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I. INTRODUCTION 

Project Objectives and Significance 

This study was conducted to document variability in the manifestation and timing 

of microbe-driven events in human decomposition, specifically: (1) bloating of remains, 

(2) purging of decomposition fluids, and (3) collapse or caving in of soft tissues. The 

occurrence of bloat, purge, and collapse are frequently referenced as being useful for 

estimation of the postmortem interval (PMI), or the time that has occurred between a 

decedent’s death and the present (Galloway et al. 1989; Megyesi et al. 2005; Reed 1958; 

Rhine and Dawson 1998; Rodriguez and Bass 1983). In the forensic context, a PMI 

estimate may be used to narrow down lists of potential decedents, establish timelines of 

postmortem events, substantiate witness testimony, or in cases of violent death, 

corroborate or disprove the alibis of potential suspects. Consequently, it is important that 

possible variation in the early decomposition processes used in PMI estimates be 

addressed. 

However, there are several potential problems with the way these events are 

currently defined and used in PMI estimation. Throughout the literature, bloat, purge, and 

collapse are typically presented as discrete traits (i.e., either present or absent) despite 

being part of the continuous process of human decomposition. Additionally, descriptions 

of these events are often generic, with little discussion on how to recognize their starting 

and ending points. This project attempts to refine our understanding of these early soft-

tissue decomposition markers by dividing bloat, purge, and collapse into quasi-discrete, 

visually-observable indicators that attempt to account for observations that appear to 

straddle the lines between pre-bloat, bloat and purge, and post-bloat (i.e., collapse).  
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In previous studies, the general processes of bloat and purge have been used to 

define stages of human decomposition (Galloway et al. 1989; Rhine and Dawson 1998; 

Rodriguez and Bass 1983) and, from these stages, estimate PMI (Megyesi et al. 2005). 

My project examined the observed variance in the timing of specific indicators by 

modeling the probability that an indicator had occurred after a specified PMI, to 

determine whether the indicators provide the accuracy and precision needed for use in 

PMI estimations. The relationships revealed by these models may later be used to 

construct a new predictive model to estimate the PMI for cases discovered during early 

and mid-stage decomposition. Such a model would use the presence or absence of a suite 

of indicators to predict a PMI interval in which the combination of indicators was likely 

to have occurred. In short, this project addresses the following questions: 

1. Are sequential, visually-observable indicators of early decomposition related 

to bloat, purge, and collapse available to characterize and refine PMI 

estimations? 

2. Do intrinsic variables such as sex, body size, cause of death, or bodily trauma 

impact the timing of these early decomposition indicators (EDIs)? 

3. Can the probability of these EDIs having occurred be modeled accurately 

given accumulated degree days and/or relevant intrinsic variables? 

Bloat, Purge, Collapse, and Accumulated Degree Days 

 Bloat occurs when body cavities (e.g., digestive and respiratory tracts, circulatory 

system) fill with gases. These gases are generated by the metabolic processes of enteric 

microorganisms, which play a major role in the breakdown of bodily soft tissue after 

death. As these gases accumulate inside the body, gaseous pressure increases, causing the 
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soft tissues to swell and the body to inflate (Gill-King 1997; Hyde et al. 2015; Vass et al. 

2002). Microbial breakdown simultaneously liquefies soft tissues, which are expelled 

from the body as the gaseous pressure increases. These liquids typically exit the body via 

natural orifices, such as the nostrils or mouth, or through areas where the integrity of 

overlying soft tissue has been reduced by traumatic injury or postmortem damage (Hyde 

et al. 2015; Vass et al. 2002). This process of liquid expulsion is known as purge. 

Collapse of the body occurs when the pressure exerted by accumulated gases is released, 

and air pressure is greater than gaseous pressure inside the body. 

 Bloat and purge are driven simultaneously by microbial metabolic activity and the 

two events are intimately related, as the physical buildup of gases produces the force that 

pushes liquefied tissue from the body (Hyde et al. 2015; Vass et al. 2002). These 

metabolic processes, mediated by microbial enzymes, are catalyzed by increases in 

temperature (Gill-King 1997; Hyde et al. 2015; Vass et al. 2002). Consequently, the 

timing of the two events is related to the ambient temperature in which the microbial 

communities exist. Like the trends observed in overall decomposition, it is assumed that 

the timing of bloat and purge is accelerated by increases and decelerated by decreases in 

ambient temperature (Mann et al. 1990). As bloat is accelerated or delayed, the timing of 

collapse would be expected to change accordingly. 

 With this expectation, it may be possible to predict the timing of these specific 

decomposition events using a variable that encompasses both temperature and time, 

accumulated degree days (ADD). Variation in climatic variables during periods of 

postmortem exposure make predicting postmortem interval using calendar days difficult, 

as these changes may accelerate or suppress the rate of decomposition processes. In 



 
 

4 

 

contrast, ADD incorporates what is generally accepted as the most significant variable – 

ambient temperature – into a predicted PMI (Campobasso et al. 2001; Mann et al. 1990; 

Rodriguez and Bass 1983). ADD treats temperature as a unit of energy that is available to 

power the metabolic and reproductive activities of necrophagous microorganisms and 

invertebrates (Vass et al. 1992). By estimating PMI in ADD, daily fluctuations in 

temperature at a death scene can be accounted for, increasing the precision and accuracy 

of PMI estimates. Since ADD was introduced into the field of forensic anthropology, 

numerous studies have demonstrated that using ADD instead of calendar days (e.g., bloat 

typically occurs between x and y ADD instead of x and y days) for PMI estimations 

significantly improves predictions (Marhoff et al. 2016; Megyesi et al. 2005; Myburgh et 

al. 2013). 

Human Decomposition Stages 

 The process of decomposition has traditionally been subdivided into distinct 

stages, each characterized by major physical changes to the remains. One of the earliest 

schemas for mammalian decomposition was initially presented by Reed (1958) in a study 

of the insect colonization of dog carcasses. This system was adapted by Rodriguez and 

Bass (1983) for application to human remains and ultimately refined by other scholars 

including Galloway et al. (1989) and Rhine and Dawson (1998). Reed’s (1958) stages 

included: 

1. Fresh stage, characterized by condition of the carcass immediately after death 

2. Bloated stage, characterized by inflation of the carcass due to accumulated gases 

3. Decay stage, characterized by deflation and collapse of the carcass and moist 

decomposition 
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4. Dry stage, characterized by tissue loss, gradual desiccation of remains, and 

reduction of insect activity 

Reed’s (1958) decomposition stages were very broadly defined and only accounted for 

the decomposition of soft tissue, emphasizing periods of high insect activity, and indeed 

these stages are generally effective in studies of entomological succession, such as that 

completed by Rodriguez and Bass (1983). However, in more holistic studies of 

decomposition, researchers have sought to refine these stages. 

 Galloway et al. (1989) devised a five-stage system of human decomposition, 

where the first three stages roughly map on to Reed’s (1958) four stage system. The fresh 

stage corresponds to the conditions of the remains immediately following death, prior to 

discoloration or insect activity. Early decomposition begins with the presence of tissue 

discoloration and skin slippage and proceeds through the completion of bloat. The third 

stage, advanced decomposition, begins with the collapse of the abdominal cavity and may 

include either moist decomposition, mummification, or both (Galloway et al. 1989). 

Advanced decomposition ends with skeletonization, which is characterized by the loss of 

soft tissue and substantial bone exposure, with or without retained grease (Galloway et al. 

1989). As bones are exposed to the environment, they become subject to the final stage, 

extreme decomposition, which includes all processes that affect the decomposition of the 

skeletal material itself, including bone staining, sun bleaching, and weathering (Galloway 

et al. 1989). 

 Rhine and Dawson (1998) created another system of decomposition from 

casework conducted in the American Southwest, this time assigning each stage an ordinal 

score from 1 (completely fresh) to 15 (significant bone degradation and loss), assuming a 
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consistent progression through these stages across the casework. This study attempted to 

correlate these scores with known time since death, measured in weeks. While there was 

a general curvilinear relationship between decomposition stage and time since death, the 

authors discovered considerable variation in the stages achieved for cases recovered 

between one and three months after death (Rhine and Dawson 1998). Although the stages 

themselves were fairly predictable, the rate at which they were achieved was accelerated 

or slowed by case-specific variables, rendering them too imprecise to be used for accurate 

PMI estimations. 

Taphonomic Agents and Human Decomposition Rate 

 As the study by Rhine and Dawson (1998) demonstrates, the rate of 

decomposition is not universal, making PMI estimation from stages of decomposition 

tricky. Variation in decomposition rate stems from the ecological role of decomposition 

as a process of nutrient recycling, characterized by the breakdown of organic tissues into 

their basic components, which can then be used by other living organisms (DeVault et al. 

2003). Consequently, the process of decomposition is multivariate, influenced by both 

extrinsic (i.e., deriving from the environment and other organisms within it) and intrinsic 

(i.e., deriving from the remains themselves) variables. 

 In an early study of variation in human decomposition, based on observations of 

human cadavers placed at the Anthropology Research Facility at the University of 

Tennessee at Knoxville, Mann et al. (1990) proposed an initial ranking of several of these 

variables. Of the variables reviewed, three appeared to have the most significant impact 

on decomposition rate: (1) temperature, (2) insect access, and (3) burial (as opposed to 

exposed placement at the surface) or depth of burial (Mann et al. 1990). Other notable 
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variables discussed in this brief report include activity by animal scavengers, the presence 

of trauma or postmortem damage, and body size (Mann et al. 1990). Various cases from 

the study by Rhine and Dawson (1998) further supported the important roles of seasonal 

temperature, humidity, and carnivore access in shaping variation in the decomposition 

process. 

 Research has since been conducted on many of these variables in attempts to 

establish quantitative relationships between specific variables and the decomposition 

process, with the intent of constructing improved predictive models for estimating PMI. 

Many of these variables stem from changes in the environment in which remains are 

deposited, including climatic conditions and weather, which in turn affect the 

contributions of biological organisms. 

 Archer (2004b) looked at the influence of seasonal weather variables on the 

decomposition of neonatal pig carcasses at a field site in Canada, with five piglets placed 

in each season over the course of two years. The results of the study indicate that 

increased rainfall accelerated the rate of decomposition for neonate piglets, achieved 

through multiple possible mechanisms: chemical and mechanical degradation of soft 

tissue, leaching of body fluids, or maintenance of moisture in the soil and tissue which 

promoted the action of microorganisms and insects (Archer 2004b). Increased 

temperature in spring and summer months also contributed to increased rate of 

decomposition by promoting rapid maggot proliferation (Archer 2004b). 

 The results of Archer (2004b) supported relationships indicated in an 

entomological study by Lopes de Carvalho and Linhares (2001), which looked at 

seasonal changes in insect succession and decomposition in southeastern Brazil. The 
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results indicated that seasonal differences in temperature and rainfall significantly 

affected insect colonization of adult pig carcasses, with carcasses deposited during the 

summer – a warm and rainy season – decomposing at twice the rate of carcasses placed 

during other seasons (Lopes de Carvalho and Linhares 2001). While the authors found 

that the abundance of adult flies dwindled due to heavy rainfall during the summer, the 

abundance of larvae was much higher (Lopes de Carvalho and Linhares 2001). 

 Climatic variables such as temperature, humidity and rainfall influence the 

physical and chemical processes of tissue decomposition (Gill-King 1997). However, 

perhaps more importantly, these environmental variables mediate the role of biological 

organisms – including microorganisms, insects, and scavenging animals – that contribute 

to the breakdown of soft tissues. Microorganisms involved in decomposition derive from 

three sources: (1) enteric microfauna, or those originating from the dead organism’s 

microbiome, (2) the soil or other substrates in contact with the decomposing remains, and 

(3) insects and animals that come into contact with the remains during decomposition 

(Hyde et al. 2015). 

 Initially, the microbial community associated with decomposing remains is 

dominated by families associated with the living microbiome, which are fairly unique 

from case to case (Hyde et al. 2015). As decomposition progresses, microorganisms from 

the environment (e.g., local soil, water, necrophagous insects, or scavenging animals) 

join the enteric microfauna. Consequently, the microbial communities of remains 

decomposing in the same environment will converge (Hyde et al. 2015). During 

decomposition, changes in the diversity of these communities and the abundance of 

different microbial taxa correspond to major taphonomic events such as the transition 
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from early to late decomposition (i.e., abdominal collapse), loss of wet biomass, and 

skeletonization (Hyde et al. 2015). Specifically, microbial communities are dominated by 

aerobic taxa during early decomposition, with a prominent shift toward anaerobic taxa as 

remains enter drier, more advanced decay (Cobaugh et al. 2015). 

 Microbial communities associated with decomposition are significantly 

influenced by seasonally-dependent climatic variables. Carter et al. (2015) compared the 

microbial communities present in control soils (i.e., those not associated with a grave) 

and post-rupture grave soils (i.e., grave soils following the completion of bloat and the 

collapse of the abdominal cavity) collected during summer and winter. The bacterial 

communities of control soils were significantly different from each other between the 

seasons, and post-rupture grave soils collected in both seasons were significantly 

different from their corresponding controls (Carter et al. 2015).  

 Winter post-rupture grave soil, although significantly different, was not as distinct 

from its control as the summer post-rupture grave soil. This finding suggests that shifts 

occurring in grave soil bacterial communities may be shaped by the proliferation of 

bacteria originating from the soil, not those originating from the remains (Carter et al. 

2015). However, microorganisms associated with the microbiome have also been shown 

to remain in soil for several months after the completion of wet decomposition and the 

depletion of soft tissue resources, and thus their contributions to grave soil microbial 

communities cannot be completely disregarded (Cobaugh et al. 2015).  

 Microbial communities also serve to promote the recruitment of other biological 

organisms to a carcass. Carter et al. (2015) noted that bacterial communities facilitated 

eukaryotic (e.g., amoebae and fungi) proliferation in summer grave soil, as bacterial 
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metabolic processes created a favorable environment for eukaryotic growth by depleting 

soil moisture and increasing soil acidity. Microorganisms associated with decomposition 

also produce volatile organic compounds (VOCs), gases associated with quorum sensing 

signaling, a form of microbial communication (Tomberlin et al. 2012). Many VOCs are 

attractive to different insect species, including blow flies (Lucilia sericata), consequently 

recruiting insects to a carcass and promoting feeding and oviposition, thereby 

accelerating decomposition (Tomberlin et al. 2012). While VOCs are associated with 

putrid odors and may be detected by animal scavengers, the occurrence of animal 

scavenging of remains is moderated by many other toxic metabolic compounds produced 

by microorganisms (DeVault et al. 2003). 

 Although many species of insect may be associated with decomposing remains, 

there are two key orders of forensic significance: (1) Diptera (flies) and (2) Coleoptera 

(beetles) (Campobasso et al. 2001). If remains are accessible, Diptera species are among 

the first to colonize, capable of locating remains within minutes (Campobasso et al. 

2001). Diptera may oviposit or lay eggs on the remains within a few hours. Preferential 

locations for oviposition include the mouth and nose, which are characterized by 

moisture and protective shade and provide hatched larvae, colloquially known as 

maggots, with rapid access to nutritious internal tissues (Campobasso et al. 2001). 

Extreme temperatures, below 12C and above 30C, inhibits oviposition and retards 

larval development (Campobasso et al. 2001).  

 As maggot activity is a key agent in soft tissue destruction, inhibition of maggot 

colonization or development can significantly alter the rate and trajectory of 

decomposition (Anderson and VanLaerhoven 1996). Pechal et al. (2014) compared the 
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decomposition of pig carcasses decomposing under natural conditions to those that were 

inaccessible to insects for the first five days after death. Pigs that were inaccessible to 

insects decomposed much more slowly, remaining bloated for two to three times as long 

as the control pigs (Pechal et al. 2014). Without maggot activity reducing the integrity of 

the overlying skin, the gases responsible for bloating remained trapped within the body 

cavity. Interestingly, once the pigs were made accessible, they attracted a different, less 

diverse community of invertebrate taxa than their control counterparts (Pechal et al. 

2014). 

 Simmons et al. (2010a, 2010b) confirm that delayed or excluded insect access 

significantly slows the rate of decomposition, while demonstrating the dominant role that 

insect activity – specifically maggot activity – plays in soft tissue decomposition. The 

two articles provide evidence that the reason for insect exclusion is secondary to the 

exclusion itself, with decomposition occurring at a similar rate in remains discovered 

indoors, buried, or submerged, even when other variables are under experimental control 

(Simmons et al. 2010a; Simmons et al. 2010b). Furthermore, Simmons et al. (2010a) 

demonstrates that when insects are excluded, body size has no significant effect on 

decomposition rate. 

 When accessible to insects, Simmons et al. (2010a) found that smaller carcasses 

decomposed more quickly than larger carcasses, as maggot masses could colonize and 

consume a smaller carcass relatively quickly. Additional research (Archer 2004b; 

Sutherland et al. 2013) has come to similar conclusions. However, some researchers 

suggest that larger carcasses decompose more rapidly (Mann et al. 1990). Others suggest 

a conditional relationship between body size and decomposition rate dependent on 
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decomposition stage (Matuszewski et al. 2014; Spicka et al. 2011). A recent study of the 

impacts of body mass on decomposition rate of adult humans found no significant 

correlation between body mass and decomposition rate (Roberts et al. 2017). 

 The presence of penetrating trauma has anecdotally been thought to accelerate 

decomposition rate by creating new openings in the skin, thereby accelerating insect 

colonization of the internal body cavities (Campobasso et al. 2001). Cross and Simmons 

(2010) examined the relationship between gunshot trauma on the pattern and rate of 

decomposition of pig carcasses, while Bates and Wescott (2016) explored how autopsy 

incisions affected the decomposition of human cadavers. In a comparison of 

decomposition scores and body mass loss between control and experimental (shot) pigs, 

Cross and Simmons (2010) found no significant difference between the two groups in the 

decomposition rate from death to skeletonization. However, tissue loss was accelerated in 

the experimental group in early stages of decomposition, supporting a prominent role for 

trauma in promoting the proliferation of maggot masses (Cross and Simmons 2010). 

 Bates and Wescott (2016) also failed to find a significant a significant effect of 

penetrating trauma on the overall decomposition rate. Differences in the timing of 

individual decomposition stages were also insignificant, although the mean time required 

to reach each stage was slightly lower for the autopsied sample, indicating a slightly 

accelerated decomposition rate (Bates and Wescott 2016). This acceleration was 

attributed to increased internal temperatures noted in autopsied donations as well as 

increased insect access to internal tissues (Bates and Wescott 2016). 

 Postmortem freezing has also been implicated in changing the trajectory of 

decomposition. Decreasing temperature inhibits bacterial growth, and below 0C, will 
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kill most enteric microorganisms. Consequently, microbial decomposition is suspended at 

freezing temperatures, and the decomposition of thawed remains is dominated by 

microorganisms originating from the external environment (Micozzi 1986; Micozzi 

1997). The decomposition of previously frozen remains has thus has been described as 

occurring “from the outside in” (Micozzi 1997, 174), characterized by accelerated 

decomposition of external surfaces and decelerated decomposition of internal organs. 

Notably, previously frozen remains undergo a significantly reduced, often not visibly 

discernable, period of bloating and putrefaction (Micozzi 1997; Roberts and Dabbs 

2015). 

Total Body Score and Accumulated Degree Days 

 Breaking the process of decomposition into qualitative stages can help in 

estimating PMI. For example, if two bodies are found at the surface in the same location 

with one skeletonized and the other in the fresh stage of decomposition, it is often 

assumed that the skeletonized remains have been dead for longer than the fresh remains. 

This assumption, however, requires that neither set of remains were frozen, burned, 

dismembered, mummified, or otherwise manipulated in a way that impacts the 

decomposition rate. When remains are exposed to different taphonomic agents, the rate of 

decomposition can vary; consequently, the condition of human remains should be 

considered within the entire context of the death scene. 

 Relative PMIs of remains may occasionally be useful, as in the example described 

above. The absolute PMI, which estimates precisely when an individual died, is often the 

more pertinent forensic question. The broad, qualitative decomposition stages cannot 

make estimates of PMI with any precision. In an attempt to address this problem, 
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multiple decomposition scoring systems have been developed. These systems assign 

points to more specific characteristics of decomposing remains, which can then be used 

to calculate an absolute estimate of PMI. 

 Total body scoring (TBS), the first decomposition scoring system designed for 

forensic use on human remains, was developed from retrospective case photographs by 

Megyesi et al. (2005). The TBS method divided the body into three regions: (1) head and 

neck, (2) torso, and (3) appendages. Each of these bodily regions is given an independent 

score based on comparison of its physical characteristics and a series of specifically 

defined decomposition stages. The head and neck, for example, may receive a score of 1 

point if it is fresh with no discoloration, a score of 7 if the decomposing tissue has begun 

caving in, or a score of 13 if it is completely skeletonized and dried (Megyesi et al. 2005). 

The TBS for the remains is the sum of the scores of each of the three bodily regions, 

ranging from a minimum of 3 (completely fresh) to a maximum of 35 (complete, dry 

skeletonization).  

 As previously mentioned, the rate of human decomposition is heavily influenced 

by ambient temperature. Consequently, temperature must be considered before a PMI 

estimate can be drawn from TBS. Megyesi et al. (2005) accomplished this through the 

use of ADD. When ambient temperature is higher over a given time period, more energy 

is available to necrophagous microorganisms and invertebrates, and their rate of activity 

and thus the rate of decomposition is expected to increase. This relationship allows 

observed, progressive changes in decomposition (via TBS) to be correlated with an 

expected ADD; Megyesi et al. (2005) used a standard least-squares linear regression of 

transformed TBS and ADD to define this relationship. The expected ADD can then be 
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converted to a PMI estimate in days using daily average temperatures from the 

environment where the remains were discovered (Megyesi et al. 2005).  

Problems with the Total Body Score Approach 

 A study of interobserver error of the TBS method has demonstrated that the 

method is highly reliable, although concerns remain over its validity (Dabbs et al. 2016). 

Within the scoring system, many of the criteria are somewhat subjective. For example, in 

the head and neck, 7 points are assigned for “Caving in of the flesh and tissues of eyes 

and throat,” while 8 points are assigned for “Moist decomposition with bone exposure 

less than half that of the area being scored” (Megyesi et al. 2005). However, couldn’t one 

interpret the collapse of the face as being along the trajectory of moist decomposition? 

What criteria mark the transition between 7 and 8 points? The inclusion of color further 

complicates the equation, as it is highly variable between individuals. Megyesi et al. 

(2005) generally documents a trend from flesh-colored, to gray-green, to brown-black 

discoloration in the TBS criteria. What if, as the author has observed, the flesh takes on a 

yellow to orange hue? Overall, the method of Megyesi et al. (2005) leaves a lot of room 

for individual interpretation. Consequently, it is not a method that is well-suited for use 

by individuals with limited experience. 

 Gleiber et al. (2017) recently proposed a similar methodology using Accumulated 

Decomposition Score (ADS) instead of TBS, a new decomposition scoring system that 

follows the broad model introduced by Megyesi et al. (2005) but incorporates different 

criteria. ADS captures major, universal decomposition landmarks (e.g., marbling, skin 

slip, and bloat) while minimizing the noise introduced by individual variation. Like TBS, 

ADS scores individual body regions independently, but goes further to score upper limbs 
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separately from lower limbs, which often decompose at different rates. Given the high 

variation in color changes that occur during decomposition, ADS also removes color-

specific criteria from consideration, instead scoring discoloration as either “present” or 

“absent.” A high correlation between ADS and ADD was documented using an 

exponential regression, with ADD explaining over 80% of the variation in ADS (Gleiber 

et al. 2017).  

Problems with Estimating ADD from TBS 

 Unfortunately, subsequent tests of the TBS and ADD estimation equation 

proposed by Megyesi et al. (2005) have identified a number of problems with the method 

as published. Suckling (2011) found that the ADD estimation method has high accuracy 

in predicting the ADD of remains with a TBS below 22 in south Central Texas, but very 

poor precision due to a high standard error; according to the Megyesi et al. (2005) 

formula, a fresh body (TBS 3) and a body in advanced decomposition (TBS 23) could 

have the same ADD within a 95% confidence interval. This could explain the general 

concordance with the Megyesi et al. (2005) method ADD estimations reported in a case 

study by Parks (2011), which included an analysis of a single cadaver in early stages of 

decomposition at the same facility. Suckling (2011) also noted the poor general 

performance (including accuracy and precision) of the Megyesi et al. (2005) method for 

cases in advanced stages of decomposition and skeletonization, finding that the method 

was biased toward overestimation of ADD for these cases. 

 Temperate climates are also subject to problems of PMI estimation using the 

method proposed by Megyesi et al. (2005). Parsons (2009) conducted a systematic study 

of the process of decomposition in central Montana and found that the Megyesi et al. 
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(2005) method produced underestimates of the PMI for early stages of decomposition, or 

low TBS. The author attributed these underestimates to decompositional stasis that 

accompanies environmental conditions of low temperature and humidity, prolonging the 

fresh stage of decomposition (Parsons 2009). Parsons (2009) also noted that similar 

underestimations may occur in mummified remains, which are also suspended in 

decompositional stasis. Like the Suckling (2011) study, Parsons (2009) also found that 

the high standard error of the original Megyesi et al. (2005) formula contributed to poor 

precision of PMI estimates.  

 Rather than testing the original Megyesi et al. (2005) formula, Myburgh et al. 

(2013) employed the methodology to construct a new ADD estimation formula specific 

to a temperate region of South Africa. Unfortunately, a validation study of their formula 

demonstrated that this region-specific formula had poor accuracy. The authors attribute 

the poor accuracy of their formula to high variation in the environmental characteristics 

that affected their sample, including pig carcasses deposited between August 2008 and 

February 2009 (Myburgh et al. 2013). 

 Both Parsons (2009) and Suckling (2011) found that the accuracy of the original 

Megyesi et al. (2005) ADD estimation method was high, but the high standard error in 

the formula renders the method imprecise, limiting its usefulness in a forensic context. 

These studies also demonstrated that although the original formula was developed from a 

national sample, it is not generalizable to remains placed in different climatic zones and 

microenvironments. In designing and testing a new regression formula for PMI 

estimation from TBS and ADD, Myburgh et al. (2013) further demonstrated that seasonal 

environmental differences can impede the accuracy of predictions, and suggest that 
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season-specific formulae be developed in temperate environments to account for changes 

in variables like solar radiation, precipitation, and seasonal changes in insect and 

vertebrate scavenger activity. Using ADS, Gleiber et al. (2017) constructed and tested 

season-specific regression equations and found that, generally, season-specific formulae 

were better predictors of ADD than the all-season formula. 

Problems with Estimating PMI from ADD 

 Assuming ADD can be accurately and precisely estimated from TBS, converting 

ADD estimates to PMI estimates in forensic contexts can be challenging. Converting an 

ADD estimate to an estimated PMI requires knowledge of the daily average temperatures 

at the site where the body was found. In decomposition research, this data can be 

measured directly using a portable temperature data logger. However, in outdoor forensic 

cases, measured hourly temperatures are unavailable, and daily average temperatures 

must be retrospectively estimated from existing sources, often from weather stations 

located some distance away from the actual recovery site. The quality of the PMI 

estimate, therefore, hinges on the how accurately the selected temperature source data 

reflects the actual temperature at the site. Dabbs (2010) has demonstrated that, in the 

United States, indiscriminate utilization of weather data from the nearest meteorological 

station to a crime scene is inappropriate and can lead to error in PMI estimates. 

 To correct for differences between retrospective weather station data and actual 

site temperatures, forensic entomologists will often place a remote temperature logger at 

the site where a body is found for a brief correlation period. After this data is collected, 

temperature data recovered from the logger can be regressed against temperature data 
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measured by nearby weather stations, and the regression equation can be used to adjust 

retrospective temperature data from the weather station (Archer 2004a).  

 Archer (2004a) was the first to assess this correlation method of data adjustment. 

He found that while the accuracy of temperature data was generally improved by the 

correlation method, the accuracy of corrected data declined as temperature differences 

between the period used to construct the model and the retrospective period (i.e., the 

period when the body was in place) increased (Archer 2004a). A follow-up study by 

Johnson et al. (2012) found that temperature differences greater than 5C failed to 

improve accuracy of corrected weather data. Consequently, it is important that if a 

corrective regression is constructed, the data used is collected during similar weather 

conditions and seasons that the body has been in place.  

  The correlation method employed by forensic entomologists attempts to correct 

temperature data taken over relatively short periods of time, as the goal is to estimate the 

time required for necrophagous insect development to a specific life stage. Given the 

nature of the discipline, forensic anthropologists are often called to the scene for 

skeletonized cases that may have PMIs of months to years. Unfortunately, as a recent 

study by Dabbs (2015) has demonstrated, the correlation method used by forensic 

entomologists does little to improve the accuracy of retrospective temperature data over 

extended timespans. Instead, Dabbs (2015) recommends that practitioners use 

uncorrected data while taking into consideration the known level of error, rather than 

increase the likelihood of introducing error through attempted adjustments. 
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II. METHODS 

Research Facility 

 Data was collected from the Forensic Anthropology Research Facility (FARF) at 

Texas State University, located on Freeman Ranch in San Marcos, Texas. Freeman 

Ranch is a working ranch and educational facility located just northwest of San Marcos 

and is situated within the Edwards Plateau (Barnes et al. 2000). The soils of the ranch are 

shallow and rich with clay, overlying large limestone deposits (Barnes et al. 2000). As of 

2000, vegetation characteristic of grassland environments covers approximately half of 

the terrain of Freeman Ranch, consistent with a long-term trend of encroaching woodland 

species following European settlement of the region in the 1800s (Barnes et al. 2000). 

The climate at Freeman Ranch is sub-tropical. Summer highs often surpass 90°F 

(>32°C) while winter lows rarely sink below 40°F (~4°C), and the area has an average 

annual relative humidity of approximately 67% (Dixon 2000). Freeman Ranch receives 

approximately 34 inches of rain in an average year, with most falling during the late 

summer and early fall, a period which coincides with the Atlantic hurricane season 

(Dixon 2000). Given the general scarcity of rainfall, the area is vulnerable to drought, 

although severe flooding also occurs periodically. Freeman Ranch is home to a diverse 

biological community, including both livestock and wild vertebrate species (Baccus et al. 

2000). Most of the mammalian species – such as raccoons (Procyon lotor) and opossum 

(Didelphis virginiana) are facultative scavengers that will consume carrion, or dead 

animal tissue, when it is available (Sincerbox and DiGangi 2018). Obligate scavengers, 

including American black vultures (Coragyps atratus) and turkey vultures (Cathartes 
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aura), are also frequent visitors to FARF and have been the subjects of multiple research 

projects at the facility (Klein 2013; Reeves 2009; Spradley et al. 2012). 

Sample 

 Human cadavers used in this study were obtained from the Forensic 

Anthropology Center at Texas State’s (FACTS) Willed Body Donation Program. 

Donations are acquired by FACTS with consent from pre-registered donors or from a 

donor's legal next-of-kin, with donations accompanied by a survey including 

demographic information and summarized dental and medical histories (Forensic 

Anthropology Center at Texas State 2016). FACTS does not accept embalmed donations, 

those weighing over 500 pounds, or those with communicable diseases that can survive in 

or on a host for prolonged periods following death, including HIV, Hepatitis B, and 

Hepatitis C (Forensic Anthropology Center at Texas State 2016). 

 Data were collected in situ for 11 donations during the summer of 2017. A 

summary of the demographic information of this sample is presented in Table 1. For in 

situ data, this project only used donations that were in the fresh stage of decomposition 

upon arrival at the facility. Donations displaying any signs of early decomposition upon 

their arrival at the facility, such as marbling, skin slip, fluid-filled blisters, or 

discoloration (other than lividity) were not used. Autopsied donations, donations with 

significant trauma, and donations that were known to have been frozen prior to or during 

intake at FACTS were also excluded from this study. Although autopsied donations are 

reported to experience bloat (Bates and Wescott 2016; Cross and Simmons 2010), the 

objective of this project was to characterize bloat and purge under natural and non-

traumatic circumstances, and it was anticipated that the presence of autopsy incisions or 
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major trauma could affect the degree of bloat observed or the pathways of purging fluids. 

Frozen donations were excluded due to the demonstrated effects of freezing on 

decomposition, which kills many of the enteric microorganisms which cause abdominal 

bloating (Micozzi 1997; Roberts and Dabbs 2015). Individuals with preexisting medical 

conditions that could impact their enteric microbial community, including infection and 

cancer, were noted. Individuals were considered to have cancer if their cause of death 

was attributed to cancer or complications of cancer. Individuals were considered to have 

an infection if their reported causes of death included a disease caused by 

microorganisms, or as a complication of such a disease. In this study, the two individuals 

considered to have had an infection had causes of death attributed to complications of 

pneumonia. 

Table 1. Donations Used for in situ Data Collection 

Donation 

Number 
Sex 

Age at 

Death 
Ancestry 

Weight 

(lbs) 

Height 

(in) 
BMI 

Placement Date 

(M/D/Yr) 

D30-2017 F 74 White 72 61.81 13.25 5/25/2017 

D31-2017 M 58 White 87 65.74 14.15 5/26/2017 

D37-2017 M 84 White 176 70.08 25.19 6/23/2017 

D38-2017 M 88 White 161 66.14 25.87 6/30/2017 

D40-2017 M 77 White 168 68.11 25.46 7/19/2017 

D42-2017 M 55 White 128 70.08 18.32 7/21/2017 

D46-2017 F 83 White 152 59.84 29.84 8/8/2017 

D50-2017 M 97 White 118 65.35 19.42 8/23/2017 

D51-2017 M 72 White 120 66.93 18.83 8/31/2017 

D52-2017 M 94 White 102 68.11 15.46 9/1/2017 

D55-2017 M 61 Black 489 67.32 75.85 9/7/2017 

 

 After visual indicators of bloat, purge, and collapse were identified, retrospective 

data were collected on a sample of 19 donations placed at FARF during previous 

summers (i.e., May – early September placement dates), which were photographed and 

documented as part of the facility’s long-term longitudinal decomposition study. The 
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demographic information for the retrospective sample is presented in Table 2. As with the 

in situ data, only donations that were unautopsied, had minimal trauma, and were never 

frozen were considered for inclusion in the sample and cause of death was noted. 

Table 2. Donations Used for Retrospective Data Collection 

Donation 

Number 
Sex Age Ancestry 

Wt 

(lbs) 

Ht 

(in) 
BMI 

Placement 

(M/D/Yr) 

D15-2012 M 62 White 150 71.3 20.77 05/08/2012 

D23-2012 M 56 White 220 71.3 30.46 06/19/2012 

D24-2012 F 83 White 172 59.7 34.07 06/22/2012 

D23-2013 M 63 White 150 68.9 22.21 05/06/2013 

D44-2014 M 73 White 122 65.9 19.72 09/01/2014 

D23-2015 M 69 White 170 67.7 26.06 06/08/2015 

D25-2015 F 68 White 76 60.6 14.53 06/08/2015 

D30-2015 M 86 White 156 70.5 22.08 06/08/2015 

D35-2015 F 69 White 158 64.4 26.81 07/02/2015 

D40-2015 M 83 White 128 65.0 21.32 07/29/2015 

D43-2015 F 97 White 118 60.8 22.42 08/12/2015 

D20-2016 M 78 White 140 67.1 21.84 07/05/2016 

D22-2016 F 68 Black 163 62.2 29.61 06/10/2016 

D39-2016 F 63 White 110 62.2 19.98 08/23/2016 

D33-2017 F 64 White 109 63.0 19.31 06/20/2017 

D34-2017 M 58 White 225 64.8 37.71 06/14/2017 

D45-2017 F 83 Hispanic 101 60.2 19.57 07/31/2017 

D53-2017 F 56 White 148 60.0 28.86 09/04/2017 

D54-2017 M 69 White 120 71.3 16.61 09/06/2017 

 

Data Collection 

In situ Data Collection 

 The observation period began on May 25th, 2017 and continued through 

September 20th, 2017. Upon intake of the donor’s body at the facility, cadaver weight and 

cadaveric stature were measured, in pounds and centimeters, respectively. These stature 

measurements were converted and rounded to the nearest inch to calculate body mass 

index (BMI). For several donations, an accurate cadaveric stature could not be taken 

because the bodies were in flexed rigor mortis upon arriving at the facility and could not 
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be repositioned. An estimated living stature, collected as part of an entry questionnaire to 

the Willed Body Donation Program, was used to calculate BMI in these cases. BMI was 

calculated for each donation using the formula recommended by the United States Center 

for Disease Control and Prevention (CDC) Division of Nutrition Physical Activity and 

Obesity (2014): 

𝐵𝑀𝐼 = (
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑙𝑏𝑠)

(ℎ𝑒𝑖𝑔ℎ𝑡 (𝑖𝑛))2
) 𝑥 703 

Donations were then assigned to BMI categories using the classes recommended by the 

CDC Division of Nutrition Physical Activity and Obesity (2016) for adult Americans, 

presented in Table 3. 

Table 3. BMI Categories for Adult Americans 

Category Abbreviation BMI Range 

Underweight U < 18.5 

Normal N 18.5 – 24.9 

Overweight Ov 25 – 30 

Obese Ob > 30 

 

All donations were placed on the surface in a supine position, with the exception 

the flexed donations, which were instead placed on their side. Flexible 60" fiberglass 

measuring tapes were placed underneath the abdomen of each donation, at the level of the 

navel. In later trials, beginning with the 7th donation (D46-2017), measuring tapes were 

also placed under the chest and neck to document differences in the timing and degree of 

bloat in different regions of the torso. Unfortunately, tapes could not be placed under the 

last in situ donation due to insufficient length of the tapes for circumferential 

measurements of the abdomen and chest. 

Observations were made daily, beginning on the day of placement at the facility 

and continuing until abdominal collapse, or the caving in of the abdominal cavity, was 
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observed. Photographs were taken daily to allow for retrospective review of 

decomposition criteria, including an overall view of the donation as well as close-range 

anterior and lateral views of the head and torso. Measurements of abdominal 

circumference, as well as measurements of the circumferences of the chest and neck in 

the later trials, were recorded to the nearest tenth of a centimeter. To promote consistency 

of measurement locations through time, quasi-anatomical landmarks were used to align 

tapes during measurement. The navel was used as the landmark for the abdominal 

circumference. Chest circumference was taken inferior to the breast tissue. The 

measurements of the neck were taken at the base of the neck, below the thyroid cartilage. 

Visual observations of bloat, locations and consistency of purge, and soil stain 

formation were recorded. Bloat observations recorded include protrusion of the tongue, 

swelling of the face and neck, visible abdominal distention, swelling of the scrotum (in 

males only), abdominal wrinkling, and abdominal collapse. Because many of these traits 

were subjective due to variation in their expression, specific definitions for EDIs that 

could be identified in situ and in photographs were developed. After definitions had been 

refined in late July, photographs and notes taken in situ were reviewed and revised as 

necessary to ensure consistency in the scoring protocol across the sample. The revised 

definitions for selected indicators – purge, facial bloat, abdominal distention, facial 

collapse, abdominal wrinkling, abdominal collapse, first protruding soil stain, and stain 

outline – are presented later in this chapter. 

Retrospective Data Collection 

Retrospective data were obtained from photographs taken as part of the multi-year 

longitudinal decomposition study at FARF. Donations were excluded if height or weight 
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data was missing from the intake report. Although these donations were included in the 

retrospective study, it was noted if donations may have been frozen for significant 

periods of time before placement at the facility, or if antemortem health or cause of death 

was likely to have influenced enteric microbial community compositions (e.g., cancer 

chemotherapy, bacterial infection).  

Temperature Data Sources 

 For both retrospective and in situ samples, temperature data was collected 

primarily from a weather station located on Freeman Ranch. This station reports a 

temperature measurement (in Celsius) every 30 minutes. High and low temperature 

measurements for each 24-hour period were identified for use in calculating the daily 

average temperature. Where data from the on-site data logger was missing due to 

equipment malfunction (a period in late May and early June 2017), temperature data was 

collected from the San Marcos Municipal Airport (Station KHYI), publicly available 

from wunderground.com. KHYI data was converted from Fahrenheit to Celsius for 

calculations of daily average temperature. To ensure applicability of the KHYI data, the 

mean daily average temperatures for two weeks prior to the malfunction were statistically 

compared between the two sites (i.e., the Freeman Ranch data logger and the San Marcos 

Municipal Airport weather station) using a standard t-test. The test revealed no 

significant differences. 

Accumulated Degree Day Calculation 

For both samples, ADD was calculated for the period between placement of the 

donation at FARF and every observation. Mean daily temperatures were calculated using 

the formula below (McMaster and Wilhelm 1997). A base temperature of 4°C was used, 
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corresponding to the temperature at which microbial activity significantly slows (Micozzi 

1997). 

𝑇𝑖 =  [
(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)

2
] −  𝑇𝑏𝑎𝑠𝑒 

Mean daily temperatures were summed to calculate the ADD required to achieve an 

indicator. The range of daily temperatures summed was inclusive, including the mean 

daily temperatures on all days since placement, including the date the observation was 

made. On the date of placement, an ADD of 0 was used, as observations were generally 

made at the time of placement before prolonged exposure to ambient temperatures at 

FARF. 

Definitions of Early Decomposition Indicators (EDIs) 

Eight EDIs were identified throughout the course of this research:  facial bloat, 

abdominal distention, purge, first protruding soil stain, soil stain outline, facial collapse, 

abdominal wrinkle, and abdominal collapse.  

Bloat 

As previously discussed, bloat can be defined as the swelling of tissues due to 

accumulated gases produced by microbial decomposition. In this study, bloat in the facial 

tissues typically preceded bloat in the torso. Swelling of the face was identified by 

ballooning of the cheeks and tautness of the facial tissues, while swelling of the neck was 

identified by reduced definition of the jaw (Figure 1). Abdominal distention was visually 

identified by the tautness of overlying tissue, by the reduction of natural contours of the 

hips and waist, and the reduced definition of the rib cage; generally, the torso became 

more cylindrical as the abdomen inflated (Figure 2). 
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Figure 1. Facial Bloat. (a) Face and neck at time of placement (ADD 0) and (b) at 6 days 

(ADD 158). Note reduced definition of the jaw, indicating active bloating of the neck. 
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Figure 2. Abdominal Distention. (a) Torso at placement (ADD 0) and (b) at 7 days 

(ADD 185). Note swollen waist and reduced definition of rib cage, indicating active 

bloating of the torso. 
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Purge 

 Purge can be defined as the expulsion of decomposition fluids and liquefied 

tissues due to internal pressure, produced by the accumulation of gases inside the body 

cavities. Direct observation of active purge was rare. Although fluids frequently pooled in 

the mouth and nostrils of donations, it often could not be distinguished from fluid pooled 

due to previous rainfall or condensation. In some rare cases, bubbling was observed in 

these fluids, indicating that gas was escaping from the remains (Figure 3). Occasionally, 

fluid or liquefied tissue could be observed seeping directly from natural orifices or other 

openings. The consistency of purging substances varied considerably between 

individuals, as well as between different observations of the same individual throughout 

decomposition, including thin or viscous fluids, dark sludgy solids, and pale yellow-

brown foam.  

 

Figure 3. Active Purge. A direct observation of purge on day 4 (ADD 113). Note 

bubbles accumulated in the mouth. 
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 Most often, active purge was identified by the presence of fluid pooled under or 

immediately adjacent to the body (Figures 4 and 5). This generally appeared under the 

head and neck before appearing under the torso and groin. Consequently, the presence of 

soil stains were often referred to in the absence of direct observation of purge. The first 

protruding soil stain, when the stain extends outside areas in direct contact with the body, 

was documented as a proxy for purge. Generally, this occurred first under the head and 

neck (Figure 4). Additionally, the appearance of a soil stain outline was documented 

(Figure 5). An outline was considered complete if the stain radiated away from the head 

and torso, outside of areas of direct contact between the body and ground, and staining 

was visible under the appendages. 

 

 
 

Figure 4. First Protruding Stain. First protruding stain (FPS) adjacent to right neck and 

arm on day 4 (ADD 133), noted with white arrow. FPS was often difficult to observe 

from photographs due to the presence of shadows. 
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Figure 5. Soil Stain Outline. Soil stain outline on day 7 (ADD 188). 

Collapse 

 Collapse occurs when the remains deflate, as gaseous pressure inside the body 

cavities decrease and the overlying epidermal tissue succumbs to gravity. Facial collapse 

usually preceded abdominal collapse (Figure 6). Cheeks appeared sunken, and features of 

the facial skeleton became more well defined.  The epidermis often appeared very thin, 

and coloring of the facial tissue was often (but not always) dark brown to black. 

 Early deflation was evidenced by wrinkling of the epidermal tissue over the 

abdomen and appeared to be more common in individuals with higher BMIs (Figure 7). 

Wrinkles of interest appeared below the inferior border of the rib cage, but above the 

anterior margin of the pelvic girdle. Wrinkling in the neck, upper chest, and thighs 

appeared more inconsistently. Abdominal wrinkling was followed by full collapse of 

overlying tissues into the abdominal cavity, identified by a bowl-like depression in the 

soft tissues between the rib cage and the pelvis (Figure 8a). Occasionally, abdominal 

collapse manifested as a T-shaped indent in the abdomen (Figure 8b). 
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Figure 6. Facial Collapse. Facial collapse at 4 days (ADD 133). Note sunken cheeks 

(black arrow) and increasing definition of the underlying skeletal structure, here the 

zygomatic (white arrows). 

 

 
 

Figure 7. Abdominal Wrinkle. Abdominal wrinkling at 11 days (309 ADD). Several 

deep wrinkles in the region of interest, the abdomen, are indicated with black arrows. 
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Figure 8. Abdominal Collapse. Abdominal collapse manifested as (a) a bowl-shaped 

depression or (b) heavy wrinkling of tissue overlying the abdominal cavity, often with a 

defined T- or H-shaped indent. 
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Data Analysis 

 ADD was calculated for the date that each of the eight EDIs was first observed in 

both in situ and retrospective donations, and the sample divided into the following groups 

for comparison: 

1. Male / female 

2. BMI classes (Underweight, Normal, Overweight, and Obese) 

3. Cancer / no cancer 

4. Trauma / no trauma 

5. Possible infection / no infection 

 For each EDI, descriptive statistics were generated, including the mean and 

standard deviation of ADD to first appearance in all groups. Bar charts and scatterplots 

were constructed for exploratory analysis of possible influences of the intrinsic variables 

on the ADD to first appearance of EDIs. These figures are available in Appendix A. The 

distribution of the ADD data for the date of first appearance for each indicator was 

analyzed using the Shapiro-Wilks test. For indicators with a normal distribution, 

Bartlett’s test was used to test the homogeneity of variances or homoscedasticity of the 

data between each group. For indicators with normally distributed data with equal 

variance, a t-test or one-way ANOVA (BMI class, only) was used to test for differences 

in the mean timing of indicator appearance between the groups. For indicators with non-

normally distributed data or unequal variances, the more conservative nonparametric 

Mann-Whitney U-test or Kruskal-Wallis test (BMI class, only) was used to compare 

means. All statistical analyses were conducted in R-studio. 
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 To further evaluate the influences of sex, BMI, cancer, possible infection, and 

trauma on timing of decomposition indicators, mixed effects models were used. Mixed 

effects models are also known as multilevel or hierarchical models. In contrast to 

classical regression models, mixed effects models accommodate the modeling of 

variation between groups within a dataset by allowing the coefficients and/or intercepts 

within the model to vary by group (Gelman and Hill 2007). They include both fixed and 

random effects. The coefficients of random effects vary by group and are produced as an 

outcome of the model, while the coefficients of fixed effects do not change from one 

group to the next (Gelman and Hill 2007). For this study, mixed effects models were 

selected because they can be designed to accommodate repeated observations on the 

same subjects by including subjects (i.e., donations) as random effects. Other benefits of 

mixed effects models include higher capacity for estimation from modest sample sizes 

and accommodation of unequal groups sizes or missing data (Gelman and Hill 2007). 

 The raw data was first subset into eight model datasets, one for each indicator. 

Within each model dataset, any observations coded as unobservable (“NA”) for the trait 

of interest were removed. In addition, donations were removed from a model dataset if 

the collected data did not include observations of both indicator presence and absence. 

Three donations were removed from all models. D51-2017 bloated and purged on a 

trajectory that was fairly consistent with other donations considered in this study, but 

collapse indicators (abdominal wrinkle, abdominal collapse) were extremely delayed. 

This delay occurred only after evidence of scavenging of the donation’s maggot masses 

was observed, including soil disturbance along the right side of the torso. This 



 
 

37 

 

scavenging event produced a marked disruption in maggot activity, which has previously 

been shown to delay later decomposition events (Pechal et al. 2014).  

 D46-2017 also demonstrated delayed decomposition patterns relative to other 

donations in this study and was associated with a neighboring donation that was subject 

to substantial scavenging. Although little scavenging was noted in D46-2017, it’s 

possible that the presence of an active scavenger nearby disrupted normal insect activity. 

Because the impact of animal scavenging and insect activity was not in the scope of this 

project and therefore not evaluated in this study, D51-2017 and D46-2017 were removed 

from model construction datasets as outliers to improve model performance. D55-2017 

was also removed from the model datasets due to their extreme BMI of 75.85, which 

skewed the mean and prevented appropriate scaling of the variable. 

 To ease model convergence, the data in each model dataset were truncated to 

encompass the minimum ADD when an indicator first appeared and the maximum ADD 

in which an indicator was still absent. Continuous variables included in each model (i.e., 

ADD and BMI) were scaled and centered for each model dataset by subtracting the mean 

value of the variable from the observed value, and dividing by the standard deviation of 

the variable in the dataset. A table of variable scaling formulae is available in Appendix 

B (Figure B1). Models for each indicator were then constructed and evaluated using the 

glmer function of the R package lme4 (Bates et al. 2015). The distribution of the model 

was set to binomial and default parameters for the glmer function were used with the 

exception of the nAGQ argument, which specifies the number of nodes used in the 

adaptive Gauss-Hermite quadrature that approximates the log-likelihood of the model 

(Bates et al. 2015). The default for the nAGQ argument is 1, corresponding to the 
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Laplace approximation. The nAGQ for these models was increased to 2 to induce model 

convergence but had the added benefit of improving the accuracy of the log-likelihood 

calculations (Bates et al. 2015).   

 The results of the exploratory analysis and comparison of group means were used 

to inform variables incorporated into model construction. Variables were retained in the 

model if they improved the model fit, indicated by reduced group-level variance 

(variance between random effects) and a decrease in deviance information criterion 

(DIC), which is a measure of fit similar to the Akaike information criterion that is 

appropriate for the structure of multilevel models (Gelman and Hill 2007). These 

measures were obtained using the display function in the R package arm (Gelman and Su 

2016). A complete table of specifications for each model included in this thesis is 

available in Appendix B (Figure B2). 

 After mixed effects models for each indicator were constructed, predictive 

probability curves were produced for each model. For models incorporating BMI as a 

fixed effect, curves were produced for three different BMIs that encompassed a range of 

BMI classes: 15, 20, and 25. Models were tested using subsets of 30 observations from 

the original model datasets. Scaled ADD of each observation in the test sets were plugged 

into the model formula to calculate the probability that the indicator in question had 

occurred. Probabilities greater than 50% were considered present, while probabilities 

lower than 50% were considered absent. These predicted observations were compared to 

the actual observations, and the total proportion of matches and the rate of type I and type 

II errors were calculated. Observations in the test set were selected using a random 

number generator to select rows in the data frame, without replacement. 
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III. RESULTS 

 A summary of the ADD to the first observation of indicators for the entire sample 

(including the in situ and retrospective observations) is given in Table 4, including the 

minimum and maximum ADD observed as well as the mean and the standard deviation. 

The boxplot of this data (Figure 9) demonstrates the general sequentiality of indicator 

appearance from earliest (Facial Bloat & Purge) to latest (Abdominal Collapse). 

Table 4. Descriptive Statistics for ADD to First Observation of EDIs 

Indicator Min. ADD Max. ADD Mean ADD SD 

Facial Bloat 47.04 175.92 91.60 32.25 

Purge 44.43 175.92 94.95 39.38 

Abdominal Distention 66.63 228.95 111.02 40.54 

First Protruding Stain 94.35 228.95 138.66 32.57 

Facial Collapse 101.92 237.66 153.72 32.76 

Abdominal Wrinkle 121.30 309.05 179.88 53.85 

Stain Outline 121.30 366.51 191.70 65.61 

Abdominal Collapse 115.08 433.61 219.78 76.73 
 

 

Figure 9. Box Plot of ADD at First Observation of EDIs. 
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Purge 

 Exploratory data visualization (see Appendix A, Figure A1) demonstrate a slight 

negative relationship between BMI and timing of first observed purge. Generally, 

individuals with higher BMIs appear to purge earlier than individuals with lower BMIs. 

Additionally, individuals with major abdominal trauma appeared to purge earlier than 

individuals without trauma (see Appendix A, Figure A11). There was no apparent 

difference between the timing of purge in individuals with and without cancer (see 

Appendix A, Figure A9), and the effect of infection could not be reliably explored due to 

the small number of individuals with infection (n=1) in the sample. 

Table 5. Comparison of Mean ADD to First Observed Purge 

 

Grouping Group n 
Mean 

ADD 
Test Used 

Test 

Statistic 
p-value 

Sex 
Male 12 95.92 

Parametric 1.287 0.215 
Female 7 77.66 

BMI Class 

Underweight 5 104.04 

Parametric 0.650 0.595 
Normal 6 93.31 

Overweight 6 77.73 

Obese 2 74.14 

Cancer 
Cancer-Free 13 91.99 

Parametric -0.172 0.867 
Cancer 5 89.23 

Trauma 
No Trauma 16 92.07 

Parametric -1.669 0.119 
Trauma 3 73.87 

 

 To explore the significance of these relationships, the means of each group were 

statistically compared (Table 5). The data was determined to have a normal distribution, 

and the variances in each group were homogeneous.  Sex, cancer, and trauma groups 

were compared using Welch’s t-tests, while BMI classes were compared using one-way 

ANOVA. Individuals with and without infection could not be reliably compared, as only  
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Figure 10. Prediction Curves for Probability of Purge. (a) Probability of purge given 

ADD using PM1, (b) Probability of purge given ADD using PM2 for three values of BMI 

(15, 20, 25). 

 



 
 

42 

 

one individual with an infection was included in the final sample. None of the differences 

were statistically significant. 

 Two mixed effects models were constructed for purge. In purge model 1 (PM1), 

ADD was the only fixed effect. The final formula for PM1 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑢𝑟𝑔𝑒 = 𝑙𝑜𝑔𝑖𝑡−1(6.680 + (8.650 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷)) 

Although there was no significant difference in timing of purge between BMI classes, a 

purge model including BMI (PM2) had a slightly better fit. The final formula for PM2 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑢𝑟𝑔𝑒 = 𝑙𝑜𝑔𝑖𝑡−1(6.460 + (8.880 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷) + (2.230 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐵𝑀𝐼)) 

Simulated data was then used to construct curves using PM1 and PM2 to predict 

probabilities of purge having occurred on or before any given ADD. PM1 is presented in 

Figure 10a along with the original data used to construct the model, while PM2 is 

presented in Figure 10b for three different values of BMI (one underweight, one normal 

weight, and one just overweight).  

Facial Bloat 

 Visualizations of the relationship between intrinsic variables and the average 

timing of facial bloat are available in Appendix A. The data demonstrate a slight negative 

relationship between BMI and timing of first observed facial bloat; facial bloat occurs 

slightly earlier in individuals with higher BMIs (see Appendix A, Figure A2). Facial 

bloat also occurred earlier in individuals with trauma than in individuals without trauma 

(see Appendix A, Figure A11). There was no observed difference between timing of 

facial bloat in individuals with or without cancer (see Appendix A, Figure A9), and 

again, the effect of infection status could not be explored due to the small sample size 

(n=1) of the group with infection. 
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Table 6. Comparison of Mean ADD to First Observed Facial Bloat 

 

Grouping Group n 
Mean 

ADD 
Test Used 

Test 

Statistic 

p-

value 

Sex 
Male 15 96.14 

Parametric 3.39 0.004 
Female 5 65.79 

BMI 

Class 

Underweight 5 102.13 

Parametric 2.436 0.102 
Normal 7 99.53 

Overweight 5 71.22 

Obese 3 69.20 

Cancer 
Cancer-Free 13 91.33 

Parametric -0.176 0.866 
Cancer 6 88.52 

Trauma 
No Trauma 16 91.99 

Nonparametric 20 0.277 
Trauma 4 74.79 

 

 To explore the significance of these relationships, the means of each group were 

statistically compared (Table 6). The data was determined to have a normal distribution. 

The variances of sex, BMI class, and cancer groups were homogeneous and parametric 

tests were used. The nonparametric Mann-Whitney U-test was used to compare trauma 

groups, which had heterogenous variances. Individuals with and without infection could 

not be reliably compared, as only one individual with an infection was included in the 

final sample. Differences in BMI class, cancer, and trauma means were not significant. 

The mean ADD to first observed facial bloat of the male and female groups were 

significantly different. 

 Two mixed effects models were constructed for facial bloat. In facial bloat model 

1 (FBM1), ADD was the only fixed effect. The final formula for FBM1 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑓𝑎𝑐𝑖𝑎𝑙 𝑏𝑙𝑜𝑎𝑡 = 𝑙𝑜𝑔𝑖𝑡−1(2.350 + (6.447 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷)) 
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Figure 11. Prediction Curves for Probability of Facial Bloat. (a) Predicted probability 

of facial bloat given ADD using FBM1, (b) Probability of facial bloat given ADD using 

FBM2 for three values of BMI (15, 20, 25). 
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Although there was no significant difference in timing of facial bloat between BMI 

classes, a model including BMI (FBM2) had a slightly better fit. The final formula for 

FBM2 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑓𝑎𝑐𝑖𝑎𝑙 𝑏𝑙𝑜𝑎𝑡

= 𝑙𝑜𝑔𝑖𝑡−1(2.266 + (6.781 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷) + (1.742 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐵𝑀𝐼)) 

Simulated data was then used to construct curves based on these models to predict 

probabilities of facial bloat having occurred on or before any given ADD. FBM1 is 

presented in Figure 11a along with the original data used to construct the model, while 

FBM2 is presented in Figure 11b for three different values of BMI (one underweight, one 

normal weight, and one just overweight). 

Abdominal Distention 

 Visualizations of the relationships between timing of abdominal distention and 

intrinsic variables are available in Appendix A. The data suggest a slight negative 

relationship between BMI and timing of first observed abdominal distention, indicating 

that abdominal distention occurs earlier in individuals with higher BMIs (see Appendix 

A, Figure A3). The presence of cancer did not appear to affect the timing of abdominal 

distention, however, there were slight differences observed based on infection and trauma 

status (see Appendix A, Figures A9-A11). Abdominal distention appears to be delayed in 

individuals with causes of death related to infection; however, this finding must be 

interpreted loosely due to the small size of the infection group (n=2). 

 To explore the significance of these relationships, the means of each group were 

statistically compared (Table 7). The data did not have a normal distribution, so 
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nonparametric methods were used to compare means for all groups. There were no 

significant differences between group means. 

Table 7. Comparison of Mean ADD to First Observed Abdominal Distention 

Grouping Group n 
Mean 

ADD 
Test Used 

Test 

Statistic 
p-value 

Sex 
Male 12 102.47 

Nonparametric 29 0.543 
Female 6 109.98 

BMI Class 

Underweight 5 121.48 

Nonparametric 1.55 0.670 
Normal 5 110.92 

Overweight 5 92.26 

Obese 3 88.73 

Cancer 
Cancer-Free 12 104.78 

Nonparametric 36 0.562 
Cancer 5 110.74 

Infection 
No Infection 15 103.55 

Nonparametric 24 0.205 
Infection 2 128.93 

Trauma 
Intact 15 107.73 

Nonparametric 18 0.635 
Minor Trauma 3 91.19 

 

 The dataset used for model construction included 169 observations of 27 

individuals. One mixed effects model was constructed for abdominal distention, ADM1, 

in which ADD was the sole fixed effect. The final formula for ADM1 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑔𝑖𝑡−1((5.826 + (12.157 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷)) 

A second abdominal distention model including BMI was attempted but did not 

significantly improve the model fit. Simulated data was then used with the ADM1 

formula to predict the probability of abdominal distention having occurred on or before 

any given ADD (Figure 12). 
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Figure 12. Prediction Curve for Probability of Abdominal Distention. Predicted 

probability of abdominal distention given ADD using ADM1. 

 

Facial Collapse 

 Visualizations of the relationship between timing of facial collapse and intrinsic 

variables are available in Appendix A. These graphs demonstrate a slight positive 

relationship between BMI and timing of first observed facial collapse, with facial 

collapse occurring later on average in individuals with higher BMIs (see Appendix A, 

Figure A4). In addition, facial collapse was delayed in individuals with cancer, and 

occurred earlier in individuals with infection at the time of death (see Appendix A, 

Figures A9-A10). Due to small sample size, the relationship between infection and timing 

of facial collapse should be interpreted cautiously due to the small size of the group with 

infection (n=2). The timing of facial collapse did not appear to be impacted by the 

presence of trauma (see Appendix A, Figure A11). 
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 To explore the significance of these relationships, the means of each group were 

statistically compared (Table 8). The ADD data was normally distributed, and the 

variances of all compared groups were homogeneous. No significant differences were 

found between sex, BMI class, cancer, or trauma groups. Individuals who had an 

infection at the time of death had a significantly different mean ADD to first observed 

facial collapse than individuals without a reported infection at the time of death. 

Table 8. Comparison of Mean ADD to First Observed Facial Collapse 

Grouping Group n 
Mean 

ADD 
Test Used 

Test 

Statistic 
p-value 

Sex 
Male 15 158.10 

Parametric 0.941 0.360 
Female 8 145.50 

BMI Class 

Underweight 6 136.77 

Parametric 0.964 0.43 
Normal 8 156.91 

Overweight 5 169.88 

Obese 4 152.55 

Cancer 
Cancer-Free 16 142.26 

Parametric 1.671 0.145 
Cancer 5 165.46 

Infection 
No Infection 19 149.55 

Parametric -2.530 0.030 
Infection 2 130.98 

Trauma 
Intact 20 153.63 

Parametric 0.026 0.982 
Minor Trauma 3 154.28 

  

 The dataset used to construct the mixed effects models for facial collapse included 

132 observations from 27 donations. One mixed effects model was constructed for facial 

collapse, FCM1, in which ADD was the only fixed effect. The final formula for FCM1 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑓𝑎𝑐𝑖𝑎𝑙 𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 𝑙𝑜𝑔𝑖𝑡−1((3.477 + (8.550 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷)) 

A second facial collapse model including BMI was attempted but did not significantly 

improve the model fit. Simulated data was then used with FCM1 to predict the 

probability of facial collapse having occurred on or before any given ADD (Figure 13). 
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Figure 13. Prediction Curve for Probability of Facial Collapse. Predicted probability 

of facial collapse given ADD using FCM1. 

 

Abdominal Wrinkle 

 Visualizations of the relationships between timing of abdominal wrinkle and 

intrinsic variables are available in Appendix A. A scatterplot suggests a very slight 

positive relationship between BMI and timing to first observed abdominal wrinkle, while 

the bar chart indicates a difference between the extreme (underweight and obese) and 

moderate (normal and overweight) BMI classes (see Appendix A, Figure A5). 

Abdominal wrinkle was delayed in individuals with cancer (see Appendix A, Figure A9). 

The effects of infection and trauma could not be explored due to small sample sizes of the 

group with infection (n=1) and the group with trauma (n=2). 

 To explore the significance of these relationships, the means of each group were 

statistically compared (Table 9). The ADD data was normally distributed. For sex and 
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cancer groups, variances were homogeneous and parametric tests were used. For BMI 

classes, variances were heterogeneous, and means were compared using a nonparametric 

test. No significant differences were found between sex or cancer groups, but a 

significant difference was identified between BMI classes (α = 0.10). 

Table 9. Comparison of Mean ADD to First Observed Abdominal Wrinkle 

Grouping Group n 
Mean 

ADD 
Test Used 

Test 

Statistic 
p-value 

Sex 
Male 12 172.29 

Parametric 0.236 0.823 
Female 3 167.20 

BMI Class 

Underweight 3 138.22 

Nonparametric 6.769 0.080 
Normal 4 196.42 

Overweight 5 193.59 

Obese 3 133.59 

Cancer 
Cancer-Free 8 152.76 

Parametric 0.980 0.363 
Cancer 5 173.35 

 

 A Dunn Test, used for nonparametric post-hoc analysis, was used to follow up 

and indicated that a significant difference existed between the overweight and obese BMI 

classes (Table 10). Substantial but insignificant differences were also noted between 

underweight-normal, underweight-overweight, and normal-obese pairings, but no 

difference was noted between normal-overweight and underweight-obese BMI classes. 

These findings support the observation that the timing of underweight and obese BMI 

classes different from normal and overweight BMI classes. 

Table 10. Dunn Test for Significant Differences in Abdominal Wrinkle Timing 

test statistic 

p-value 
Normal Obese Overweight 

Obese 
1.830 

0.034 

  

Overweight 
-0.117 

0.454 

-2.021 

0.022* 

 

Underweight 
1.635 

0.051 

-0.183 

0.428 

1.817 

0.035 
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 Two mixed effects models were constructed for abdominal wrinkle. AWM1 

included only ADD as a fixed effect, and the dataset used to construct it included 86 

observations from 20 donations. The final formula for AWM1 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙 𝑤𝑟𝑖𝑛𝑘𝑙𝑒 = 𝑙𝑜𝑔𝑖𝑡−1(2.104 +  (7.362 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷)) 

Although the relationship between cancer and abdominal wrinkle timing was not 

significant, AWM2 added cancer as a fixed effect and it dramatically improved the model 

fit. The dataset used to construct AWM2 included 74 observations from 18 donations, as 

two donations had an unspecified cause of death and could not be assigned to cancer-free 

or cancer groups. The final formula for AWM2 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙 𝑤𝑟𝑖𝑛𝑘𝑙𝑒

= 𝑙𝑜𝑔𝑖𝑡−1(5.035 + (8.460 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷) − (3.157 ∗ 𝑐𝑎𝑛𝑐𝑒𝑟)) 

 A third model was attempted, including BMI as a fixed effect, but was discarded 

because it decreased the model fit. Simulated data was then used to construct curves 

based on AWM1 and AWM2 to predict probabilities of abdominal wrinkle having 

occurred on or before any given ADD. AWM1 is presented in Figure 14a along with the 

original data used to construct the model. AWM2 is presented in Figure 14b, with 

separate prediction curves for individuals with and without cancer. 

Abdominal Collapse 

 Data visualizations of the relationships between abdominal collapse and intrinsic 

variables are available in Appendix A. In terms of BMI category, differences in the 

timing of abdominal collapse appear between extreme (i.e., underweight and obese) and 

moderate (i.e., normal and overweight) BMI categories (see Appendix A, Figure A6). 

Collapse was delayed in the cancer group but occurred earlier in the infection  
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Figure 14. Prediction Curves for Probability of Abdominal Wrinkle. (a) Predicted 

probability of abdominal wrinkle given ADD using AWM1, (b) Probability of abdominal 

wrinkle using AWM2, given ADD and cancer status. 
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and trauma groups (see Appendix A, Figures A9-A11). Due to small sample sizes, the 

impacts of infection and trauma should be interpreted cautiously.  

 The means of each group were then statistically compared (Table 11). The ADD 

data was normally distributed, and the variances of all compared groups were 

homogeneous; parametric tests were used. None of the groups were significantly different 

at an alpha-level of 0.05, but the mean ADD to abdominal collapse for the cancer group 

was significantly different from that of the cancer-free group at an alpha-level of 0.10. 

Table 11. Comparison of Mean ADD to First Observed Abdominal Collapse 

Grouping Group n 
Mean 

ADD 
Test Used 

Test 

Statistic 
p-value 

Sex 
Male 13 197.30 

Parametric -0.334 0.747 
Female 6 207.91 

BMI Class 

Underweight 6 180.36 

Parametric 0.482 0.700 
Normal 7 212.91 

Overweight 4 217.76 

Obese 2 184.41 

Cancer 
Cancer-Free 13 177.47 

Parametric 2.088 0.088 
Cancer 5 237.07 

Infection 
No Infection 16 196.53 

Parametric -0.464 0.715 
Infection 2 174.00 

Trauma 
No Trauma 15 207.98 

Parametric -1.419 0.195 
Trauma 4 173.18 

  

 Two mixed effects models were constructed for abdominal collapse. ACM1 

included only ADD as a fixed effect, and the dataset used to construct it included 113 

observations from 27 individuals. The final formula for ACM1 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 𝑙𝑜𝑔𝑖𝑡−1((5.557 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷) − 1.545) 

The relationship between cancer and timing of abdominal collapse was explored in 

ACM2, which added cancer as a fixed effect, dramatically improving the model fit, with 

the formula: 
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒

= 𝑙𝑜𝑔𝑖𝑡−1(0.489 + (5.701 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷) − (3.132 ∗ 𝑐𝑎𝑛𝑐𝑒𝑟)) 

 The dataset used to construct ACM2 included 100 observations from 25 donations, as 

two donations had unspecified causes of death.  

 A third and fourth model including BMI and trauma respectively, were attempted 

but discarded because they failed to improve the model fit. Simulated data was then used 

to construct curves based on these models to predict the probability of abdominal 

collapse having occurred. ACM1 is presented in Figure 15a. ACM2 is presented in 

Figure 15b, with separate prediction curves for individuals with and without cancer. 

First Protruding Stain (FPS) 

 Data visualizations of relationships between the timing of FPS and intrinsic 

variables are available in Appendix A. A scatterplot and bar plot indicate a slight 

negative trend between BMI and timing of FPS (see Appendix A, Figure A7). There was 

no notable difference between timing of FPS based on cancer status, although stain 

occurred earlier in individuals with trauma (see Appendix A, Figure A9 & A11). The 

effects of infection could not be tested due to size of the infected group (n=1). 

Table 12. Comparison of Mean ADD to FPS 

Grouping Group n Mean ADD Test Used Test Statistic p-value 

Sex 
Male 14 133.93 

Parametric -0.478 0.642 
Female 8 140.23 

BMI Class 

Underweight 5 142.52 

Parametric 0.203 0.893 
Normal 8 137.91 

Overweight 7 132.31 

Obese 2 127.43 

Cancer 
Cancer-Free 14 134.04 

Parametric 0.517 0.617 
Cancer 7 141.22 

Trauma 
No Trauma 19 140.36 

Parametric -2.304 0.103 
Trauma 3 110.04 
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Figure 15. Prediction Curves for Probability of Abdominal Collapse. (a) Predicted 

probability of abdominal collapse given ADD, generated using ACM1, (b) Probability of 

abdominal collapse using ACM2, given ADD and cancer status. 
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 The means of each group were then statistically compared (Table 12). The ADD 

data was normally distributed with homogeneous variances; parametric tests were used. 

Infection could not be compared because there were no individuals with infection at the 

time of death in the final sample. There were no significant differences between groups, 

although a substantial difference was noted between individuals with trauma and 

individuals without trauma. 

 One mixed effects model was constructed for FPS. The dataset used for model 

construction included 137 observations of 27 individuals. Stain model one (SM1) 

included only ADD as a fixed effect. Models including BMI, cancer, and trauma were 

attempted but were ultimately discarded when they failed to improve the model fit. The 

final formula for SM1 is: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑜𝑖𝑙 𝑠𝑡𝑎𝑖𝑛 = 𝑙𝑜𝑔𝑖𝑡−1(2.902 + (8.323 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑 𝐴𝐷𝐷)) 

Simulated data was then used with SM1 to construct curves to predict probabilities of 

FPS having occurred on or before any given ADD. The predicted probability curve of 

SM1 is presented in Figure 16. 

Soil Stain Outline 

 The soil stain outline differs from the FPS in the distribution of the stain around 

the remains; the FPS could occur anywhere, whereas the soil stain outline underlies the 

entire body (see Figures 4 and 5). Data visualizations of the relationship between the 

timing of soil stain outline and intrinsic variables are available in Appendix A. A 

scatterplot and bar chart suggest a slight negative relationship between BMI and timing 

of stain outline (see Appendix A, Figure A8). Stain outline occurred later in individuals 

with cancer (see Appendix A, Figure A9). The effects of infection and trauma could not 



 
 

57 

 

be evaluated due to small size of the group with infection (n=1) and the group with 

trauma (n=1). 

 

Figure 16. Prediction Curve for Probability of First Protruding Stain. Predicted 

probability of FPS given ADD, generated using SM1. 

 

Table 13. Comparison of Mean ADD to First Observed Stain Outline 

Grouping Group n 
Mean 

ADD 
Test Used 

Test 

Statistic 

p-

value 

Sex 
Male 10 188.63 

Nonparametric 21 0.679 
Female 5 211.92 

BMI 

Class 

Underweight 4 187.88 

Nonparametric 0.59 0.900 
Normal 5 199.08 

Overweight 4 212.93 

Obese 2 173.64 

Cancer 
Cancer-Free 11 184.12 

Nonparametric 29 0.412 
Cancer 4 230.15 

 

 The means of each group were then statistically compared (Table 13). The ADD 

data was not normally distributed, so nonparametric tests were used to compare means of 
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sex, BMI class, and cancer groups. Infection and trauma groups could not be compared 

because there was only one individual with infection and one individual with trauma and 

in the final sample. There were no significant differences between groups. Mixed effects 

models were attempted for stain outline using a subset including 72 observations from 24 

donations. However, all attempted models failed to converge due to singularity. 

Accuracy of Mixed Effects Models 

 The results of the preliminary analysis of mixed effect model accuracy are 

presented in Table 14. The scaled ADD and additional fixed effects from a subset of 

observations were input into the model formulae to predict whether or not the indicator of 

interest would be present or absent, with probabilities less than or equal to 50% 

predicting indicator absence and probabilities greater than 50% predicting indicator 

presence.  

 The proportion of correctly predicted observations range from a minimum of 70% 

in the facial bloat models to 93% in AWM2 for predicting abdominal wrinkle in 

individuals without cancer. The rate of type I errors, the prediction that an indicator 

would be present when it was actually absent, ranged from 7% in the AWM2 model to 

60% in FBM1. Type II errors, or the observation that an indicator was present although it 

was predicted to be absent, were generally lower, ranging from 0% in models of 

abdominal wrinkle and abdominal collapse to 29% in ACM2 when predicting abdominal 

collapse in individuals with cancer. 
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Table 14. Error Rates of EDI Mixed Effects Models 

 
Model Type I 

Error Rate 

Type II 

Error Rate 

Correct 

Classification Rate 

Purge 
PM1 0.29 0.09 0.87 

PM2 0.29 0.13 0.83 

Facial Bloat 
FBM1 0.60 0.15 0.70 

FBM2 0.50 0.20 0.70 

Abd 

Distention 

ADM1 0.20 0.05 0.90 

Facial 

Collapse 

FCM1 0.20 0.20 0.80 

Abdominal 

Wrinkle 

AWM1 0.17 0.00 0.77 

AWM2 

cancer-free 0.07 0.00 0.93 

cancer 0.33 0.00 0.80 

Abdominal 

Collapse 

ACM1 0.22 0.25 0.77 

ACM2 

cancer-free 0.30 0.00 0.80 

cancer 0.25 0.29 0.73 

Protruding 

Stain 

SM1 0.09 0.16 0.90 
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IV. DISCUSSION 

This project addressed three key questions: 

1.  Are sequential, visually-observable indicators of early decomposition related 

to bloat, purge, and collapse available to characterize and refine PMI estimations? 

2.  Do intrinsic variables such as sex, body size, cause of death, or bodily trauma 

impact the timing of these EDIs? 

3.  Can the probability of these EDIs having occurred be modeled accurately 

given accumulated degree days and/or relevant intrinsic variables? 

 With regards to the first of these questions, this project identified eight EDIs that 

encompass the period from death to collapse:  purge, first protruding soil stain, facial 

bloat, abdominal distention, facial collapse, abdominal wrinkle, abdominal collapse, and 

soil stain outline. Several of these indicators are reliably sequential due to their related 

nature: facial bloat is always succeeded by facial collapse, while abdominal distention is 

followed by abdominal wrinkle and/or abdominal collapse. This is not to say that each 

indicator occurs in every case, as decomposition can take several alternative trajectories 

depending on environmental circumstances. However, the point remains that no known 

research to date has observed the natural reinflation of remains once collapse has 

occurred.  

 Visual indicators of purge and soil staining were less consistent in their timing. 

Generally, purge was first observed around the time of facial bloat, with first protruding 

soil stain appearing shortly thereafter. The appearance of a full stain outline was highly 

variable, but often occurred during the deflation of the abdomen when the integrity of the 

remains was compromised, allowing for rapid leaching of fluids into the surrounding soil. 
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Overall, higher variability in the timing of indicators was noted for those that occur later 

in the decomposition process, such as abdominal wrinkle, abdominal collapse, and soil 

stain outline. This variability may reflect a transition from decomposition driven 

primarily by the metabolic processes of enteric microorganisms, which may be expected 

to occur at predictable rates based on temperature in a “controlled” internal environment, 

to decomposition that is influenced by an increasingly complex suite of interacting 

external variables, including invertebrate activity. As the physical barriers between the 

remains and the external environment are broken down, the decomposition process is 

increasingly susceptible to variation introduced by features of the microenvironment, 

including the biological organisms present, the relationships between them, and the 

abiotic variables that influence their activities. 

 This project focused on explaining variation in the decomposition attributed to 

intrinsic variables expected to influence the structure of the enteric microbial community. 

Intrinsic variables, however, appear to have limited effects on the timing of all EDIs. 

Exploratory data analysis identified several general trends. While statistical comparison 

of group means demonstrated that the differences observed were seldom significant at or 

above a 90% confidence interval, the validity of these comparisons were limited by the 

small sample size of some of the groups. In particular, donations with causes of death 

related to infection and donations with bodily trauma were underrepresented in the 

overall sample. Expanding the sample used for these comparisons may reveal significant 

trends that were missed by this analysis, which included observations from a maximum 

of 30 donations. 



 
 

62 

 

 There were no significant differences in the mean ADD to first observation of 

purge, abdominal distention, protruding stain, or stain outline for any intrinsic variable 

groups. A significant difference was noted between the mean ADD to first observation of 

facial bloat in males and females, with facial bloat observed earlier in females. This may 

be due to sampling error, as only five females were compared to fifteen males. There 

were no significant differences between the sexes for any other indicator in this study. A 

comparison of mean ADD to facial collapse in donations with causes of death related to 

infection and donations with unrelated causes of death also yielded a significant 

difference, with the infected group collapsing earlier than the noninfected group. As 

before, the significant difference is likely due to sampling error, as the infected group was 

comprised of only two individuals. 

 In terms of body mass and composition, EDIs which occur during bloat and purge 

(active purge, facial bloat, abdominal distention, and soil staining) occurred earlier in 

individuals with higher BMIs. Interestingly, the effects of BMI differed for EDIs that 

occur during collapse (facial collapse, abdominal wrinkle, and abdominal collapse). 

Facial collapse occurred earlier in lower BMI categories, while abdominal wrinkle and 

collapse occurred earlier in groups with more extreme BMIs (i.e., underweight and 

obese). Significant differences were noted only between BMI classes for abdominal 

wrinkle, with post-hoc analyses revealing that the significant differences occurred 

between overweight and obese BMI classes.  

 Although it’s possible that this could be due to sampling error, an alternative 

explanation could involve the relationship between carcass size and the colonization of 

invertebrate larvae, which have been shown to play a critical role in driving collapse by 
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compromising the integrity of the surrounding tissue (Pechal et al. 2014). Smaller 

carcasses support a limited number of larvae but can quickly be consumed, so tissue 

integrity is compromised earlier. Larger carcasses support larger numbers of larvae, but 

may take longer to consume. Extremely large carcasses, however, have heavy layers of 

tissue overlying the abdomen. The weight of these tissue layers could apply external 

force that limits the amount of gas that can accumulate within the body, leading to an 

increased rate of purge and an accelerated collapse. 

 The timing of abdominal collapse appeared to be affected by whether cause of 

death was attributed to cancer, although this difference was only significant within a 90% 

confidence interval. On average, the cancer group showed delayed timing of abdominal 

collapse compared to the cancer-free group. This could be related to the influence of 

cancer or cancer treatment on microbial communities. Increasing evidence suggests that 

microbial communities play a substantial roll in attracting necrophagous invertebrates to 

decomposing remains using a form of chemical communication known as quorum-

sensing (Liu et al. 2016; Mohr and Tomberlin 2014; Tomberlin et al. 2012). If the enteric 

microbial community is disrupted prior to death, invertebrate colonization of remains 

may be delayed, prolonging bloat and thus delaying collapse (Pechal et al. 2014). Finally, 

substantial but insignificant differences in the timing of FPS were noted between 

donations with and without minor bodily trauma. On average, soil stains appeared under 

remains with minor bodily trauma earlier than remains that were intact. The 

compromised integrity of remains with trauma would likely allow purging fluids to 

escape from the body sooner after death and in greater quantities. Although this trend was 
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not statistically significant, this could once again be due to the small sample size of 

individuals with trauma. 

 The mixed effects models developed show promise. Preliminary assessments 

demonstrate reasonable levels of accuracy in predicting indicator presence or absence 

based on ADD. However, the models were tested using observations that were used in 

their construction; consequently, their accuracy in modeling observations of new 

individuals has yet to be tested. Models including a fixed effect for cancer, specifically 

AWM2 and ACM2, improve overall prediction capacity substantially but have fairly high 

type I and type II error rates in the cancer-specific model. This suggests that while cancer 

does have an impact on the timing of abdominal wrinkle and abdominal collapse, greater 

sample sizes are needed to adequately model the variation within these groups. 

 There is plenty of work yet to be done in the field of early decomposition 

taphonomy. This research has now identified and defined several EDIs, but the 

intraobserver and interobserver error in identifying these indicators requires attention to 

verify their ease-of-use in practical contexts. Although indicators were designed to 

promote objective identification from both the field and standard photographic 

documentation, the congruency of identifying indicators in situ versus retrospectively 

should also be evaluated to confirm that combining and comparing in situ and 

retrospective data is valid. 

 Slight differences in the timing of indicator appearance were noted between 

groups with and without infection, with and without cancer, and with and without bodily 

trauma. Unfortunately, sample sizes were too small to statistically verify these trends. 

Future research will focus on expanding the sample to incorporate as much of the 



 
 

65 

 

retrospective data available from the Texas State Willed Body Donation Program as 

possible, focusing on these target groups and including a new group to assess variation in 

indicator timing introduced by external variables such as animal scavenging events or 

season of placement. Expanding the sample will also enable the construction of improved 

mixed effects models that account for additional individual-level variation. The sample 

size for this study prevented accurate estimation of coefficients in models with more than 

two fixed effects, but more complex models may be developed as additional data is 

incorporated into the analysis.  
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V. CONCLUSION 

 The EDIs identified here aim to reduce the subjectivity in the analysis of human 

remains. The eight indicators are relatively consistent in appearance and are usually 

observed at some point in the early decomposition process, the timing of their occurrence 

demonstrates the tremendous variability in the rate and pattern of human decomposition. 

Some of the indicators are strongly sequential due to their interrelated nature (i.e., facial 

bloat is always followed by facial collapse, never vice versa), allowing them to be used 

for PMI estimation with minimal concerns of trait reversal or reappearance. Others, such 

as purge, FPS, and soil stain outline, occur with more variable timing relative to other 

EDIs.  

 This project evaluated potential relationships between the timing of these 

indicators and intrinsic variables, or those that are specific to an individual set of remains, 

including body mass index, cause of death, and the presence of bodily trauma. While 

sample sizes were too small to statistically verify the influence of most of these variables, 

a common problem in taphonomic research that utilizes human remains, general trends 

were identified and the nature of the indicators allow for the sample to be expanded 

retrospectively using photographic documentation of human remains with known 

postmortem intervals. 

 Despite the small sample size, the mixed effects models constructed to predict 

indicator presence or absence from ADD show potential with accuracy of 70-93%. Future 

work will focus on more robust testing of model accuracy and, once additional data has 

been collected, improving model fit through the inclusion of new variables. Ultimately, 

the models may be transformed to predict ADD intervals from the combinations of 
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indicators that are present, making it a useful medicolegal tool for the evaluation of 

postmortem interval in human remains that are found in the early decomposition period. 
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APPENDIX SECTION 

 

Appendix A 

 

 
 

Figure A1. Relationship between BMI and ADD to First Observed Purge. 
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Figure A2. Relationship between BMI and ADD to First Observed Facial Bloat. 
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Figure A3. Relationship between BMI and ADD to First Observed Abdominal 

Distention. 
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Figure A4. Relationship between BMI and ADD to First Observed Facial Collapse. 
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Figure A5. Relationship between BMI and First Observation of Abdominal 

Wrinkle. 
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Figure A6. Relationship between BMI and First Observation of Abdominal 

Collapse. 
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Figure A7. Relationship between BMI and ADD to FPS. 
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Figure A8. Relationship between BMI and First Observation of Stain Outline. 
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Figure A9. Mean ADD to First Observation of EDIs by Cancer Status. 

 

 
 

Figure A10. Mean ADD to First Observation of EDIs by Infection Status. 
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Figure A11. Mean ADD to First Observation of EDIs by Trauma Status.  
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Appendix B 

 

Table B1:  Scaling of Continuous Variables by EDI 

 

EDI Scaled ADD Scaled BMI 

Purge 
ADD − 114.157

65.525
 

BMI − 21.904

5.991
 

Facial Bloat 
ADD − 87.022

55.204
 

BMI − 22.843

5.941
 

Abdominal Distention 
ADD − 119.619

71.752
 - 

Facial Collapse 
ADD − 160.553

53.534
 - 

Abdominal Wrinkle 
ADD − 168.836

51.982
 - 

Abdominal Collapse 
ADD − 175.913

48.386
 - 

First Protruding Stain 
ADD − 139.961

50.201
 - 
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Table B2:  Prediction Model Formulae Specifications 

 

Model DIC Intergroup 

Variance 

Term* Value SE z p 

PM1 -39.0 23.52 
Intercept 6.68 2.37 2.82 0.005 

ADD 8.65 2.50 3.46 0.001 

PM2 -34.1 18.92 

Intercept 6.46 2.11 3.07 0.002 

ADD 8.88 2.57 3.45 0.001 

BMI 2.23 1.21 1.85 0.065 

FBM1 -37.4 18.74 
Intercept 2.35 1.28 1.84 0.066 

ADD 6.45 1.94 3.33 0.001 

FBM2 -35.3 17.20 

Intercept 2.27 1.19 1.90 0.058 

ADD 6.78 2.11 3.21 0.001 

BMI 1.74 1.09 1.61 0.109 

ADM1 -44.3 23.01 
Intercept 5.83 2.71 2.15 0.032 

ADD 12.16 5.50 2.21 0.027 

FCM1 -39.4 16.53 
Intercept 3.48 1.56 2.22 0.026 

ADD 8.55 2.96 2.89 0.004 

AWM1 -32.2 21.72 
Intercept 2.10 1.48 1.42 0.155 

ADD 7.36 2.77 2.66 0.008 

AWM2 -15.3 10.50 

Intercept 5.04 3.36 1.50 0.134 

ADD 8.46 5.06 1.67 0.094 

Cancer -3.16 2.91 -1.09 0.277 

ACM1 -60.2 33.83 
Intercept -1.55 1.34 -1.16 0.248 

ADD 5.56 1.92 2.89 0.004 

ACM2 -48.9 25.44 

Intercept 0.49 1.37 0.36 0.722 

ADD 5.70 2.12 2.69 0.007 

Cancer -3.13 2.51 -1.25 0.212 

SM1 -45.3 20.37 
Intercept 2.90 1.35 2.15 0.031 

ADD 8.32 2.81 2.97 0.003 

* All continuous variables (ADD and BMI) are scaled as given in Table B1. 
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