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ABSTRACT 

INTEGER PROGRAMMING FOR DISCRETE OPTIMIZATION  

OF THE AGILE SUPPLY CHAIN CONFIGURATION  

PROBLEM  

by 

Hayden Dan Beauchamp, B.S. 

Texas State University-San Marcos 

August 2013 

SUPERVISING PROFESSOR: FARHAD AMERI 

In order to keep manufacturing operations in lockstep with current market trends, 

businesses must continue to incorporate agility into their supply chains. This includes the 

ability to assess and select new suppliers quickly. The Digital Manufacturing Market 

(DMM) and Manufacturing Service Description Language (MSDL) have been devised 

previously as the necessary IT components for improving the intelligence of the supply 

chain configuration process. The objective of this research is to enhance the performance 

of the DMM’s search engine by incorporating combinatorial optimization techniques. In 

particular, this research is aimed at creating an integer programming formulation to 

efficiently and effectively solve the supply chain configuration problem by maximizing 

the technological competencies of the assigned suppliers, while meeting capacity and 

distance constraints. The column generation approach is adopted to resolve the issue of 

limited scalability of the traditional LP formulation. Vendor cuts are proposed as a 
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method to constrain distance inside the supply chain network. The proposed column 

generation formulation successfully enables transition from a computationally prohibitive 

methodology to a fully scalable model that maintains functionality at very large sizes. 

The results also show that it is possible to achieve an economy of distance with little 

effect on match compatibility. 



 

1 

I. INTRODUCTION 

Manufacturing companies are progressively improving the responsiveness, 

flexibility, and agility of their supply chains in order to maintain the capability to meet 

market demand and react promptly to unforeseen changes. To obtain agility and 

responsiveness, manufacturers should be able to adjust their capacity and capability in a 

timely manner through identification of the right partners. This research deals with the 

agile supply chain configuration problem. The objective is to improve the effectiveness 

of the connection process between buyers and sellers of manufacturing services in a 

distributed environment. New solutions are called for to accommodate the specific needs 

of agile supply chains, such as increased demand for speed and accuracy while making 

sourcing decisions at the strategic and tactical levels. Deployment of an agile supply 

chain can be difficult because it requires rapid identification and evaluation of suppliers 

that have the necessary technical capabilities and operational capacity to complete the 

requested services from an increasingly vast pool of potential suppliers.  

One promising solution for improving the efficiency and effectiveness of the agile 

supply chain deployment process is to adopt the paradigm of e-commerce for trading 

manufacturing services. Electronic marketplaces (e-markets) for manufacturing services 

currently exist for certain industries such as contract manufacturing (MFG.com, Inc., 

2013), fashion apparel (Messe Frankfurt Group, 2013) and transportation (Cayot, 2007).  

A web-based framework allows for interaction with a far greater number of potential 

suppliers, thus providing the customer with a wide array of options in terms of 
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manufacturing capabilities, costs, etc.  Moreover, the automation capabilities offered by 

web-based solutions improve the efficacy of various computational tasks required for 

supply chain management, including supplier identification and evaluation. Despite their 

numerous advantages, electronic marketplaces currently fail in building accurate 

connections between buyers and sellers of manufacturing services mainly due to the 

syntactic (keyword-based) nature of the search process. To address the need for 

enhancing the performance of search engines in electronic marketplaces Ameri and Dutta 

proposed a semantic approach to supplier discovery through developing a market 

framework, called Digital Manufacturing Market (DMM), based on the Semantic Web 

(SW) technology (Ameri, 2008). In DMM buyers and sellers of manufacturing services 

describe their capabilities and needs using a formal ontology called Manufacturing 

Service Description Language (MSDL) (Ameri, 2006). By using the ontological 

representation of supply and demand entities, semantic search engines can quantify the 

similarities of service provisions (advertisements) and service requests (queries). For 

each advertisement-query pair, the semantic search engine returns a numeric similarity 

score between 0 (completely dissimilar) and 1 (completely similar). Finding the semantic 

similarities of supply and demand on a one-to-one basis can adequately address the needs 

of the supply chain configuration problem when the supply chain is small in size and 

composed of few suppliers. However, as supply chain size increases, the optimal 

configuration of the supply chain becomes more challenging. The optimal supply chain in 

DMM is the one with the maximum similarity score. There exist, however, multiple types 

of constraints (e.g. capacity and distance constraints) which complicate the optimization 

problem and render it difficult to solve when dealing with a large number of potential 
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suppliers. Because DMM is a web-based platform, it is envisioned that the supply and 

demand pools will be fairly large; each composed of thousands of businesses distributed 

globally. Therefore, a methodology needs to be developed for optimization of supply 

chains configured for the DMM. One research outcome which would fulfill the needs of 

this market transaction phase is an optimization model that can be applied to improve the 

efficacy of the buyer/seller connection process. 
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II. PROBLEM STATEMENT 

Supply chain configuration is a multi-criteria problem in which multiple factors 

such as technological competency, geographic location, capacity, quality, delivery time, 

and cost should be taken into consideration. The use of a web-based platform for 

sourcing allows for access to large pools of suppliers for constructing agile supply chains. 

Large-scale optimization can be used to design optimal supply chains. However, the size 

of the solution space of the optimization model is directly correlated to the number of 

supplier agents. In other words, computational complexity increases as the supplier pool 

grows. In order to arrive at an optimal solution with modest computational resources, a 

mathematical methodology suitable for large-scale problems is needed.  

Research Objective 

The objective of this study is to define the agile supply chain configuration 

problem and identify the characteristics of a suitable analytical tool to supplement the 

search algorithms of the DMM scoring agent. The primary function of this tool is to 

generate optimal supply chains with respect to the degree of similarity between the 

aggregate manufacturing capabilities of the supply chain and the manufacturing needs of 

the target work order.   The validity of the resulting supply chains, form the technological 

capability point of view, is already verified by the semantic search engine within the 

DMM platform.  

The explicit objective of this research, as will be demonstrated below, is to 

establish a discrete integer programming formulation to efficiently and effectively 
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solve the supply chain deployment problem by maximizing the semantic similarity score 

between the proposed supply chain and the query, while meeting the capacity and 

distance constraints. 

Background  

Supply Chain Management 

Management is practiced through operations incorporating the acquisition and 

allocation of resources to realize organizational goals. Those who process or distribute 

products or services practice supply chain management (Shapiro, 2006). While effective 

business management involves an integrated approach, truly efficient supply chains are 

achieved through integrated business planning. Indeed, some businesses advertise the 

economic benefits that customers experience due to advanced logistics. Integrated 

planning is primarily possible because of the recent development of robust information 

technology (IT) systems. Still, extensive and advanced IT systems are of little use 

without the proper analytical tools. The integration of supply chain activities is achieved 

through the implementation of enterprise resource planning (ERP) systems or the like. 

Although transactional IT systems have proven valuable towards integration, flexibility 

seems to be a common issue (Shapiro, 2006). In order to realize improvements in 

decision making, manufacturing and distribution companies are emphasizing analytical 

IT. Diagnostic systems are primarily driven by optimization models, which can be net-

revenue maximizing or cost-minimizing. With access to large transactional databases 

they can fully quantify the trade-offs between cost, time, and quality of service or 

product. These models can be used to gain control of the costs and risks associated with 
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vehicle routing, non-value-adding supply chain costs, process throughput and virtually 

endless components of ever more elaborate supply chains.  

As we have seen, modern supply chain management is practiced through the 

effective use of data, models and modeling systems. The purpose of this research is to 

identify an adequate modeling system and to develop functional models to solve the agile 

supply chain deployment problem.  

Supply Chain Networks 

A supply chain is composed of facilities, internal or third-party, which modify or 

handle a company’s products (Shapiro, 2006). Transportation links identify the route that 

products flow through, from outside the network as raw materials, between factories and 

distribution centers, and finally to distributed markets. At minimum, supply chain 

management addresses functional integration, i.e., consideration of manufacturing, 

transportation, warehousing, purchasing and inventory management operations during 

decision making. This is accomplished through the integration of specialized forecasting 

and simulation models which optimize each component.  

Network Flow Models 

The agile supply chain configuration problem requires that we address 

transportation and manufacturing. The classic transportation problem is a special case of 

the network flow model, which is not applicable, while the general network flow problem 

resembles some aspects of our problem. The penultimate goal of a model which 

optimizes supply chains designed in DMM is to reduce transportation costs while 

providing compatible matches. By simplifying transportation costs the problem can be 

partially represented with a minimum cost network flow model. The ultimate goal of the 
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model is to produce accurate matches while controlling cost. By adding the certain 

elements of the network flow model to the primary formulation, we can limit distance 

while designing effective supply chains.  

Automated Matching System 

Automation and intelligence are the two most important requirements for virtual 

supply chain deployment (Ameri & McArthur, 2011). Traditional methods for matching 

supply and demand in a virtual marketplace include keyword search, directory search and 

database search. By using an ontological approach, the matching process can be 

performed more accurately (Farhad Ameri & Dutta, 2008). The semantic supplier 

discovery process can improve both the intelligence and the automation of pairing by 

reducing errors and human resource requirements.  

In previous research, an agent-based model was developed for supply chain 

configuration. In the proposed model, the buyers and sellers are represented by 

blackboard and yellowpage agents respectively (Ameri & Patil, 2012). The middle agent 

conducts the search and matching process. The seller subscribes to a yellowpage agent to 

offer services, while the buyer submits a request-for-quote (RFQ) to a blackboard agent. 

Customers and suppliers each formulate a query to advertise their preferred match. Each 

query uses MSDL to outline the service, actor and part for consideration by the middle 

agents. Ideally, patrons of the DMM will be able to choose from multiple middle agents 

to align their needs with certain industries or markets. Matches are made when each actor 

queries a complimentary agent. A customer agent would describe the nature of the 

manufacturing service required, the relevant part specifications and the distinctions that 

an ideal supplier would have. Then, a search engine would match the buyers query to 
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information provided by suppliers looking to perform similar work. Conversely, supplier 

agents would advertise their general manufacturing capabilities, as well as the specific 

manufacturing processes they are willing to perform. When a customer queries the 

yellow page agent the search algorithm of the machine agent matches the request with 

sellers based on the current directory information.  The search algorithms, and the overall 

methodology of the search engine, determine how accurately the proposed match reflects 

the query. The search engine tests potential matches, then scores and ranks them. 

However, no optimization is performed to improve the overall similarity score of the 

resulting supply chain. This work is aimed to enhance the performance of the supply 

chain configuration process by utilizing optimization techniques. 

Operations Research 

Operations research is the scientific and technological methodology of decision 

making (Shapiro, 2006). Decision making is improved by constructing mathematical 

models that represent real world problems. A model is populated by data to create 

numerical systems that can be optimized by through the application of an algorithm. 

Technology primarily serves as the computational resource that applies the mathematical 

method. Together, they form a decision-making engine.    

Mathematical Programming 

The area of applied mathematics called mathematical programming involves the 

optimization of a criterion function subject to constraints. By formulating a deterministic 

optimization model that accurately represents a problem, a solution to that problem can 

be found with the appropriate mathematical tools. An optimization model is essentially a 

set of equations and inequalities. Solving the system of equations produces feasible 
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solutions. This cannot be done algebraically, as practical problems are too complex to be 

manually solved. Some problems can employ a simpler methodology through the 

application of heuristics. That is to say, models can be solved with a rules-based 

approach. In other words, prescriptive analysis can yield feasible solutions with limited 

computation. However, heuristics solutions are often limited to approximations, and can 

confer performance benefits when used to supplement more effective algorithms. Thus, 

results from purely heuristic approaches are usually per contra to expectations. 

Computers are required to apply known methods to produce final solutions. First, 

solution algorithms are used to construction a computer program (solver). Then, solvers 

are collected to form an optimizer, the brain of an analytic IT system. An operations 

research study is performed to model a system. Exact optimal solutions can be found 

through the application of the appropriate solvers to a well-formulated optimization 

model. When these decisions are implemented they can lead to impressive improvements 

in revenue, lead time, risk, etc.     

Linear Programming  

A special case in mathematical programming exists when the objective value is 

directly proportional to the inclusion of its variables. In other words, the program is 

driven and constrained by linear equations. This, then, is called a linear program (LP). 

Because so many practical problems can be modeled as linear programs, established 

techniques and tools are available to solve them.  

Discrete Optimization 

 In some cases, certain variables must assume whole number values, and are 

classified as discrete optimization models. Furthermore, integer programs (IPs) are those 
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that contain decision variables with integrality conditions. When such a model retains 

variables which are free to assume real values it is classified as a mixed-integer program 

(MIP). Integer linear programs (ILPs) then, are discrete LPs. In this case the conventional 

practice of linear programming does not apply. For this reason these problems are much 

harder to solve. However, improvements in methodology and technology have made the 

solution of complex integer programs more feasible.  

Mosel Programming Language 

The FICOTM Xpress Optimization Suite is used to model the problem the 

computer. Algorithms are constructed using the IVE console where the appropriate 

solvers can be applied. XpressMP uses Mosel because it is a modeling language that also 

functions as a programming language. Therefore, modeling statements call forth the 

required procedures needed to solve the problem. In this way, modeling statements and 

solving statements a can be intelligently designed to explicitly define solution algorithms 

for large scale optimization. Different types of problems employ different functions, and 

therefore require different solvers. In order to maintain operational efficiency the Mosel 

system allows the user to assign particular modules to interface only with the required 

solvers. The distinct lexis of each module defines a novel set of functions and procedures, 

extending the capacity of the dynamic modeling environment as needed.  

To be effective in application Mosel is designed with an open architecture for use 

with other software. The e-commerce platform will relay query information to the 

manufacturing services ontology database, where it will be processed into similarity score 

data. The supply chain optimization model will access the database to retrieve the 

processed query data to perform the optimization. Although the mathematical 
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programming research is performed using a standalone program, the software which runs 

the final application will replicate its own modeling environment using Mosel libraries. 

In this way, a global software application can perform the modeling and solving tasks in 

series with the other operations necessary to provide the agile supply chain design 

service.   
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III. LITERATURE REVIEW 

As a cross-functional driver of supply chain performance a firm’s sourcing is 

integral to remaining competitive in today’s rapidly changing markets (Shapiro, 2006). 

Businesses are continuing to incorporate agility into their supply chains in order to keep 

their manufacturing operations at pace with product development. Typical sourcing 

processes include supplier scoring and assessment, supplier selection and contract 

negotiation, design collaboration, procurement, and sourcing planning/analysis (Shapiro, 

2006). Analytical tools are typically relied upon to make supplier selection and 

purchasing decisions, which are the processes that the DDM platform will serve to 

facilitate. Supplier assessment and evaluation is modeled as a supplier selection problem, 

while purchasing metrics like order quantity are determined by the order allocation 

problem.  

Supplier Selection Problem 

The underlying technical problem of this thesis can be classified under the general 

category of supplier selection and order allocation problems. Supplier selection is a 

multiple criteria decision-making problem (Çebi & Bayraktar, 2003). A typical 

optimization model in supplier selection has multiple objective functions to address 

multiple criteria, such as minimizing the purchasing price and manufacturing lead time, 

and maximizing the quality of the finished goods (Huo &Wei, 2008). Optimization 

models initially included up to 23 parameters for evaluating suppliers, including capacity, 
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delivery time and quantity-based price discounts (Dickson, 1966). Since then additional 

studies have identified up to 60 criteria used to assess suppliers (Roa & Kiser, 1980). 

The supplier selection and order allocation problems have been studied for over 

fifty years. Researchers and practitioners have developed and implemented approaches to 

model these problems using mixed integer linear programming (MILP), multi-objective 

programming (MOP), goal programming (GP) and nonlinear programming (NLP) 

(Sanayei, Farid Mousavi, Abdi, & Mohaghar, 2008). Some examples of the methods used 

include IP with tabu search heuristic (Ko, Kim, & Hwang, 2001), Goal Programming 

(Karpak, Kumcu, & Kasuganti, 1999). Fuzzy-Multi-objective Integer Programming (Hue 

& Wei, 2008), Genetic Algorithms (NLP) (Ding et al., 2004), Analytical Hierarchy 

Process (AHP) (Nydick & Hill, 1992), Artificial Neural Network (ANN) (Wu, Zhang, 

Zheng, & Xi, 2010), and Analytical Network Process (ANP) (Kirrytopoulos, Leopoulos, 

Mavrota, & Voulgaridou, 2010), Multi-attribute Utility approach (MATU) (Min, 1994), 

data envelopment analysis (DEA), voting analytical hierarchy process (VAHP), total cost 

approach (TCA), and artificial intelligence methods. AHP can be combined with linear 

programming to include order allocation problems across multiple suppliers (Ghodsypour 

& O’brien, 1998) or with other methods. These hybrid approaches have varying degrees 

of success (Sanayei, Farid Mousavi, Abdi, & Mohaghar, 2008). 

Chamodrakas, Batis and Martakos (2010) simplified the supplier selection 

problem in a business to business e-market environment by breaking it into two stages. In 

the initial screening stage satisficing can be used to qualify vendors. The computational 

complexity of the problem in the final supplier selection stage is greatly reduced in 
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comparison to the unpruned model, and can be solve with Fuzzy Parameter Programming 

(Chamodrakas et al., 2010).  
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IV. RESEARCH METHODOLOGY 

The manufacturing services e-commerce platform requires a customized 

optimization technique to drive the decision-making process. The DMM framework 

provides a distinct advantage when solving the supplier selection problem. The degree of 

complexity needed to model typical supplier criteria is responsible for producing the 

variety of modeling systems and solution schemes described above. The DMM approach 

involves the decomposition of the matching process into multiple phases, namely, 

supplier assessment, evaluation and selection. MSDL is used as an ontology for the 

description of customer RFQs and supplier advertisements for generating similarity 

scores in the supplier assessment phase. Three principal components of semantic 

descriptions are stored in the DMM system. Both qualitative and quantitative descriptions 

of manufacturing process capabilities and related part specifications and constraints, 

either advertised or required, reflect manufacturing service capabilities. The third type of 

characteristic is supplier criteria like quality level and service level. MSDL is also used to 

describe both qualitative and quantitative attributes, as well as tangible and intangible 

criteria. The automated matching system quantifies the similarity between a query and its 

prospective counterparts. Possible matches are scored, likely occurring in multiple stages, 

similar to the approach developed by Chamodrakas et al. (2010), in order to reduce the 

computational complexity of the assessment process. This research deals with the 

supplier evaluation phase. The analytical tool proposed in this paper is intended to 

optimize the assessment scores of assigned suppliers while considering capacity and 
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distance constraints. When the problem is decomposed in this way, the burden of 

computation falls on the similarity assessment agent. Additional algorithms will need to 

be developed to quantify similarity with and expanding list of supplier criteria. The 

supplier selection model proposed here needs only a single objective of maximizing the 

aggregated similarity score. Future formulations of the supplier evaluation model can 

include more supplier criteria and constraints. The requirements of the analytical tool for 

the evaluation phase, as currently outlined, are much simpler and can be addressed with a 

preliminary operations research study. 

The operations research (OR) study is a fairly standardized process consisting of 

five phases, namely, problem definition, model construction, model solution, model 

validation and model implementation (Taha, 2007). Because the practical purpose of an 

OR study is to methodically improve systems, the final phase is implementation of the 

solution. This academic study is theoretical. Therefore, feedback from solution 

implementation, such as collection and analysis of new data, is beyond the scope of this 

research. However, consideration regarding the possibility of the proposed decision to be 

implemented is addressed in the model validation phase. Fourer, Gay, & Kernighhan 

(2002) have decomposed the mathematical programming process into six main steps as 

shown in Table 1. These have been numbered such that we can use them as a reference as 

we progress through the MIP development.  
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Table 1. OR study vs. mathematical programming 

Phases of an OR 
study Steps of the Mathematical Programming Process 

Problem Definition 1 

Outline the scope and assumptions of the 
proposed analytical tool. Define the variables, 

objectives and constraints that accurately 
represent the general form of the problem to be 

solved. 
2 Collect data from an explicit instance. 

Model Construction 3 

Using the preliminary formulation and data 
identify an objective function that characterizes 

the interaction of the variables which drive 
value to be optimized. Interpret apparent 

limitations in the problem which restrict the 
data into constraint equations. 

 

Model Solution 4 

Use a solver program to apply an algorithm and 
solve the problem instance. The output of the 

model includes the optimal values of the 
variables. 

Model Validation 
5 Analyze the results.  

6 Refine the model, input and output. Repeat as 
needed.  

Model 
Implementation Ø Ø 

 
The component definition is relatively straightforward, while design and 

refinement of the optimization algorithm will likely iterate to allow for systematic 

improvements to model construction and solution through various optimization 

techniques. Because we are not collecting data, it must be generated. Appropriate 

assumptions regarding data generation are crucial to the validity of the proposed model 

and solution scheme.  

Assumptions 

Before starting the mathematical programming process is will be necessary to 

simplify the system we are attempting to model. In order for preliminary formulation to 

accurately represent the real-world, certain assumptions must be made. The model can be 
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revised to include the phenomena outlined by the assumptions in subsequent 

formulations. 

Assumption 1: Raw materials and finished product transportation not 

considered. Although distances outside the supplier network are traditionally considered 

in the supply chain network design process, only distances between suppliers will be 

modeled.  

Assumption 2: Each work order contains independent services. Some 

manufacturing services are typically performed in rapid succession or in series with 

others as part of a larger process, or are otherwise traditionally performed by one supplier 

for a handful of reasons. Excluding this should have no effect on the validity of the 

formulation. 

Assumption 3: Best match is the primary objective of the model. Here we 

assume that a higher aggregate score of a proposed supply chain configuration is 

preferred over those which contain particular suppliers with outstanding score, but may 

have a lower total overall. Other practical reasons exist for supplier preference. Manual 

supplier selection is a parameter of query specification. It is therefore a capability of the 

model regardless of formulation. Thus, it does not impact performance and will not be 

tested in this study.  

Assumption 4: Range of process duration is realistic. Each service requires a 

certain number of hours per batch to complete, and will vary between suppliers. Each 

supplier will perform the service within a certain range, which will vary depending on 

industry and process type. The model will simulate this randomly. The functionality of 

the model should be the same when handling real data, in this respect.  
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Assumption 5: Supplier matching scores are random. The scores of the data 

we are using are randomized. Realistic data would show trends in scores due to the nature 

of manufacturing process specialization, i.e., the individual capabilities of a manufacturer 

are interrelated. Nevertheless, a robust model, which can handle randomized scores, is 

expected to perform well when applied to real samples. This is because real similarity 

score data for work orders will likely exhibit trends within suppliers. Some suppliers will 

not possess capabilities in queried areas, while those that do will show a tendency to be 

suited to multiple services in that work order. These practical scenarios would 

hypothetically require less distance than randomized problem instances where each 

supplier is suited to fulfill a fraction of the services in a work order.  

Traditional Formulation Without Distance Constraints 

Problem Definition 

Components 

The principal elements of the problem are the decision alternatives, restrictions 

and the objective criterion used to evaluate the alternatives (Taha, 2007). The objective of 

our supply chain optimization model is to fill needs by matching queried services with 

offered services. In other words, we are assigning members of one set to those of another. 

Defining the characteristics of the objective and constraint functions will illustrate the 

kind of problem we are attempting to solve. We know that variables will be assigned to 

sets by using binary coefficients, and that assignment constraints will govern the 

operation of the optimization model. Studying this problem classification will facilitate 

the construction of the model. 
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Set Partitioning Problem 

Set packing, covering and partitioning models are those that employ binary 

decision variables to identify objects or agents as part of the solution (Rardin, 1998).  

 

The type of assignment problem depends on the how it is constrained. Set 

covering constraints require at least one member of the set of agents    to 

be included in the solution. A notable example involves the use a modified maximal 

covering model to plan the layout of EMS stations in Austin, TX (Eaton, Daskin, 

Simmons, Bulloch, & Jansma, 1985). This set covering model was designed to determine 

the location of each station, and its capacity to provide varying levels of service to 

overlapping regions with limited equipment, human resources and funding. In other 

words, each area is assigned at least one agent to perform every type of service. 

Alternatively, set packing models involve the limitation of agent assignments to one at 

most. Example problems include packing a set of items into the smallest number of 

containers and packing the most items into a fixed number of containers. While covering 

and packing constraints bound assignment, set partitioning constraints require the 

assignment of exactly one agent  to each member of the solution set. 

Likewise, our supply chain design problem requires that every service be performed by 

one supplier. Therefore, it is a set partitioning problem. Still, it can be further classified.   

Generalized Assignment Problem 

Because the specific objective is to maximize the aggregated score of all matches 

by assigning each requested service to one agent without violating its capacity, this is a 

generalized assignment model (Rardin, 1998). The Generalized Assignment Problem 
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(GAP) is significant because its definition underpins models formulated to solve 

problems in resource scheduling, facility location, vehicle routing and manufacturing 

systems (Savelsbergh, 1997). In fact, the GAP foundation has been used to support 

optimization in crew scheduling, stochastic batch-sizing, capacitated lot-sizing, sports 

league scheduling, service network design, political districting, efficient production-

distribution system design, flexible manufacturing systems, vehicle routing with 

simultaneous distribution and collection, and much more.  

Data from Problem Instance 

A small example (toy problem) is used to provide a working reference for the 

mathematical programming formulations. The toy problem will also provide an 

illustration of how each model operates. The visual aids that follow will illustrate only 

the smallest size problem. A range of large scale optimizations will be run, measured and 

compared. These robust comparisons will provide the most meaning to the OR study.  

An LP has been formulated to model the toy problem for this application. 

Microsoft Excel is used to digitally model the LP and its solver generates the optimal 

solution, as verified by manual computation. This will be used to validate the solution 

provided by XpressIVE. The basic LP generates a valid solution to the toy problem, thus 

confirming definition and implementation of the optimization model. 

Model Construction 

The linear program formulated using a traditional discrete programming approach 

has one objective function (i.e. the equation that quantifies the decision consequences) 

which aggregates individual service-supplier scores of the selected suppliers. The 

objective of the model is to maximize the overall score by assigning values to the binary 
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decision variables. In effect, it will provide high-scoring matches while satisfying all 

constraints. 

 

 

 

 

The optimization model uses parameters and data provided by the toy problem to 

create a pool of possible solutions. If formulated correctly, the LP should provide the 

optimal solution. A solver will assign values to the decision variables in such a way that 

the highest value for the objective function is produced. The formulation uses binary 

decision variables, linear constraints, and a single linear objective function. 

Decision Variables 

 The decision variables are a matrix of binary values that determine the inclusion 

of customer/supplier matches on a service-by-service basis. 

 

 For example,  1 if service  in work order i is performed by supplier k. 

Table 2 shows that the rows summations in the array of decision variables is constrained 

to one. 
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Table 2. Toy problem decision variable matrix 

 Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5  
WO1       

S11 X111 X112 · · X115 =1 
S21 X121    · =1 
S31 ·    · =1 

WO2       
S12 ·    · =1 
S22 ·    · =1 
S23  ·    · =1 

WO3       
S13 ·    · =1 
S23 ·    · =1 
S33 X331 X332 · · X335 =1 

 <=C1 <=C2 <=C3 <=C4 <=C5  
 

After the decision variables (  inside the table are either 1 or 0) are chosen, the 

scores ( ) associated with those pairs are aggregated to produce the objective 

value. The Boolean inclusion of the individual scores is affected by multiplying an array 

of scores, of identical dimensions, by this table. The overall score is quantified by 

summing the score of each assignment. 

Parameters/Input Data 

The toy problem is used to simulate practical application of the model by 

providing parameters of a workable size.  

 is the pre-defined threshold for total distance between suppliers in work 

order i 

 is the duration of/capacity required by service ji in work order i   

  is the total available capacity of supplier k  

 is the matching score of assigning supplier k to service ji in work order i 
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Table 3 illustrates how these input parameters are input in spreadsheet form to the 

Microsoft Excel solver. 

Table 3. Similarity score input to Excel solver  

 Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5  
WO1      Duration 

S11 0.64 0.32 0.50 0.43 0.71 3 h 
S21 0.23 0.63 0.95 0.58 0.01 7 h 
S31 0.15 0.56 0.40 0.42 0.54 9 h 

WO2       
S12 0.11 0.32 0.38 0.67 0.89 11 h 
S22 0.55 0.67 0.34 0.78 0.29 10 h 
S23 0.00 0.00 0.00 0.00 0.00 0 h 

WO3       
S13 0.39 0.58 0.22 0.33 0.24 5 h 
S23 0.41 0.08 0.92 0.62 0.78 8 h 
S33 0.29 0.45 0.34 0.07 0.11 3 h 

Capacity 17 h 13 h 12 h 19 h 17 h  
 

The score provides a virtual quantification of similarity between services 

demanded and processes supplied in the digital manufacturing market. The LP matches 

individual service requests with suppliers based on the score and constraints. The 

objective value is driven by the objective function coefficients (score) and the Boolean 

assignment of score inclusion via corresponding binary decision variable.  

Objective Function 

The objective function is used to rate decisions. The objective function of this 

model is a linear equation that contains all of the decision variables. The Traditional 

Objective function (TOF) is used to maximize the matching scores while assigning all 

services requested in work orders to the available suppliers. 
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The objective function is essentially a weighted sum, where the coefficients that 

value each decision variable are similarity scores associated with each possible match 

between service and supplier. The objective of the model is to maximize the total score 

while satisfying any constraints.  

This LP has a solution space which is unimodal. The linear constraints form a 

convex set, and the objective function is concave. The purpose of the objective function 

is to rank the values of the decision variables in such a way that, when any three are 

modeled in a solution space, the coordinates which represent the intersection of a point in 

the feasible region of the multi-dimensional objective function curve generated produce 

the highest score aggregate and therefore the optimal solution.   

Constraints 

Some simple constraints can be applied to define boundaries in the solution space. 

All constraints in the LP are equations or inequalities that serve to define the practical 

validity of possible solutions, based on limitations of the systems modeled in the toy 

problem. 

 

Constraint T1 requires each service, in each work order, to be assigned to a single 

supplier. 

 

 Constraint T2 prevents the optimizer from creating solutions which would require 

suppliers to exceed their capacity in order to fulfill the work orders requested. 
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Model Solution 

The basic LP model generates a valid solution to the toy problem as supported by 

the Excel solver results, thus confirming the definition of the problem in Mosel and 

implementation of the optimization model in XpressMP.  

Model Scalability 

 The original toy problem contained 5 suppliers and 45 decision variables. The 

analytical tool that is need for this application will ultimately handle hundreds of 

thousands of suppliers. However, the computation resources available for this study will 

only be able to process a fraction of that number. The preliminary formulation must first 

be failure tested to establish a range of feasibility for this machine (Intel® Core™ i7 

2600 CPU @ 3.4 GHz, 16.00 GB of RAM, Microsoft Windows 7, 64-bit Operating 

System).  Problem size is a product of number of total services and suppliers. Problems 

with 25, 50, 75, 100, 125, 150, and 175 suppliers will each have two levels of services. 

Five replicates will be tested for each size. The runs are randomized and run serially by a 

master program. The results of each run are transmitted automatically to an Excel 

database.  

The original formulation assumed for simplicity that each supplier consumes 

identical capacity resource to perform each service. In addition to being unrealistic, it has 

also been proven to make very large problems more difficult to solve because of a 

phenomenon called symmetry (Savelsbergh, 2002). Therefore, the service duration 

parameter is reformulated to an array with 3 dimensions. 
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Distance Constraints 

The general formulation of the GAP is insufficiently bounded for our application.  

The traditional LP model has been constructed to deliver optimum query/provision 

matches regardless of transportation costs. There are multiple ways to constrain the 

model to address these costs. Each approach will observe the following: Distance 

constraints in this study are intentionally oversimplified in order to easily assess risk and 

performance metrics like transportation costs, transportation risk, delay risk and transit 

time. These factors impact operational costs and drive sourcing decisions in supply chain 

management. This thesis will deal with these drivers in a general way. While some of 

these costs are indirect, all are directly correlated with distance. Therefore, the magnitude 

of a transportation link is a general predictor of its associated costs. By reducing cost 

input to arc distance, the network flow problem can be optimized using a minimum cost 

flow model. Future models can include more specific parameters and constraint functions 

in order to approach optimization in a more realistic manner.  

Traditional Formulation with Distance Constraints 

Nonlinear Programming 

Distance threshold (D_max) values are used to limit the total distance traveled in 

each work orders in a solution in order to meet the transportation cost and time 

constraints specified by the customer. Therefore, the virtual constraint total distance 

traveled in work order i ≤  D_maxi is to be applied in the algorithm. The traditional 

mathematical programming approach involves the inclusion of an explicit distance 

constraint which defines the relationship between work order distances and threshold 

parameters as a set of inequalities. The T3 constraints below are similar to those used to 
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define the objective function of a quadratic assignment model. They sums the distance of 

all transportation links between suppliers, shown in Table 4.  

In Table 8 the distance matrix contains all distance between suppliers. 

Table 4. Distances between any two suppliers k and l (mi)  

 Sup1 Sup2 Sup3 Sup4 Sup5 
Sup1 0 34 45 87 22 
Sup2 34 0 89 69 23 
Sup3 45 89 0 13 35 
Sup4 87 69 13 0 18 
Sup5 22 23 35 18 0 

 

While most decision variables will become zeros, the assignment of a supplier to 

a service is represented by a one. The double decision variable coefficients in these 

inequalities produce non-zero values only when a pair of decision variables is quantified. 

In this way, only the distances of the chosen transportation links are aggregated. 

 

While the T1 and T2 constraint families are arrays of linear constraints, T3 are 

dynamic sets of quadratic constraints. Therefore, the model becomes a nonlinear program 

(NLP), specifically a nonlinear integer program. NLPs require a different approach, and 

the combinatorial nature of NLIP are especially difficult to solve. The Xpress SLP solver 

is used to make successive linear approximations of the mixed integer linear formulation. 

Nevertheless, nonlinear integer programs are difficult to solve and may not be 

appropriate for the size aspirations of the agile supply chain design platform.  
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Traditional Formulation with Cuts Added Dynamically 

Our model is deterministic because all of the parameters are knowable. Dynamic 

programming involves the decomposition of a problem in to smaller components to be 

solved recursively. Deterministic dynamic programming is used to solve shortest path 

problems and could be used to model distance in the agile supply chain design problem. 

However, solving models recursively means that the final solution depends on the initial 

solution. Dynamic programming finds local optima and would not allow us to find exact 

optimal solutions. Nevertheless, it may still be advantageous to break down the model 

into smaller parts. We will explore this concept later with an alternative formulation 

called column generation. First, the concept of dynamic constraint declaration will be 

considered as a causal solution to the distance problem.  

Enforcement of the distance thresholds, as we have seen, cannot be addressed 

with a global constraint without reducing the tractability of the model. A simpler 

approach called work order assignment cuts can theoretically accomplish the same end 

via different means. The model can iteratively introduce case-specific constraints, which 

together bound the solution to distance thresholds. 

Dynamic Constraint Introduction 

In order to produce feasible solutions without enumerating all possible 

permutations of transportation links before running the program, individual constraints 

can be introduced on an ad hoc basis. The model will produce the solution with the 

highest objective value the first time the LP is solved. The model does not terminate after 

the first solution is generated because it may be infeasible with respect to distance 

constraints. The distances between suppliers assigned in each work order are summed. 



30 

 

The total distance cannot exceed the arbitrary threshold value (T3). For each work order 

which fails the distance threshold test, the program will automatically add a constraint 

which prohibits that particular assignment of supplier matches. 

 

After the new vendor cuts constraints are added for iteration  the optimizer is 

prompted to resolve the problem. This process repeats until all distance constraints are 

satisfied. Table 5 shows an example where the optimizer chooses suppliers 2, 1, and 4 for 

work order one. It is important to note that while the the services in each work order are 

performed sequentially, a certain combination of suppliers has a specific total distance, 

indifferent to order.  

Table 5. Example solution for one work order 

  Sup1 Sup2 Sup3 Sup4 Sup5 RHS 

WO1 

S11 0 1 0 0 0 =1 
S21 1 0 0 0 0 =1 
S31 0 0 0 1 0 =1 

 Order 2nd 1st - 3rd -  
 

The scores associated with these choices are high. However, total distance in 

work order 1 exceeds the distance threshold. Therefore, the constraint 

 will be added to the model to prevent this particular combination of suppliers 

from appearing in future runs. Once this is done for each disqualified work order, the LP 

is solved again. In this way, invalid solutions can be individually identified and 

eliminated. The objective value will decrease each time the model is solved. After the 

model has eliminated enough invalid solutions, it will arrive at highest valid objective 

value. This, then, is the optimal solution of the vendor cuts method.  
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The dynamic addition of cuts appears to be the most computationally efficient 

feasible way to constrain distances inside the network. An alternative method would 

require distance summations for every combination of suppliers to be computed prior to 

running the model. As problem size grows, the time require for this operation explodes. 

Massive computational power would be needed to solve real world problems of even 

modest size. Still, issues associated with computing speed will naturally decrease over 

time. It is for the reasons previously discussed, then, that causal constraint definition fits 

our problem better than global declaration. 

After the traditional model is developed it will be used to support the validity of 

solutions provided by a more advanced LP model called column generation (Desaulniers, 

Desrosiers & Marius M., 2005). The Branch and Price technique can also be used to 

solve these problems. It is, however, a nuanced methodology. Due to time constraints, 

only a preliminary investigation was included in the scope of this study.   

Survey of Problem Size 

Multiple sizes of toy problem will be run in order to identify the effect of 

experimental variable number of decision variables on the dependent variables: total 

number of runs, CPU runtime using XpressIVE, etc. The number of decision variables is 

dictated by number of suppliers and total number of services. If the toy problem has I = 3 

work orders, J = 9 services and K = 5 suppliers, then there are 45 decision variables. As 

we scale up the toy problem, computation becomes cumbersome. One of our hypotheses 

is that the traditional approach is impractical for solution of realistically-sized problems.  
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Experimental Design 

The traditional formulation will be tested in different sizes to observe the behavior 

of the model as problem size increases. A few experiments will test the predictions 

concerning the effect that each type of variable has on the performance of the 

optimization model.  These hypotheses are outlined below.  

DOE 1: Solving the LP to optimality will become computationally prohibitive 

H0: The solver will continue to be efficient as problem size grows 

H1: The solver will not be able to explicitly generate columns for large sizes 

DOE 2:  Increase in supplier-to-service ratio will improve tractability 

H0: No change will be observed between cases with disparate m/n ratios 

H1: Increases in available suppliers will cause a decrease in computation time 

DOE 3: Scarcity of supplier capacity will negatively impact performance 

H0:  Changes in supplier capacity levels will not affect the CPU solve time 

H1: Optimization will take longer for cases with less available capacity 

The performance can be improved by solving these problems using a column 

generation approach. Decomposing the problem will produce fewer decision variables 

than the traditional formulation, and maintain optimality at a much higher range than the 

explicit formulation.  

Column Generation 

When linear programs have huge numbers of variables, it is sometimes not 

possible to explicitly generate all columns of the decision variable matrix. Column 

generation algorithms are employed to systematically redact and solve sets of columns 

and add those that improve the current solution to the problem matrix. Using this iterative 
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process the optimal solution can be reached through successive identification of best 

partial solutions. 

Column generation tractability depends on the number of alternatives bk generated 

for each supplier k. For example, if there are 5 suppliers and bk is 3 for supplier 1, 2 for 

supplier 2, 2 for supplier 3, 2 for supplier 4, and 1 for supplier 5, the formulation will 

generate a table with 10 columns. This table has 5 sets of 1 to 3 complimentary. The 

decision to choose which 4 will supplement any 1 column will result in one of 24 

alternatives. This third iteration of the decomposed problem has 10 decision variables, 

rather than the 45. 

 
Problem Definition 

Decision Variables 

In the disaggregated formulation possible assignments for each supplier are 

generated by a sub-problem. Assignments included in the solution are determined by a 

decision variable which weights each column. The master problem decision variables 

 are used to weight columns.  if column b of supplier k is selected to 

satisfy any services.  

The  matrix is composed of input data from the solution of sub-problems 

which are generated at each iteration. These values substitute for the decision variables of 

the traditional formulation. An  variable is equal to 1 if service ji in work order i 

is supplied in column l of supplier k and 0 otherwise. An initial subset of columns is 

provided for the master problem to solve. The matrix will expand as it is populated by 

new columns between iterations. The sub-problems will continue to generate novel ways 
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until no more exclusive columns can be generated or the solver can verify that a solution 

is optimum.  

Parameters 

 is the pre-defined threshold distance for suppliers included in work order i 

is the capacity consumed by service ji in work order i by supplier k  

 is the total available capacity of supplier k 

 is the matching score of assigning supplier k to service ji in work order i 

 is the total matching score of all assignments in column b 

 

Model Construction 

Objective Function 

 

Constraints 

Assignment constraints CG1 supervene over the columns of the disaggregated 

formulation basis. CG1 are row constraints and will remain in the master problem. 

Alternatively, supplier-specific constraints from the original model can be declared in the 

sub-problems.  

 

Constraint CG1 is essentially the same as TF1 which states that each service in 

each work order must be assigned to a single supplier. Dual variables from the 
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Lagrangian relaxation are used to determine the assignments in the new columns that will 

be generated by the sub-problem. Constraint CG2 is a constraint on the columns of a 

particular supplier in the master problem.  

 

The model is capable of solving larger problem sizes because the decomposition 

scheme involves the delegation of computation to a separate sub-model for each supplier. 

A sub-model will generate a column of possible assignments for one supplier. The CG2 

constraints state that only one set of possible assignments is chosen. The Lagrangian 

duals from these convexity constraints are used to price the columns such that a stopping 

point for the iterative process can be identified. The CG2 constraints also help to 

maintain feasibility of integer solutions. In order to exploit duality we must allow the 

master problem to assume a strictly linear formulation. Unlike the traditional formulation, 

there are no integrality constraints. Methods like branch-and-price are devised to resolve 

difficulties with discrete solution generation. Nevertheless, integrality is not an issue 

when working with problem instances where capacity is abundant, like in the agile supply 

chain configuration problem. CG3 is a column constraint, and can be included in the sub-

problem.  

 

Each supplier utilizes a different capacity  in order to satisfy service ji. 

Constraint CG3 prevents assignments from exceeding the available supplier capacity. 
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The sign constraints of the sub-problems ensure that the assignments in each 

column will be integer and binary. Each column represents a partial assignment of 

services to suppliers. The objective CGOF is to maximize the resulting total score of 

selected columns such that assignments are given for all work orders considered. 

Column Generation Master Problem 

The formula for  is integrated into the objective function as the 

coefficient of the decision variables.  

 

st. 

 

 

Note the removal of the integrality conditions for the decision variable  

Iteration in the master problem is assumed continuous and thus, no sign constraint is 

introduced. This allows the optimizer to solve the LP relaxation and find the dual prices.  

Sub-Problem 

The following integer knapsack problem is solved for each .  

 

st. 



37 

 

  

The  decision variables enter the basis of the master problem as  for 

iteration bk of supplier k if the price is positive. The columns of the sub-problems are 

priced using the dual variables  and . A nonnegative price indicates a column of 

positive reduced cost which should enter the basis. The iterative process stops for each 

supplier which has exhausted all such columns. The column generation process is over 

when all beneficial columns have been found. The final basis is solved as an integer 

program. Figure 1 is a flow chart of the column generation algorithm. 
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Start

Introduce an original subset of r rows in the master 
problem in such a way

that when solving the master problem as an IP it 
provides a feasible way to satisfy all services required 
in the work orders. These original columns can be the 

solution of the traditional formulation

Solve the master problem as an LP 
(i.e. remove integrality constraints)

Get the dual variables π 

For each service ji solve the integer 
programming (IP) subproblem to find a new 

row rijik. 

Add the k new r columns generated to the 
masters problem

Solve the  master problem as an IP 
(i.e. introduce integrality constraints for the 

y variables) and determine if iterative 
procedure must stop

Do 
any rows exist 
with positive 

reduced 
cost?

Stop

NoYes

 

Figure 1. Flowchart of the column generation process.  
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The Table 6 contains the decision variables (yellow) and the total cost parameters. 

The multiplication of these two vectors will provide the objective function value named 

. 

Table 6. Components for objective function value computation  
Supplier 1 Supplier 2 Supplier 3 

Way 1 Way 2 Way 3 Way 1 Way 2 Way 1 Way 2 
Y11= Y12= Y13= Y21= Y22= Y31= Y32= 

       
 

Table 7 shows the possible assignments for each supplier as multiple columns 

representing different partial solutions. Row constraints ensure that all the row sum of all 

chosen column in is equal to the right hand side (1). 

Table 7.   rows and right hand side 

 Supplier 1 Supplier 2 ··· Supplier k  
 Way1 ··· Wayb  Way1 Way2 ··· Way1 Way2  

WO1          
S11         =1 
S21         =1 
S31         =1 

WO2          
S12         =1 
S22         =1 

WO3          
S13         =1 
S23         =1 
S33         =1 

 <=C1 ··· <=C1 <=C2 <=C2 ··· <=C3 <=C3  
 

At each iteration, after solving the master problem as an IP, the total distance 

traveled between suppliers selected for the services in each work order is calculated (i.e. 

distance traveled in work order i = Di assuming a serial execution of services in the work 

order in ascending order). The distance traveled computation will be very similar for the 

column generation and for the traditional formulation.   
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If the distance traveled in a work order i exceeds  the columns selected 

will not be chosen again simultaneously.  

Example: Column 1 in supplier 1 and Column 1 in supplier 2 were selected ( 

. If the distance traveled is violated ( > D_maxi) in any work order i 

then a cut must be introduced to prevent these columns from being selected 

simultaneously. The cut for this case is . 

Table 8 shows the time required (in hours)  for the different services of the 

given work orders. These values will act as coefficients to the column assignments to be 

bound by the vector in Table 9. 

Table 8. Expanded matrix 

 

 

 

 

 

 

There is now a supplier specific value for service duration. This will aid the 

algorithm in evaluating individual assignments, based on reduced cost and the capacity 

expenditure, by reducing symmetry. 

Table 9. Available capacity of the suppliers (hr)  

Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 
C1=17 C2=13 C3=12 C4=19 C5=17 

 

  

  Full Service Duration Vector 
  Toy Problem Sup 2 Sup 3 Sup 4 Sup 5 

WO1 
S11  d11 = 3 d112 · · d115 

S21  d12 = 7 d212 · · d215 

S31 d13= 9 d132 · · d135 

WO2 S12   d21= 11 d212 · · d215 
S22   d22= 10 d222 · · d225 

WO3 
S13 d31= 5 d312 · · d315 
S23 d32= 8 d322 · · d325 
S33 d33= 3 d332 · · d335 
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Row Generation Decomposition Scheme 

Model Construction 

The column generation approach was originally intended to be applied to a 

problem matrix with many rows and few columns. Thus, the disaggregated formulation 

of the LP conferred modest performance benefits when solving medium-sized problems 

with a supplier-to-service ratio less than 1:1. The quantity of columns that must be 

generated when problems instances have a high supplier-to-service ratio is 

computationally prohibitive. However, the decomposition scheme can be transposed to 

generate rows instead of columns. In this way, the computational complexity is greatly 

reduced and should be able to handle very large problem instances.  

Objective Function 

 

The objective function totals the score of the assignments in the rows that are 

chosen by the decision variable .  

Constraints 

The dualized convexity constraints RG1 will provide a pricing index, rather than 

the capacity constraints. Alternatively, services-specific assignment will be declared in 

the sub-problems. 

 

Constraints CG2 are constraints on the columns of a particular supplier and will 

remain in the master problem.  



42 

 

 

By reducing the number of columns that need to be generated (rows), the model is 

much more efficient. The constraints interact in a similar way as the previous 

formulation, but produce much more rapid changes in the objective value. 

 

The assignment constraints in each sub-problem allow the row to enter the basis 

of the master problem with only one assignment. Therefore, there are not incompatible 

combinations of columns, as in the previous formulation.   

 

Each row represents an individual assignment. The objective RGOF is to 

maximize the resulting total score of selected rows such that capacity constraints are not 

violated. 

Master Problem 

 

st.  
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Note that the assignment constraints and capacity constraints are switched as 

compared to the original column generation formulation. Therefore, the pricing scheme 

of the sub-problem is also inverted. Dual variables  come from the convexity 

constraints (RG1) and are used to price the sub-problem solutions. Dual variables  are 

now associated with the capacity constraints rather than the assignment constraints. 

Sub-Problem 

 

st. 

 

  

Table 10 shows the row generation scheme in the master problem.  

Table 10. Transposed disaggregation scheme 

Row WO1 Serv Sup 1 Sup 2 Sup 3 Sup 4 Sup 5 RHS 
y11

(1) 

WO1 

S11      =1 
y11

(2) S11      =1 
· ·      · 

y11
(B

1
) S11      =1 

y12
(2) S12     =1 

y13
(1) S13      =1 

y21
(1) WO2 S21      =1 

y22
(1) S22      =1 

y31
(1) 

WO3 
S31      =1 

y32
(1) S32      =1 

y133
(1) S33      =1 

   <=C1 <=C2 <=C3 <=C4 <=C5  
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IV. ANALYSIS OF RESULTS  

Instance Data 

This study differs from the typical OR study in that the model parameters are not 

samples collected from a population, but rather are randomly generated. In order to 

develop an analytical tool for a process which does not yet exist, samples must be 

simulated to reflect the best prediction of characteristics a real population is expected to 

have. Information will be collected from soliciting suppliers describing their 

manufacturing service capabilities. We will make assumptions based on general 

knowledge of manufacturing industries. It is only necessary for the data to exhibit broad 

tendencies of the population that will ultimately be sampled. Realistically, a properly 

formulated and programmed optimization model is expected to handle both real and 

fabricated data in much the same way. The information collected at this phase of research 

will illuminate areas of interest for future work that can be studied with descriptive 

models and optimized with analytical models.  

Analysis of the traditional LP model results shows that the formulation is 

consistent in its processing of the five replicates of each size of the problem. Figure 2 

illustrates that while larger problems take longer to compute, replicates tend to take the 

same amount of time. 
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Figure 2. Boxplot of time vs. problem size vs. instance. 

In table 11 a p-value of 0.488 for problem instance leads us to fail to reject the 

hypothesis that different problems of a similar size will take the same amount of time to 

compute solutions for. Each instance has a different number of active services, and 

different data populating the input matrices.  

Table 11. ANOVA results for traditional formulation 
Two-way ANOVA: Time versus Size, Instance  
Source     DF       SS             MS                 F               P 
Size          13       1.19214   0.0917030   2922.78   0.000 
Instance   4         0.00011   0.0000273    0.87         0.488 
Error        52       0.00163   0.0000314 
Total        69       1.19388 
S = 0.005601          R-Sq = 99.86%       R-Sq(adj) = 
99.82% 

 

This result allows us to conclude that the computation method used in the 

tradition formulation, namely the simplex algorithm, is consistent. Each replicate instance 
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is also repeated three times. Each time a problem is rerun the solution agrees with the 

established global optimum. 

Similarity Score 

Although the data is randomly generated, only one variable is truly random. The 

similarity score is a random number between 0 and 1. In practice, the optimization model 

will receive scores from an automated matching system which reflect the similarity 

between a service request and a service solicitation, described in MSDL, and defined by 

the matching algorithms. A low matching score means that the subjects are dissimilar, 

while a high score means that a match is possible. In order to maintain solution validity, 

the matching algorithm must be able to distinguish possible matches from the rest. The 

similarity score data should be post-processed in such a way that incompatible matches 

are identified such that the distinction is passed to the optimization model. It is 

envisioned that the agile supply chain design platform will be able model and control 

certain costs. By constraining the model to yield a solution with lower costs, the total 

score is also reduced. It is necessary then that the optimization model be prohibited from 

providing inexecutable/infeasible assignments. This could be accomplished via threshold 

data or by assigning zero values to impossible matches.  

Real samples of suppliers will have tools and processes that are interrelated. This 

is because multiple tools and processes are usually required to produce a single part or 

product. For these same reasons work order queries will also demonstrate the similar 

patterns. This means that if a supplier can provide one service in a work order, they are 

likely to be capable of performing another. These distinctions vary greatly over 

manufacturing industry, technology requirement, resource consumption and many other 
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variables. This area of study is highly nuanced, and will be recommended as future work. 

This study will allow the scores to be completely random.  If an optimization model can 

produce high-scoring supply chain with random data, it will likely perform better with 

real data. 

Supplier Capacity 

Capacity and service duration are generic units. They may take on any value that 

fits the description of a service provision or work order, e.g., unit/s, part/min, hr/ batch, 

days/build. The supplier pool is expected to be so large that there is enough excess 

capacity to fulfill work order requests. Optimization model performance is tested at 

multiple levels of capacity scarcity. Individual supplier capacity varys over 25% and 50% 

in excess of the total capacity required. Otherwise, the solution would be infeasible 

without adequate capacity provision.  

Service Duration 

The amount of time required to perform each service will realistically vary 

depending on which supplier performs it. The simulated data represents up to a 50% 

difference between suppliers. There are too many similarities in process requirements to 

allow for a larger disparity. Notwithstanding the proposition of a general range of 

deviation for this metric, certain processes will surely display disparities in resource 

requirement characteristic of their practice or practitioner. For example, an automated 

manufacturing system can inspect parts thousands of times faster than a human. It is often 

a matter of technology, and such distinction would be incorporated into the MSDL 

descriptions. A customer expressing a need for automated inspecting capabilities would 

not be matched with a supplier without one. In this respect, the degree of variation 
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between processing times of truly similar services will be minimal. We will allow service 

duration to take on any number between 1 and 13. This limited range will allow us to 

observe the effect of capacity scarcity on model performance. Each service is assigned an 

average duration. Each supplier will perform the service within ±25% of this norm. 

The service duration input was changed from two dimensional to three 

dimensional to reduce symmetry and maintain tractability for large scale optimization. 

Table 12 shows the comparison of both methods of input and insignificantly different 

results.  

Table 12. ANOVA 2D vs. 3D duration array 
Two-way ANOVA: Time versus Duration dimension, Size  
Source                           DF  SS              MS                F              P 
Duration dimension      1    0.00009    0.000091    1.05         0.307 
Problem Size                13  2.55298    0.196383    2263.32   0.00 
Interaction                    13   0.00084   0.000064     0.74         0.719 
Error                             112  0.00972  0.000087 
Total                             139  2.56363 
 
S = 0.009315            R-Sq = 99.62%          R-Sq(adj) = 99.53% 

 

With a p-value of 0.307 it is inferred that these relatively small sizes are not large 

enough to exhibit the detrimental effects of symmetry on computation time. 

Services per Work Order 

Each work order will have a different number of services. The maximum number 

of services per work order is dictated by problem size. The number of services is allowed 

to take on any number between 66% of the maximum and the maximum. This prevents 

the overlap of problem size and allows the effects of interaction with other performance 

metrics to be more easily discerned.  
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Distance Threshold 

Each work order will be subjected to a maximum distance threshold. Realistic 

definition of threshold values would not be entirely arbitrary. The purpose of the 

thresholds is to reduce distance traveled in each work order. Arbitrary values for each 

work order based on a certain percentage of maximum possible distance based on the 

number of services. However, this approach would not allow for direct observation of the 

interaction between distance constraints and performance. Therefore, a descriptive model 

can has been programmed to reduce the total distance to a predetermined percentage by 

incrementally lowering D_max values and resolving the problem until it is reached, while 

only allowing total distance to vary a little between work orders. The problems are then 

solved with the new D_max values. This ensures a more equitable assignment of distance 

threshold values. Moreover, multiple levels per problem size can be recorded and tested 

again, to observe the distinction between a global implicit distance constraint and 

multiple explicit work order distance constraints. 

Suppler/Service Ratio 

The observed ratio of suppliers to services is kept a 10:1 to realize the full benefit 

of column generation. We will treat this as a minimum since one can easily imagine cases 

of common service requests which could be fulfilled by a large pool of suppliers. A 

branch-and-price model has been developed for cases where only a very small number of 

suppliers are eligible at a certain stage in the matchmaking process.  

Traditional Formulation Without Distance Constraints 

To confirm the validity of the traditional LP formulation the small toy problem 

was modeled in Microsoft Excel. The Excel solver is proven to be effective for small, 



50 

 

simple problems. This toy problem with 125 decision variables is well within it 

capability.  Table 13 shows the problem input table in excel. 

Table 13. Parameters provided to Excel spreadsheet 

 
hr/service Scores for service/supplier matches 
required    S1 S2 S3 S4 S5 

3  Service 1 0.64 0.32 0.50 0.43 0.71 
7 Work order 1 Service 2 0.23 0.63 0.95 0.58 0.01 
9  Service 3 0.15 0.56 0.40 0.42 0.54 
11  Service 1 0.11 0.32 0.38 0.67 0.89 
10 Work order 2 Service 2 0.55 0.67 0.34 0.78 0.29 
0  Service 3 0.00 0.00 0.00 0.00 0.00 
5  Service 1 0.39 0.58 0.22 0.33 0.24 
8 Work order 3 Service 2 0.41 0.08 0.92 0.62 0.78 
3  Service 3 0.29 0.45 0.34 0.07 0.11 

 
The yellow area in Table 14 shows the decision variable matrix after the solver 

has been run. The blue numbers indicate variables which are constrained.  

Table 14. Solution provided by Excel Solver Solution  

Assignment Matrix - Optimal Answer 
  S1 S2 S3 S4 S5 Total Required 
 Service 1 0.00 0.00 0.00 0.00 1.00 1.00 1 

Work order 1 Service 2 0.00 0.00 1.00 0.00 0.00 1.00 1 
 Service 3 0.00 1.00 0.00 0.00 0.00 1.00 1 
 Service 1 0.00 0.00 0.00 0.00 1.00 1.00 1 

Work order 2 Service 2 0.00 0.00 0.00 1.00 0.00 1.00 1 
 Service 3 0.00 0.00 0.00 0.00 0.00 0.00 0 
 Service 1 1.00 0.00 0.00 0.00 0.00 1.00 1 

Work order 3 Service 2 0.00 0.00 0.00 1.00 0.00 1.00 1 
 Service 3 0.00 1.00 0.00 0.00 0.00 1.00 1 

Total capacity (hr) 5.00 12.00 7.00 18.00 14.00 Total_score 
Supplier capacity 17.00 13.00 12.00 19.00 17.00 $5.35 

 
The formulas within certain cells represent the linear equations that make up the 

objective function, parameters and constraints. The Excel solver uses linear programming 

to solve the system of equations by assigning a binary value to each decision variable. 
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Appendix shows the input/output method used for the XpressIVE model. Table 15 from 

the Xpress output shows the same solution provided by Excel solver.  

Table 15. Solution provided by XpressIVE 
=========================================== 
           SUPPLIER 
          s1    s2    s3    s4    s5 
             ------------------------------ 
WO1 sv1   0     0     0     0     1 
WO1 sv2   0     0     1     0     0 
WO1 sv3   0     1     0     0     0 
WO2 sv1   0     0     0     0     1 
WO2 sv2   0     0     0     1     0 
WO2 sv3   0     0     0     0     0 
WO3 sv1   1     0     0     0     0 
WO3 sv2   0     0     0     1     0 
WO3 sv3   0     1     0     0     0 
=========================================== 

 
 Parity is maintained as problems of different sizes are compared. Therefore, we 

concluded that the LP Mosel formulation accurately reflects the theoretical model.  

Traditional Formulation with Distance Constraints 

The quadratically constrained NLP model initially outperforms the dynamic 

programming model with respect to computation time. The NLP model produces exact 

optimal solutions up to 75 suppliers and 22,500 decision variables. However, the problem 

becomes intractable when service durations are supplier specific. The increase in 

variables with the addition of the 3rd dimension causes the global search to identify an 

optimal solution at the upper bound without satisfying the all distance constraints. The 

objective value of the infeasible solution is often quite close (as small as 2.7/1000 of 1%) 

to that obtained by performing cuts. The NLP model has been programmed to produce 

pseudo-optimal solutions by dynamically reducing the D_max thresholds until the overall 

distance savings exceeds a certain percentage. However, this general approach is not 

aligned with future objectives of an explicit formulation of the agile supply chain design 
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optimization model which considers actual distance cost. Still, the nonlinear distance 

constraint may be fruitful. The Xpress Optimization Suite is equipped with a solver this 

specific purpose. Successive Linear Programming (SLP) is a process of making linear 

approximations of the original problem and solving the approximations. SLP is a 

complicated programming methodology which needs to be studied in depth, and is 

beyond the scope of this research.  

The results confirm that the quadratic formulation of the global distance 

constraint functions as intended. This constraint can be reformulated and incorporated 

into the column generation model. The decomposition of the problem should allow the 

constraint to maintain functionality on a much larger scale. 

Traditional Formulation with Cuts 

Constraining for distance is an effort to control costs. The more the model exhibit 

lower performance the more it is constrained. Because computational resources will 

become more abundant as the analytic tool matures, we are primarily concerned with the 

behavior of the MSDL similarity scores of the assignments. 

Toy Problem 

The toy problem was directed to cut 50% of the work order distance. Table 16 

shows that the cut solution is only 0.16 less than the optimal solution.  
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Table 16. XpressIVE results for toy problem cuts 

 
 

Descriptive Statistics 

A descriptive LP model was initially programmed to incrementally reduce the 

distance threshold of each work order until the total distance reaches a desired level of 

reduction. Six levels of distance reduction at 5%, 10%, 25%, 37.5%, 50% and 75% of 

total distance in the optimum solution are tested. Table 17 shows the details of the 

problem sizes.  

  

SUPPLIER 
 

        1     2     3     4     5 
 

1 sv1   0     0     0     0     1 
1 sv2   0     0     1     0     0 
1 sv3   0     0     0     1     0 
2 sv1   0     0     0     0     1 
2 sv2   0     0     0     1     0 
2 sv3   0     0     0     0     0 
3 sv1   0     1     0     0     0 
3 sv2   1     0     0     0     0 
3 sv3   0     1     0     0     0 

 
(0.341 sec) Optimal solution: 5.19 
beginning distance: 298 
ending distance:   134 
distance reduction: 55.0336% 
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Table 17. Problem instances 

Problem 
Size 

Work 
Orders Services Suppliers Decision 

Variables 
1 5 5 25 625 
2 5 10 25 1250 
3 10 10 50 5000 
4 10 15 50 7500 
5 15 15 75 16875 
6 15 20 75 22500 
7 20 20 100 40000 
8 20 25 100 50000 
9 25 25 125 78125 
10 25 30 125 93750 
11 30 30 150 135000 
12 30 35 150 157500 
13 35 35 175 214375 
14 35 40 175 245000 

 

Figure 3 shows the effect that the distance constraints have on average score. 

 
Figure 3. The six cut levels and their effect on average score. 

After work order distance thresholds are identified that meet each goal, the 

models are run again, in random order, with the explicit D_max values and solutions are 
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quickly identified after the necessary cuts are applied. No solutions subject to 75% 

distance reduction are feasible due to insufficient capacity. Figure 4 shows the same data 

broken down into the seven levels of suppliers. We can clearly see that the poor data on 

the bottom half of the chart is made up of only the smallest size of 25 suppliers. This is 

much smaller than is expected in the web-based platform application. We can therefore 

conclude that results from supplier pools lager than 175 are expected to contain 

assignments of with at least a 0.99 similarity score when subject to cuts of up to 50% of 

optimum distance.   

 
Figure 4. Categorization of cuts values by number of suppliers. 

This data can yet be further analyzed. It is clear from Figure 5 that if we compare 

the scores of the cut to the original optima, that the scores converge as the problem size 

increases. We can conclude that the model can provide better scores when drawing from 

a larger pool of suppliers.  
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Figure 5. Average optimum and cut score (top left) and difference (bottom right).  

Finally, when the average score values are grouped by number of suppliers, a 

clearer picture begins to immerge. If we assume a hypothetical situation with real data, 

choosing from at least 100 suppliers, which is a reasonably safe assumption, an assumed 

cut of 37.5% distance can be made while suffering only a tenth of point penalty. Figure 6 

shows that sizes of 175 suppliers or more can make the same cut for half that cost in 

score reduction.  
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Figure 6. Average penalties of 37.5% cuts grouped by number of suppliers. 

Again, in figure 7 we see a more severe penalty exacted for cutting up to 50% of 

maximum distance.  This still only amounts to five points. This number will be lower 

when real data is handled because of manufacturer specialization.  

 
Figure 7. Two levels of cuts and optimal solutions.  
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Figure 8. Computation time required to perform cuts at two levels. 

These results are not too bad for the small samples. However, performing cuts 

becomes cumbersome when tens of thousands are required, as they are for the largest size 

problem. Cuts in the column generation formulation are expected to perform better 

because there are less columns combinations to cut than supplier combinations.  

Larger ratios of suppliers to work orders were also tested. The results showed an 

improvement in processing times of all models. Similar results were seen when the 

supplier capacity was doubled and quadrupled. This is congruent with the theoretical 

predictions of abundant capacity. Alternatively, scarcity of capacity makes the problem 

much more difficult to solve. Therefore, these are the results that illustrate the efficacy of 

our models. 
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Column Generation 

The generalized assignment problem is NP-hard, and many approaches have been 

developed to solve it either approximately or exactly. Yet the difficulty in modeling the 

general form the GAP is not experienced in the agile supply chain design problem. 

Typical academic work modeling the GAP assumes scarce capacity. The larger the 

competition of tasks/services for the limited resource, the more difficult it is to solve. 

This degree of paucity cannot be experienced in a marketplace environment. Even if 

individual suppliers were very conservative with their solicitation, the collective capacity 

of the entire system would be abundant. This parameter allows us to exploit the simple 

avenues of solving the problem. The simplex method is a powerful algorithm that is able 

to solve this problem very quickly.   

 
Figure 9. Column generation performance before reformulation. 
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relaxation. An upper bound is essentially constructed, in a maximization problem, by 

dualizing the constraints to be used in the objective function. A heuristic was also used to 

speed up this process by providing an approximation, preventing the solver from 

resorting to lengthy computations, unaided by confounded dual variables. Heuristic 

approximations allow the optimal solution to be found in a shorter amount of time.  

The typical formulation of a column generation model for the generalized 

assignment problem has suppliers in columns and services in rows. This approach is most 

efficient when the service to supplier ratio (n/m) is 10:1 or larger, when the problem 

matrix has more rows than columns (Ogtildeuz, 2002). The Lagrangian duals values are 

less confounded and more effective when there are many assignment constraints 

containing fewer column elements in the LP relaxation. Consider the four problem sizes 

below. By the same reasoning, the typical column generation approach is 

computationally prohibitive when choosing from a large pool of suppliers and the n/m 

ratio is very small. For problem size 1 the model will have to generate multiple columns 

for each of the 250 suppliers. It would be more efficient to generate rows for each of the 

25 services. Table 18 shows the performance improvements associated with transposing 

the decomposition scheme. 

Table 18. Column Generation Traditional and Transposed 

 Column Generation Data CPU Time 
Problem Size WOs Services Suppliers Original Transposed 

1 5 5 250 18.597 0.312 
2 10 5 500 98.483 0.656 
3 10 10 1000 625.105 2.067 
4 15 10 2000 3538.32 6.436 
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Figure 10 shows that the comparison between the decomposition schemes 

resembles the gap between the performance of the traditional model and the first column 

generation formulation. 

 

Figure 10. Computation reduction from decomposition reformulation. 

The Dantzig–Wolfe decomposition is meant to break down a problem into 

components that model the problem in a sensible way. In the generalized assignment 

problem the columns represent individual supplier assignments. Therefore, the capacity 

constraints are modeled in the knapsack problem and any columns that are generated to 

enter the master problem are feasible in that sense. Although the assignment sub-problem 

of the new formulation is not technically a knapsack problem because the capacity 

constraints remains in the master problem, it is still influenced by dual variables from the 

capacity constraints and the rows entering the basis are priced using the convexity 

constraints.  
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faster, but they may allow for larger problems. Look at the tradeoff between the 

traditional formulation and the new column generation formulation. 

 

Figure 11. Changes observed in performance between models. 

Instances with different levels of maximum services in work orders have been 

tested. Table 19 shows ten problem instances with similar numbers of services. Each 

problem size has five replicates. All runs were randomized in blocks and each replicate 

was repeated three times. 
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The decomposed row generation formulation produces the same solutions as the 

traditional model in less time. Figure 12 shows the gap between the two models grows 

quickly as problem size increases.  

 

Figure 12. Computation time for ten sizes of each model formulation. 

While these results do not appear to be a significant improvement, it is important 
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assignment variables with these computational resources. A problem with 100 work 
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Table 20. Raw Data from traditional model and row generation 

INPUT OUTPUT 

  Set Size Prob Size Traditional Formulation Row Generation 

Size Instance WO Services Suppliers No. vars Time (sec) objective Time (sec) objective 

1 

1 

5 10 500 

25000 0.249 38.93323 0.655 38.93323 

2 25000 0.256 39.9319 0.499 39.9319 

3 25000 0.312 45.90898 0.624 45.90898 

4 25000 0.479 38.93323 0.515 38.93323 

5 25000 0.504 42.92369 0.686 42.92369 

2 

1 

10 10 1000 

100000 1.718 78.92174 2.105 78.92174 

2 100000 1.673 76.92379 1.809 76.92379 

3 100000 1.78 82.91943 1.902 82.91943 

4 100000 1.828 83.91909 2.043 83.91909 

5 100000 2.807 82.91943 1.934 82.91943 

3 

1 

15 10 1500 

225000 5.858 125.9108 4.944 125.9108 

2 225000 5.329 119.9137 4.303 119.9137 

3 225000 5.689 121.9132 3.945 121.9132 

4 225000 5.797 127.9081 4.57 127.9081 

5 225000 5.435 123.9121 4.383 123.9121 

4 

1 

20 10 2000 

400000 13.768 169.9145 8.876 169.9145 

2 400000 13.392 165.9163 8.469 165.9163 

3 400000 14.121 171.9138 8.781 171.9138 

4 400000 12.849 159.92 8.579 159.92 

5 400000 12.971 164.9178 8.486 164.9178 

5 

1 

25 10 2500 

625000 29.749 204.9168 15.272 204.9168 

2 625000 24.306 211.9142 15.553 211.9142 

3 625000 25.227 210.9146 15.35 210.9146 

4 625000 23.67 204.9168 14.929 204.9168 

5 625000 24.113 209.9148 15.349 209.9148 

6 

1 

30 10 3000 

900000 40.462 245.9219 24.617 245.9219 

2 900000 48.79 240.924 24.039 240.924 

3 900000 41.883 242.9225 24.211 242.9225 

4 900000 50.111 252.9204 24.819 252.9204 

5 900000 41.688 252.9204 25.037 252.9204 

7 

1 

35 10 3500 

1225000 65.648 276.9141 36.534 276.9141 

2 1225000 64.727 296.9077 38.906 296.9077 

3 1225000 77.34 288.9103 37.751 288.9103 

4 1225000 64.867 297.9066 38.766 297.9066 

5 1225000 67.637 286.9106 37.564 286.9106 
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Table 20 continued 

INPUT OUTPUT 

Set Size Prob Size Traditional Formulation Row Generation 

Size Instance WO Services Suppliers No. vars Time (sec) objective Time (sec) objective 

8 

1 

40 10 4000 

1600000 96.241 327.9195 54.678 327.9195 

2 1600000 104.588 341.9178 56.69 341.9178 

3 1600000 109.395 325.9207 54.304 325.9207 

4 1600000 98.84 331.9191 54.787 331.9191 

5 1600000 101.914 335.9188 55.723 335.9188 

9 

1 

45 10 4500 

2025000 136.57 373.9103 77.142 373.9103 

2 2025000 135.382 360.9132 75.114 360.9132 

3 2025000 134.741 370.9108 76.612 370.9108 

4 2025000 141.341 375.9098 77.813 375.9098 

5 2025000 138.193 374.9099 77.734 374.9099 

10 

1 

50 10 5000 

2500000 180.727 418.9161 106.314 418.9161 

2 2500000 177.513 401.919 101.244 401.919 

3 2500000 184.104 412.9168 104.301 412.9168 

4 2500000 188.176 410.9173 103.787 410.9173 

5 2500000 193.575 421.9157 105.924 421.9157 
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V. CONCLUSION 

This study represents the preliminary phase of an entire line of research that will 

move forward based on the descriptive information that can be gleaned from these 

results. The technical requirements of the optimization models developed here are 

directly related to the descriptive characteristics of the instance data. The conclusions that 

can be drawn from these results regarding the effectiveness of the models when 

processing different data/ real data are limited. The formulas for generating similarity 

score, service duration and supplier capacity were constructed with simple assumptions. 

The optimization models handled the resulting data quite well. We know when the 

supplier-to-service ratio is low, as typically modeled in the generalized assignment 

problem, that the problem would be very difficult to solve. For example, if the supplier-

to-service ratio was 1:10 instead of 10:1, the computational resources needed to solve a 

problem instance with 1,000 suppliers with the traditional linear program would exceed 

those used in this research. A traditional branch-and-price model was developed to 

handle special cases of the problem where the supplier-to-service ratio is small. The 

results resembled those shown in the literature. However, branch-and-price and other 

methods for solving the GAP are devised to address issues that do not exist when the 

problem is formulated for the DMM platform.  

By decomposing the LP formulation and taking a column generation approach, a 

transition from a computationally prohibitive methodology to a fully scalable model that 

maintains functionality at very large sizes, we have fulfilled the principal objective of this 
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study. Although the traditional formulation and column generation models do not directly 

control distance, they are effective nonetheless. The abundance of computational 

resources in the near future will extend the practical efficacy of the models, even if they 

are not reformulated.  

In order to fully understand the nature of the supplier selection problem as 

formulated specifically for the DMM platform, a number of descriptive models were 

needed. To conduct the study, functional programs were also developed to interact with 

the data generation, descriptive and optimization models. It is clear that the IT 

requirements of the OR branch of the DMM are much more than optimization models. 

The most significant result that has been observed is that when problem size is 

expanded to reflect the true size of the manufacturing services industry, it can be heavily 

constrained while still producing good results. If we consider the trend expected to appear 

in the real samples of suppliers with multiple interrelated scores, it should allow for even 

greater control over distance while maintaining the collective value of assignments.  

This study has addressed three concerns regarding the unique formulation of the 

supplier selection problem for DMM. First, the column generation approach resolved the 

issue of limited scalability of the traditional LP formulation. Second, distance inside the 

supply chain can be reduced without significantly impacting the objective score. Finally, 

these results show that a properly devised analytical model can perform supplier 

evaluation and selection based on similarity score data derived from MSDL descriptions, 

allowing it to provide solutions that neatly fulfill the needs of the agile supply chain 

deployment problem. 
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Future Work 

Simulated Data 

The characteristics of the actual environment intended to be modeled should be 

researched in depth. Collecting real data samples was beyond the scope of this research 

and was not possible in some senses. In the future, data should be collected when 

possible. Otherwise, formulas for generating the data need to be improved.  

Descriptive models 

Properly formulated model assumptions and accurate data are required to 

construct a valid model. Furthermore, model validity must be assessed and maintained in 

order to experience the full benefits of optimal decision implementation. Complex 

simulation models will need to be deployed to fulfill this end. The descriptive model for 

determining the distance thresholds based on general percentages of optimal distance 

should continue to be refined. Moreover, it is likely the model could work backwards 

from customer-provided specifications to determine the maximum limit to which the 

model can be bounded while still meeting the minimum requirements. Cost control using 

the set of constraints will likely be exercised through the direct control over one 

parameter of choice. As model complexity grows and the parameters are made more 

explicit, descriptive models will become vital to the fine tuning and optimum 

performance of each optimization model.  

Deployment 

The optimization models were programmed in the Xpress interactive visual 

development environment (IVE). Although Mosel can be implemented as a standalone 

application, the modeling environment can also be extended into C, C++, Fortran, Java, 
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VB6 and .NET programming interfaces for practical application of the solver engines. No 

loss of functionality occurs when utilizing the modeling environment through callable 

libraries in other programming interfaces. This allows the models to be refined or 

reformulated without using Mosel’s native GUI. Future optimization tools will need to be 

directly integrated into the architecture of the DMM for maximum effectiveness. 

Database 

The preliminary programming has been implemented to use Microsoft Excel as a 

database interface. While it is effective in the short term, it will ultimately need to be 

unified with the programming interface that will be chosen to run the entire MSDL/web-

based platform. The established methodology and code for allowing the models to 

interact with Excel easily converts to any of the available choices for database systems. 

Reformulation of the Column Generation Model 

The Lagrangian duals from the LP relaxation are used to weight the decision 

variable coefficients of the knapsack sub-problems. The assignment and convexity 

constraints are dualized because they have a direct effect on the objective function. The 

row generation model is limited in its ability to constrain for capacity and distance 

because those constraints influence the objective through indirect control over the 

similarity scores associated with the assignments. The model could be reformulated to 

improve its capabilities in this regard. For example, capacity and distance could be 

penalized in the objective function to produce new dual variables. Additionally, if 

columns/rows represented entire work orders, distance could either be constrained within 

the knapsack problem or by performing column cuts in the master problem. Performing 

cuts to work order knapsacks resulted in an increase in the scalability over the traditional 
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formulation with vendor cuts. However, the disaggregated formulation has reduced 

control over effective capacity usage, when the capacity constraint is declared in the 

master problem or sub-problem. Although column generation extends the utility of the 

linear program to larger sizes, the penalties associated with disaggregation are significant.  

Continued pursuit of solutions to the problem through ILPs may require the model to 

forfeit robustness. Rather, future work may find nonlinear models better suited for the 

multi-criteria nature of the agile supply chain configuration problem.  

A most promising approach involves column generation as traditionally practiced 

and initially presented in this paper. The massive numbers of columns that would need to 

be generated for an agile supply chain configuration problem prevents this approach from 

performing well, as shown in the results. However, the decomposition scheme can be 

modified such that individual columns include multiple suppliers. It is unclear how this 

methodology compares to the untailored formulation, but reducing the number of 

columns is likely to improve the performance in some cases where the column-to-row 

ratio is at least 1:10 and the ratio of columns to suppliers-per-columncolumn is ~ 1:1.  

SLP Solver for Nonlinear Programs 

The principals of a nonlinear implementation of the global distance constraint 

have proven to be sound. The constraint needs to be scaled up and incorporated as a 

column generation global distance constraint. Further study of Successive Linear 

Programming will likely be fruitful, as FICO has emphasized and improved the utility of 

its SLP solver in recent years. Nonlinear programming may even yield better results than 

the established method of cuts, as the small sized problems demonstrated. 
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APPENDIX A 

XpressMP Input/Output for Traditional Formulation  

Toy Problem Data Input File  

score_matrix:[(1 1 1) 0.64 (1 1 2) 0.32 (1 1 3) 0.50 (1 1 4) 0.43 (1 1 5) 0.71 
              (1 2 1) 0.23 (1 2 2) 0.63 (1 2 3) 0.95 (1 2 4) 0.58 (1 2 5) 0.01 
              (1 3 1) 0.15 (1 3 2) 0.56 (1 3 3) 0.40 (1 3 4) 0.42 (1 3 5) 0.54 
              (2 1 1) 0.11 (2 1 2) 0.32 (2 1 3) 0.38 (2 1 4) 0.67 (2 1 5) 0.89 
              (2 2 1) 0.55 (2 2 2) 0.67 (2 2 3) 0.34 (2 2 4) 0.78 (2 2 5) 0.29 
              (2 3 1) 0.01 (2 3 2) 0.02 (2 3 3) 0.03 (2 3 4) 0.04 (2 3 5) 0.05 
              (3 1 1) 0.39 (3 1 2) 0.58 (3 1 3) 0.22 (3 1 4) 0.33 (3 1 5) 0.24 
              (3 2 1) 0.41 (3 2 2) 0.08 (3 2 3) 0.92 (3 2 4) 0.62 (3 2 5) 0.78 
              (3 3 1) 0.29 (3 3 2) 0.45 (3 3 3) 0.34 (3 3 4) 0.07 (3 3 5) 0.11] 
 
capacity: [ (1) 17 (2) 13 (3) 12 (4) 19 (5) 17 ] 
 
duration: [ (1 1) 3   (1 2) 7   (1 3) 9 
            (2 1) 11  (2 2) 10  (3 3) 0 
            (3 1) 5   (3 2) 8   (3 3) 3 ]  
       
distance_matrix:  [ (1 1) 0  (1 2) 34 (1 3) 45 (1 4) 87 (1 5) 22   

(2 1) 34 (2 2) 0  (2 3) 89 (2 4) 69 (2 5) 23 
      (3 1) 45 (3 2) 89 (3 3) 0  (3 4) 13 (3 5) 35 
      (4 1) 87 (4 2) 69 (4 3) 13 (4 4) 0  (4 5) 18 
    (5 1) 22 (5 2) 23 (5 3) 35 (5 4) 18 (5 5) 0  ] 
 
valid_serv:  [ (1) 3   (2) 2   (3) 3   ] 
 
D_max:       [ (1) 100 (2) 101 (3) 102 ] 
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Toy Problem Results Output File 

 
Begin running model 
 
 The total score (profit) is z = $5.35 
 
 Following is the assignment of SUPPLIERS to services in workorders:  
 
 
                  SUPPLIER  
 
         s1    s2    s3    s4    s5    
 
WO1 sv1   0     0     0     0     1    
WO1 sv2   0     0     1     0     0    
WO1 sv3   0     1     0     0     0    
WO2 sv1   0     0     0     0     1    
WO2 sv2   0     0     0     1     0    
WO2 sv3   0     0     0     0     0    
WO3 sv1   1     0     0     0     0    
WO3 sv2   0     0     0     1     0    
WO3 sv3   0     1     0     0     0    
 
 End running model 
 
 ===========================================  
 
 Work Order WO1  
 
 First supplier is s5 
 
 The next supplier is s3 
 
 The distance between Supplier s5 and Supplier s3 is 35 
 
    s5 <--------- 35 ---------> s3 
 
 The next supplier is s2 
 
 The distance between Supplier s3 and Supplier s2 is 89 
 
    s3 <--------- 89 ---------> s2 
 
   The total distance traveled in workorder WO1 is 124 
 
 The maximum distance allowed for workorder WO1 is 100 
 
 Eliminate supplier and rerun problem 
 
 ===========================================  
 
 Work Order WO2  
 
 First supplier is s5 
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 The next supplier is s4 
 
 The distance between Supplier s5 and Supplier s4 is 18 
 
    s5 <--------- 18 ---------> s4 
 
   The total distance traveled in workorder WO2 is 18 
 
 The maximum distance allowed for workorder WO2 is 101 
 
 ===========================================  
 
 Work Order WO3  
 
 First supplier is s1 
 
 The next supplier is s4 
 
 The distance between Supplier s1 and Supplier s4 is 87 
 
    s1 <--------- 87 ---------> s4 
 
 The next supplier is s2 
 
 The distance between Supplier s4 and Supplier s2 is 69 
 
    s4 <--------- 69 ---------> s2 
 
   The total distance traveled in workorder WO3 is 156 
 
 The maximum distance allowed for workorder WO3 is 102 
 
 Eliminate supplier and rerun problem 
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APPENDIX B 

Traditional Formulation Model Code in Mosel 

model "Supplychain_tradformulation" 
 options noimplicit 
 uses "mmxprs", "mmsystem" 
 uses "mmodbc"  !this is to gain access to the Xpress-Optimizer solver 
 
 
 parameters 
  WO  = 3 
  SERV = 3 
  SUP = 5  
  INST = 1 
  DATAFILE= 
string("GAP_"+WO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers_"+INST+".dat") 
 !OUTFILE= string("result_"+DATAFILE) 
 end-parameters 
   
 !declarations section 
declarations 
 need_to_solve: boolean 
  supplis: integer ! number of different suppliers in a work order 
  passes: integer !number of times the optimization problem needs to be solved 
before finding  
  !a solution that satisfies the distance constraint 
  
      ! There are 3 sets: suppliers, services, and workorders 
    NSUP: integer     ! Number of SUPPLI 
    SERVMAX: integer    ! Number of SERVICES 
    NWO: integer 
    
 end-declarations 
 
 initializations from DATAFILE 
  NWO NSUP as "SUP" SERVMAX as "SERV" 
 end-initializations 
  
 declarations  
   WORKORDERS = 1..NWO  
   valid_serv: array(WORKORDERS) of integer 
 end-declarations 
  
 initializations from DATAFILE 
   valid_serv 
 end-initializations 
  
declarations  
 SUPPLI = 1..NSUP 
  SERVICES = 1..SERVMAX  
   
  cn: array (WORKORDERS,SERVICES) of integer 
    
  total_distance: array(WORKORDERS) of real   
  D_max: array(WORKORDERS) of real 
   
  !scores is a parameter provided by the user in the datafile;  
  !indicates the scores for the suppliers providing a particular 
  !service in a given work order 
   
  score_matrix,SCORE: array(WORKORDERS, SERVICES, SUPPLI) of real 
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  capacity: array(SUPPLI) of integer 
   
  duration: array(WORKORDERS,SERVICES,SUPPLI) of integer 
     
  !distance matrix is a parameter and it is a symetric matrix with distances between 
pairs of suppliers 
  distance_matrix: array(SUPPLI, SUPPLI) of integer 
  formulation: integer 
  !binary decision variable that are 1 if supplier k is assigned to service j in 
workorder a 
  supplier_to_service: array (WORKORDERS, SERVICES, SUPPLI) of mpvar 
  avg_score,opt_time,objective: real 
  no_vars: integer 
  starttime: real 
  Total_profit: linctr 
  con_w: dynamic array(WORKORDERS,SERVICES) of linctr 
  con_suppli: dynamic array(SUPPLI) of linctr 
 end-declarations 
setparam("XPRS_CPUTIME",1) 
 
 initializations from DATAFILE 
    score_matrix duration capacity distance_matrix D_max 
 end-initializations 
  
 !objective function 
 Total_profit:= sum(a in WORKORDERS,j in SERVICES,k in SUPPLI) 
score_matrix(a,j,k)*supplier_to_service(a,j,k) 
 
 !constraints 
  
 ! each valid service in a work order must be assigned to a single supplier 
forall (a in WORKORDERS, j in 1..valid_serv(a)) con_w(a,j):= (sum(k in SUPPLI) 
supplier_to_service(a,j,k) = 1) 
  
!inactive services will not be considered 
 forall (a in WORKORDERS,j in valid_serv(a)+1..SERVMAX) con_w(a,j):= sum(k in SUPPLI) 
supplier_to_service(a,j,k) = 0 
 
 ! for each supplier the services assigned must not exceed the available capacity 
 forall (k in SUPPLI) con_suppli(k):= (sum (a in WORKORDERS) sum (j in SERVICES) 
duration(a,j,k)* supplier_to_service(a,j,k)) <= capacity(k) 
 
 ! Following are sign constraints 
  
 forall (a in WORKORDERS, j in SERVICES, k in SUPPLI)supplier_to_service(a,j,k) is_binary 
   
setparam("XPRS_HEURSTRATEGY",-1) 
 starttime:= gettime 
 !solve the problem 
 maximize(Total_profit) 
 opt_time:= gettime-starttime 
  
 passes:= 0 
 passes += 1 
  
 !Printing objective value to screen  
 writeln("\n Begin running model for the first pass") 
 if(getprobstat<>XPRS_OPT) then 
 writeln("\n Problem is infeasible") 
  else 
 writeln("\n The total score (profit) is z = $", getobjval) 
 end-if 
  
 !Output solution to screen as 3D matrix 
 writeln("\n Following is the assignment of SUPPLIERS to services in workorders: \n") 
 write("\n                  SUPPLIER \n\n      ") 
 forall (k in SUPPLI) write("  ", k, "   ") 
  writeln(" \n-----------------------------------------") 
 forall(a in WORKORDERS, j in SERVICES) do  
   write(strfmt(a,3,0)," sv",strfmt(j,2,0))  
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    forall(k in SUPPLI)do 
     if(j > valid_serv(a)) then write("   -  ") 
     else 
      write("   ", getsol(supplier_to_service(a,j,k))," ") 
   end-if  
    end-do 
     writeln(" ") 
 end-do 
  
 writeln("\n End running model first pass") 
 
 ! solution printing to output file  
 fopen(OUTFILE, F_APPEND)  
  writeln("\n Begin running model for the first pass") 
  if(getprobstat<>XPRS_OPT) then 
 writeln("\n Problem is infeasible") 
  else 
 writeln("\n Total profit: $", strfmt(getobjval,5,2)) 
  end-if 
  writeln("\n Following the assignment of suppliers to services in workorders: \n") 
  write("\n                  SUPPLIER \n\n       ") 
  forall (k in SUPPLI) write("  ", k, "  ") 
  writeln(" \n") 
  forall (a in WORKORDERS, j in SERVICES) do write(a," sv", j)     
  forall(k in SUPPLI) write("   ", getsol(supplier_to_service(a, j, k)),"  ") 
  writeln(" ") 
  end-do 
  
  writeln("\n End running model first pass") 
  fclose(F_APPEND) 
 graph:=IVEaddplot("Score",IVE_BLUE) 
 forall(a in WORKORDERS)do 
  WOSC:= a 
  IVEdrawpoint(graph,gettime, getobjval) 
 end-do 
  
 (! Computing total distance for all workorders 
  Look for chosen suppliers for work order a (these suppliers should be stored in arrays 
because later we will use these supplier numbers to prohibit that all of them be in a 
solution for a particular work order !) 
  
  forall (a in WORKORDERS) do 
  !writeln("\n ================== ", passes, " =================== ", passes," =======" ) 
  no_times := 0 
  supplis:= 0 
  
  total_distance(a):= 0 
  forall (j in 1..valid_serv(a)) do 
   forall(k in SUPPLI) do 
      if getsol(supplier_to_service(a,j,k)) = 1 then 
       if j = 1 then  
        
     cn(a,j):=k   
     supplis +=1 
     writeln("\n Work Order ",A," \n\n First supplier is 
",k) 
    else 
            cn(a,j):= k 
      if (cn(a,j) <> cn(a,j-1)) then  
       supplis +=1 
      end-if  
       
      writeln("\n The next supplier is ", k) 
     total_distance(a) += distance_matrix(cn(a,j-1), k) 
      writeln("\n The distance between Supplier ",cn(j-
1)," and Supplier ",k," is ", distance_matrix(cn(j-1),k)) 
      !writeln("\n    ", cn(j-1)," <--------- ", 
distance_matrix(cn(j-1),k)," ---------> ",k) 
     end-if 
    end-if  
   end-do !SUPPLI             
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  end-do !SERVICES 
   
    writeln ("\n The total distance traveled in workorder ", a," is ", total_distance(a))  
    writeln ("\n The maximum distance allowed for workorder ", a," is ", D_max(a)) 
end-do !) !work order report 
  ! average score 
    avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a)) 
    writeln("\naverage score: ",avg_score,"\n")  
  
   writeln("(", opt_time, " sec) Optimal solution: ", getobjval,"\n*  *  *  *  *  *\n") 
  objective:= getobjval 
  time_sec:= gettime-starttime 
 no_vars:= WO*SERV*SUP 
 formulation:= 1 
initializations to "mmodbc.excel:results_OUTPUT.xlsm" 
 opt_time as 'sec' !'time_sec'  
 avg_score as 'avg' !'avg_score' 
 objective as 'obj' !'objective' 
 no_vars as 'vars' !'no_vars' 
 INST as 'instance' 
 formulation as 'formulation' 
end-initializations 
 
end-model 
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APPENDIX C 

Traditional Formulation with Cuts 

model "Supplychain_tradform with cuts" 
 uses "mmxprs", "mmsystem" 
 uses "mmodbc", "mmive" !this is to gain access to the Xpress-Optimizer solver 
 
(!declarations 
 WO,SERV,SUP: integer  
end-declarations 
  instance =  
 end-parameters !) 
 parameters 
  NWO = 3 
  SERV= 3 
  SUP = 5 
  INST= 1 
  dist_red_goal= 0.50 
  known_threshold= true 
  DATAFILE= 
"column_generation_data.dat"!string("GAP_"+WO+"_workorders_"+SERV+"_services_"+SUP+"_supp
liers_"+INST+".dat") 
 OUTFILE= string("result_"+DATAFILE) 
 formulation=1 
 end-parameters 
  !Modify Optimizer control parameter MAXNODE 
!Modify Optimizer control parameter LPITERLIMIT 
setparam("XPRS_LPITERLIMIT",100000) 
 declarations 
    
  need_to_solve: boolean 
  passes: integer !number of times the optimization problem needs to be solved  
  ! before finding a solution that satisfies the distance constraint 
 ! There are 3 sets: suppliers, services, and workorders 
 ! Without lost of generality we are assuming equal number of services in each 
workorder 
    NSUP: integer       ! Number of SUPPLI 
    SERVMAX: integer    ! Number of SERVICES 
   ! NWO: integer 
    
 end-declarations 
 
 !initializations from DATAFILE 
 ! NWO NSUP SERVMAX 
 !end-initializations 
  
declarations  
   WORKORDERS = 1..NWO  
   valid_serv: array(WORKORDERS) of integer 
end-declarations 
  
initializations from DATAFILE 
   valid_serv 
end-initializations 
  
declarations  
 SUPPLI = 1..SUP 
  SERVICES = 1..SERV 
   
  cn: array (WORKORDERS,SERVICES) of integer 
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  !valid_serv: array(WORKORDERS) of integer !this array will let us produce  
  !some constraints just for valid services in each workorder 
   
  total_distance: array(WORKORDERS) of integer  
  D_max: array(WORKORDERS) of real 
   
  score_matrix,SCORE: array(WORKORDERS, SERVICES, SUPPLI) of real 
   
  !capacities of each supplier is also a parameter provided by the user 
  capacity: array(SUPPLI) of integer 
   
  !capacities required by services in different work orders 
  ! we are assuming all suppliers will take the same hours in completing 
  !a given service in a given work order therefore supplier index is not there 
  duration: array(WORKORDERS,SERVICES,SUPPLI) of integer 
     

!distance matrix is a parameter and it is a symetric matrix with distances between 
pairs of suppliers 

  distance_matrix: array(SUPPLI, SUPPLI) of integer 
   

!binary decision variable that are 1 if supplier k is assigned to service j in 
workorder a 

  supplier_to_service: array (WORKORDERS, SERVICES, SUPPLI) of mpvar 
  iteration: integer 
 end-declarations 
 
  
 !Parameters read from a datafile 
 initializations from DATAFILE 
    score_matrix duration capacity distance_matrix valid_serv!D_max as "D_max" 
 end-initializations 
 
!Modify Optimizer control parameter LPITERLIMIT 
!setparam("XPRS_LPITERLIMIT",1000) 
!Modify Optimizer control parameter CPUTIME 
!setparam("XPRS_CPUTIME",0) 
 
 !objective function 
  Total_profit:= sum(a in WORKORDERS,j in SERVICES,k in SUPPLI) 
     score_matrix(a,j,k)*supplier_to_service(a,j,k) 
 
 !constraints 
  
 forall(a in WORKORDERS, j in 1..valid_serv(a)) con_w(a,j):= (sum(k in SUPPLI) 
supplier_to_service(a,j,k) = 1) 
  !inactive services will not be considered 
 forall(a in WORKORDERS,j in valid_serv(a)+1..SERV) con_w(a,j):= sum(k in SUPPLI)   

supplier_to_service(a,j,k) = 0 
 
 ! each supplier the services assigned must not exceed the supplier capacity 
 forall(k in SUPPLI) con_suppli(k):= (sum (a in WORKORDERS) sum (j in SERVICES) 

 duration(a,j,k)* supplier_to_service(a,j,k)) <= capacity(k) 
 
  
 forall(a in WORKORDERS,j in SERVICES,k in SUPPLI) supplier_to_service(a,j, k) is_binary  
  
 
 starttime:= gettime 
 !solve the problem 
 maximize(Total_profit) 
 opt_time:= gettime-starttime 
  
! writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval) 
 passes:= 1 
 iteration:= 1 
 ! Printing objective value to screen  
 writeln("\n Begin running model for the first pass") 
 if(getprobstat<>XPRS_OPT) then 
 writeln("\n Problem is infeasible") 
 else 
 writeln("\n The total score (profit) is z = $", getobjval) 
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 end-if 
  
 !Output solution to screen as 3D matrix 
 writeln("\n Following is the assignment of SUPPLIERS to services in workorders: \n") 
 write("\n                  SUPPLIER \n\n      ") 
 forall (k in SUPPLI) write("  ", k, "   ") 
  writeln(" \n-----------------------------------------") 
 forall(a in WORKORDERS, j in SERVICES) do  
   write(strfmt(a,3,0)," sv",strfmt(j,2,0))  
    forall(k in SUPPLI)do 
     if(j > valid_serv(a)) then write("   -  ") 
     else 
      write("   ",getsol(supplier_to_service(a,j,k)),"  ") 
   end-if  
    end-do 
     writeln(" ") 
 end-do 
  
 writeln("\n End running model first pass") 
 
 ! solution printing to output file too 
 fopen(OUTFILE, F_APPEND)  
  writeln("\n Begin running model for the first pass") 
  if(getprobstat<>XPRS_OPT) then 
 writeln("\n Problem is infeasible") 
  else 
 writeln("\n Total profit: $", strfmt(getobjval,5,2)) 
  end-if 
  writeln("\n Following the assignment of suppliers to services in workorders: \n") 
  writeln("\n                  SUPPLIER \n\n       ") 
  forall (k in SUPPLI) write("  ", k, "  ") 
  writeln(" \n") 
  forall (a in WORKORDERS, j in SERVICES) do write(a," sv", j)     
  forall(k in SUPPLI) write("   ", getsol(supplier_to_service(a, j, k)),"  ") 
  writeln(" ") 
  end-do 
 !) 
  writeln("\n End running model first pass") 
  fclose(F_APPEND) 
 !graph:=IVEaddplot("Score",IVE_BLUE) 
 !forall(a in WORKORDERS)do    ! code to plot iteration progress 
!  WOSC:= a 
!  IVEdrawpoint(graph,gettime, getobjval) 
! end-do 
  
 (! Computing total distance for all workorders 
  Look for chosen suppliers for work order a (these suppliers should be stored in arrays 
such that they can be used to prohibit recurrence of the same combination of suppliers 
for a particular work order !) 
  
if known_threshold = false then  
  initializations from DATAFILE 
   D_max 
  end-initializations 
  else 
  initializations from DATAFILE 
   D_max as "D_max50" 
  end-initializations 
end-if 
   
    
repeat 
 need_to_solve:= false 
 overall_distance:= 0 
 IVEerase  !First erase the canvas 
  forall (a in WORKORDERS) do 
  writeln("\n ================== ", passes, " ==================== ", passes," =======" ) 
  no_times := 0 
  supplis:= 0 
  
  total_distance(a) := 0 
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  forall (j in 1..valid_serv(a)) do 
   forall(k in SUPPLI) do 
      !this only happens once 
      if getsol(supplier_to_service(a,j,k)) = 1 and no_times = 0 then  
     column_number_1:=k 
     cn(a,j):=k  !cn0:=k 
     supplis +=1 
     !writeln("\n Work Order ", a," \n\n First supplier is ", k) 
     no_times += 1  
     wo += 1 
    !this happens twice in a problem where the work order with the  
   largest number of valid services is 3 
    elif getsol(supplier_to_service(a,j,k)) = 1 and no_times >= 1 then  
      column_number_2:=k 
      if (column_number_1 <> column_number_2) then  
       supplis +=1 
      end-if  
      if (no_times = 1) then cn1:=k 
      elif(no_times = 2)then cn2:=k 
      end-if 
      cn(a,j):= k 
      writeln("\n The next supplier is ", k) 
      no_times += 1  
     total_distance(a) +=  

distance_matrix(column_number_1, k) 
      writeln("\n The distance between Supplier ", 
column_number_1, " and Supplier ", k, " is ", distance_matrix(column_number_1, k)) 
      writeln("\n    ", column_number_1," <--------- ", 
distance_matrix(column_number_1, k)," ---------> ", k) 
      column_number_1 := k 
    end-if  
   end-do !SUPPLI             
  end-do !SERVICES 
  !work order report 
    writeln ("\n The total distance traveled in workorder ", a," is ", total_distance(a))  
    writeln ("\n The maximum distance allowed for workorder ", a," is ", D_max(a)) 
 
 
 !distance threashold test 
    if (total_distance(a)>D_max(a)) then 
     writeln("\n|**|$$|** ELIMINATE SUCH COMBINATION OF SUPPLIERS & RERUN  

PROBLEM") 
      
     if known_threshold then 
      need_to_solve:=true 
     end-if 
         
     !cut formulation  
     
      sum(j in 1..valid_serv(a)) supplier_to_service(a,j,cn(a,j))<= no_times-1 !  
       
   ! else need_to_solve:=false 
   
     
    overall_distance+= total_distance(a) 
     
   if passes = 1 then  
     opt_dist+= total_distance(a) 
     first_bound(a):= total_distance(a) 
   end-if 
    
      
     !elif total_distance(a)< best_bound(a) then 
     ! best_bound(a):= total_distance(a) 
       
   if not known_threshold then 
      if overall_distance > ((1-dist_red_goal)*opt_dist) then !  
        need_to_solve:= true 
        ! 
        !end-if 
       !if(total_distance(a)>D_max(a)) then 
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       ! move_bound:= false  
        
     !  end-if 
       
       elif overall_distance < ((1-dist_red_goal)*opt_dist) then 
      writeln("if test") 
      need_to_solve:= false 
      ! end-if   
     
     if (total_distance(a)<=D_max(a)) and total_distance(a) >= 
(0.5*first_bound(a)) then 
      D_max(a)-= 1 
     end-if 
   end-if 
   end-if 
     
     !if overall_distance <  
      
    !if total_distance(a) > 0.25*opt_dist(a) then ! and total_distance(a) < 
best_bound(a) then  
      
    !end-if 
   
  end-do !end work order report  
    !average score 
     
    !avg_score:= getobjval/(sum(a in WORKORDERS)NSERV(a)) 
    !writeln("\naverage score: ",avg_score,"\n")  
  !rerun original problem w/cuts if is needed for at least one work order after new  

constraints are added 
  if (need_to_solve=true) then 
  !solve the problem 
   
  !minimize(XPRS_LIN,Total_profit) 
   maximize(Total_profit) 
   passes+= 1 
   !IVEdrawpoint(graph,gettime, getobjval) 
   writeln("\n /////////////////////////\n\n Begin running model with cuts") 
     

if(getprobstat<>XPRS_OPT) then 
    writeln("\n Problem is infeasible") 
    else 
    writeln("\n The total score (profit) is z = $", getobjval) 
    end-if 
     

writeln("\n Following is the assignment of SUPPLIERS to services in  
workorders: \n") 

   write("\n                  SUPPLIER \n\n       ") 
   forall (k in SUPPLI) write("  ", k, "  ") 
   writeln(" \n") 
    

forall (a in WORKORDERS, j in SERVICES) do  
write(a," sv", j)     

     
forall(k in SUPPLI) write("   ", getsol(supplier_to_service(a, j,  

   k)),"  ") 
     writeln(" ") 
   end-do 
    

writeln("\n End running model") 
   fopen(OUTFILE, F_APPEND)  
     if(getprobstat<>XPRS_OPT) then 
    writeln("\n Problem is infeasible") 
   else 
    writeln("\n Total profit: $", strfmt(getobjval,5,2)) 
   end-if 
     
   writeln("\n Following the assignment of suppliers to services in  

workorders: \n") 
    writeln("\n                  SUPPLIER \n\n       ") 
    forall (k in SUPPLI) write("  ", k, "  ") 
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    writeln(" \n") 
    forall(a in WORKORDERS, j in SERVICES) do write(a," sv", j)  
   
    forall(k in SUPPLI)  
     write("   ", getsol(supplier_to_service(a, j, k)),"  ") 
     writeln(" ") 
    end-do 
  
    writeln("\n End running model") 
   fclose(F_APPEND) 
   !) 
   dist_reduction:= (1-(overall_distance/opt_dist))*100 
     writeln("distance reduction: ",dist_reduction,"%") 
     end-if 
   writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval) 
   !writeln(" iteration: ",iteration) 
 
     !graph:=IVEaddplot("agv_score(dist_reduction)",IVE_RED)  !Create a graph 
 until (need_to_solve=false) 
  ! average score 
    avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a)) 
    !!writeln("\naverage score: ",avg_score,"\n")  
writeln("beginning distance: ",opt_dist) 
writeln("ending distnance:   ",overall_distance) 
dist_reduction:= (1-(overall_distance/opt_dist))*100 
writeln("distance reduction: ",dist_reduction,"%") 
  objective:= getobjval 
  time_sec:= gettime-starttime 
 no_vars:= NWO*SERV*SUP 
initializations to "mmodbc.excel:results_OUTPUT.xlsm" 
 time_sec as 'time_s' !'time_sec'  
 avg_score as 'av' !'avg_score' 
 objective as 'objval' !'objective' 
 no_vars as 'num_vars' !'no_vars' 
 INST as 'inst' 
 formulation as 'fml' 
 dist_reduction as "dist_reduction" 
end-initializations 
 
if not known_threshold then 
 initializations to DATAFILE 
  D_max as "D_max10" 
 end-initializations 
end-if 
 
end-model 
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APPENDIX D 

Quadradically Constrained Nonlinear Optimization Model  

model "Supplychain_tradform NLP" 
 uses "mmxprs", "mmsystem" 
 uses "mmodbc", "mmive","mmnl" !this is to gain access to the Xpress-Optimizer solver 
 
parameters 
  NWO  = 3 
  SERV= 3 
  SUP = 5 
  INST= 1 
  DATAFILE="column_generation_data.dat"! 
string("GAP_"+WO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers_"+INST+".dat") 
 OUTFILE= string("result_"+DATAFILE) 
 formulation=1 
 end-parameters 
  
! XSLPcommand(A: string) 
!declarations section 
declarations 
   
  !next 3 variables are useful for computation of distance in a workorder  
  no_times: integer ! similar to max # of services in work order for small example 
  ! with up to 3 services in a work order the max value that no_times is 3 
  column_number1 : integer 
  column_number2 : integer 
 
    ! variables to record the id's of suppliers involved in a given work order 
  cn_0 : integer 
  cn_1 : integer 
  cn_2 : integer 
   
need_to_solve: boolean 
   
  supplis: integer ! number of different suppliers in a work order 
  passes: integer !number of times the optimization problem needs to be solved  
  ! before finding a solution that satisfies the distance constraint 
  
 ! There are 3 sets: suppliers, services, and workorders 
  
 NSUP: integer     ! Number of SUPPLI 
     SERVMAX: integer    ! Number of SERVICES 
     !NWO: integer 
    
 end-declarations 
 
 !initializations from DATAFILE 
 ! NWO SUP SERV 
 !end-initializations 
  
 declarations  
   WORKORDERS = 1..NWO  
   valid_serv: array(WORKORDERS) of integer 
 end-declarations 
  
 initializations from DATAFILE 
   valid_serv  
 end-initializations 
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declarations  
 SUPPLI = 1..SUP 
  SERVICES = 1..SERV  
   
  cn: array (WORKORDERS,SERVICES) of integer 
  !valid_serv : array(WORKORDERS) of integer !this array will let us produce  
  !some constraints just for valid services in each workorder 
   
  !invalid_serve: array(WORKORDERS) of integer ! for a particular service  
  ! assignments should have an equal to 0 RHS for these invalid services 
     
  total_distance: array(WORKORDERS) of integer   
  D_max: array(WORKORDERS) of integer 
  wo_distance: array(WORKORDERS) of integer 
   
  score_matrix,SCORE: array(WORKORDERS, SERVICES, SUPPLI) of real 
   
  !capacities of each supplier is also a parameter provided by the user 
  capacity: array(SUPPLI) of integer 
   
  !capacities required by services in different work orders 
  ! we are assuming all suppliers will take the same hours in completing 
  !a given service in a given work order therefore supplier index is not there 
  duration: array(WORKORDERS,SERVICES) of integer 
     
  !distance matrix is a parameter and it is a symetric matrix with distances between 
pairs of suppliers 
  distance_matrix: array(SUPPLI, SUPPLI) of integer 
   
  !binary decision variable that are 1 if supplier k is assigned to service j in 
workorder a 
  supplier_to_service: array (WORKORDERS, SERVICES, SUPPLI) of mpvar 
  iteration: integer 
  !con_m:  
  con_suppli: array (SUPPLI) of linctr 
  con_w: array(WORKORDERS,SERVICES) of linctr!genctr 
  con_m: array(WORKORDERS) of nlctr 
  profit: mpvar 
  Total_profit: linctr! gexp 
 end-declarations 
 
 !Things that we will read from a datafile 
 initializations from DATAFILE 
    score_matrix duration as "capacities" capacity as "cap_sup" distance_matrix  
 end-initializations 
 !Modify Optimizer control parameter LPITERLIMIT 
!setparam("XPRS_LPITERLIMIT",100) 
  
! forall(a in WORKORDERS) SLPDATA("IV",wo_distance(a),300) 
 
 !objective function 
 Total_profit:= sum(a in WORKORDERS,j in SERVICES,k in SUPPLI)  

score_matrix(a,j,k)*supplier_to_service(a,j,k) 
 
profit = Total_profit 
profit is_free 
 
!constraints 
  
forall (a in WORKORDERS, j in 1..valid_serv(a)) con_w(a,j):=  

(sum(k in SUPPLI) supplier_to_service(a,j,k) = 1) 
 !inactive services will not be considered 
 forall (a in WORKORDERS,j in valid_serv(a)+1..SERVMAX) con_w(a,j):=  

 sum(k in SUPPLI) supplier_to_service(a,j,k) = 0 
(!  if invalid_serve(a) <> 0 then 
   forall (j in valid_serv(a)+1..invalid_serve(a)) con_w(a,j):=  

(sum(k in SUPPLI) supplier_to_service(a,j, k) = 0) 
  end-if 
 end-do  
 !) 
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 ! forall (a in WORKORDERS, j in SUPPLI) con_w(a,j):= (sum(k in SUPPLI) 
supplier_to_service(a,j,k) = 1) 
  
 ! Second constraint is for each supplier the services selected (or assigned) must not  

exceed the supplier capacity 
 forall (k in SUPPLI) con_suppli(k):= (sum (a in WORKORDERS) sum (j in SERVICES)  

duration(a,j)* supplier_to_service(a,j,k)) <= capacity(k) 
  
 forall (a in WORKORDERS, j in SERVICES, k in SUPPLI) supplier_to_service(a,j,k) 
is_binary    
  
!quadratic distance constraint 
 forall (a in WORKORDERS) con_m(a):=  

(sum(k,l in SUPPLI)distance_matrix(k,l)*sum(j in 1..valid_serv(a)-1) 
supplier_to_service(a,j,k)*supplier_to_service(a,j+1,l)) <= D_max(a) 

 
!setparam ("xslp_verbose", true) 
!setparam ("xslp_log", 0) 
 
 starttime:= gettime 
 !solve the problem 
 !SLPloadprob(profit) 
 !SLPmaximize(profit) 
 
 maximize(Total_profit) 
  
opt_time:= gettime-starttime 
  
! writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval) 
  
passes:= 1 
iteration:= 1 
 
! Printing objective value to screen  
  writeln("\n Begin running model for the first pass") 
! if(getprobstat<>XPRS_OPT) then 
! writeln("\n Problem is infeasible") 
! else 
 writeln("\n The total score (profit) is z = $", getobjval) 
 !end-if 
  
 !Output solution to screen as 3D matrix 
 writeln("\n Following is the assignment of SUPPLIERS to services in workorders: \n") 
 write("\n                  SUPPLIER \n\n      ") 
 forall (k in SUPPLI) write("  ", k, "   ") 
  writeln(" \n-----------------------------------------") 
 forall(a in WORKORDERS, j in SERVICES) do  
   write(strfmt(a,3,0)," sv",strfmt(j,2,0))  
    forall(k in SUPPLI)do 
     if(j > valid_serv(a)) then write("   -  ") 
     else 
      write("   ",getsol(supplier_to_service(a,j,k)),"  ") 
   end-if  
    end-do 
     writeln(" ") 
 end-do 
  
 writeln("\n End running model first pass") 
(! 
 ! solution printing to output file too 
 fopen(OUTFILE, F_APPEND)  

  writeln("\n Begin running model for the first pass") 
 !if(getprobstat<>XPRS_OPT) then 
 ! writeln("\n Problem is infeasible") 
 ! else 
 writeln("\n Total profit: $", strfmt(getobjval,5,2)) 
 ! end-if 
  writeln("\n Following the assignment of suppliers to services in workorders:  

  \n") 
  writeln("\n                  SUPPLIER \n\n       ") 
  forall (k in SUPPLI) write("  ", k, "  ") 
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  writeln(" \n") 
   
  forall (a in WORKORDERS, j in SERVICES) do write(a," sv", j)     
  forall(k in SUPPLI) write("   ",getsol(supplier_to_service(a, j, k)),"  ") 
  writeln(" ") 
  end-do 
  
  writeln("\n End running model first pass") 

  fclose(F_APPEND) 
 graph:=IVEaddplot("Score",IVE_BLUE) 
 forall(a in WORKORDERS)do 
  WOSC:= a 
  IVEdrawpoint(graph,gettime, getobjval) 
 end-do 
 !) 
 (! Computing total distance for all workorders 
Look for chosen suppliers for work order a (these suppliers should be stored in arrays 
such that they can be used to prohibit recurrence of specific combination for a 
particular work order !) 
  
  
 !initializations from "raw:shmem" 
 ! D_max 
 !end-initializations 
 
repeat 
 !SLPglobal 
   writeln("\n ============== ", passes, " ===================== ", passes," 
===========" ) 
 need_to_solve:= false 
  forall (a in WORKORDERS) do 
  writeln("\n********************* Work Order",a," ******************\n") 
  no_times := 0 
  supplis:= 0 
 maximize(Total_profit) 
  total_distance(a) := 0 
!DumpStack 
 !total_distance(a):= 

(sum(k,l in SUPPLI)distance_matrix(k,l)*sum(j in 1..valid_serv(a)-1) 
supplier_to_service(a,j,k)*supplier_to_service(a,j+1,l)) 

   
forall(j in 1..valid_serv(a)) do 

   forall(k in SUPPLI) do 
      !this only happens once 
      if getsol(supplier_to_service(a,j,k)) = 1 and j <= 1 then  
     column_number_1:=k 
     cn(a,j):=k  !cn0:=k 
     supplis +=1 
     writeln("      service ",j,": supplier ", k) 
     no_times += 1  
     wo += 1 
    !this happens twice in a problem where the work order with the  

 largest number of valid services is 3 
    elif getsol(supplier_to_service(a,j,k)) = 1 and j >= 1 then  
      column_number_2:=k 
      if (column_number_1 <> column_number_2) then  
       supplis +=1 
      end-if  
       

if (no_times = 1) then cn1:=k 
      elif(no_times = 2)then cn2:=k 
      end-if 
       

cn(a,j):= k 
      writeln("\n      service ",j,": supplier ", k) 
      no_times += 1  
            
    total_distance(a)+=distance_matrix(column_number_1, k) 
      
      writeln("\n The distance between Supplier ", 
column_number_1, " and Supplier ", k, " is ", distance_matrix(column_number_1, k)) 
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      writeln("\n    ", column_number_1," <--------- ", 
distance_matrix(column_number_1, k)," ---------> ", k) 
      column_number_1 := k 
    end-if  
   end-do !SUPPLI             
  end-do !SERVICES 
    !work order report 
    writeln ("\n The total distance traveled in workorder ", a," is ", total_distance(a))  
    writeln ("\n The maximum distance allowed for workorder ", a," is ", D_max(a)) 
 
 
 !distance threashold test 
    if total_distance(a).sol>= 100 then 
     writeln("\n|**|$$|** ELIMINATE SUCH COMBINATION OF SUPPLIERS & RERUN  

PROBLEM") 
     need_to_solve:=true 
    end-if 
 !end-do    
     !cut formulation  
     
      sum(j in 1..valid_serv(a)) supplier_to_service(a,j,cn(a,j))<= no_times-1     
   
   ! else need_to_solve:=false 
   ! end-if      ! this is for larger problems 
   ! D_max(a):= total_distance(a) - 1 
  end-do !end work order report  
     
    !average score 
    avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a)) 
     
  writeln("\naverage score: ",avg_score,"\n")  
   
    !rerun original problem w/cuts if is needed for at least one work order after new  

constraints are added 
   
    if (need_to_solve=true) then 
  !solve the problem  
  !forall (a in WORKORDERS) con_m(a):=  

(sum(k,l in SUPPLI)distance_matrix(k,l)*sum(j in 1..NSERV(a)-1) 
   supplier_to_service(a,j,k)*supplier_to_service(a,j+1,l)) <= D_max(a) 

 
  maximize(Total_profit) 
   passes+= 1 
   !IVEdrawpoint(graph,gettime, getobjval) 
   writeln("\n /////////////////////////\n\n Begin running model with cuts") 
     

if(getprobstat<>XPRS_OPT) then 
    writeln("\n Problem is infeasible") 
    else 
    writeln("\n The total score (profit) is z = $", getobjval) 
    end-if 
 
    writeln("\n Following is the assignment of SUPPLIERS to services in  

 workorders: \n") 
    write("\n                  SUPPLIER \n\n       ") 
    

forall (k in SUPPLI) write("  ", k, "  ") 
   writeln(" \n") 
    

forall (a in WORKORDERS, j in SERVICES) do  
write(a," sv", j)     

     
forall(k in SUPPLI)write(" ",getsol(supplier_to_service(a,j,k)), 

   " ") 
      

writeln(" ") 
   end-do 
    

writeln("\n End running model") 
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fopen(OUTFILE, F_APPEND)  
     if(getprobstat<>XPRS_OPT) then 
    writeln("\n Problem is infeasible") 
   else 
    writeln("\n Total profit: $", strfmt(getobjval,5,2)) 
   end-if 
     
   writeln("\n Following the assignment of suppliers to services in  

workorders: \n") 
    writeln("\n                  SUPPLIER \n\n       ") 
     

forall (k in SUPPLI) write("  ", k, "  ") 
     

writeln(" \n") 
     

forall (a in WORKORDERS, j in SERVICES) do  
write(a," sv", j)     

     
forall(k in SUPPLI)  

     
write("   ", getsol(supplier_to_service(a, j, k)),"  ") 

    writeln(" ") 
    end-do 
  
   writeln("\n End running model") 
   fclose(F_APPEND) 
    
 end-if 
   writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval) 
   writeln(" iteration: ",iteration) 
  
 until need_to_solve=false 
   
    ! average score 
    avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a)) 
    !!writeln("\naverage score: ",avg_score,"\n")  
 
  objective:= getobjval 
  time_sec:= gettime-starttime 
  no_vars:= NWO*SERV*SUP 
 
initializations to "mmodbc.excel:results_OUTPUT.xlsm" 
 time_sec as 'sec' !'time_sec'  
 avg_score as 'avg' !'avg_score' 
 objective as 'obj' !'objective' 
 no_vars as 'vars' !'no_vars' 
 INST as 'instance' 
 formulation as 'formulation' 
end-initializations 
!) 
!) 
end-model  
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APPENDIX E 

Column Generation Master Model 

model "column_generation_formulation" 
uses "mmxprs", "mmsystem","mmjobs", "mmive"; !gain access to the Xpress-Optimizer solver 
 !uses  "mmnl"; 
!optional parameters section 
parameters 
 NWO = 10 
  SERV= 10 
  SUP = 50 
  INST= 1 
  DATAFILE= 
string("GAP_"+NWO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers.dat")!_"+INST+".dat") 
 
end-parameters 
declarations 
 WORKORDERS = 1..NWO 
 SERVICES= 1..SERV 
 SUPPLI = 1..SUP 
 NCOLS: array(SUPPLI) of integer 
 price: real 
end-declarations 
 
forward procedure column_gen 
!forward function column_knapsack(capacities:array(WORKORDERS,SERVICES) of integer, 
!       cap_sup: array(SUPPLI) of integer, 
!      
 initialsolution:array(WORKORDERS,SERVICES,SUPPLI) of integer):integer 
forward function supplier_knapsack(SCORE_DUAL:array(WORKORDERS,SERVICES)of real,  
       sup_scores: 
array(WORKORDERS,SERVICES) of real,  
      
 capacities:array(WORKORDERS,SERVICES,SUPPLI) of integer, 
       capctr: integer, 
       xbest:array(WORKORDERS,SERVICES) of 
integer, 
       !K: integer, 
       SUP_DUAL: real, 
       valid_serv: array(WORKORDERS) of 
integer):real 
forward procedure optimization_report 
forward procedure optimization 
forward procedure generate_random_cols 
!Modify Optimizer control parameter CPUTIME 
setparam("XPRS_CPUTIME",1) 
declarations 
  !next 3 variables are useful for distance computation 
  !no_times : integer 
  !column_number1 :integer 
  !column_number2 : integer 
  !cn_0,cn_1,cn_2: integer 
  !need_to_solve: boolean 
  valid_serv: array(WORKORDERS) of integer 
  capacities: array(WORKORDERS,SERVICES,SUPPLI) of integer       
 score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real 
  cap_sup: array(SUPPLI) of integer         !      Max capacity per supplier 
  !dual_record: array(way,WORKORDERS,SERVICES)of real 
  xbest: array(WORKORDERS,SERVICES) of integer 
  SCORE_DUAL: array(WORKORDERS,SERVICES)of real 
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 !initialsolution: array(WORKORDERS,SERVICES,SUPPLI) of integer 
 !sup_scores: array(WORKORDERS,range) of real 
 pass: integer 
 way_selector: array(SUPPLI,range) of mpvar 
 way_matrix: array(SUPPLI,range,WORKORDERS,range)of integer   
 xway: integer 
  way_score: array(SUPPLI,range) of real 
     RHS: array(WORKORDERS,SERVICES) of real 
     EPS = 1e-6                            ! Zero tolerance  
  !total_distance:  real 
  !D_max: array(WORKORDERS)of real 
   
  score: real 
  distance_matrix: array(SUPPLI,SUPPLI) of integer  
  Grand_Total: linctr 
     way_ctr: array(SUPPLI)of linctr 
     assignment: array(WORKORDERS,range) of linctr 
   supplier: array(SUPPLI)of real 
    starttime: real 
     max_supplier: integer 
     K: integer 
      Column_knapsack: Model 
      Supplier_knapsack: Model !mpproblem  
    SUP_DUAL: real 
     PRICE_DUAL,pricing_prob: array(SUPPLI) of real 
   new_column: basis 
  iter: integer 
  col_gen_break: array(SUPPLI) of integer 
  scores: array(WORKORDERS,range,SUPPLI) of real 
  durations: array(WORKORDERS,range,SUPPLI) of integer 
   
end-declarations 
 
starttime:=gettime 
 
initializations from DATAFILE 
    valid_serv as "NSERV"  ! distance_matrix D_max! 
    score_matrix as "SCORE" 
    cap_sup as "CAP" capacities as "duration" 
end-initializations 
 
forall(k in SUPPLI) NCOLS(k):=0 
 
forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)do 
 duration(a,j,k):= capacities(a,j,k) 
end-do 
 
forall(a in WORKORDERS,j in 1..valid_serv(a))do 
 forall(k in SUPPLI) do 
  scores(a,j,k):= score_matrix(a,j,k)  
  !write(scores(a,j,k)," ")  
 end-do 
 !writeln 
end-do 
 
generate_random_cols 
generate_random_cols 
 
setparam("XPRS_verbose",true) 
 
res:= compile (" ","Supplier_knapsack.mos","shmem:bim") 
load (Supplier_knapsack, "shmem:bim") 
 
forall(k in SUPPLI) way_ctr(k):= sum(b in 1..NCOLS(k))way_selector(k,b) = 1 
!asssignment constraints 
forall(a in WORKORDERS, j in 1..valid_serv(a)) assignment(a,j):=  

(sum(k in SUPPLI)sum(b in 1..NCOLS(k))way_matrix(k,b,a,j)*way_selector(k,b)) = 1 
 
forall(a in WORKORDERS, j in valid_serv(a)+1..SERV) potato(a,j):=  

(sum(k in SUPPLI)sum(b in 1..NCOLS(k))way_matrix(k,b,a,j)*way_selector(k,b)) = 0 
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! way score calculation   
forall(k in SUPPLI,b in 1..NCOLS(k))way_score(k,b):=  

sum(a in WORKORDERS,j in 1..valid_serv(a))way_matrix(k,b,a,j)*scores(a,j,k)  
 
! Objective: maximize total value 
Grand_Total:= sum(k in SUPPLI,b in 1..NCOLS(k)) way_selector(k,b)*way_score(k,b)   
 
 column_gen 
 
maximize(XPRS_LIN,Grand_Total) 
 
write("\n\n      ") 
forall(k in SUPPLI,b in 1..NCOLS(k))do 
 if(way_selector(k,b).sol = 1 and way_score(k,b) > 0)then 
  write("(",k,") ") 
 end-if 
end-do 
 
write("\n----------------------------\n") 
forall(a in WORKORDERS,j in SERVICES)do  
 write("sv ",j) 
 forall(k in SUPPLI)do 
  write(" | ") 
  forall(b in 1..NCOLS(k))do 
   if(way_selector(k,b).sol = 1 and way_score(k,b) > 0)then 
    write(way_matrix(k,b,a,j))  
   end-if 
  end-do 
 end-do 
  

write(" = ",RHS(a,j)) 
 write("\n") 
end-do 
 
forall(k in SUPPLI,b in 1..NCOLS(k)) do  
 if way_selector(k,b).sol = 1 then  
  write(k,"(",b,") ")  
 end-if 
end-do 
 
writeln("\nobjective value: ",getobjval)  
write("\nComputation time: ", gettime-starttime," sec") 
 
!************************************************************************ 
!  Column generation loop ~ MASTER PROBLEM                           
!************************************************************************ 
procedure column_gen 
  defcut:=getparam("XPRS_CUTSTRATEGY") ! Save setting of `CUTSTRATEGY'  
  setparam("XPRS_CUTSTRATEGY", 0)      ! Disable automatic cuts: MIP 
  setparam("XPRS_PRESOLVE", 0)         ! Switch presolve off: disable  
  setparam("zerotol", EPS)             ! Set comparison tolerance of Mosel 
 
iter:=0 
repeat  
 iter+=1 
  if iter > 1 then 
  maximize(XPRS_LIN,Grand_Total) 
  savebasis(new_column) 
 
 optimization 
  
 !optimization_report 
 end-if 
 writeln("\n\n           >  >  ~  column generation loop pass ",iter,"  ~  <  <\n") 
  
 ! supplier column generation loop 
 forall(k in SUPPLI)do 
    
  if pricing_prob(k) = 0 and iter > 2 then 
   !writeln(pricing_prob(k)) 
   col_gen_break(k):= 1 
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  else 
   NCOLS(k)+=1 
   K:= k 
   capctr:= cap_sup(k) 
   forall(a in WORKORDERS,j in SERVICES)do  
    sup_scores(a,j):= score_matrix(a,j,k) 
   end-do 
   !writeln("SUP_SCORES",sup_scores) 
   SUP_DUAL:= PRICE_DUAL(k)   
   price:= 
supplier_knapsack(SCORE_DUAL,sup_scores,capacities,capctr,xbest,SUP_DUAL,valid_serv) 
    
   writeln("price: ",price) 
   pricing_prob(k):= price 
   create(way_selector(k,NCOLS(k))) 
   forall(a in WORKORDERS,j in 1..valid_serv(a)) do 
    way_matrix(k,NCOLS(k),a,j):= xbest(a,j) 
    assignment(a,j)+=  
     way_matrix(k,NCOLS(k),a,j)*way_selector(k,NCOLS(k)) 
   end-do 
   way_selector(k,NCOLS(k)) is_binary  
   way_ctr(k)+= way_selector(k,NCOLS(k)) 
   way_score(k,NCOLS(k)):= sum(a in WORKORDERS,j in 1..valid_serv(a)) 

    way_matrix(k,NCOLS(k),a,j)*scores(a,j,k)  
    
   Grand_Total+= way_selector(k,NCOLS(k))*way_score(k,NCOLS(k)) 
    
  end-if 
    
 end-do   ! SUPPLIER column gen loop 
  
 ! print new columns 
!write("\n\n         KNAPSACK COLUMNS \n        ") 
!forall (k in SUPPLI) write(k, "   ") 
!forall(a in WORKORDERS,j in 1..valid_serv(a)) do  
! write("\nsv ",j,"  ") 
! forall(k in SUPPLI)do  
!  write("| ") 
!  write(way_matrix(k,NCOLS(k),a,j)," ")  
! end-do 
!end-do 
!writeln 
 
! if iter >= 100 then  
!  break  
! end-if 
  
!generate_random_cols 
if iter > 1 then 
savebasis(new_column) 
  loadprob(Grand_Total) 
  if sum(k in SUPPLI)col_gen_break(k) >= SUP then ! and sum(a in WORKORDERS,j in 
1..valid_serv(a))RHS(a,j) >= 8 then 
   writeln("no profitable column found.\n") 
   break 
  end-if 
end-if 
 
until(false) 
 
  setparam("XPRS_CUTSTRATEGY", defcut) ! Enable automatic cuts 
  setparam("XPRS_PRESOLVE", 1)         ! Switch presolve on 
   
 end-procedure 
!****************************************************************************************
**** 
! knapsack problem 
!************************************************************************************** 
function supplier_knapsack(SCORE_DUAL:array(WORKORDERS,SERVICES)of real, 
                           sup_scores: array(WORKORDERS,SERVICES) of real,  
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                     capacities:array(WORKORDERS,SERVICES,SUPPLI) of integer, 
        capctr: integer, 
        xbest:array(WORKORDERS,SERVICES) of integer, 
        !K: integer, 
        SUP_DUAL: real,   
        valid_serv: array(WORKORDERS) of integer):real 
 
!with Burglar do 
initializations to "raw:noindex" 
   SCORE_DUAL as "shmem:SCORE_DUAL"  sup_scores capacities as "shmem:capacities"    
   capctr SUP_DUAL valid_serv   
end-initializations 
   
run (Supplier_knapsack, "k="+K+",SUPPLIERS="+SUP+",SERVMAX="+SERV+",NWO="+NWO)   

 ! Start solving knapsack subproblem 
  
wait                                 ! Wait until subproblem finishes 
dropnextevent                        ! Ignore termination message 
  
initializations from "raw:" 
   xbest as "shmem:xbest" returned as "shmem:score" 
end-initializations 
  
(! 
 declarations 
    con_suppli: linctr 
 GenerateWay: linctr 
 rkji: array(WORKORDERS,range) of mpvar           ! 1 if we take item i; 0 otherwise 
 !xbest: array(WORKORDERS,range) of integer 
 score: real 
 !valid_serv: array(WORKORDERS)of integer 
 !K: integer 
 noassign: array(WORKORDERS,range) of linctr 
 end-declarations 
    
 !Objective: maximize total value 
   GenerateWay:= sum(a in WORKORDERS,j in 1..valid_serv(a))  

((scores(a,j,K)-SCORE_DUAL(a,j))*rkji(a,j))-SUP_DUAL    
  

 !Capacity constraint 
 con_suppli:= (sum(a in WORKORDERS,j in 1..valid_serv(a))duration(a,j)*rkji(a,j))<=capctr  
 !BIP 
 forall(a in WORKORDERS,j in 1..valid_serv(a)) rkji(a,j) is_binary  ! All x are 0/1 
 forall(a in WORKORDERS,j in valid_serv(a)..SERVMAX) noassign(a,j):= rkji(a,j) = 0 
 maximize(GenerateWay)                   ! Solve the MIP-problem 
 
writeln("test supplier: ",K) 
returned:=getobjval 
writeln(getobjval) 
forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI) 
xbest(a,j):=integer(rkji(a,j).sol) 
   
 !) 
     
 end-function 
 
!************************************************************************ 
! master problem optimization procedure 
! 
! 
! *********************************************************************** 
 procedure optimization 
 forall(a in WORKORDERS,j in SERVICES)do 
  SCORE_DUAL(a,j):= getdual(assignment(a,j)) 
  !IVEdrawpoint(plot1,iter,SCORE_DUAL(a,j)) 
 end-do 
 ! pricing dual values from convexity constraint 
 forall(k in SUPPLI) do 
  PRICE_DUAL(k):= getdual(way_ctr(k)) 
  !IVEdrawpoint(plot2,iter,PRICE_DUAL(k)) 
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 end-do 
  
 !writeln("assignment duals: ",SCORE_DUAL) 
 !writeln("convexity duals: ",PRICE_DUAL) 
 end-procedure 
 
!************************************************************************ 
! optimization report procedure 
! 
! 
! *********************************************************************** 
 procedure optimization_report 
 
 forall(a in WORKORDERS,j in SERVICES)RHS(a,j):=  

sum(k in SUPPLI)sum(b in 1..NCOLS(k))way_matrix(k,b,a,j)*(way_selector(k,b).sol) 
 
!print way matrix 
write("\n\n                   WAY MATRIX \n                 ") 
forall (k in SUPPLI) write("supplier ",k,"                       ") 
write("\n       ") 
forall(k in SUPPLI) do 
 forall(b in 1..NCOLS(k))write(strfmt(b,2)) 
 write("  ") 
end-do 
 
write("\n--------------------------------------------------------------------------------
----------------------") 
forall(a in WORKORDERS,j in SERVICES) do  
 write("\nsv ",j,"  ") 
 forall(k in SUPPLI)do  
  write("| ") 
  forall(b in 1..NCOLS(k))do 
   write(way_matrix(k,b,a,j)," ")  
  end-do 
 end-do 
 write("= ",RHS(a,j)) 
end-do 
write("\n--------------------------------------------------------------------------------
----------------------\nXklk  ") 
forall(k in SUPPLI) do 
 write("| ") 
 forall(b in 1..NCOLS(k))write(getsol(way_selector(k,b))," ") 
end-do 
 (!write("\n\nWay Score\n") 
  forall(b in 1..NCOL(k))write(" | way ",strfmt(b,2)) 
  write("\n") 
  forall(k in SUPPLI)do 
   write("\n") 
   forall(b in 1..NCOL(k))write(" |",strfmt(way_score(k,b),7)) 
  end-do 
 write("\n---------------------------------------------------------------------\n") 
 
 !forall(b in way)write(" | ",strfmt(way_total(b),6))!) 
 write("\n\n*-*-*-*-*-*-*-*-*-*-*-*\n|",strfmt("|",22),"\n|  Grand_score: 
",strfmt(getobjval,-6),"|\n|",strfmt("|",22),"\n*-*-*-*-*-*-*-*-*-*-*-*") 
  
 end-procedure 
 
 
!************************************************************************ 
! random column generation procedure 
! 
! 
! *********************************************************************** 
procedure generate_random_cols 
! generate initial columns 
forall(k in SUPPLI)NCOLS(k)+=1  
  
     
 
 !writeln("\nway ",NCOLS(k),"\n")  
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 forall(a in WORKORDERS,j in 1..valid_serv(a))do 
   !forall(k in SUPPLI)supplier(k):= scores(a,j,k) !random  ! assign 
random supplier 
   !min_supplier:=  
minlist(supplier(1),supplier(2),supplier(3),supplier(4),supplier(5)) 
    max_supplier:= 1 
    forall(k in SUPPLI)do  
       if score_matrix(a,j,k) > 
score_matrix(a,j,max_supplier) then 
        max_supplier:= k 
       end-if 
       end-do 
   !forall(k in SUPPLI)do 
   ! if supplier(k)= min_supplier  then 
   !  supplier(k):= 1 
   !  else supplier(k):= 0 
   ! end-if 
   !end-do  
   forall(k in SUPPLI)do 
    way_matrix(k,NCOLS(k),a,j):= 0 !integer(supplier(k)) ! 
feasible but not constrained  
   end-do 
   way_matrix(max_supplier,NCOLS(1),a,j):= 1 
  end-do 
(! write("\n\n         Random WAY \n        ") ! write way 
forall (k in SUPPLI) write(k, "   ") 
forall(a in WORKORDERS,j in SERVICES) do  
 write("\nsv ",j,"  ") 
 forall(k in SUPPLI)do  
  write("| ") 
  write(way_matrix(k,xway,a,j)," ")  
 end-do 
end-do !)  
!writeln 
 
repeat waycheck:= false 
  repeat invalid_demand:=false 
 forall(k in SUPPLI) do      ! verify capacity ctr 
   if sum(a in WORKORDERS,j in 1..valid_serv(a)) 

way_matrix(k,NCOLS(k),a,j)*capacities(a,j,k)>cap_sup(k) then  
    invalid_demand:= true 
    waycheck:= true 
    !writeln("XXX supplier ",k," demand ", 

sum(a in WORKORDERS,j in SERVICES)way_matrix(k,xway,a,j)*capacities(a,j), 
" X< ",cap_sup(k)) 

  forall(a in WORKORDERS,j in 1..valid_serv(a)) do !reassign ½ of services 
   if way_matrix(k,NCOLS(k),a,j) = 1 then  
    if round(random) = 1 then! remove half of assignments 
      ! assign random supplier 

  forall(l in 1..k-1)supplier(l):= score_matrix(a,j,k)  
      supplier(k):= 0 
      forall(l in k+1..SUP) supplier(l):= score_matrix(a,j,k) 
      max_supplier:=1 
      
      forall(l in SUPPLI)do  
       if supplier(l) > score_matrix(a,j,max_supplier) then 
        max_supplier:= l 
       end-if 
      end-do 
     forall(l in SUPPLI)do 
      if supplier(l)= min_supplier  then 
       supplier(l):= 1 
      else supplier(l):= 0 
      end-if 
     end-do  
   
     forall(l in SUPPLI)do 
      way_matrix(l,NCOLS(l),a,j):= 0  
     end-do 
     way_matrix(max_supplier,NCOLS(1),a,j):= 1 
    end-if 
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   end-if 
  end-do 
  !writeln("new demand ",sum(a in WORKORDERS,j in SERVICES) 

way_matrix(k,xway,a,j)*capacities(a,j)," < ",cap_sup(k)) 
 end-if  ! invalid capacity loop 
 end-do  ! supplier loo 
 !forall(k in SUPPLI)do 
   !writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in SERVICES) 

way_matrix(k,xway,a,j)*capacities(a,j)," < ",cap_sup(k)) 
  !end-do 
  until invalid_demand= false  
  
until waycheck = false   
 
forall(k in SUPPLI) do 
 create(way_selector(k,NCOLS(k))) 
 way_selector(k,NCOLS(k)) is_binary 
end-do 
 
 forall(k in SUPPLI)do 
   writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in 
1..valid_serv(a))way_matrix(k,NCOLS(k),a,j)*capacities(a,j,k)," <= ",cap_sup(k)) 
 end-do 
end-procedure 
end-model 
 

Supplier Knapsack Code 

 
 
model "Supplier_knapsack"           ! Start a new model 
 
uses "mmxprs"                       ! Load the optimizer library 
 
  
declarations 
SUPPLIERS = 50 
SERVMAX = 10 
NWO = 10 
WORKORDERS = 1..NWO 
SERVICES = 1..SERVMAX  
SUPPLI = 1..SUPPLIERS 
  
 SCORE_DUAL: array(WORKORDERS,SERVICES) of real        ! score of services 
 capacities: array(WORKORDERS,SERVICES,SUPPLI) of integer       ! decision variables 
 score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real 
 scores: array(WORKORDERS,range,SUPPLI) of real 
 duration: array(WORKORDERS,range,SUPPLI) of integer 
 assign_dual: array(WORKORDERS,range) of real 
 capctr: integer         !      Max capacity per supplier 
 SUP_DUAL: real 
 con_suppli: linctr 
 GenerateWay: linctr 
 rkji: array(WORKORDERS,SERVICES) of mpvar           ! 1 if we take item i; 0 otherwise 
 xbest: array(WORKORDERS,SERVICES) of integer 
 score: real 
 valid_serv: array(WORKORDERS)of integer 
 K: integer 
 noassign: array(WORKORDERS,range) of linctr 
end-declarations 
 
!writeln("knapsack test") 
 
 initializations from "raw:noindex" 

score_matrix  capctr K SUP_DUAL valid_serv      SCORE_DUAL as "shmem:SCORE_DUAL"  
capacities as "shmem:capacities"   

 end-initializations 
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forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)do 
 duration(a,j,k):= capacities(a,j,k) 
 assign_dual(a,j):= SCORE_DUAL(a,j) 
end-do 
 
forall(a in WORKORDERS,j in 1..valid_serv(a))do 
 forall(k in SUPPLI) do 
  scores(a,j,k):= score_matrix(a,j,k)  
  !write(scores(a,j,k)," ")  
 end-do 
 !writeln 
end-do 
   !forall(a in WORKORDERS,j in 1..valid_serv(a))do 
    !write("wo ",a," service ",j," ") 
   ! forall(k in SUPPLI) write(scores(a,j,k),' ') 
    !writeln 
   !end-do 
    
! Objective: maximize total value 
  GenerateWay:= sum(a in WORKORDERS,j in 1..valid_serv(a))  

((scores(a,j,K)-SCORE_DUAL(a,j))*rkji(a,j))-SUP_DUAL   
   

! Capacity constraint 
con_suppli:= (sum(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)  

duration(a,j,k)*rkji(a,j)) <= capctr  
 !BIP 
 
 forall(a in WORKORDERS,j in 1..valid_serv(a)) rkji(a,j) is_binary  ! All x are 0/1 
!forall(a in WORKORDERS,j in valid_serv(a)..SERVMAX) noassign(a,j):= rkji(a,j) = 0 
  
  maximize(GenerateWay)                   ! Solve the MIP-problem 
 
score:=getobjval 
 
forall(a in WORKORDERS,j in SERVICES) xbest(a,j):=integer(rkji(a,j).sol) 
  
initializations to "raw:" 
  xbest as "shmem:xbest" score as "shmem:score" 
end-initializations 
                               ! Print out the solution 
!writeln("Solution:\n Objective: ", getobjval) 
!forall(j in SERVICES, k in SUPPLI)  writeln(" r(", j,k, "): ", rkji(j,k).sol) 
 
end-model
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APPENDIX F 

Row Generation Formulation 

Row Generation Master Model 

model "column_generation_formulation" 
uses "mmxprs", "mmsystem","mmjobs", "mmive"; !gain access to the Xpress-Optimizer solver 
 !uses  "mmnl"; 
!optional parameters section 
parameters 
 NWO = 125 
  SERV= 10 
  SUP = 12500 
  INST= 1 
  DATAFILE= 
string("GAP_"+NWO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers_"+INST+".dat") 
 
end-parameters 
declarations 
! WORKORDERS: set of integer 
 WORKORDERS = 1..NWO 
 SERVICES= 1..SERV 
 SUPPLI = 1..SUP 
 NCOLS: array(WORKORDERS,SERVICES) of integer 
 price: real 
end-declarations 
!finalize(WORKORDERS,SERVICES,SUPPLI) 
forward procedure column_gen 
!forward function column_knapsack(capacities:array(WORKORDERS,SERVICES) of integer, 
!       cap_sup: array(SUPPLI) of integer, 
!      
 initialsolution:array(WORKORDERS,SERVICES,SUPPLI) of integer):integer 
forward function service_knapsack(xbest:array(SUPPLI) of integer):real 
forward procedure optimization_report 
forward procedure optimization 
forward procedure generate_random_cols 
!Modify Optimizer control parameter CPUTIME 
setparam("XPRS_CPUTIME",0) 
 
 
declarations 
  opt_time: real 
  valid_serv: array(WORKORDERS) of integer 
  capacities: array(WORKORDERS,range,SUPPLI) of integer       ! decision variables 
  score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real 
  cap_sup: array(SUPPLI) of integer         !      Max capacity per supplier 
  !dual_record: array(way,WORKORDERS,SERVICES)of real 
  xbest: array(SUPPLI) of integer 
  PRICE_DUAL: array(WORKORDERS,SERVICES)of real 
 !initialsolution: array(WORKORDERS,SERVICES,SUPPLI) of integer 
 !sup_scores: array(WORKORDERS,range) of real 
 pass: integer 
 way_selector: array(WORKORDERS,SERVICES,range) of mpvar 
 way_matrix: array(SUPPLI,WORKORDERS,range,range)of integer   
  !xway: integer 
  way_score: array(SUPPLI,range) of real 
     RHS,pricing_prob: array(WORKORDERS,SERVICES) of real 
    EPS = 1e-6                            ! Zero tolerance  
  !total_distance:  real 
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  !D_max: array(WORKORDERS)of real 
  !!capctr: array(SUPPLI) of integer, 
  score: real 
  distance_matrix: array(SUPPLI,SUPPLI) of integer  
  Grand_Total: linctr 
    way_ctr: array(WORKORDERS,range)of linctr 
     capacity_ctr: array(SUPPLI) of linctr 
   supplier: array(SUPPLI)of real 
   starttime: real 
    max_supplier: integer 
     A,J: integer 
     Service_knapsack: Model !mpproblem  
    SCORE_DUAL: array(SUPPLI) of real 
   new_column: basis 
  iter: integer 
  col_gen_break: array(WORKORDERS,range) of integer 
  avg_score: real 
 
end-declarations 
 
starttime:=gettime 
 
initializations from DATAFILE 
    valid_serv  ! distance_matrix D_max! 
    score_matrix  
    cap_sup as "capacity"  
    capacities as "duration" 
end-initializations 
 
forall(a in WORKORDERS, j in 1..valid_serv(a)) NCOLS(a,j):=0 
 
!forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)do 
! duration(a,j,k):= capacities(a,j,k) 
!end-do 
 
!forall(a in WORKORDERS,j in 1..valid_serv(a))do 
! forall(k in SUPPLI) do 
!  scores(a,j,k):= score_matrix(a,j,k)  
!  !write(scores(a,j,k)," ")  
! end-do 
 !writeln 
!end-do 
 
setparam("XPRS_verbose",true) 
 
res:= compile (" ","transposed_knapsack.mos","shmem:bim") 
load (Service_knapsack, "shmem:bim")  
 
 
(!forall(l in SUPPLI) do 
 capctr(l):= cap_sup(l) 
   forall(a in WORKORDERS,j in SERVICES,k in SUPPLI)do  
    !sup_scores(a,j):= score_matrix(a,j,k) 
    duration(a,j):= capacities(a,j,k) 
   end-do 
!) 
 
! load all fixed info into shared memory 
 
initializations to "raw:noindex" 
   valid_serv score_matrix capacities cap_sup 
end-initializations 
 
forall(a in WORKORDERS,j in 1..valid_serv(a)) way_ctr(a,j):=  

sum(b in 1..NCOLS(a,j))way_selector(a,j,b) = 1 
 
forall(k in SUPPLI)capacity_ctr(k):=  

sum(a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j))  
capacities(a,j,k)*way_matrix(k,a,j,b)*way_selector(a,j,b) <= cap_sup(k)  
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! Objective: maximize total value  
Grand_Total:= sum(k in SUPPLI,a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j)) 

way_selector(a,j,b)*way_matrix(k,a,j,b)*score_matrix(a,j,k)  
 
optimization 
 
 column_gen 
 
maximize(XPRS_LIN,Grand_Total) 
 
!optimization_report 
 
objective:=getobjval 
writeln("\nobjective value: ",getobjval)  
opt_time:=gettime-starttime 
write("\nComputation time: ",opt_time," sec") 
 
avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a)) 
writeln("\naverage score: ",avg_score,"\n")  
 
no_vars:= NWO*SERV*SUP 
formulation:=2 
 
initializations to "mmodbc.excel:results_OUTPUT.xlsm" 
 opt_time as 'sec' !'time_sec'  
 avg_score as 'avg' !'avg_score' 
 objective as 'obj' !'objective' 
 no_vars as 'vars' !'no_vars' 
 INST as 'instance' 
 formulation as 'formulation' 
end-initializations 
 
!************************************************************************ 
!  Column generation loop at the top node:     MASTER MODEL                           
!    solve the LP and save the basis                                      
!    get the solution values                                              
!    generate new column(s) (=cutting pattern)                            
!    load the modified problem and load the saved basis                   
!************************************************************************ 
procedure column_gen 
  defcut:=getparam("XPRS_CUTSTRATEGY") ! Save setting of `CUTSTRATEGY'  
  setparam("XPRS_CUTSTRATEGY", 0)      ! Disable automatic cuts: MIP 
  setparam("XPRS_PRESOLVE", 0)         ! Switch presolve off: disable  
  setparam("zerotol", EPS)             ! Set comparison tolerance of Mosel 
 
iter:=0 
 
repeat  
 iter+=1 
  if iter > 1 then 
  maximize(XPRS_LIN,Grand_Total) 
   
 writeln 
 integer_solution:= true 
 repeat  
  forall(a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j)) do 
   if way_selector(a,j,b).sol <>0 and way_selector(a,j,b).sol <>1 then 
    integer_solution:= false 
    break 
    write(getsol(way_selector(a,j,b))," ") 
   end-if 
  end-do 
  if integer_solution= true then 
   savebasis(new_column) 
   else loadbasis(new_column) 
    maximize(XPRS_LIN,Grand_Total) 
  end-if 
  until integer_solution = true  
     
 optimization 
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 !optimization_report 
 end-if 
 writeln("\n\n           >  >  ~  column generation loop pass ",iter,"  ~  <  <\n") 
  
 ! supplier column generation loop 
 forall(a in WORKORDERS,j in 1..valid_serv(a))do 
    
  if pricing_prob(a,j) <= 0 and iter > 1 then 
   !writeln(pricing_prob(k)) 
   col_gen_break(a,j):= 1 
  else 
   NCOLS(a,j)+=1 
   A:= a 
   J:= j 
   !writeln("SUP_SCORES",sup_scores) 
   !SUP_DUAL:= PRICE_DUAL(k)   
   price:= service_knapsack(xbest) 
    
   writeln("price: ",price) 
   pricing_prob(a,j):= price 
   create(way_selector(a,j,NCOLS(a,j))) 
   forall(k in SUPPLI) do 
    way_matrix(k,a,j,NCOLS(a,j)):= xbest(k) 
    capacity_ctr(k)+= way_matrix(k,a,j,NCOLS(a,j)) 

*way_selector(a,j,NCOLS(a,j))*capacities(a,j,k) 
   end-do 
   way_selector(a,j,NCOLS(a,j)) is_binary  
   way_ctr(a,j)+= way_selector(a,j,NCOLS(a,j)) 
   !way_score(k,NCOLS(a,j)):=  

sum(a in WORKORDERS,j in 1..valid_serv(a))way_matrix(k,NCOLS(k),a,j) 
*score_matrix(a,j,k)  

    
   Grand_Total+= sum(k in SUPPLI)way_selector(a,j,NCOLS(a,j)) 

 *way_matrix(k,a,j,NCOLS(a,j))*score_matrix(a,j,k) 
    
  end-if 
    
 end-do   ! SUPPLIER column gen loop 
  
 ! print new columns 
!write("\n\n         KNAPSACK COLUMNS \n        ") 
!forall (k in SUPPLI) write(k, "   ") 
!forall(a in WORKORDERS,j in 1..valid_serv(a)) do  
! write("\nsv ",j,"  ") 
! forall(k in SUPPLI)do  
!  write("| ") 
!  write(way_matrix(k,NCOLS(k),a,j)," ")  
! end-do 
!end-do 
!writeln 
 
! if iter >= 100 then  
!  break  
! end-if 
  
!generate_random_cols 
if iter > 0 then 
 
  loadprob(Grand_Total) 
  loadbasis(new_column) 
  if sum(a in WORKORDERS,j in 1..valid_serv(a))col_gen_break(a,j) >= sum(a in 
WORKORDERS)valid_serv(a) then ! and sum(a in WORKORDERS,j in 1..valid_serv(a))RHS(a,j) >= 
8 then 
   writeln("no profitable column found.\n") 
   break 
  end-if 
 ! if iter >= 3 then 
 !  break 
 !  end-if 
end-if 
writeln 
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 !end-do 
until(false) 
 
  setparam("XPRS_CUTSTRATEGY", defcut) ! Enable automatic cuts 
  setparam("XPRS_PRESOLVE", 1)         ! Switch presolve on 
   
 end-procedure 
!**************************************************************************************** 
! knapsack problem 
!************************************************************************************** 
function service_knapsack(xbest:array(SUPPLI) of integer):real 
 
!with Burglar do 
  !initializations to "raw:noindex" 
  !  SCORE_DUAL as "shmem:SCORE_DUAL" SUP_DUAL !capacities as "shmem:capacities"  
  !    valid_serv sup_scores    capctr  
  !end-initializations 
   
run (Service_knapsack,"A="+A+",J="+J+",SUPPLIERS="+SUP+",SERVMAX="+SERV+",NWO="+NWO)   

      ! Start solving knapsack subproblem 
wait                                  ! Wait until subproblem finishes 
dropnextevent                         ! Ignore termination message 
  
 initializations from "raw:" 
  xbest as "shmem:xbest" returned as "shmem:score" 
 end-initializations 
  
 end-function 
 
!************************************************************************ 
! master problem optimization procedure 
! 
! 
! *********************************************************************** 
 procedure optimization 
 forall(k in SUPPLI)do 
  SCORE_DUAL(k):= integer(getdual(capacity_ctr(k)))+1 
  !IVEdrawpoint(plot1,iter,SCORE_DUAL(a,j)) 
  !if SCORE_DUAL(k)>0 then  
  ! writeln(SCORE_DUAL) 
  !end-if 
 end-do 
 ! pricing dual values from convexity constraint 
 forall(a in WORKORDERS,j in 1..valid_serv(a)) do 
  PRICE_DUAL(a,j):= getdual(way_ctr(a,j)) 
  !IVEdrawpoint(plot2,iter,PRICE_DUAL(k)) 
 end-do 
 initializations to "raw:noindex" 
  SCORE_DUAL PRICE_DUAL 
 end-initializations 
  
 !writeln("assignment duals: ",SCORE_DUAL) 
 !writeln("convexity duals: ",PRICE_DUAL) 
 end-procedure 
!************************************************************************ 
! optimization report procedure 
! 
! 
! *********************************************************************** 
 procedure optimization_report 
 
forall(a in WORKORDERS,j in 1..valid_serv(a))RHS(a,j):=  

sum(k in SUPPLI,b in 1..NCOLS(a,j))way_matrix(k,a,j,b) 
*(way_selector(a,j,b).sol) 

!print way matrix 
write("\n\n                   WAY MATRIX \n      ") 
forall (k in SUPPLI) write("  ",strfmt(k,-2)) 
!writeln!("\n       ") 
!forall(k in SUPPLI) do 
! !forall)write(strfmt(b,2)) 
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! write("  ") 
!end-do 
 
write("\n--------------------------------------------------------------------------------
-----------------------------") 
forall(a in WORKORDERS,j in 1..valid_serv(a)) do  
 write("\nsv ",j,"  ") 
 forall(k in SUPPLI)do  
  write("| ") 
  !forall(b in 1..NCOLS(k))do 
   write(way_matrix(k,a,j,NCOLS(a,j))," ")  
  end-do 
 !end-do 
 write("= ",RHS(a,j)) 
end-do 
write("\n--------------------------------------------------------------------------------
--------------------------------\ncapcty") 
forall(k in SUPPLI) do 
 write("| ",strfmt(sum(a in WORKORDERS,j in 1..valid_serv(a)) 

way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k),-2)) 
  
end-do 
 write("\n\ncapsup") 
 forall(k in SUPPLI) do 
  write("| ",strfmt(cap_sup(k),-2)) 
 end-do 
  
 (!write("\n\nWay Score\n") 
 forall(b in 1..NCOL(k))write(" | way ",strfmt(b,2)) 
 write("\n") 
 forall(k in SUPPLI)do 
  write("\n") 
  forall(b in 1..NCOL(k))write(" |",strfmt(way_score(k,b),7)) 
 end-do 
  

write("\n---------------------------------------------------------------------\n") 
 
 forall(b in way)write(" | ",strfmt(way_total(b),6))!) 
 write("\n\n*-*-*-*-*-*-*-*-*-*-*-*-*\n|",strfmt("|",24),"\n|  Grand_score:  

    ",strfmt(getobjval,-8),"|\n|",strfmt("|",24),"\n*-*-*-*-*-*-*-*-*-*-*-*-*") 
 writeln 
 writeln 
 forall(a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j)) do 
  if way_selector(a,j,b).sol >0 then 
   write(b," ") 
  end-if 
 end-do 
  
 end-procedure 
 
 
!************************************************************************ 
! random column generation procedure 
! 
! 
! *********************************************************************** 
procedure generate_random_cols 
! generate initial columns 
forall(a in WORKORDERS,j in 1..valid_serv(a))NCOLS(a,j)+=1  
 !writeln("\nway ",NCOLS(k),"\n")  
 forall(a in WORKORDERS,j in 1..valid_serv(a))do 
   !forall(k in SUPPLI)supplier(k):= scores(a,j,k) !random  ! assign 
random supplier 
   max_supplier:= 1 
   forall(k in SUPPLI)do  
         if score_matrix(a,j,k) >= score_matrix(a,j,max_supplier) then 
       max_supplier:= k 
         end-if 
   end-do 
   !if round(random)=1 then 
   ! writeln("2/3 test") 
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   ! max_supplier:= integer(round((random*(SUP-1))+.5)) 
   !end-if 
    
   !forall(k in SUPPLI)do 
   ! if supplier(k)= min_supplier  then 
   !  supplier(k):= 1 
   !  else supplier(k):= 0 
   ! end-if 
   !end-do  
   forall(k in SUPPLI)do   ! feasible but not constrained 
    way_matrix(k,a,j,NCOLS(a,j)):= 0 !integer(supplier(k))  
   end-do 
    

way_matrix(max_supplier,a,j,NCOLS(a,j)):= 1 
  end-do 
 
(! write("\n\n         Random WAY \n        ") ! write way 
forall (k in SUPPLI) write(k, "   ") 
forall(a in WORKORDERS,j in SERVICES) do  
 write("\nsv ",j,"  ") 
 forall(k in SUPPLI)do  
  write("| ") 
  write(way_matrix(k,xway,a,j)," ")  
 end-do 
end-do !)  
!writeln 
 
repeat waycheck:= false 
  repeat invalid_demand:=false 
 forall(k in SUPPLI) do 
  if sum(a in WORKORDERS,j in 1..valid_serv(a))way_matrix(k,a,j,NCOLS(a,j)) 

  *capacities(a,j,k)>cap_sup(k) then ! verify capacity ctr 
   

invalid_demand:= true 
  waycheck:= true 
  !writeln("XXX supplier ",k," demand ",sum(a in WORKORDERS,j in SERVICES) 

  way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k)," X< ",cap_sup(k)) 
   

forall(a in WORKORDERS,j in 1..valid_serv(a)) do !reassign 1/2 of services 
   if way_matrix(k,a,j,NCOLS(a,j)) = 1 then  
    if round(random*.75) = 1 then! remove half of assignments 
       !assign random supplier 

forall(l in 1..k-1)supplier(l):= score_matrix(a,j,l)  
      supplier(k):= 0 
      forall(l in k+1..SUP) supplier(l):= score_matrix(a,j,l) 
      max_supplier:=1 
      
      forall(l in SUPPLI)do  
       if supplier(l) >= score_matrix(a,j,max_supplier) 
then 
        max_supplier:= l 
       end-if 
       end-do 
        
     forall(l in SUPPLI)do 
      if supplier(l)= min_supplier  then 
       supplier(l):= 1 
      else supplier(l):= 0 
      end-if 
     end-do  
     !) 
     forall(l in SUPPLI)do 
      way_matrix(l,a,j,NCOLS(a,j)):= 0  

!feasible but not constrained 
!integer(supplier(l))   

     end-do 
     way_matrix(max_supplier,a,j,NCOLS(a,j)):= 1 
    end-if 
   end-if 
  end-do 
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!writeln("new demand ",sum(a in WORKORDERS,j in 1..valid_serv(a)) 
way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k)," < ",cap_sup(k)) 

 end-if  ! invalid capacity loop 
end-do  ! supplier loop 
 !forall(k in SUPPLI)do 
   !writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in SERVICES) 

way_matrix(k,xway,a,j)*capacities(a,j)," < ",cap_sup(k)) 
  !end-do 
  until invalid_demand= false  
  
until waycheck = false   
 
forall(a in WORKORDERS,j in 1..valid_serv(a)) do 
 create(way_selector(a,j,NCOLS(a,j))) 
 way_selector(a,j,NCOLS(a,j)) is_binary 
end-do 
 
 !forall(k in SUPPLI)do 
   !writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in 1..valid_serv(a)) 

way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k)," <= ",cap_sup(k)) 
! end-do 
 !way:= sum(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI) 

way_matrix(k,a,j,NCOLS(a,j))*score_matrix(a,j,k) 
 !writeln("way score ",way) 
  
  
end-procedure 
 
end-model 
 

 
Row Generation Submodel 

 
 
 
model "transposed_knapsack"                       ! Start a new model 
 
uses "mmxprs","mmsystem"                       ! Load the optimizer library 
 
parameters 
 SUPPLIERS = 25 
 SERVMAX = 10 
 NWO = 5 
 A=1 
 J=1 
end-parameters 
 
declarations 
  WORKORDERS = 1..NWO 
 SERVICES = 1..SERVMAX  
 SUPPLI = 1..SUPPLIERS 
 PRICE_DUAL: array(WORKORDERS,SERVICES) of real         
 capacities: array(WORKORDERS,SERVICES,SUPPLI) of integer        
 score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real 
 !scores: array(WORKORDERS,range,SUPPLI) of real 
 !duration: array(WORKORDERS,SERVICES) of integer 
 SCORE_DUAL: array(SUPPLI) of real 
 GenerateWay: linctr 
 rkji: array(SUPPLI) of mpvar           ! 1 if we take item i; 0 otherwise 
 xbest: array(SUPPLI) of integer 
 score: real 
 valid_serv: array(WORKORDERS)of integer 
 assignment: linctr 
 start: real 
end-declarations 
 
!start:=gettime 
!setparam("XPRS_CPUTIME",1) 
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 initializations from "raw:noindex" 
  score_matrix capacities SCORE_DUAL PRICE_DUAL  
 end-initializations 
 
!forall(a in WORKORDERS,j in SERVICES)do 
! duration(a,j):= capacities(a,j,K) 
! assign_dual(a,j):= SCORE_DUAL(a,j) 
!end-do 
!forall(a in WORKORDERS,j in 1..valid_serv(a))do 
! forall(k in SUPPLI) do 
!  scores(a,j,k):= score_matrix(a,j,k)  
!  !write(scores(a,j,k)," ")  
! end-do 

!writeln 
!end-do 
   !forall(a in WORKORDERS,j in 1..valid_serv(a))do 
    !write("wo ",a," service ",j," ") 
   ! forall(k in SUPPLI) write(scores(a,j,k),' ') 
    !writeln 
   !end-do 
    
! Objective: maximize total value  
GenerateWay:= sum(k in SUPPLI)  

((score_matrix(A,J,k)-SCORE_DUAL(k))*rkji(k))-PRICE_DUAL(A,J)   
 
!asssignment constraints 
assignment:= (sum(k in SUPPLI) rkji(k)) = 1 
 
 !BIP 
 
 forall(k in SUPPLI) rkji(k) is_binary  ! All x are 0/1 
 
 maximize(GenerateWay)                   ! Solve the MIP-problem 
  
 !writeln("\nComputation time: ", gettime-start," sec") 
 
score:=getobjval 
 
forall(k in SUPPLI) xbest(k):=integer(rkji(k).sol) 
  
  
  
initializations to "raw:" 
  xbest as "shmem:xbest" score as "shmem:score" 
end-initializations 
                               ! Print out the solution 
!writeln("Solution:\n Objective: ", getobjval) 
!forall(j in SERVICES, k in SUPPLI)  writeln(" r(", j,k, "): ", rkji(j,k).sol) 
 
end-model 
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APPENDIX G 

Data Generation Code 

 
  model GenData 
  uses "mmsystem"     
   
  parameters    
    NI     = 1   
 NWO    = 3 
 SERV   = 3 
 SUP    = 5 
  end-parameters 
    
  declarations 
    WORKORDERS = 1..NWO 
    NSERV: array(WORKORDERS) of integer 
    DATAFILE: string 
    SUPPLI = 1..SUP 
    SERVICES = 1..SERV 
    duration: array(WORKORDERS,SERVICES,SUPPLI) of integer 
    SCORE: array(WORKORDERS,SERVICES,SUPPLI) of real 
    capacity: array(SUPPLI) of integer 
    D_max: array(WORKORDERS) of integer 
    distance_matrix: array(SUPPLI,SUPPLI) of integer 
    tot: integer 
  end-declarations 
   
forall(a in WORKORDERS)do  
     valid_serv(a):= integer(round((random*.33+0.67)*SERV)) 
end-do 
  
setrandseed(666) 
 
! generate distance matrix  
 forall(k in SUPPLI) do 
  forall(l in SUPPLI) do 
   if l < k then distance_matrix(k,l):= distance_matrix(l,k) 
    elif l = k then distance_matrix(k,l):= 0 
     else distance_matrix(k,l):= integer(random*100) 
   end-if 
  end-do 
 end-do   
 
total:=0  
 
! Generate data 
     DATAFILE:= 
string(text("GAP_")+text(NWO)+"_workorders_"+text(SERV)+"_services_"+text(SUP)+"_supplier
s_"+text(NI)+".dat") 
    
 forall(a in WORKORDERS)do 
  !forall(k in SUPPLI)score_root(k):=(random*.75)+0.125 !patterned scores 
       
  forall(j in 1..valid_serv(a)) do 
      ! Duration(a,j,k) = random integer in [1,13]      
      dur_root:= integer(round((10*random)+0.5))! average dur of service (a,j) 
       

total+=dur_root 
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      forall(k in SUPPLI) do  
        ! random dur within range +-25% of dur_root(a,j) 

duration(a,j,k):= integer(round(dur_root*((random*.5)+0.75)))    
            
         ! for patterned scores--> score_root(k)*((random*.25)+0.875) 

score_matrix(a,j,k):=random  
       end-do 
     end-do 
 end-do 
 forall(k in SUPPLI) capacity(k):= integer(round(total/NWO)*(0.75+(.5*random))) 
  
 forall(a in WORKORDERS)D_max(a):= integer(valid_serv(a)*30) 
   
  ! Write data to file 
    initializations to DATAFILE 
       SUP valid_serv NWO SERV 
       duration capacity score_matrix D_max distance_matrix 
    end-initializations 
 
end-model
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