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I. INTRODUCTION 

1.1 Background 

Pastures are areas of land covered with grass and other low lying vegetation which is 

suitable for animal grazing. As such, pastures play a critical role in the raising of 

livestock and environmental management (Jin et al. 2014; Zhao et al. 2014). Being able 

to obtain accurate estimations of the above-ground biomass (AGB) within a pasture is 

important when it comes to designing a management plan for the pasture and surrounding 

ecosystem. AGB is defined as the total living biomass above the soil, including all parts 

of the plant that exist per unit area. 

Many remote sensing techniques have been developed to estimate AGB for different 

environments, including pastures (Drake et al. 2003; Gao et al. 2012; He 2013; 

Barrachina et al. 2014; Raval et al. 2014; Zhao et al. 2014; Kaasalainen et al. 2015). With 

the development of satellite technology and more advanced aerial photography, remote 

sensing methods and estimates of AGB have become increasingly complex and more 

accurate. Spectral analyses and vegetation indices were initially used and further refined 

as specific characterizations of plant health, density, and height were required for 

vegetation and ecosystem process models. At present, satellite and aerial imagery are 

considered acceptable data sets for AGB estimates. 

The introduction of airborne Light Detection and Ranging (lidar) technology in the 

late 1990s provided a new method for collecting and analyzing spatial data. Unlike 

traditional optical imagery, lidar produces a 3D point cloud derived from an active near-

infrared sensor, which results in increased accuracy for vegetation height modeling. As 

AGB tends to increase with vegetation height, the ability to produce a 3D model of 
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vegetation structure and height will allow for biomass estimates from lidar using 

allometric equations. Because of this lidar is now seen as one of the most accurate means 

of measuring AGB (Lefsky et al. 2002; Cao et al. 2014), albeit one of the most costly. 

Structure from Motion (SfM) and subsequent dense point matching, also referred to 

as image-based point clouds, is a relatively new technology that is rapidly becoming a 

cost effective alternative lidar datasets (Westoby et al. 2012; White et al. 2013). 

Applications of SfM point clouds are numerous, including the creation of high resolution 

digital elevation models (DEMs) (Fonstad et al., 2013), analyzing and monitoring soil 

erosion (Kaiser et al 2014), and creating 3D models of urban features (Snavely et al. 

2006; Richter et al. 2013). This new technology is based on traditional photogrammetric 

techniques which allow multiple images of an object, or area, to be combined via 

algorithms. The algorithms are based on linear algebra and produce a 3D point cloud 

representing features of interest at a relatively low cost compared to lidar data 

acquisitions (Westoby 2012; White et al. 2013). The imagery is usually obtained via the 

use of inexpensive digital cameras which are either hand held or mounted to an 

unmanned aerial vehicle (UAV). When mounted to a UAV, the camera will fly a 

predetermined flight path around the object of interest while obtaining imagery for 

subsequent image mosaicking and dense point matching to produce a 3D point cloud.  

Applications of this technology have already proven to be comparable to lidar, but as it is 

a new technology there are still uncertainties associated with its capabilities and 

limitations (Leberl et al. 2010; White et al. 2013).  

 As SfM point clouds offer a cost effective alternative to lidar (Westoby et al. 2012; 

White et al. 2013) it is now important to assess whether this technology can be used to 
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estimate AGB using methods originally employed for lidar. As both lidar and SfM 

produce point clouds in order to perform analysis, and as these point clouds have proven 

to be very close to one another in terms of accuracy (Leberl et al. 2010; White et al. 

2013), applying previously used lidar methods to SfM models should be possible. While 

numerous studies have been completed on the estimation of above-ground biomass using 

lidar (Drake et al. 2003; He 2013; Kaasalainen et al. 2015; Cao et al 2014; Lefsky et al. 

2002) there are far fewer studies which attempt to test this ability through the use of 

Structure from Motion. 

The objective of this study is to determine if previously published methods for 

estimating AGB using lidar based point clouds can be applied to SfM point clouds. 

Studies published in the last five years indicate that lidar processing and analysis methods 

are applicable to SfM point cloud data (Dandois et al. 2010; Westoby et al. 2012; 

Mancini et al. 2013). Thus, there is a high likelihood that methods developed for lidar-

estimated AGB will be applicable for SfM point clouds. 

1.2 Problem Statement 

An application of SfM that has yet to be studied is the utility of SfM point clouds to 

estimate above-ground biomass in pasture environments. Characterization of AGB is 

important because of its relation to other estimates such as forage biomass, soil nutrient 

allocation, fuel accumulation, and other important environmental variables (Lu 2005), 

many of which can be characterized or monitored using remotely sensed datasets. This 

study will identify the necessary metrics for estimating AGB of pastures using SfM point 

clouds, as well as documenting any limitations that arise when using the technology for 

this purpose. While the lidar techniques were mainly developed for estimating the AGB 
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of forest environments (Drake et al. 2003; He 2013; Kaasalainen et al. 2015) some of the 

methods should be applicable to pasture environments as well since lidar and SfM are 

both 3D point cloud data.  

1.3 Research Objectives 

This study will evaluate whether SfM point clouds can be used to estimate the AGB 

of a pasture. Specifically, the following research objectives will be addressed: 

 

 Objective 1: Assess the utility of Structure-from-Motion products to estimate 

AGB of a pasture. 

 Objective 2: Document limitations of the SfM method for pasture AGB 

estimation 

1.4 Justification 

SfM has many key advantages over lidar, including cost, temporal resolution, and a 

higher average point density. SfM can generate point clouds at a fraction of the cost of 

lidar due to its use of imagery derived from low-cost cameras. This allows data collection 

to be performed by aerial vehicles such as UAVs, as opposed to the airplanes and 

helicopters which are the normal vehicles involved in the collection of lidar data. Because 

of this the cost of data collection is not only decreased, but the temporal resolution is 

increased. With UAVs, data collection can happen in much shorter intervals than with 

planes or helicopters due both to ease of use and cost. This higher temporal resolution 

allows for more up-to-date data to be used in analyses. Finally, because of how SfM 

generates point clouds it tends to have a higher point density. While this is not always 
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desirable, it is in the case of this study because of the need to model vegetation structures 

at a fine scale. With this higher point density, it should be possible to differentiate grasses 

and other low-lying vegetation from one another, something lidar derived data would 

normally have trouble accomplishing. 

It is important to find what the technology is currently capable of achieving as well as 

what current limitations exist when using this technology. As there are already many 

models and algorithms developed for measuring above-ground biomass with lidar and 

other remote sensing technologies, it is now prudent to find if these same models are 

applicable to pastures which are mapped with SfM point clouds. This is especially 

important as SfM point clouds represent a means of collecting data that is far more 

affordable, efficient, and reliable for environmental managers than that of most other 

remote sensing methods.
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II. LITERATURE REVIEW 

2.1 Pastures and aboveground biomass 

 The importance of pastures in environmental research is a result of the 

environmental controls they help maintain. Pastures play a crucial role in agricultural 

activities such as the raising of livestock, erosion prevention, water conservation, energy 

exchange, air purification, and biochemical cycles among other important environmental 

control factors (Jin et al. 2014; Zhao et al. 2014). As a result, the importance of 

estimating the AGB of pastures rapidly as well as accurately is a significant scientific 

endeavor for the better management and understanding of modern agricultural and 

environmental health considerations (Zhao et al. 2014). Pastures represent an important 

environment that can be better managed as techniques for gathering key environmental 

data progress. An important attribute of a pasture is the AGB, because from this attribute 

it is possible to estimate forage biomass, carbon sequestration, fuel accumulation, soil 

nutrient allocation, and other important environmental variables (Drake et al. 2003; Lu 

2005). Once these variables are estimated the ability for environmental managers to 

create plans for conservation and land use becomes more achievable due to the increase 

in knowledge about the environmental capacity of pastures under scrutiny. 

 While originally estimated by in situ methods, it has become increasingly 

common to use remote sensing data to estimate AGB (Gao et al. 2012; Porter et al. 2014; 

Raval et al. 2014; Zhao et al. 2014). While image analysis originally relied on the use of 

single-band information for estimation, issues arose from errors in the data which lead to 

the use of vegetation indexes (VIs) for building estimation models (Zhao 2014). The use 

of spectral analysis became common place, as well as the development of different 
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indexes to estimate vegetation health and biomass. These developments led to advances 

in ecosystem management by natural resource managers.  

2.2 Spectral-based measurements of AGB 

Spectral analysis of above-ground biomass has been a topic of interest for decades 

and is still an active area of research. Raval et al. (2014) used satellite based estimates of 

biomass in reclaimed coal mines of Central Appalachia. The study used four different 

vegetation indexes including: normalized difference vegetation index (NDVI), 

normalized difference moisture index (NDMI), shortwave-infrared/visual ratio (SVR), 

and modified simple ratio (MSR). Two band ratios and four band transformations were 

also used in order to identify which method was best suited for estimating above-ground 

biomass. These 10 spectral derivative values were then regressed against the in situ 

biomass measurements for each area of interest. The study found that NDVI and MSR 

both provided high levels of estimate accuracy while NDMI and SVR preformed 

relatively poorly. 

 Porter et al. (2014) used a combination of Landsat 5 and 7 imagery as well as 

crop circle sensors to estimate biomass from pasture land enrolled in the Conservation 

Reserve Program. The study used regression models constructed from NDVI and various 

band combinations in order to find which models would demonstrate a 

statistically significant relationship between measured and modeled estimates. They 

found that none of the models demonstrated a statistically significant difference between 

measured and modeled estimates and that the usefulness of red, red-edge, and near-

infrared (NIR) spectral regions were most responsive during boot and peak growth stages 

of vegetation.  
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In a study performed by Barrachina et al. (2014), Landsat 5 was used in order to 

estimate AGB in a mountain meadow located in Vall Fosca, Spain. Using multiple linear 

regression where field-based measurements served as dependent variables and vegetation 

and wetness indices derived from the Landsat data served as predictor variables. The 

vegetation and wetness indices selected for the study were NDVI, enhanced vegetation 

index (EVI), tasseled cap transformation’s greenness (TCG), tasseled cap 

transformation’s wetness (TCW), and normalized difference water index (NDWI). The 

study found that AGB models yielded the best results in midsummer with a mean R2 of 

0.74. Wetness indices were found to be more useful for estimating AGB of meadows and 

pastures under high canopy cover, while the traditional vegetation indices proved less 

useful.  

Ullah et al. (2012) preformed a study which examined the use of MERIS data in 

estimating grassland biomass. A variety of vegetation indices were used including NDVI, 

soil adjusted vegetation index (SAVI), transformed soil adjusted vegetation index 

(TSAVI), red edge inflection point (REIP), and MERIS terrestrial chlorophyll index 

(MTCI), as well calculating the band depth analysis parameters of normalized band depth 

ratio (BDR), normalized band depth index (NBDI), and band depth normalized to band 

area (BNA). The study found that the band depth analysis parameters were better 

predictors than vegetation indices for AGB, concluding that band depth analysis 

parameters could be used to monitor grassland conditions on regional scales. 

A study performed by Gitelson et al. (2003) attempted to estimate leaf area index 

(LAI) in maize canopies, located in two large irrigated production fields. The study 

developed two new approaches to estimate LAI and green leaf biomass, through the use 
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of the green and red edge portions, as well as the NIR portion. These indices were 

calculated as follows: [(NIR/Green) - 1] and [(NIR/RedEdge) - 1]. The study found a 

close relationship between these indices and LAI as well as green leaf biomass, indicating 

that they may prove useful for estimations of these two attributes while acknowledging 

that more research into the effectiveness of these indices is necessary. 

2.3 Lidar-based measurement of AGB 

 In the late 1990s, lidar began to emerge as a new remote sensing technology with 

the ability to gather different types of data on an area than was possible with previous 

technologies. Lidar systems emit pulses of NIR energy toward the surface and these 

pulses are then reflected back to the sensor. Through the use of global positioning 

systems (GPS), inertial measurement unit (IMU), and the time lapse for the pulse to 

return, the exact position of where the pulse was reflected from is determined. This 

process is repeated with each pulse and the positional information of all the pulses is 

combined and interpolated to create a 3D point cloud with extremely high positional 

accuracy.  

Lidar is able to characterize structure by producing a 3D point cloud 

representation of the surface features. The accuracy of lidar-based measurements proved 

the usefulness of the new technology for environmental management as it could be used 

to examine height and structure of various elements within an environment. While there 

are plenty of articles which illustrate lidar’s strength in assisting with estimating AGB, 

there are none (to the best of my knowledge) in which this technique is applied to a 

pasture specifically. 

The use of lidar for AGB estimates is focused primarily in forest environments. 
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Drake et al. (2003) used lidar to estimate above-ground biomass in closed canopy 

Neotropical forests located in Panama and Costa Rica. The study used two metrics 

(canopy height, height of median energy) to estimate above-ground biomass in the two 

tropical forests. It was found that AGB estimates were significantly different between the 

two tropical forests, mainly attributed to a drought that existed in one of them during the 

period of study.  

He et al. (2013) used lidar to estimate the AGB of an area of coniferous forest 

located on Qilian Mountain in western China. The metrics used in this study were mean 

vegetation height, percentile vegetation height, and canopy cover for the estimation of 

above-ground biomass. The study found that these metrics gave a relatively accurate 

predictive model for above-ground biomass.  

In the study conducted by Lefsky et al. (2002), lidar was used to estimate AGB of 

forests in three different biomes. The three study areas were part of the Cascade Range, 

Oregon (temperate coniferous forest), Smithsonian Environmental Research Center 

located on the western shore of Chesapeake Bay (temperate deciduous forest), and the 

Northern Old Black Spruce study area located in north-central Canada (boreal coniferous 

forest). Canopy height profiles (CHPs) were estimated from the SLICER waveforms. The 

indices acquired from the CHPs were: canopy cover, mean canopy height (MCH), 

maximum height, MCH squared, and mean canopy profile height. The study found that 

almost every index used was significantly correlated with AGB, with the exception of 

canopy cover in the temperate deciduous forest. The study found that for the boreal 

coniferous forest a product of cover as well as several height indices were better 

predictors than height indices alone. The opposite was found for the temperate deciduous 
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forest, and at the temperate coniferous forest there was no significant difference between 

the two sets of variables.  

Tsui et al. (2012) preformed a study involving multi-frequency radar and discrete-

return lidar used for the purpose of estimating AGB and other biomass components. The 

study was conducted in a temperate forest, located on Vancouver Island, British 

Columbia, Canada. For the purpose of constructing a predictive model, multiple lidar 

metrics were calculated and entered into a multiple linear regression analysis. The study 

found a relatively high correlation between AGB estimation and the lidar metrics of mean 

first return height and height percentiles (10th and 90th). The study found that a lidar 

only model functioned significantly better than either of the radar only band models as an 

estimator of AGB.

A study performed by Zhuang et al. (2015), attempted to estimate AGB by using 

metrics based on Gaussian decomposition of waveform lidar data. The study took place 

in three counties in central New York, between the cities of Syracuse and Ithaca. The 

Gaussian metrics included percentile height metrics, height-weighted metrics, and other 

Gaussian decomposition-derived metrics. For the purpose of comparison non-Gaussian 

metrics were also calculated, including: relative height metrics, QMHC, HMRatio, 

leading edge, and trailing edge. This study found that using Gaussian based waveform 

metrics resulted in more accurate predictions than using non-Gaussian based metrics. The 

combined metrics were proven to not be significantly more accurate than using Gaussian 

metrics alone. 

In the study performed by Cao et al. (2014), an attempt was made to use small-

footprint discrete return and full-waveform airborne lidar metrics in order to estimate the 
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total biomass and biomass components in subtropical forests. The study was conducted in 

Yushan Forest, which is a state-owned national forest park located near Changshu, a 

town located in Jiangsu province in southeastern China. The discrete return metrics 

calculated were: selected height measures, percentile height, maximum height, mean 

height, variability of height measures (such as coefficient of variations in heights), 

selected canopy return density measures (such as canopy return density), and canopy 

cover measures (such as canopy cover above 2 m). The full-waveform metrics which 

were calculated include: height of median energy (HOME), waveform distance (WD), 

height/median ratio (HTMR), number of peaks (NP), roughness of outermost canopy

(ROUGH), front slope angle (FS), return waveform energy (RWE) and vertical 

distribution ratio (VDR). The study found that discrete return derived metrics were 

significantly better at predicting AGB than those of the full-waveform. The study also 

found that by combining the two types of metrics a slightly better predictive model was 

created, but this model was only slightly more accurate than the discrete return model. 

A study by Li et al. (2015) examined the use of small-footprint, discrete-return 

lidar to estimate the AGB and below-ground biomass (BGB) of maize located in Zhangye 

City, Gansu Province, China. The metrics calculated for these estimations included 

maximum height (Hmax), mean height (Hmean), and percentile height (Hp), and the laser 

penetration metric (LPI). The study found a strong correlation between the canopy height 

and LAI of the maize with the maize’s AGB and BGB. Of the lidar metrics Hmax had the 

strongest correlation to canopy height, explaining 79% of the variance, while the LPI was 

correlated with LAI, explaining 78% of the variance. The study concluded that the lidar 

estimates of AGB and BGB were comparable to the field-based measurements, 
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illustrating that lidar may be useful for estimating canopy height, LAI, and biomass 

components for maize. 

 These studies illustrate the feasibility of applying common lidar metrics to SfM 

point clouds in order to estimate above-ground biomass. Additionally, these studies 

provide examples of the proper methods and common metrics used for estimating AGB 

using point clouds. 

2.4 Structure from Motion as an alternative to lidar data 

More recently, a new technology has emerged as a cost effective alternative to 

lidar. This technology uses photogrammetric techniques to create a 3D point cloud 

representation of an area. This technology commonly employs the use of UAVs (Mancini 

et al. 2013; Mathews and Jensen 2013) in order to obtain the imagery required to produce 

the point cloud, and thus is not reliant on the expensive cost of hiring a plane or other 

aerial vehicles to obtain the imagery, nor is it limited by long delays in the return time of 

satellite imagery (Leberl et al. 2010; White et al. 2013). The technology is also able to 

implement many algorithms previously developed for lidar data classification, as both are 

based on point cloud datasets.  

 In a study undertaken by Snavely et al. (2006) the researchers created a system by 

which to build 3D models from collections of photographs using SfM developments. This 

study is an early example of how SfM works, introducing readers to the concepts of 

image-based modeling, rendering, and SfM with dense point matching. The study 

explains how 3D models are developed from sets of photographs, a brief history of how 

this technology was developed, and a demonstration of the technology through the 

creation of 3D models of historic sites. This study illustrates how SfM is capable of 
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creating point clouds as well as some of the advantages SfM presents when dealing with 

imagery. 

 Leberl et al. (2010) compares the point clouds of lidar vs. those of SfM. The study 

compared point clouds derived from aerial and street-side lidar systems with those 

derived from imagery. It was found that in terms of accuracy the SfM point clouds 

compared well with the lidar point clouds, while vastly surpassing lidar in surface point 

density. The study also identified 15 other advantages to using SfM over lidar.  

 In a study performed by White et al. (2013) lidar and SfM point cloud accuracies 

were compared for the purpose of forest inventories. The study accomplished this by 

creating DEMs from lidar derived data and digital airborne imagery. The study found that 

the SfM-based models were as accurate as lidar except for two limitations. The first 

limitation is that a DEM is required to normalize SfM point clouds’ above-ground 

heights, but due to dense vegetation, high spatial resolution, and vertical accuracy 

requirements, lidar data may still be required to create the needed DEM in densely 

vegetated areas. The other identified limitation is that SfM point clouds mainly 

characterize the outer tree envelopes and do not penetrate the volume under canopy as 

lidar sensors are capable of due to the ability to penetrate canopy gaps. They concluded 

that while SfM has limitations, its cost-benefit ratio makes it an ideal technology for 

much of what is required for forest inventory management.  

 Fonstad et al. (2013) conducted a study to evaluate the effectiveness of using SfM 

to create high resolution, high quality DEMs of fluvial topographic environments. The 

study was conducted on the Pedernales River in Texas and involved acquisition of 

images through the use of a hand-held helikite. The study compared a lidar-generated 
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DEM with the SfM-generated DEM and the authors reported that the SfM DEM had 

better feature representation than the lidar DEM while preserving positional accuracy of 

the terrain surface. Due to this and the less stringent requirements for data collection the 

study concludes that SfM presents a genuine alternative to lidar and needs to be 

researched further.  

 A study conducted by Mancini et al. (2013) examined the use of SfM for creating 

high resolution digital surface models (DSMs) for coastal environments. The study 

utilized a UAV flown at low-altitude to collect the imagery. The point cloud generated 

from this imagery was compared to one generated by Terrestrial Laser Scanning (TLS) 

surveys, which is a ground based lidar. DSMs were generated from both systems and the 

vertical accuracies were assessed. The study found that the SfM method was comparable 

in terms of accuracy to the TLS method. Because of this level of accuracy and SfM’s 

ease of use the researchers believe that the method is promising and should be further 

researched.  

 Since SfM facilitates a cost effective alternative to relatively expensive lidar data 

and the ability to collect data at almost any time, the technology is becoming increasingly 

popular and will likely continue to grow in popularity (Dandois et al. 2010; Leberl et al 

2010; White et al. 2013). Because of this it is important to continue to investigate what 

the technology is currently capable of achieving as well as the current limitations that 

exist when using the technology across various landscapes and cover types.   
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III. MATERIALS AND METHODS 

3.1 Study area 

The study area is located at Freeman Ranch Center (N29° 94’ and W97° 99’), 

located in central Texas northwest of San Marcos, Texas. Freeman Ranch Center is 

approximately 1,700 hectares in size and lies within the Balconies Canyonlands sub-

region of the Eastern Edwards Plateau. The ranch is dominated by Quercus virginiana 

and Juniperus ashei trees with the primary family of grass being Poaceae (37 different 

species present).  

The topography is characterized by rugged hills, and shallow valleys as is 

common in the Edward’s Plateau ecoregion. Slopes range from 0 to 14.9 degrees. The 

soils found on the ranch are often very shallow and exposed bedrock is common (Fowler 

2005). There are no long-term weather observations for Freeman Ranch Center, but 

according to Dixion (2000) the area receives approximately 34 inches of rain annually. 

The annual temperature range for the study area is 15.5 C°. Summer highs tend to 

average 32 C° and winter lows tend to average 4.5 C° (Dixon 2000).   

The study took place within a pasture that is currently used for grazing and field 

studies (Figure 1). It is relatively flat and composed primarily of Poaceae grasses. Cacti 

and trees are also present within or near the study area. The size of the plot used 

specifically for this study is approximately 0.483 hectares.      
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Figure 1. Study Area. Area where research was conducted.

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid,
IGN, IGP, swisstopo, and the GIS User Community
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3.2 Field Data 

In order to obtain and evaluate the field measurements of true above-ground 

biomass, a GPS unit with an antenna for improved precision, a 0.5 x 0.5 m grid, a set of 

clippers, a compass, a drying oven, and a scale were necessary. First, the Trimble Geo 

XH GeoExplorer 2008 GPS unit attached to a Zephyr antenna on a 2-m range pole was 

placed at the center of each plot. GPS positions were recorded at a 1 second interval for 

two to three minutes, resulting in approximately 150 positions that were averaged to 

create the final feature center point. Next, the 0.5 x 0.5 m grid was placed on the ground 

with the antenna pole at the center of the grid. The compass was used to align the corners 

of the grid to NE, SE, SW, and NW so the sides of the grid would be facing the cardinal 

directions. The antenna was removed from the sampling grid, and all vegetation above 

2.5 cm was clipped and stored in plastic trash bags. This process was repeated for each of 

the 30 plots which were distributed semi-systematically (Figure 2).  
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Figure 2. Location of plots used for collecting AGB.

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid,
IGN, IGP, swisstopo, and the GIS User Community
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Once all the AGB samples had been collected and stored, a drying oven and scale 

were used to properly dry and weigh the AGB. The AGB samples were transferred from 

the plastic trash bags to brown paper bags in order to help prevent the growth of mold, as 

well as to fit within the drying oven. Materials from each sample plot were weighed prior 

to drying and then every day until the weight remained constant, signifying that all water 

had evaporated from the sample. On average, the drying process took about two days, 

with the exception of one large sample that took four days. Once the weight of the AGB 

remained constant, the weight was recorded in grams. The paper bags were weighed and 

subtracted from the total AGB weight for each plot. All data were recorded into a 

Microsoft Excel spreadsheet. Field measured AGB served as the dependent variable in 

the statistical analysis.  

3.3 Image Acquisition, Processing, and Point Cloud Generation 

The imagery for this study were collected using a 3D Robotics X8+ as this UAV 

system has all the necessary specifications for the collection of imagery needed for SfM 

to produce a point cloud. All images were obtained a week prior to collection of the AGB 

data. The image data were collected using multiple transects for the flight paths and from 

heights ranging from 15 to 25 meters. A GoPro Hero3+ camera was used to acquire 

imagery at one second intervals. Eight GPS-located ground control points (GCPs) were 

used in order to georeference the imagery. These GCPs were distributed semi-randomly 

throughout the study area. Figure 3 shows one of the flight paths as well as the locations 

of the eight GCPs.
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Figure 3. Example of a flight path with GCP locations. 

 Agisoft PhotoScan was used to process the individual images in order to align 

them and create a mosaic which was then used to perform the dense-point matching 

PhotoScan identifies common points within multiple images and through a series of 
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computations it generates a point cloud. Once these steps were accomplished, the point 

cloud was exported as a Log ASCII Standard (LAS) file and integrated into ArcMap. 

This LAS file was used to create a point-based shape file used for further analysis. 

 Next, the GPS center points for each of the thirty plots were imported into 

ArcMap. The plot points were buffered 0.5 m and the feature space to envelope tool used 

to create polygon shapefiles corresponding to the field plots. The points files derived 

from the SfM LAS point cloud were clipped to the field plots shape file, so only points 

that fell within these plots remained. The points within each individual plot were 

exported as a separate shapefile for each plot.  

A 0.5 m2 lidar-derived inverse distance weighted (IDW) DTM was generated 

from lidar data obtained from by the Capital Area Council of Governments (CAPCOG) 

and is available for research purposes at Texas State University. The DTM was created 

using only returns classified as “ground” in order for the resulting surface model to be 

used as the ground reference feature. Unfortunately, there was a disagreement in Z values 

between the lidar-derived IDW and the SfM-derived point shapefile with the lidar DTM 

possessing Z values that were up to 1.5 m greater than the SfM Z values. To remedy this 

issue, a technique called Iterative Closest Point (ICP) was used to co-register the lidar 

and SfM point clouds. ICP has been used by other researchers implementing SfM 

techniques for vegetation studies (Dandois et al., 2015).  

ICP is an algorithm used to align point clouds. Several open source programs can 

perform ICP, however, this study implemented CloudCompare due to its ease of use and 

informative tutorials. The algorithm that ICP employs works in the following way: one 

point cloud, called the reference point cloud, is kept in place while the other point cloud, 
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the source point cloud, is transformed through a series of iterative passes in order to align 

it as closely as possible with the reference point cloud. This is accomplished by locating, 

for each point in the source point cloud, the closest point in the reference point cloud. 

Then using a mean squared error cost function, the necessary rotation and translation 

coefficients for each of the source points that best aligns it with the reference points are 

estimated. Once these estimates are complete, the source point cloud is transformed using 

the estimates from the previous step. This process is then repeated until the best possible 

alignment is obtained. In this study, the reference point cloud was the lidar point cloud, 

while the SfM point cloud was the source. 

3.4 SfM metric calculations 

Predictor covariates (i.e., metrics) were calculated using SfM heights. Heights 

were calculated by extracting the lidar-based DTM Z values and writing those values to 

the attribute table in the SfM points shapefile. Then the DTM Z values were subtracted 

from the referenced SfM points Z values. The resulting values were classified as height 

and all negative values were excluded from the analysis. 

SfM point cloud metrics were calculated from all points with positive height 

values. Metrics included mean point height (hmean), median height (hmedian), maximum 

height (hmax), minimum height (hmin), 10th and 90th percentile heights (h10, h90), percent 

cover greater than 2.5 cm (PC2.5), percent cover greater than 3.5cm (PC3.5), percent cover 

greater than 5 cm (PC5), standard deviation of height (hSD), coefficient of variation (CV), 

and variance (V) (Table 1). These metrics were chosen because they were identified 

during the literature review as the metrics which were most commonly calculated for 

predicting AGB through the use of a point cloud. The metrics were calculated in 
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Microsoft Excel for each plot after exporting the plot attribute tables from ArcMap. 

 

Table 1. Summary of Metrics. Summary of the metrics calculated from the SfM point 

cloud and used as regression covariates to estimate AGB. 

 

3.5 Statistical Analysis 

The calculated metrics, as well as the dried AGB weights were entered into the 

statistical program JMP Pro 12. The SfM-derived metrics were entered as the 

independent variables and AGB weight was the dependent variable. The data were 

analyzed to identify outliers and to ensure a normal distribution in the dependent variable. 

As plot 8 was a major outlier in terms of its AGB, it was removed from the analysis. Plots 

17 and 19 were removed due to being outliers in hmax, hmean, h90, variance, and hSD which 

were a result of unusual artifact features. Plots 16 and 20 through 23 were removed from 

the analysis as well, due to the lack of positive heights for metric calculation. Since the 

AGB weights were not normally distributed, their values were transformed using a Log10 

transformation. 

Metrics Description 

Mean Height (hmean) The mean height above ground for the SfM points 

Median Height (hmedian) The median height above ground for the SfM points 

Maximum Height (hmax) The maximum height above ground for the SfM points 

Minimum Height (hmin) The minimum height above ground for the SfM points 

Percentile Heights (h10, h90) 
The percentile height distributions (10th and 90th) for 
the SfM points 

Percent Cover (PC2.5, PC3.5, PC5) 
The percent of heights located above a certain 
threshold (2.5 cm, 3.5 cm, 5 cm) 

Standard Deviation of Height 
(hSD) 

The value of one standard deviation for the SfM 
points 

Coefficient of Variation (CV) The measurement of dispersion for the SfM points 

Variance (V) 
The measurement of dispersion from the mean for 
the SfM points 
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The all possible models linear regression function was used to identify the model, 

using up to four covariates at a time, which best predicted AGB. All possible models was 

selected because it tests every subset of independent variables to identify the best models 

using all possible combinations of covariates. The output for this analysis was limited to 

four variables to predict AGB, as it was found during the literature review that most 

predictive AGB models only used two to four variables. Once the best models were 

identified, the p-values of the input variables were evaluated to ensure that they were 

significant at α = 0.05. 
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IV. RESULTS 

4.1 AGB Field Measurements 

 AGB weights are presented in Table 2. Plot 8 had the greatest AGB weight of 

105.9g after the weight of the storage bags had been subtracted, while plot had the lowest 

AGB weight of 36g. As illustrated below in Figure 4, the weights are concentrated in the 

40 to 70g range.  
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Table 2. Above-ground biomass (AGB) weights by plot. 

Plots Weight with Bags (grams) AGB Weight (grams) 

Plot 1 80.3 60.3 
Plot 2 67.5 47.5 
Plot 3 56.0 36.0 
Plot 4 74.5 54.5 
Plot 5 70.5 50.5 
Plot 6 149.4 85.6 
Plot 7 81.4 61.4 
Plot 8 135.9 105.9 
Plot 9 78.2 58.2 
Plot 10 68.7 48.7 
Plot 11 54.0 44.0 
Plot 12 63.4 43.4 
Plot 13 64.3 54.3 
Plot 14 61.2 51.2 
Plot 15 63.5 53.5 
Plot 16 74.6 54.6 
Plot 17 55.2 45.2 
Plot 18 46.6 36.6 
Plot 19 82.0 62.0 
Plot 20 157.6 93.8 
Plot 21 84.1 64.1 
Plot 22 86.6 76.6 
Plot 23 75.5 65.5 
Plot 24 59.3 49.3 
Plot 25 81.5 71.5 
Plot 26 79.3 69.3 
Plot 27 68.1 58.1 
Plot 28 66.1 56.1 
Plot 29 59.7 49.7 
Plot 30 61.9 51.9 
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Figure 4. Distribution of AGB weights. 

 

As plots 8, 16, 17, 19, 20, 21, 22, and 23 were excluded from the analysis for 

either lack of data or being clear outliers for either predictor or field-measured variables, 

the descriptive statistics provided in Table 3 excludes these plots. After excluding these 

outliers the plot possessing the maximum weight became plot 6, with a weight of 85.6g. 

This reduces the range of the weights to 49.6g. This also decreased the mean to 54.2g. 

Interestingly, this still corresponds well with weight distribution illustrated in Figure 2, 

with the majority of the weights falling between 43g and 65g
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Table 3. Descriptive statistics of AGB in field-measured plots, excluding outliers. 

Statistics Values (grams) 

AGB min 36.0 

AGB max 85.6 

AGB mean 54.2 

AGB standard deviation 11.2 

AGB range 49.6 
 

4.2 Results of the SfM and Lidar Point Clouds 

 Table 4 provides a summary of the data measurements for the SfM and lidar point 

clouds. The SfM derived point cloud for the entire study area contained a considerably 

larger number of points than the lidar point cloud, with 7,053,366 total points.  

Additionally, given the large number of points, the SfM point cloud had a significantly 

higher point density and lower nominal point spacing than the lidar derived point cloud. 

Interestingly, the SfM point cloud corresponding to just the plots that were clipped for 

analysis had a much lower point density and a higher point spacing.  

Table 4. SfM and lidar data measurements. 

Point Cloud Number of Points Point Density Point Spacing 

SfM Study Area Point Cloud 7,053,366 421.1 0.1 
SfM Plots Point Cloud 26,187 20.4 0.2 
Lidar Point Cloud 5,200,991 2.0 0.7 

  

The distribution of the number of SfM points per plot is displayed in Figure 5. 

The majority of the plots had 600 to 900 points located within them. Examples of the 

SfM-derived point cloud for the study area are provided in Figures 6 and 7, while a larger 

scale example of the plots’ point clouds are provided in Figure 8. In these illustrations, 

elevations are displayed in a range from green to red with low elevations corresponding 
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to green and high elevations corresponding to red, while the individual plots are 

displayed in purple. 

 
Figure 5. Distribution of the number of points per plot. 
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Figure 6. Birds-eye view of the study area’s SfM point cloud. Elevations are displayed in 

a range from green to red with low elevations corresponding to green and high elevations 

corresponding to red, while the individual plots are displayed in purple. 

 

 

 

 
Figure 7. Oblique view of the study area’s SfM point cloud. Elevations are displayed in a 

range from green to red with low elevations corresponding to green and high elevations 

corresponding to red, while the individual plots are displayed in purple. 
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Figure 8. Close-up view of the SfM point cloud on plots 1-3. 

 

4.3 Statistical Relationship between SfM Variables and Field Measured AGB 

 Table 5 presents the descriptive statistics for the SfM-derived metrics used for 

statistical analysis. The greatest range of values was found in the percent cover above 

5cm (PC5) variable, while the lowest range of values was in the variance variable.  

Table 5. Descriptive statistics of the SfM derived metrics. 

Metric Min Max Mean 
Standard 
Deviation Range 

hmean 0.02702 0.22547 0.11845 0.05823 0.19845 

hmedian 0.02300 0.22760 0.11686 0.06123 0.20460 

hmax 0.09762 0.34926 0.22066 0.07170 0.25164 

hmin 0.00002 0.13983 0.03378 0.03947 0.13981 

h10 0.00261 0.18018 0.06932 0.05340 0.17757 

h90 0.05515 0.27582 0.17012 0.06339 0.22067 

PC2.5 0.40000 1.00000 0.89747 0.16550 0.60000 

PC3.5 0.24000 1.00000 0.85373 0.22541 0.76000 

PC5 0.15000 1.00000 0.80067 0.28426 0.85000 

hsd 0.01932 0.07176 0.03848 0.01138 0.05244 
CV 0.15172 0.87606 0.41168 0.21808 0.72434 
V 0.00037 0.00515 0.00160 0.00100 0.00478 
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Goodness-of-fit statistics for individual models are provided in Table 6. Based on 

the p-values, none of the individual variables were significant for α = 0.05. Also, as seen 

in the low r2 values, none of the variables were robust predictors on their own, with the 

highest r2 being 0.121. 

 

Table 6. Goodness-of-fit statistics for individual metrics. 

Metric r2 Adjusted r2 RMSE p-value 

hmean 0.10519 0.06045 0.08445 0.1409 

hmedian 0.09286 0.04751 0.08503 0.1679 

hmax 0.088 0.043243 0.08522 0.178 

hmin 0.10964 0.06512 0.08424 0.1323 

h10 0.08991 0.04441 0.08517 0.1752 

h90 0.12143 0.0775 0.08368 0.112 

PC2.5 0.00069 -0.04937 0.08925 0.9075 

PC3.5 0.00049 -0.04949 0.08926 0.9225 

PC5 0.00041 -0.04957 0.08926 0.9291 

hsd 0.048924 0.00137 0.08707 0.3226 

CV 0.00241 -0.04747 0.08917 0.8283 

V 0.04516 -0.00258 0.08724 0.3424 
 

  

Table 7 provides statistical summaries of the four models generated by the all 

possible models method. Validation was accomplished by using the predicted residual 

error sum of squares (PRESS) statistic. Unfortunately, none of the models achieved a 

high R2, though the 4 covariate model was able to explain 36 percent of the variation in 

field measured AGB values. Interestingly, the only model that was significant at α = 0.05 

was the 2 covariate model, which used h90 and PC5 to predict AGB. A scatterplot with a 

regression line for the 2 covariate model is presented in Figure 9. 
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Table 7. Summary of model statistics. 

Model Covariates R2 Adjusted R2 RMSE F Ratio p-value PRESS 

1Covariate h90 0.12 0.08 0.08 2.76 0.11 1.02 

2Covariates  h90, PC5 0.31 0.24 0.08 4.24 0.03 0.96 

3Covariates  hmean, hmax, CV 0.34 0.23 0.08 3.13 0.05 0.96 

4Covariates hmin, h90, PC3.5, PC5 0.36 0.21 0.08 2.41 0.09 1.01 
 

 

 
Figure 9. Two SfM covariate multiple regression model of actual versus predicted AGB. 

 

 



  

35 
 

V. DISCUSSION 

5.1 SfM prediction of AGB 

 Based on the results, the SfM-derived point cloud proved to be a poor predictor of 

AGB for the pasture located at Freeman Ranch Center. The 2 covariate model was the 

only model that was significant for α = 0.05. Despite overall model significance, the R2 

of 0.31 demonstrates that the model could only account for 31 percent of the variability in 

field-measured AGB among the 22 plots used for analysis.  

 The three remaining models were not statistically significant. Of these remaining 

three models, only the 3 and 4 covariate models possessed a higher R2 than the 2 

covariates model, with R2 values of 0.34 and 0.36, respectively. This increase in 

explained variance is rendered inconsequential due to the lack of statistical significance. 

Also, the addition of too many covariates can lead to multicollinearity, which could be 

legitimate in this study as many of the predictor variables were based on height and were 

highly correlated. 

 He et al. (2013) found that lidar was able to predict the AGB of a coniferous 

forest through the use of height and percent cover metrics. The mean height and crown 

cover were the best predictors of AGB, resulting in an R2 of 0.74. The research outlined 

in this paper attempted a similar study using SfM in a pasture environment, but could not 

achieve similar accuracies to their study. Other lidar studies have also proved successful 

at estimating AGB with height based metrics (Lefsky et al., 2002; Drake et al., 2003; 

Kankare et al., 2013; Cao et al., 2014). Li et al.’s (2015) study found that canopy height 

and LAI best predicted maize crop AGB, with an R2 of 0.87. This study illustrates that 

metrics used in lidar forest studies were successfully implemented in maize croplands. 
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While these two studies examined different environments, they both achieved robust 

predictive models based on similar metrics. I hypothesized that using similar metrics 

would result in a similar model for AGB estimates in pasture environments.  

 Leberl et al. (2010) and White et al. (2013) both found that lidar and SfM point 

clouds were comparable in accuracy. This research does not contradict this entirely, but 

when compared to the accuracy of AGB estimations in other studies it did fail to produce 

similar results. Additionally, there was a large discrepancy between the SfM Z values and 

those of the lidar data. 

 The inability of the SfM point cloud metrics to predict AGB of a pasture 

environment could be the result of many potential inconsistencies and limitations. The 

remainder of this chapter will examine the inconsistencies between the SfM and lidar 

point clouds, uncertainties and limitations of the SfM method, and ways to potentially 

improve the predictive model for future research. 

5.2 SfM and Lidar Inconsistencies 

 Inconsistencies between the lidar and SfM point clouds heights were discovered 

early on in the study, when heights were calculated using the lidar-DTM and the SfM 

point cloud. The majority of the SfM points were located about 1.5 m below the lidar 

generated DTM, which resulted in negative height values for SfM metric calculation. In 

order to ensure that this was not caused by an error during the generation of the SfM 

points, the GPS control points and plot center point Z values were compared directly with 

the lidar Z values. 

 A number of steps were taken to identify the cause of the discrepancy and remedy 

the error. First, all of the GPS data was again re-exported and compared to the lidar data. 
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As the error still persisted, the GPS unit was taken back to the field site and plot center 

point coordinates were reacquired as close to the original GPS points as possible. The 

data were processed and compared to the lidar data, but the error remained. The lidar data 

were examined to determine if the scan angle, during acquisition over the study area, 

were within ±15 degrees from nadir, as this is the commonly accepted range for 

vegetation characterization (McGaughey et al., 2006; Nayegandhi, 2007). Unfortunately, 

the lidar data attributes omitted scan angles. This analysis resulted in the discovery that 

the lidar ground data elevations may have been incorrect.  

 Because I was unable to identify the exact cause of the discrepancy in Z values, 

the ICP algorithm was used to shift the SfM data to match the lidar data. The ICP 

algorithm matched the SfM point cloud to the lidar point cloud. However, certain plots in 

the SfM point cloud still lacked any positive height values, though the majority of the 

plots exhibited all positive heights. One reason that negative heights may have still 

existed even after the application of the ICP method is the lidar pulses did not actually 

penetrate the dense standing grass. This would lead to these points being identified as 

ground returns even though they could be up to a meter above the actual ground. 

Hodgson et al. (2003) noted the difficulty of differentiating ground returns from low 

lying shrubs/shrubbery, stating that errors of up to 112 cm can occur as a result. Pelletier 

et al. (2011) found that areas consisting of thick grasses may be falsely identified as 

ground returns resulting in an error of a meter or greater. These studies support the 

hypothesis that the lidar pulses in this area may have been falsely classified as ground 

when in fact they were vegetation. 

 Another inconsistency between the lidar derived point cloud and the SfM point 
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cloud was the point density. The SfM point cloud had a considerably higher point density 

on both the study area scale as well as for the individual plot level. The lidar data’s 

average point spacing was much higher than the SfM’s. This should not be an issue 

because the average point density was greater than the 0.06 point per meter squared 

threshold and lidar data with point densities above this threshold are considered 

acceptable for building some of the highest level resolution DEMs (Anderson, 2009; 

Sanii, 2008). In a study by Anderson (2009) it was found that in order to produce 

accurate DEMs at least 60,000 points per square kilometer are needed (0.06 per square 

meter). Sanii (2008) found that once point density falls below 0.06 the RMSE for 

elevation goes from increasing linearly to exponentially. The point density of the lidar for 

this research was 2 points per square meter.    

While a discrepancy in point density and spacing existed, it was expected going 

into the study as SfM point clouds have been shown to have higher point densities than 

their lidar counterparts (Leberl et al., 2010; White et al., 2013; Fonstad et al., 2013; 

Jensen and Mathews, 2016). The height discrepancy still existed in five plots, but the 

remainder of the plots contained numerous positive point heights, while before there were 

no positive heights. The potential causes for these inconsistencies were still unclear and 

required further examination. 

5.3 Causes of Uncertainty and Limitations to the SfM Method 

One possible cause for the uncertainty between the lidar and SfM data could have 

been that the lidar points in this area had exceeded the acceptable scan angle range. This 

could have led to the lidar Z values being greater that what they should have been. It has 

been found that lidar scan angles exceeding certain thresholds can cause errors in Z 
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values (Holmgren e al., 2003; Sue et al., 2006; Ahokas, 2013). This is unlikely due to 

these lidar data being accurate in other parts of the general study area. The only reason 

this may have occurred is the acceptable scan angle for topographic mapping is ±20-30 

degrees (McGaughey et al., 2006). According to the CAPCOG data collection report the 

maximum possible scan angle was 36 degrees for one of the data collection flights and 40 

degrees for the other. Both of these scan angles exceed the maximum scan angle 

recommended by Sue et al. (2006), McGaughey et al. (2006), and the USGS 

(Nayegandhi, 2007). Because the scan angles are not included in the point attributes the 

possibility that the points used for this study exceeded an acceptable scanning angle 

cannot be completely ruled out. 

 A second cause for error could be that the GPS data obtained erroneous Z values, 

leading to lower SfM heights than what actually existed. These erroneous Z values are 

the foundation for the SfM point cloud’s heights so this issue would affect all subsequent 

steps. However, erroneous Z values collected by the GPS unit seems unlikely as the GPS 

data’s accuracy was 0.1m and the X and Y coordinates were accurate. Additionally, all 

proper procedures for ensuring quality GPS data were followed, including letting the 

GPS unit acquire a satellite lock and maintain the lock for at least fifteen minutes, 

ensuring a low PDOP value (i.e., PDOP ≤ 3.0), enforcing satellite-based augmentation 

system (SBAS) real-time corrections, and setting accuracy thresholds data collection (i.e., 

estimated post-processing accuracy ≤ 10cm).  

 Limitations of the SfM method derive mainly from the imagery used to create the 

point cloud. As SfM points are generated by conjugate pixel pairs across multiple images, 

image blurring could have contributed to errors in the identification of points. This could 
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lead to some vegetation being left out of the point cloud entirely, or identified at a false 

height. Jensen and Mathews (2016) found that blurred images used in the generation of a 

SfM point cloud can cause points to be located significantly above or below the actual 

position of the feature. Dandois and Ellis (2013) found that there are many factors, such 

as lighting, wind, vegetation type, etc., that may affect the feature identification and 

matching algorithms causing inconsistencies in the SfM point cloud. If this occurred 

frequently, then the plot heights would not accurately represent the vegetation surface. 

This would lead to an inaccurate model as the height metrics would not truly represent 

the vegetation within the plots.  

 The perimeter edges of the SfM point cloud ended up warped, with points being 

placed in higher elevations than where they would be otherwise (Figures 10 and 11). The 

issues associated with blurring may be the cause of the warping of the perimeter. This 

warping causes inaccuracies in height calculations along edge areas, making them 

unusable for accurate predictive models. It is for this reason that plots 17 and 19 were 

identified as outliers. As seen in Figure 11, both plots had been distorted due to their 

proximity to a warped edge.  
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Figure 10. Example of a warped edge in the SfM point cloud. Elevation is represented by 

the color of the pixels, with low elevations being green and higher elevations being 

yellow. 

 

 

  

Figure 11. Example of two plots affected by warping along the edges. Plot 17 is 

displayed as purple points in the center of the figure, and plot 19 is displayed with purple 

points positioned high above the actual surface on the right of the figure. The elevation is 

displayed through the pixels with colors ranging from green to red. Green pixels 

represent the lowest elevations while red represent the highest
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5.4 Potential Improvements  

 The image acquisition could have been improved by increasing the number of 

overlapping flights. This would have increased the number of images and camera 

perspectives of ground features. With more overlapping flights the heights of the flights 

could have contained greater variation. The flights in this study ranged from 15 to 25 

meters. By adjusting these heights to 10 to 25 meters it is possible that the SfM 

algorithms would be able to better identify individual grasses as the program would have 

multiple perspectives of the same feature. Additionally, by increasing the area that 

obtained imagery for the SfM point cloud the warped edges would have been moved 

further from the field data collection area. As this warping affected plots 19 and 17, a 

larger image acquisition area would have resolved this issue, which would have allowed 

these plots to be included in the model generation. 

 Before ever acquiring images the GPS data should be checked against the lidar 

DTM to ensure that Z values are in agreement. ICP has been shown to be an effective 

method for registering SfM point clouds (Dandois et al., 2015; Yang & Chen, 2015; 

Marani et al., 2016), but the fact that there was such a tremendous disagreement between 

the GPS and lidar Z values is still a cause for concern.  

 It is important to determine if the lidar pulses classified as ground returns actually 

penetrated the dense grasses. As the lidar data were collected nearly a decade prior to the 

study, the condition of the vegetation in the study area at the time of collection is difficult 

to determine. An updated lidar collection with known vegetation conditions, field 

samples, and corresponding GPS collection would allow for this issue to be addressed. If 

it was determined that the lidar pulses were reflected off the grasses and shrubbery but 
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still classified as ground returns then that would indicate that predicting AGB in this 

pasture using SfM would be difficult. If the lidar returns did truly indicate the bare earth 

surface to an acceptable degree, then further research into using SfM to estimating the 

AGB for this pasture would be more conceivable. Unfortunately, the process of studying 

this issue is beyond the scope of this research. 

 The method used for statistical analysis may not be appropriate for these data in 

this environment. Regression trees offer an alternative statistical analysis approach. 

Regression trees involves using each of the independent variables to fit the regression 

model. Then each independent variable is split at different split points. The error at each 

split point is squared to obtain the sum of squared errors (SSE). The split points are then 

compared and points possessing the lowest SSE are chosen as predictors. This method is 

considered an effective alternative to multivariate regression (De’ath & Fabricius, 2000; 

Lawrence & Wright, 2001), and has been used successfully in multiple lidar studies 

(Falkowski et al., 2009; Pittman et al., 2009; Latifi et al., 2010; Im et al., 2011).  

 An alternative method for AGB prediction in pastures that has proven effective is 

spectral analysis. Multiple studies have accurately predicted AGB in grasslands using 

space-borne sensors such as Landsat (Ullah et al. 2012; Barrachina et al., 2014; Porter et 

al. 2014; Raval et al. 2014). Spectral analysis used for estimating AGB involves the use 

of vegetation indices like NDVI and EVI. As the SfM method involves the collection of 

hundreds of images that can be mosaicked into an orthophoto it should be possible to 

perform a spectral analysis on this area at a higher spatial resolution than can be obtained 

from most space-borne sensors. 

 Another alternative for estimating AGB of a pasture environment is a 
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combination of point cloud derived metrics with spectral analysis metrics. Using this 

method allows for the use of spectral analysis metrics in addition to the point cloud 

metrics. There have been multiple successful studies which have combined lidar and 

imagery (Rottensteiner et al., 2005; Sohn & Dowman, 2007; Dalponte et al., 2008; 

Erdody & Moskal, 2009; Sankey & Glenn, 2011). A study which used lidar and 

multispectral data to estimate plot-level volume and biomass for deciduous and pine 

forest was performed by Popescu et al. (2004), and it concluded that the use of imagery 

combined with lidar was always better at predicting volume and biomass than using lidar 

by itself. Due to the enhancements in predictability by combing lidar data with imagery, 

it is possible that SfM derived point clouds data combined with imagery would generate a 

better predictive model for estimating pasture AGB.
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VI. CONCLUSION 

 This study attempted to estimate AGB of a pasture environment using SfM. 

Pastures play a crucial role in the environment and AGB is one of the most important 

characteristics that can be measured in any environment. The imagery was obtained 

through multiple drone flights using a GoPro Hero 3+ and compiled into a point cloud 

which was used to calculate predictor metrics. All-possible-models was used to determine 

the best model for predicting AGB. Unfortunately, none of the models accurately 

predicted AGB, with the only significant model possessing an R2 of 0.31. As such, I 

report that SfM could not accurately estimate AGB in the pasture environment measured 

at Freeman Ranch Center. Future research should be conducted into alternative methods 

of collecting and/or analyzing SfM data for estimating AGB in pasture environments. 
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