehensible to the user, and we have

proposed several automated context-aware approaches, depending on the

application, to mitigate the issue. The simplification comes with a cost, as some

information gets lost with the reduction, so each technique can be useful for

answering different questions. The Community Percentage technique removes a

percentage of the vertices of every community found in a given graph and will put

emphasis on the vertices that are the centers of communities. The Edge Weight

technique removes all edges with a weight less than a given number and will put

emphasis on vertices that have stronger connections with other vertices. And the

Vertex Degree technique removes all edges that connect two users with degree less

than a given number and will put emphasis on the vertices with the highest degrees.

The different techniques can be used by themselves or in combination.

For topic analysis, different aggregation methods were proposed to improve

human interpretability of the topics. The topic coherence score was used as a

guiding metric to evaluate different parts of aggregation, and the coherence was
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proven to improve when using the proposed aggregation methods.

Implications and Future Work

The findings and product of this thesis can be used by a wide range of

researchers that are interested in analyzing Twitter data for answering questions on

several areas of study, from the social perspective to the computer science

perspective, as our approach provides a pathway on analysis design, selection of

parameters and algorithms, and it is all motivated by a research question. With the

released package, it also provides a simple framework in charge of automating all

steps of the analysis for those with less advanced technical skills. For those in

Computer Science, it provides a framework for analysis that can be used as a

starting point for further analysis so that the focus can be shifted to the task at

hand instead of having to create an end-to-end system from scratch.

Even though the released package has functionalities to automate and make the

analysis process simple, the users of the package are still required to have basic

programming skills. No user interface was built and the release package was only

created in Python. The package also only focuses on the data management, network

analysis, and topic analysis. The Twitter analysis only focuses on three of the

Twitter’s APIs, but many more exist. The network analysis portion of the findings

only focuses on undirected graphs, which stops the ability to analyse the connections

in the network based on their direction. The graph reductions techniques, although

very helpful for visualization, can result in some loss of information. The

aggregation methods proposed for topic analysis did improve the topic discovery,

but more efforts in making the topics more human interpretable can be made.

Future work could include the package being expanded with more functionality,

such as sentiment analysis, fake news detection, and support for other Twitter APIs.

A user interface can also be built to help users without programming skills. The
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analysis can also be expanded to analyze directed graphs, and to construct

similarity matrices that can focus on other aspects of the connectivity between

vertices, other than just frequency. More types of networks can also be included in

the analysis, such as the relationship between users based on location, or semantic

networks using the relationships between words. More efforts can also be made to

improve human interpreatability in the topics, and more algorithms for topic

discovery can be evaluated.
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APPENDIX SECTION

APPENDIX A: Graph Analysis

Appendix A contains larger versions of the graph visualizations shown in

chapter III.

Figure A.1: Graph extracted from the Austin dataset with a total of 10,448 vertices and
11,977 edges, with no reduction
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Figure A.2: Same graph data as in Figure A.1, but with the size of the vertices scaled based
on their degree
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Figure A.3: Same graph data as in Figure A.1, but using the Vertex Degree reduction tech-
nique by removing every edge connecting two vertices with degree less than
115
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Figure A.4: Same graph data as in Figure A.1, but using both the Community Percentage
and the Vertex Degree reduction techniques, with every community found in
the graph reduced by 70%, and then every edge from the resulting graph with
degree less than 25 removed
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Figure A.5: Same graph data as in Figure A.1, but using both the Edge Weight and the
Community Percentage reduction techniques, with every edge with weight 1
removed, then from the resulting graph the communities are reduced by 2%
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Figure A.6: Same graph data as in Figure A.1, but using the Vertex Degree reduction tech-
nique by removing every edge connecting two vertices with degree less than
355
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APPENDIX B: Data Management

Appendix B contains additional details about the data dictionary of the data

management system introduced in chapter V.

Table B.1: Description of the fields available on the tweetConnections collection

tweetConnections

This collection stores the edges that connect two tweets together, either by retweets, quotes,
replies, or mentions. It contains information about the tweet where the connection came from,
and about the two users that connected. This collection is later used to build the edges for the
graph analysis.

Field Description
tweet_id_str The Id of the tweet that has this connection.
type_of_connection The type of connection. (retweet, quote, reply, or men-

tion.)
user_id_str_a The user Id of the user that initiated the connection. For

example, the user that replied to another user.
screen_name_a The screen name of the user that initiated the connection.

For example, the user that replied to another user.
user_id_str_b The user Id of the user that received the connection. For

example, another user retweets their tweet.
screen_name_b The user screen name of the user that received the con-

nection. For example, another user retweets their tweet.
desc Describes the type of connection. Example of a possible

value would be user a mentioned user b.
retweeted_status_id The Id of the original tweet in case of retweets.
quoted_status_id The Id of the original tweet in case of quotes.
in_reply_to_status_id The Id of the original tweet in case of replies.
edge_screen_name_directed_key A key created to help with directed graph queries. It basi-

cally concatenates the user_a and user_b screen names.
edge_screen_name_undirected_key A key created to help with undirected graph queries. It

concatenates the user_a and user_b screen names in al-
phabetical order.

tweet_created_at The timestamp of the tweet.
tweet_seq_no The seq_no of the tweet that created this connection.
is_bot Identifies if this connection is for a bot or not. For exam-

ple, this will be set to 1 if either user a or b is a bot. This
field is not automatically calculated. A text file with the
list of Ids that are bots can be used to update this field.
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Table B.2: Description of the fields available on the tweetHTConnections collection

tweetHTConnections

This collection stores the edges that connect two hashtags together. If two hashtags were used
in the same tweet, a record will be created in this collection. It contains information about the
tweet where the connection happened, and about the two hashtags. This collection is later used
to build the edges for the graph analysis.

Field Description
tweet_id_str The Id of the tweet that has this connection.
ht_a The first hashtag.
ht_b The second hashtag.
ht_key A key useful for graph queries. It concatenates ht_a and ht_b.
tweet_created_at The timestamp of the tweet that created this connection.
tweet_seq_no The seq_no of the tweet that has this connection.
is_bot Identifies if this connection is for a tweet created by a bot or not.

Table B.3: Description of the fields available on the tweetWords collection

tweetWords

This collection stores each word separately for every tweet, and some additional information
about the tweet. It also includes interesting tags about that word. (e.g English or not, verb or
not, etc.)

Field Description

word The original word.
word_tag It identifies the type of word. ADJ, for adjectives, VERB, for verbs, NOUN,

for nouns, and ADV for adverbs.
word_lemm The word after lemmatization.
word_syl The word broken down into syllables.
stop_word_fl It identifies if the word is a stop word or not.
en_word_fl It identifies if the word is in English or not.
tweet_id_str The tweet Id where that word came from.
text The tweet text where that word came from.
user_id The user Id of the tweet where that word came from.
tweet_created_at The timestamp of the tweet where that word came from.
tweet_seq_no The seq_no of the tweet where that word came from.
seq_no The word seq_no.
is_bot Same as in the focusedTweet collection.
is_bot_connection Same as in the focusedTweet collection.
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Table B.4: Description of the fields available on the focusedTweet collection

focusedTweet

This collection stores only the most interesting information about the tweet. The definition of
interesting can be different depending on the research question, so settings can be updated to
drive what fields are interesting. Some core fields will always be available no matter the settings.

Field Description
id_str The tweet unique Id. This will be a key field that will be used to

connect other collections together.
text The tweet text.
text_lower The tweet text with all lower case.
quote_text The text of the quoted tweet, in case there is a quote associated

to the tweet.
retweeted_text The original tweet text in case of retweets.
text_combined Tweet text combining the tweet text, original text, and quoted

text.
text_combined_clean Same as text_combined, but after going through a series of clean-

ing steps.
year The year the tweet was created.
month_name The name of the month that the tweet was created.
month_no The month the tweet was created.
day The day the tweet was created.
user_id The user Id of the user that created the tweet.
hashtags A list of all hashtags that were included in the tweet.
created_at The timestamp the tweet was created.
lang The language used in the tweet text.
in_reply_to_status_id_str In case of replies, this field will show the Id of the tweet that the

person was replying to.
in_reply_to_screen_name In case of replies, this field will show the screen name of the user

of the tweet that the person was replying to.
user_name The user name of the person that created the tweet.
user_screen_name The screen name of the person that created the tweet.

Added fields

seq_no Field created to uniquely identify each of the tweets. This field
is used in the recovery process to identify the tweets that have
already been processed.

is_bot Identifies if the user that created the tweet is a bot or not. This
field is not automatically calculated. A text file with the list of Ids
that are bots can be used to update this field.

is_bot_connection Identifies if the tweet is part of an edge between users that are
bots. For example, this will be set to 1 if the tweet was a reply or
a retweet to a user that is a bot. This field is not automatically
calculated. A text file with the list of Ids that are bots can be used
to update this field.
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Table B.5: Description of the fields available on the users collection

users

This collection stores interesting information about the tweet user. Some core fields will always
exist, but similar to the focusedTweet collection, settings are available to drive what fields are
considered interesting. The same user can appear multiple times in a dataset with different
values; for example, the same user can exist with two separate descriptions. This collection will
not store multiple records for the same user and it will have only the first values found for each
user. Other records for the same user will be ignored.

Field Description
screen_name The screen name of the user.
user_id The unique Id for the user that was generated in Twitter.
name The name of the user.
user_created_at The date and time the user was created in Twitter.
location The description the user used to identify their location.
location_clean Same as location, but cleaning the special characters.
description The description the users decided to give themselves.
description_clean Same as description, but cleaning the special characters.
user_type The method used to extract the information about this user. Twitter’s

documents have user information in the main document, but also under
the information about the original tweet in case of retweets and quotes.
This field will identify where the user was extracted from. The values
available will be tweet, retweet, quote, reply, and mention.

is_bot Identifies if the user is a bot or not. This field is not automatically calcu-
lated. A text file with the list of Ids that are bots can be used to update
this field.
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APPENDIX C: Pipeline

Appendix C contains additional details about the methods of the pytwanalysis

package introduced in chapter VI.

Table C.1: Parameters expected on the search7dayapi and searchPremiumAPI methods

Parameter Description Used in method

consumer_key User’s consumer key. search7dayapi
consumer_secret User’s consumer secret. search7dayapi
access_token User’s access token. search7dayapi
access_token_secret User’s access token secret. search7dayapi
result_type Options: recent, popular, or mixed. search7dayapi
lang Language to filter the tweets. search7dayapi
query The query that will be used to filter the

tweets.
search7dayapi
searchPremiumAPI

max_count The number of tweets to be returned at a
time.

search7dayapi
searchPremiumAPI

twitter_bearer Bearer authentication token created from the
consumer_key and consumer_secret.

searchPremiumAPI

api_name The options are either 30day or FullArchive. searchPremiumAPI
dev_environment The name of the environment created on the

Twitter developer’s account.
searchPremiumAPI

date_start The start date that will be used to filter the
tweets.

searchPremiumAPI

date_end The end date that will be used to filter the
tweets.

searchPremiumAPI

next_token Then token that points to the previous search
done with the same query.

searchPremiumAPI
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Table C.2: Description of the output metrics printed as part of the eda_analysis method

Metric Description

Tweet counts The number of tweet documents in the database, divided by the
following categories: (i) Total Original Tweets, (ii) Total Replies,
(iii) Total Retweets, and (iv) Total Tweets.

Tweet counts by language The number of tweet documents for each language used in the
tweets.

Tweet counts by month The number of tweet documents for each month/year.
Tweet counts by file The number of tweet documents imported from each of the json

files.
User counts The number of users in the database, divided by the following cate-

gories: (i) tweet: Users with at least one document in the database,
(ii) retweet: Users that were retweeted, but are not part of previous
group, (iii) quote: Users that were quoted, but are not part of previ-
ous groups, (iv) reply: Users that were replied to, but are not part
of previous groups, and (v) mention: Users that were mentioned,
but are not part of previous groups.

All User Connections
Graph

The metrics for the graph created based on the users connecting by
retweets, quotes, mentions, and replies. The following graph metrics
will be printed: (i) # of Vertices, (ii) # of Edges, (iii) # of Vertices
of the largest connected components, (iv) # of Edges of the largest
connected components, (v) # of Disconnected Graphs: The number
of sub-graphs within the main graph that are not connected to each
other, (vi) # of Louvain Communities found in the largest con-
nected component, (vi) Degree of the top 5 most connected users,
(vii) Average Vertex Degree of largest connected graph, (viii) Plot
of the Louvain community distribution, (ix) Disconnected graphs
distribution: A plot of a graph showing the distribution of the dis-
connected graphs. It shows the total number of vertices and edges
for each of the disconnected graphs.

Mentions User Connec-
tions Graph

The same metrics as the All User Connections graph, but only con-
sidering the connections made by mentions.

Retweets User Connec-
tions Graph

The same metrics as the All User Connections graph, but only con-
sidering the connections made by retweets.

Replies User Connections
Graph

The same metrics as the All User Connections graph, but only con-
sidering the connections made by replies.

HT Connection Graph The same metrics as the All User Connections graph, but only con-
sidering the connections made by hashtags.
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Table C.3: Description of the parameters used on plotSpringLayoutGraph method

Parameter Description Default

G The graph to plot.
v_graph_name The name of the file to be saved.
v_scale Scale factor for positions.
v_k Optimal distance between vertices.
v_iterations Number of iterations of spring-force relaxation.
cluster_fl Options are Y or N. It identifies if the clusters should

be identified in the plot with different colors.
v_labels In case parameter cluster_fl is ’Y’, then this parameter

expects the labels of vertices to identify the communi-
ties.

v_node_color A hexadecimal value representing a color to be used for
the vertex color.

#A0CBE2

v_edge_color A hexadecimal value representing a color to be used for
the edge color.

#A0CBE2

v_width The width of the edge lines. 0.05
v_node_size The size of the vertex. 0.6
v_font_size The font size for the vertices. 0.4
v_dpi The dpi used to create the image file. 900
v_alpha The transparency of the vertex. 0.6
v_linewidths The line width of the vertex border.
scale_node_size_fl A flag to identify if the size of the vertices should be

scaled based on their degree or not. Options are ’Y’ or
’N’.

’Y’

node_size_multiplier A multiplier number used to scale the size of the
vertices. This option is only applicable in case the
scale_node_size_fl is set to ’Y’.

6

font_size_multiplier A multiplier number used to scale the size of the
labels. This option is only applicable in case the
scale_node_size_fl is set to ’Y’.

7

replace_existing_file In case a file with the same name already exist in the
given path, the flag will identify if the file should be
replaced or not. Options are ’Y’ or ’N’.

Y
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Table C.4: Description of the core parameters in the setConfigs method.

Parameter Description

type_of_graph This setting defines the type of graph to analyze.
Six different options are available: ’user_conn_all’,
’user_conn_retweet’, ’user_conn_quote’,
’user_conn_reply’, ’user_conn_mention’, and
’ht_conn’.

period_arr An array of start and end dates can be set so that the
pipeline creates a separate analysis folder for each of the
time periods in the array.

create_top_nodes_files_flag If this setting is set to ’Y’, the pipeline will create separate
analysis folders for all the top degree vertices.

top_degree_start/end If the setting create_top_nodes_files_flag was set to ’Y’,
then these numbers will define how many top degree ver-
tex sub-folders to create.

period_top_degree_start/end If the setting create_top_nodes_files_flag was set to ’Y’,
then these numbers will define how many top degree ver-
tex sub-folders for each period to create.

create_nodes_edges_files_flag If this setting is set to ’Y’, the pipeline will create two files
for each graph and sub-graph. One file with the edge list,
and one with the vertex list and their respective degree.

create_graphs_files_flag If this setting is set to ’Y’, the pipeline will plot the graph
showing all the connections.

create_topic_model_files_flag If this setting is set to ’Y’, the pipeline will create topic
discovery related files for each folder. It will create a text
file with all the tweets that are part of that folder. It will
also train a LDA model based on the tweets’ texts and
plot a graph with the results.

create_ht_frequency_files_flag If this setting is set to ’Y’, the pipeline will create hashtag
frequency files for each folder. It will create a text file with
the full list of hashtags and their frequency, a wordcloud
and a barchart showing the most frequently used hashtags.

create_words_frequency_files_flag If this setting is set to ’Y’, the pipeline will create word
frequency files for each folder. It will create a text file with
a list of words and their frequency, and a wordcloud and
a barchart showing the most frequently used words.

create_ht_conn_files_flag If this setting is set to ’Y’, the pipeline will plot hashtag
connections graphs. This can be used when user connec-
tions are being analyzed, but it could still be interesting to
see the hashtags connections made by that group of users.

create_timeseries_files_flag If this setting is set to ’Y’, the pipeline will create time-
series graphs for each folder representing the tweet count
by day, and the top hashtags frequency count by day.

create_community_files_flag If this setting is set to ’Y’, the pipeline will use the Louvain
method to assign each vertex to a community. A separate
folder for each of the communities will be created with all
the analysis files.
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Table C.5: Description of the parameters in the setConfigs method that complement and
give more details to the core parameters

Parameter Description

num_of_topics If the setting create_topic_model_files_flag was set to ’Y’, then
this number will be used to send as input to the LDA model. If
no number is given, the pipeline will use 4 as the default value.

top_no_word_filter If the setting create_words_frequency_files_flag was set to ’Y’,
then this number will be used to decide how many words will be
saved in the word frequency list text file. If no number is given,
the pipeline will use 5000 as the default value.

top_ht_to_ignore If the setting create_ht_conn_files_flag was set to ’Y’, then this
number will be used to choose how many top hashtags can be
ignored. Sometimes ignoring the main hashtag can be helpful in
visualizations to discover other interesting structures within the
graph.

commty_edge_size_cutoff If the setting create_community_files_flag was set to ’Y’, then
this number will be used as the community size cutoff number.
Any communities that have less vertices than this number will be
ignored. If no number is given, the pipeline will use 200 as the
default value.

Table C.6: Description of the parameters in the setConfigs method that are related to the
graphs’ visualizations files

Parameter Description

create_graph_without_node_scale_flag For each graph created, if this setting is set to ’Y’,
the pipeline will try to plot the full graph with no
reduction and no logic for scaling the vertex size.

create_graph_with_node_scale_flag For each graph created, if this setting is set to ’Y’,
the pipeline will try to plot the full graph with no
reduction, but with additional logic for scaling the
vertex size.

graph_plot_cutoff_no_nodes
graph_plot_cutoff_no_edges

For each graph created, these numbers will be used
as cutoff values to decide if a graph is too large to be
plotted or not. Choosing a large number can result in
having the graph take a long time to run. Choosing
a small number can result in graphs that are too re-
duced and with little value or even graphs that can’t
be printed at all because they can’t be reduced fur-
ther.
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Table C.7: Description of the parameters in the setConfigs method that are related to the
graphs’ reduction settings

Parameter Description

create_reduced_graph_flag For each graph created, if this setting is set to ’Y’,
the pipeline will try to plot the reduced form of the
graph.

reduced_graph_comty_contract_per If the setting create_reduced_graph_flag was set to
’Y’, then this number will be used to reduce the
graphs by removing a percentage of each community
found in that particular graph. The logic can be run
multiple times with different percentages. For each
time, a new graph file will be saved with a different
name according to the parameter given.

reduced_graph_remove_edge_weight If the setting create_reduced_graph_flag was set to
’Y’, then this number will be used to reduce the
graphs by removing edges that have weights smaller
than this number. The logic can be run multiple times
with different percentages. For each time, a new graph
file will be saved with a different name according to
the parameter given.

reduced_graph_remove_edges If this setting is set to ’Y’, and the setting cre-
ate_reduced_graph_flag was set to ’Y’, then the
pipeline will continuously try to reduce the graphs by
removing edges of vertices with degrees smaller than
this number. It will stop the graph reduction once it
hits the the values set in the graph_plot_cutoff pa-
rameters.
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Table C.8: Description of the possible files that can get created as output of output of
method edge_files_analysis as part of the analysis automation process

File name Description

G_Measures-(All).txt Some metrics of the graph. (e.g. total number of vertices
and edges.)

G_Measures-(LargestCC).txt Some metrics of the largest connected component of the
graph. (e.g. total number of vertices and edges.)

G_Edges.txt List of edges and their respective weight.
G_NodesWithDegree.txt List of all vertices with their respective degrees.
G_Nodes_WordCloud.png Word cloud representing the vertices in the graph,

weighted by the vertex’s degree.
G_Graph.png Plot of the full graph without any reduction. The size of

the vertices are scaled based on the vertex’s degree.
G_Graph(WithoutScale).png Plot of the full graph without any reduction and without

any scale for the vertex size.
G_Graph-
(ReducedGraph)[%Parameters].png

Plot of the graph after reduction. The parameters used for
reduction will appear in the file name inside brackets.

T_tweetTextsForTopics.txt Tweet texts excluding some special characters, stop words,
hashtags, and mentions.

Topics-(LDA model).png Topic discovery plot using LDA model.
T_HT_FrequencyList.txt A list of all hashtags and the number of times they were

used.
T_HT_Top30_BarChart.png A Bar Chart showing the top 30 hashtags.
T_HT_Top30_BarChart-
(Excluding Top1).png

A Bar Chart showing the top hashtags, excluding the top
1.

T_HT_Top30_BarChart-
(Excluding Top2).png

A Bar Chart showing the top hashtags, excluding the top
2.

T_HT_WordCloud.png Word cloud representing the hashtags used, weighted by
their frequency.

T_Words_FrequencyList.txt A list of the top words used and the number of times they
were used.

T_Words_Top30_BarChart.png A Bar Chart showing the top 30 words.
T_Words_WordCloud.png Word cloud representing the words used, weighted by their

frequency.
TS_TweetCount.png Timeseries graph showing the tweet count by day.
TS_TweetCountByHT[1-5] Timeseries graph showing the hash count by day of the

the top 5 hashtags.
ht_edges.txt List of hashtag edges created based on the connections

made by two hashtags being used on the same tweet. This
file is used to create the hashtag connections graph.

HTG_G_Graph.png Hashtag connection graph.
HTG_G_Graph-
(ReducedGraph)[%Parameters].png

Reduced hashtag connection graph. The parameters used
for reduction will appear in the file name inside brackets.
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Figure C.1: Sample folder structure created as part of output of the analysis automation
process
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