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TWO-POINT BOUNDARY-VALUE PROBLEMS WITH
NONCLASSICAL ASYMPTOTICS ON THE SPECTRUM
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Communicated by Ludmila S. Pulkina

Abstract. In this article, we consider the spectral problem for an nth-order
ordinary differential operator with degenerate boundary conditions. For even

n, we construct nontrivial examples of boundary-value problems which have

nonclassical asymptotics on the spectrum.

1. Introduction

Let us consider the boundary-value problem generated by the n-th order differ-
ential equation

u(n)(x) +
n∑

m=1

pm(x)u(n−m)(x) + λu(x) = 0, (1.1)

where the complex-valued coefficients pm(x) are functions in L1(0, π), with the
linearly independent boundary conditions

n−1∑
k=0

αi,ku
(k)(0) + βi,ku

(k)(π) = 0, i = 1, . . . , n, (1.2)

where αi,k, βi,k are complex numbers. It is well known that the characteristic
determinant of (1.1), (1.2) is an entire analytical function of spectral parameter λ.
Consequently, for operator (1.1), (1.2) we have only the following possibilities:

(a) the spectrum is absent;
(b) the spectrum is a finite nonempty set;
(c) the spectrum is a countable set without finite limit points;
(d) the spectrum fills the entire complex plane.

We say that problem (1.1), (1.2) has the classical asymptotics on the spectrum if
the case (c) is realized, moreover the multiplicities of the eigenvalues are bounded
by a single constant. For the Sturm-Liouville equation

Lu+ λu = 0, (1.3)
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where Lu = u′′ − q(x)u, with nondegenerate boundary conditions the spectrum al-
ways has the classical asymptotics [5]. For equation (1.3) with degenerate boundary
conditions

u′(0) + du′(π) = 0, u(0)− du(π) = 0, (1.4)
another situation takes place. In particular, under the condition that d 6= 0 it fol-
lows from [3] that for any natural m there exist potentials q(x) in the class Wm

2 (0, π)
such that the root function system of problem (1.3), (1.4) contains associated func-
tions of arbitrary high order. If d = 0, problem (1.3), (1.4) is the Cauchy problem
which has no spectrum. Note, that for the Sturm-Liouville operator any two-point
conditions are nondegenerate except (1.4). There is an enormous literature related
to the spectral theory for operators with nondegenerate boundary conditions.The
case of degenerate boundary conditions has been investigated much less. However,
it is known [1, 2, 6] that there exist operators of high order, where any complex
number is an eigenvalue. The main goal of present paper is to construct nontriv-
ial examples of boundary value problems for high order operators such that the
spectrum is absent or the spectrum is a countable set but the multiplicities of
eigenvalues infinitely grow.

2. Unbounded growth of order for associated functions

For any even n = 2ν with ν > 1, let us build an example of boundary-value
problem (1.1), (1.2), for which the multiplicities of eigenvalues grow infinitely.
Consider problem (1.3), (1.4) (d 6= 0) with a potential q(x) ∈ Wm

2 (0, π), where
m = 2ν + 2, providing infinite growth of the multiplicities of eigenvalues. Then
by the embedding theorem q(x) ∈ C(2ν+1)[0, π]. Let {un(x)} be the root func-
tion system of problem (1.3), (1.4) with the above-mentioned potential. Obviously,
un(x) ∈ C(2ν+1)[0, π]. Let us prove that for any j = 0, 1, . . . , 2ν,

q(0) = (−1)jq(π). (2.1)

Denote by c(x, µ), s(x, µ) (λ = µ2) the fundamental system of solutions to (1.3)
with the initial conditions c(0, µ) = s′(0, µ) = 1, c′(0, µ) = s(0, µ) = 0. In [5] simple
computations show that the characteristic equation of problem (1.3), (1.4) can be
reduced to the form ∆(µ) = 0, where

∆(µ) =
d2 − 1
d

+ c(π, µ)− s′(π, µ) =
d2 − 1
d

+
∫ π

0

r(t)
sinµt
µ

dt, (2.2)

where r(t) ∈ C(2ν+1)[0, π]. Let k be the least whole number (0 ≤ k ≤ 2ν), provided
that equality (2.1) does not hold. Integrating by parts k+ 1 times the last addend
on the right-hand side of equality (2.2), from [4], we obtain

∆(µ) =
k+1∑
j=1

αj
µj+1

+
Bk+1 sinπµ

µk+2
− 1
µk+2

∫ π

0

r(k+1)(t) sinµtdt

for odd k and

∆(µ) =
k+1∑
j=1

αj
µj+1

+
Bk+1 cosπµ

µk+2
+

1
µk+2

∫ π

0

r(k+1)(t) cosµtdt

for even k. In both cases coefficients αj are some numbers, and

Bk+1 = (−1)k+1r(k)(π) = (−1)k+1(q(k)(π)− (−1)kq(k)(0))/2k+1 6= 0.
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Hence, it follows that problem (1.3), (1.4) is almost-regular in sense of [7], therefore,
the multiplicities of eigenvalues are bounded by a single constant, i.e. we receive a
contradiction, hence, equality (2.1) is valid.

Further, consider the problem

Lνu+ (−1)ν−1λνu = 0, (2.3)

u(2ν−j)(0) + d(−1)j+1u(2ν−j)(π) = 0, (2.4)

j = 1, . . . , 2ν, where d is an arbitrary complex number (d 6= 0).

Lemma 2.1. The functions un(x) satisfy boundary conditions (2.4).

Proof. Let us prove the lemma by induction. Obviously, equalities (2.4) hold if
j = 2ν, 2ν − 1. Suppose, that the functions un(x) satisfy equalities (2.4) if j =
2ν, 2ν − 1, . . . , 2ν − l, where 1 ≤ l ≤ 2ν − 1. Consider equality

u′′n(x)− q(x)un(x) + λnun(x) = un−1(x), (2.5)

where un−1(x) is an associated function per unit of lower order corresponding to
a function un(x). If un(x) is an eigenfunction then the right-hand side of equality
(2.5) equals zero identically. Differentiating equality (2.5) 2ν− l−1 times we obtain

u(2ν−l+1)
n (x)−

2ν−l−1∑
m=0

Cm2ν−l−1q
(m)(x)u(2ν−l−1−m)

n (x) + λnu
(2ν−l−1)
n (x)

= u
(2ν−l−1)
n−1 (x).

(2.6)

It follows by the inductive hypothesis, equalities (2.1) and (2.6) that

u(2ν−l+1)
n (0) + d(−1)lu(2ν−l+1)

n (π)

=
2ν−l−1∑
m=0

Cm2ν−l−1q
(m)(0)u(2ν−l−3−m)

n (0)− λnu(2ν−l−1)
n (0)

+ u
(2ν−l−1)
n−1 (0) + d(−1)l[

2ν−l−1∑
m=0

Cm2ν−l−1q
(m)(π)u(2ν−l−1−m)

n (π)

− λnu(2ν−l−1)
n (π) + u

(2ν−l−1)
n−1 (π)]

=
2ν−l−1∑
m=0

Cm2ν−l−1(q(m)(0)u(2ν−l−1−m)
n (0)

+ d(−1)lq(m)(π)u(2ν−l−1−m)
n (π))

− λn(u(2ν−l−1)
n (0) + d(−1)lu(2ν−l−1)

n (π))

+ (u(2ν−l−1)
n−1 (0) + d(−1)lu(2ν−l−1)

n−1 (π))

=
2ν−l−1∑
m=0

q(m)(0)(Cm2ν−l−1(u(2ν−l−1−m)
n (0) + d(−1)m+lu(2ν−l−1−m)

n (π))

= 0.

(2.7)

�

Let a function
0
u (x) be an arbitrary solution of the equation

L
0
u +

0
u= 0, (2.8)
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and a function
i
u (x) be an arbitrary solution of the equation

L
i
u +λ

i
u=

i−1
u , (2.9)

i = 1, 2, . . .. Formally set
i
u≡ 0 if i = −1,−2, . . ..

Lemma 2.2. For any p = 1, 2, . . . we have

Lp
i
u=

p∑
k=0

(−1)p−kCkpλ
p−k i−ku . (2.10)

Proof. Let us prove the lemma by induction with respect to p. If p = 1 then
relations (2.8), (2.9) imply (2.10). Let the lemma be valid for a natural p. It
follows by the inductive hypothesis and the properties of the binomial coefficients
that

Lp+1 i
u = L(

p∑
k=0

(−1)p−kCkpλ
p−k i−ku )

=
p∑
k=0

(−1)p−kCkpλ
p−kL(

i−k
u )

=
p∑
k=0

(−1)p−kCkpλ
p−k(

i−k−1
u −λ i−k

u )

=
p∑
k=0

(−1)p−kCkpλ
p−k i−(k+1)

u −
p∑
k=0

(−1)p−kCkpλ
p+1−k i−ku

=
p+1∑
m=1

(−1)p−m+1Cm−1
p λp−m+1 i−m)

u −
p∑

m=0

(−1)p−mCmp λ
p+1−m i−m

u

=
i−(p+1)
u +

p∑
m=1

[(−1)p−m+1Cm−1
p λp−m+1 − (−1)p−mCmp λ

p+1−m]
i−m
u

− (−1)pλp+1 i
u=

i−(p+1)
u +

p∑
m=1

[(−1)p−m+1λp−m+1(Cm−1
p + Cmp ]

i−m
u

− (−1)pλp+1 i
u

=
p+1∑
m=0

(−1)p−m+1λp−m+1Cmp+1

i−m
u .

�

Denote Λ = (−1)p−1λp (p = 1, 2, . . .).

Lemma 2.3. Let λ 6= 0. If
i
v=

∑i
j=0 aj

j
u, where aj are some numbers, and

ai 6= 0, then there exists a function
i+1
v =

∑i+1
j=0 bj

j
u, where bj are some numbers,

and bi+1 6= 0 such that Lp
i+1
v +Λ

i+1
v =

i
v.

Proof. It follows by Lemma 2.2 that

Lp
i+1
v +Λ

i+1
v
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= Lp(
i+1∑
j=0

bj
j
u) + (−1)p−1λp

i+1
v

=
i+1∑
j=0

bjL
p j
u +(−1)p−1λp

i+1
v

=
i+1∑
j=0

bj

p∑
k=0

(−1)p−kCkpλ
p−k j−ku

+ (−1)p−1λp
i+1
v = (−1)pλp

i+1∑
j=0

bj
j
u +

i+1∑
j=0

bj

p∑
k=1

(−1)p−kCkpλ
p−k j−ku

+ (−1)p−1λp
i+1
v

=
i+1∑
j=0

bj

p∑
k=1

(−1)p−kCkpλ
p−k j−ku

=
i+1∑
j=0

bj

p∑
k=1

γk
j−k
u ,

where γk = (−1)p−kCkpλ
p−k. Equating the coefficients at the functions

i−m
u in the

relation
i+1∑
j=0

bj

p∑
k=1

γk
j−k
u =

i∑
l=0

al
l
u,

we obtain the system of linear equations
m∑
l=0

γl+1bi+1−l = ai−m, (2.11)

m = 0, . . . , i. The matrix of system (2.11) is lower triangular, and all the elements
of the principal diagonal are equal to γ1 = (−1)p−1pλp−1 6= 0. Therefore, system
(2.11) has the unique solution. Since ai 6= 0, we have bi+1 = ai/γ1 6= 0. �

Let un(x) be an associated function of order k corresponding to an eigenvalue
λn 6= 0, and functions {un−j(x)} (j = 0, . . . , k) form the corresponding Jordan
chain, i.e.

Lun−j(x) + λnun−j(x) = un−j−1(x) (j = 0, . . . , k − 1),

Lun−k(x) + λnun−k(x) = 0.

By lemma 2.1, the function un−k(x) is an eigenfunction of problem (2.3), (2.4)
corresponding to the eigenvalue Λn = (−1)ν−1λνn. Set vn−k(x) = un−k(x). Then,
by lemma 2.3, it follows that there exist functions

vn−k+i(x) =
i∑

j=1

bijun−k+i(x)

(i = 0, . . . , k) such that

Lνvn−k+i(x) + Λnvn−k+i(x) = vn−k+i−1(x).
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By lemma 2.1, all the functions vn−k+i(x) satisfy boundary conditions (2.4), then
the functions vn−k+i(x) form the Jordan chain corresponding to the eigenvalue Λn
of problem (2.3), (2.4). Thus we have that the function vn(x) is an associated
function of order k of problem (2.3), (2.4). Whence, the following assertion is valid.

Theorem 2.4. The root function system of problem (2.3), (2.4) contains associated
functions of arbitrary high order.

3. Empty spectrum

Consider boundary-value problem (1.1), (2.4), where n = 2ν (ν > 1). Suppose
that pm(x) = (−1)mpm(π − x) almost everywhere on the segment [0, π], m =
1, . . . , n. We will study the spectrum of problem (1.1), (2.4).

Theorem 3.1. If d 6= ±1 the spectrum of problem (1.1), (2.4) is empty.

Proof. Let a function ûk(x) be the solution of equation (1.1) with initial conditions

u
(j)
k (π/2) = δk,j , (3.1)

where k = 0, . . . , n− 1, j = 0, . . . , n− 1. Denote

û−(x) =
ν−1∑
k=0

c2k+1û2k+1(x), û+(x) =
ν−2∑
k=0

c2kû2k(x),

where ci are arbitrary constants (i = 0, . . . , n− 1). Then

û
(2k)
− (π/2) = 0, û

(2k+1)
+ (π/2) = 0, k = 0, . . . , ν − 1.

Obviously, that the functions w−(x) = −û−(π − x) and w+(x) = û+(π − x) are
the solutions of equation (1.1) and satisfy the same initial conditions at the point
π/2 as well as the functions û−(x) and û+(x), correspondingly. This, together
with the uniqueness of the solution of Cauchy problem (1.1), (3.1) implies that
û−(x) = −û−(π − x) and û+(x) = û+(π − x), if 0 ≤ x ≤ 1. It follows that

û
(n−j)
− (0) + (−1)j+1û

(n−j)
− (π) = 0, û

(n−j)
+ (0) + (−1)j û(n−j)

+ (π) = 0 (3.2)

(j = 1, . . . , n). It follows from (3.2) that for any complex number λ the function
û−(x) is a solution of problem (1.1), (2.4) if d = 1, and for any complex number
λ the function û+(x) is a solution of problem (1.1), (2.4) if d = −1. Thus, we
establish that if d = ±1 the spectrum of problem (1.1), (2.4) fills all complex plane.
If pm(x) ∈ Cm(0, 1), m = 1, . . . , n, this assertion was proved in [6].

Assume, for a number λ a function ũ(x) is a solution of problem (1.1), (2.4) if
d 6= ±1. Then ũ(x) = û+(x) + û−(x). We see that

û
(n−j)
− (0) + û

(n−j)
+ (0) + (−1)j+1d(û(n−j)

− (π) + û
(n−j)
+ (π)) = 0 (3.3)

(j = 1, . . . , n). It follows from (3.2), (3.3) that

û
(n−j)
− (0)(1− d) + û

(n−j)
+ (0)(1 + d) = 0

(j = 1, . . . , n). From this and the definition of the functions û+(x) û−(x), we have

(1 + d)
ν−2∑
k=0

c2kû
(n−j)
2k (0) + (1− d)

ν−1∑
k=0

c2k+1û
(n−j)
2k+1 (0) = 0
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(j = 1, . . . , n), hence, the constants ci (i = 0, . . . , n− 1) satisfy the system of linear
equations

n−1∑
i=0

ci(1 + d(−1)i)û(n−j)
i (0) = 0 (3.4)

(j = 1, . . . , n). The determinant of linear system (3.4) is

∆ = (1− d2)ν det ||û(n−j)
i (0)||.

Since the last determinant is the Wronskian of the fundamental system of the
solutions of equation (1.1), it is nonzero. Therefore, system (3.4) has only trivial
solution, i.e. the function ũ(x) ≡ 0. Hence, if d 6= ±1 problem (1.1), (2.4) has no
eigenvalues. �

Problem (1.3), (1.4) was first investigated in [8]. In particular, it was shown that
under the conditions d = ±1, q(x) ≡ 0 any complex number is eigenvalue of the
considered problem.
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