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TWO-POINT BOUNDARY-VALUE PROBLEMS WITH
NONCLASSICAL ASYMPTOTICS ON THE SPECTRUM

ALEXANDER MAKIN

Communicated by Ludmila S. Pulkina

ABSTRACT. In this article, we consider the spectral problem for an nth-order
ordinary differential operator with degenerate boundary conditions. For even
n, we construct nontrivial examples of boundary-value problems which have
nonclassical asymptotics on the spectrum.

1. INTRODUCTION

Let us consider the boundary-value problem generated by the n-th order differ-
ential equation

W™ (@) + Y pn@)ul ™ (@) + Aule) =0, (L1)

where the complex-valued coefficients p,,(x) are functions in L;(0,7), with the
linearly independent boundary conditions

n—1
> i (0) + B g™ (m) =0, i=1,....n, (1.2)
k=0

where o i, B, are complex numbers. It is well known that the characteristic
determinant of (1.1f), (1.2]) is an entire analytical function of spectral parameter .
Consequently, for operator (|1.1)), (1.2)) we have only the following possibilities:

(a) the spectrum is absent;

(b) the spectrum is a finite nonempty set;

(¢) the spectrum is a countable set without finite limit points;
(d) the spectrum fills the entire complex plane.

We say that problem (1.1), (1.2) has the classical asymptotics on the spectrum if
the case (c¢) is realized, moreover the multiplicities of the eigenvalues are bounded
by a single constant. For the Sturm-Liouville equation

Lu+ Au =0, (1.3)
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where Lu = v — ¢(x)u, with nondegenerate boundary conditions the spectrum al-
ways has the classical asymptotics [5]. For equation (|1.3) with degenerate boundary
conditions

u'(0) + du' () =0, u(0) — du(r) =0, (1.4)
another situation takes place. In particular, under the condition that d # 0 it fol-
lows from [3] that for any natural m there exist potentials g(z) in the class W3"(0, 7)
such that the root function system of problem l-) -) contains associated func-
tions of arbitrary high order. If d =0, problem is the Cauchy problem
which has no spectrum. Note, that for the Sturm- L10uv1lle operator any two-point
conditions are nondegenerate except . There is an enormous literature related
to the spectral theory for operators with nondegenerate boundary conditions.The
case of degenerate boundary conditions has been investigated much less. However,
it is known [II, 2 [6] that there exist operators of high order, where any complex
number is an eigenvalue. The main goal of present paper is to construct nontriv-
ial examples of boundary value problems for high order operators such that the
spectrum is absent or the spectrum is a countable set but the multiplicities of
eigenvalues infinitely grow.

2. UNBOUNDED GROWTH OF ORDER FOR ASSOCIATED FUNCTIONS

For any even n = 2v with v > 1, let us build an example of boundary-value
problem , (1.2), for which the multiplicities of eigenvalues grow infinitely.
Consider problem (|1.3)), (d # 0) with a potential ¢(x) € W3 (0, 7), where
m = 2v + 2, providing infinite growth of the multiplicities of eigenvalues. Then
by the embedding theorem ¢(z) € C***V[0,7]. Let {u,(z)} be the root func-
tion system of problem , with the above-mentioned potential. Obviously,
u,(x) € C¥*TV[0, 71]. Let us prove that for any j = 0,1,...,2v,

a(0) = (~1)'q(). 2.1)
Denote by c(x, ), s(x, ) (A = p?) the fundamental system of solutions to (1.3
with the initial conditions ¢(0, u) = s'(0, 1) =1, ¢ (0, ) = s(0, ) = 0. In [5] simple
computations show that the characteristic equation of problem ((1.3)), (1.4) can be
reduced to the form A(y) = 0, where

d? -1 d?—1 ’T t
A) = +e(m, ) — 8 (1) = 4 / )y (29
d d 0 K

where r(t) € C?**D[0, 7). Let k be the least whole number (0 < k < 2v), provided
that equality (2.1)) does not hold. Integrating by parts k + 1 times the last addend
on the right-hand side of equality (2.2)), from [4], we obtain

k+1

Q; Byiisinmp 1 Tkt .

Ap) = 2+ - R+ (£) sin ptdt

JZ:; pitt (k2 (2
for odd k and
e Byy1 cosmp 1 T
j k+1

Ap) = Z jj_l + 2 + =3 / R+ (1) cos ptdt

= 7 2 J

for even k. In both cases coefficients «; are some numbers, and

Brsr = (=1 r®(m) = (-1)" (¢ (7) = (-1)"qM(0)) /2571 £ 0.
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Hence, it follows that problem (L.3), is almost-regular in sense of [7], therefore,
the multiplicities of eigenvalues are bounded by a single constant, i.e. we receive a
contradiction, hence, equality is valid.

Further, consider the problem

L'u+ (=1)" 7"\ u =0, (2.3)
u®=9(0) + d(—-1Y W=D (7) =0, (2.4)
j=1,...,2v, where d is an arbitrary complex number (d # 0).

Lemma 2.1. The functions u,(x) satisfy boundary conditions (2.4]).

Proof. Let us prove the lemma by induction. Obviously, equalities (2.4]) hold if
Jj = 2v,2v — 1. Suppose, that the functions w,(x) satisfy equalities (2.4]) if j =
2v,2v —1,...,2v — [, where 1 <[ < 2v — 1. Consider equality

U () = q(2)un (%) + Antn () = un—1(2), (2.5)
where u,_1(x) is an associated function per unit of lower order corresponding to

a function uy,(z). If u,(z) is an eigenfunction then the right-hand side of equality
(2.5) equals zero identically. Differentiating equality (2.5)) 2v—1—1 times we obtain

2u—1—1
D L L LG Rl C B
v—Il—
= u 2 V().
It follows by the inductive hypothesis, equalities (2.1) and (2.6 . ) that
ugLQuflJrl)(O) +d(— )ugLQuflJrl)(,/T)
2v—1l—1
D G is1d™ ) T T(0) = Al (0)
21/ -1
2v—Il—1 v m
+u 7700 chlq“()(?“)(ﬂ)
= XD () + ”( )
2v—I1—1
> G (@™ (0)ul ™ (0) (2.7)
+d(—1)'q"™ (m)ul 1 ()
_)\ ( (2u—l—1)( )+d(— )l %21/—!—1)(77))
v—Il— v—Il—
+ (w2 0(0) + d(=1) D ()
2u—Il—1
Z q 021/ . 1( (2v—1—1— m( )+d(_1)m+lu512uflflfm)(ﬂ,))
m=0
=0.
O

. 0 . . .
Let a function u (x) be an arbitrary solution of the equation

L+ =0, (2.8)
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and a function (z) be an arbitrary solution of the equation

Lt +Xu="1u, (2.9)

i=1,2,.... Formally set u=0ifi = —1,-2, ...

Lemma 2.2. For anyp=1,2,... we have
P
i i—k
LPu= Y (=1)pFChaw=h "yt (2.10)
k=0

Proof. Let us prove the lemma by induction with respect to p. If p = 1 then
relations (2.8), (2.9) imply (2.10). Let the lemma be valid for a natural p. It

follows by the inductive hypothesis and the properties of the binomial coefficients
that

(—1)PFCEark Yt

M’s

L+ g = I

0

(~1p it L ()

I
M"s .

e
Il

0

(~nrrepar (T )

[
M@

k=0
- kb yp—k 04D - k vk ik
=D (1N =D (et
k=0 k=0
any i—m) P i—m
_ Z( 1)p7m+lcm71)\p7m+l u — Z(_l)pfmczr)n)\erlfm U
=1 m=0
i— (p+1) & m—+1 —1yp—m+1 _ 41— 1—m
+ 3 (1P omT Tl (e et Yy
m=1

P

i 1) i—m

— (e e N (G D e S (O o/ I
m=1

—(—1)PArtl g

p+1 )
_ p—m—+1yp—m+1,ym —m
= E (-1) A Cpiqg u .

m=0

Denote A = (—=1)P7I\ (p=1,2,...).

Lemma 2.3. Let A # 0. I o= Z;:o a; 1]1 where a; are some numbers, and
a; # 0, then there exists a function e ZZH b; u where b; are some numbers,
and b;+1 # 0 such that LP [RTR

Proof. 1t follows by Lemma that

i+1 i+1
ILP v +A v
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i+1

=273 by )+ (—1p e
=0

T
=

b LP & +(—1)P~Ia B

|
e
+ 1
= o

P .
b S (—1yp Rk Ty

j=0 k=0
i+1 i+l p )
1=y L qypye 3 ) _1\p—kkyp—k IF
H(=DPTIN = (1)PAP Y b a4 Y by > (1)PTRCENTR
=0 j=0 k=1

+ (=1 e
1

p .
— kI
DYDY
j=0 k=1
1+1 P ik
j=0 k=1

where v, = (—l)p_kq’;)\p_k. Equating the coefficients at the functions “u" in the
relation

" )
1+ P ik [3 .
E bj E YU = E a u,
§=0 k=1 1=0

we obtain the system of linear equations

Z'Yl+1bi+1—l = Gi_m, (2.11)
1=0

m =0,...,7. The matrix of system (2.11)) is lower triangular, and all the elements
of the principal diagonal are equal to y; = (—1)?"1pAP~! £ 0. Therefore, system
(2.11)) has the unique solution. Since a; # 0, we have b;11 = a;/~v1 # 0. O

Let u,(z) be an associated function of order k corresponding to an eigenvalue
An, # 0, and functions {u,—;(z)} (j = 0,...,k) form the corresponding Jordan
chain, i.e.

Lun—j(gj)+>‘nun—j(x) :un—j—l(x) (] :Oa"'akfl)a
Ly (x) + Mg (x) = 0.

By lemma the function w,_g(x) is an eigenfunction of problem (2.3)), (2.4)
corresponding to the eigenvalue A,, = (—1)""1AY. Set v,,_x(z) = u,_x(x). Then,
by lemma [2.3] it follows that there exist functions

nkti(T) = Y bijtin—i(2)
j=1

(i=0,...,k) such that

L7 pyi (%) + ApUn—pti(2) = Vn—pyi—1(2).
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By lemma all the functions v,_x;(z) satisfy boundary conditions (2.4), then
the functions v, _k4;(z) form the Jordan chain corresponding to the eigenvalue A,
of problem , . Thus we have that the function v,(z) is an associated
function of order k of problem , . Whence, the following assertion is valid.

Theorem 2.4. The root function system of problem (2.3)), (2.4) contains associated
functions of arbitrary high order.

3. EMPTY SPECTRUM

Consider boundary-value problem (1.1), (2.4)), where n = 2v (v > 1). Suppose
that pp,(z) = (=1)"pm(m — ) almost everywhere on the segment [0, 7], m =
1,...,n. We will study the spectrum of problem (1.1)), (2.4]).

Theorem 3.1. If d # +1 the spectrum of problem (1.1)), (2.4) is empty.

Proof. Let a function 4y (z) be the solution of equation (|1.1)) with initial conditions
u) (/2) = 0k ;. (3.1)

where k =0,...,n—1, j:O ...,n— 1. Denote

E C2k+1u2k+1 U E CZkUQk

where ¢; are arbitrary constants (¢ = 0,...,n — 1). Then
i (zj2) =0, WP V(x/2)=0, k=0,...,v—1

Obviously, that the functions w_(z) = —ti_ (7 — x) and wy(x) = 44 (7 — x) are
the solutions of equation and satisfy the same initial conditions at the point
w/2 as well as the functions 4_(x) and @y (z), correspondingly. This, together
with the uniqueness of the solution of Cauchy problem , implies that
U_(r) = —t_(7m —z) and Gy (x) = 4y (m — ), if 0 <z < 1. It follows that

a7 (0) + (17 A" () =0, al0) + (1Al () =0 (3.2)

(j =1,...,n). It follows from 1.' that for any complex number A\ the function
a_(x) is a solutlon of problem (L.1), (2.4) if d = 1 and for any complex number

A the function 4, (x) is a solution of problem if d = —1. Thus, we
D

establish that if d = 41 the spectrum of problem 2.4)) fills all complex plane.
If pp(x) € C™(0,1), m =1,...,n, this assertion was proved in [6].

Assume, for a number A a function @(z) is a solution of problem (L.IJ), if
d # +1. Then a(x) = Gy (x) + 4_(x). We see that

a20(0) + 080 (0) + ()@ )+l @) =0 (33)
(j=1,...,n). It follows from (3.2)), (3.3) that
a0 (1 = d) + a7 (0)(1+d) = 0

(j =1,...,n). From this and the definition of the functions @ (z) 4_(x), we have

v—2

v—1
(1+d) > coasy P (0) + (1 —d) Y conaagy,2(0) =0
k=0 =
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(j =1,...,n), hence, the constants ¢; (i =0, ...,n —1) satisfy the system of linear
equations
n—1
S +d-1Ha" " 0) =0 (3.4)
i=0

(j =1,...,n). The determinant of linear system (3.4]) is
A =(1—d?"det[|a" 7 (0)]].

Since the last determinant is the Wronskian of the fundamental system of the

solutions of equation (|I.1]), it is nonzero. Therefore, system (3.4) has only trivial
solution, i.e. the function @(z) = 0. Hence, if d # £1 problem (1.1)), (2.4) has no
eigenvalues. O

Problem (L.3)), (1.4) was first investigated in [8]. In particular, it was shown that
under the conditions d = +1, ¢(x) = 0 any complex number is eigenvalue of the
considered problem.
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