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SMOOTHING PROPERTIES FOR A COUPLED
ZAKHAROV-KUZNETSOV SYSTEM

JULIE L. LEVANDOSKY, OCTAVIO VERA

ABSTRACT. In this article we study the smoothness properties of solutions to
a two-dimensional coupled Zakharov-Kuznetsov system. We show that the
equations dispersive nature leads to a gain in regularity for the solution. In
particular, if the initial data (ug, vo) possesses certain regularity and sufficient
decay as * — 0o, then the solution (u(t),v(t)) will be smoother than (ug, vo)
for 0 <t < T where T is the existence time of the solution.

1. INTRODUCTION

The general form of the coupled Zakharov-Kuznetsov system [12] is
Ut + Ugga + Uyye — OUU; — U =0 (1.1)
V¢ + OVaza + AVyyz + Ve — 6VV, — wu, = 0. (1.2)

This coupled system is a model describing two interacting weakly nonlinear waves
in anisotropic media. Here, x and y are the propagation and transverse coordinates
respectively, 1 is a group velocity shift between the coupled models, § and A are
the relative longitudinal and transverse dispersion coefficients, and p and w are the
relative nonlinear and coupled coefficients. In the absence of the transverse variation
(i.e. - uy = vy, = 0), this system reduces to the set of coupled KdV equations [7]
which are known to describe the interaction of nonlinear long waves in certain fluid
flows. In this article, we study (1.1)-(L.2) when the dispersion coefficients, ¢ and A,
and the coupling coefficient w are positive. In that case, it suffices to consider the
initial-value problem

Ut + Uggr + Uyyz — OUU; — v =0
bvy + dVzza + AVyye + MUy — 6V — Uy =0 (1.3)
u(x,y,O) :’Lbo(l',y), U(xvyvo) :'Uo(.’b,y)
where b > 0, § > 0, and A > 0.
A number of results concerning gain of regularity for various nonlinear evolution
equations have appeared. Cohen [4] considered the KdV equation, showing that
“boxshaped” initial data ¢ € L?(R?) with compact support lead to a solution wu(t)

which is smooth for ¢ > 0. Kato [13] generalized this result, showing that if the
initial data ¢ are in L?((1 + e°%)dx), the unique solution u(t) € C°>°(R?) for t > 0.
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Kruzhkov and Faminskii [I5] replaced the exponential weight function with a poly-
nomial weight function, quantifying the gain in regularity of the solution in terms of
the decay at infinity of the initial data. Craig, Kappeler, and Strauss [6] expanded
on the ideas from these earlier papers in their treatment of highly generalized KdV
equations. Other results on gain of regularity for linear and nonlinear dispersive
equations include the works of Hayashi, Nakamitsu, and Tsutsumi [9} [10], Hayashi
and Ozawa [I1], Constantin and Saut [5], Ponce [2I], Ginibre and Velo [g§], Kenig,
Ponce, and Vega [14], and Vera [23]. Smoothing properties for coupled systems of
nonlinear dispersive equations in one-spatial dimension were proven by Vera [22],
Ceballos, Sepulveda, and Vera [3], and Alves and Vera Villagrén [I]. Here we treat
a coupled system of nonlinear dispersive equations in two spatial dimensions.

In studying propagation of singularities, it is natural to consider the bicharacter-
istics associated with the differential operator. For the KdV equation, it is known
that the bicharacteristics all point to the left for ¢ > 0, and all singularities travel
in that direction. Kato [I3] makes use of this uniform dispersion, choosing a non-
symmetric weight function decaying as x — —oo and growing as z — oo. In [6],
Craig, Kappeler and Strauss also make use of a unidirectional propagation of sin-
gularities in their results on infinite smoothing properties for generalized KdV-type
equations for which f, _ >¢> 0.

For the two-dimensional case, Levandosky [I6] proves smoothing properties for
the KP-II equation. This result makes use of the fact that the bicharacteristics
all point into one half-plane. Subsequently, Levandosky [I7] considers generalized
KdV-type equations in two dimensions, proving that if all bicharacteristics point
into one half-plane, an infinite gain in regularity will occur, assuming sufficient de-
cay at infinity of the initial data. Levandosky Sepulveda and Vera Villagran [19]
proved a smoothing property for the KP-I equation. Since the bicharacteristics do
not all point into the same half-plane, singularities may travel in all of R%. Conse-
quently, the same proof techniques used above do not generalize to this equation.
However, they are able to prove a finite gain in regularity. Levandosky In [I8]
proved smoothing properties for solutions to the fifth-order Kawahara equation in
two spatial dimensions.

In this paper, we extend the ideas discussed above to prove a gain in regularity
result to a Zakharov-Kuznetsov system (1.3), a nonlinear dispersive system in two
spatial dimensions. Specifically, we quantify the gain in regularity of the solution
(u(t),v(t)) in relation to the decay of the initial data. In particular, we prove that
if the initial data has sufficient regularity and decays sufficiently as x — oo, then
the solution (u(t),v(t)) € C°(R?) x C>°(R?) for 0 < t < T where T is the existence
time of the solution. We now state this more formally in a special case of our main
theorem on the gain of regularity for the Zakharov-Kuznetsov system.

Gain of regularity theorem. Consider a coupled system of the form (1.3 where
b,0, A > 0. Let (u,v) be a solution of (1.3]) in R? x [0, 7] such that for all integers
L>1,

sup /Rzu +a )P > [(0%u)® + (0°v)?] da dy < +oc.

0stsT lal<3

Then our solution (u(t),v(t)) € C*(R?) x C*(R?) for 0 < ¢t < T.
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As will be shown, the assumption that

sup /R?(l + )k Z [(0%u)? + (0%v)?] dz dy < +o0

0<t<T o]<3

for all integers L > 1 may be reduced to assuming this property holds for some
integer L > 1. The smoothing phenomenon will still occur, but the amount of
smoothing will depend on the size of L, thereby showing the relationship between
the decay at infinity of the initial data and the gain in regularity of the solution.

The plan of the paper is the following. In Section 2, we introduce the weighted
Sobolev spaces which will be used to describe the gain in regularity. In Section
3, we state and prove the main inequality used to show the gain in regularity.
In Sections 4 and 5, we prove an existence result showing that if the initial data
(up,vp) is sufficiently smooth, there exists a unique solution (u(t),v(t)) of
with the same amount of regularity for a time interval [0, 7] depending only on a
Sobolev norm involving the initial data. In Section 6, we prove that if the initial
data also possesses sufficient decay at infinity, the solution (u(t),v(t)) possesses
similar decay at infinity. Finally, in Theorem [6.4, we state and prove the main
result. Using induction we show that the decay at infinity of the initial data leads
to a gain in regularity for the solution (u(t),v(t)).

2. PRELIMINARIES

The idea for the proof of the gain in regularity is the following. For the first step
of the induction, we multiply (1.3, by 2§u where £ is our weight function, to be
specified later, and integrate over R?. Upon doing so, we obtain

2/§uut+2/§uumz+2/§uuyyz—12/fu(uur)—2/§uvx:0. (2.1)

where [ = fR2 dx dy. Then, integrating by parts, we see that

8t/§u2+3/§mui+/§muz = /gtuer/€mmu2+12/§u(uum)+2/guvz. (2.2)

If our weight function ¢ satisfies 0 < 94¢ < C@’;f for all j > k > 0, then we arrive
at the inequality

3t/§u2+3/§xui+/£xuz < /{tu2+C’/€u2+12/§u(uux)+2/£uvx. (2.3)

Similarly, multiplying (1.3, by 2£v, integrating by parts, and using the same as-
sumption on the weight function &, we see that

orb / €02 + 35 / €02 + ) / €02
(2.4)

< b/gtzﬂ +C/§v2 + 12#/51}(’01}1) +2/§1}u1.

Combining these two inequalities, we have
O /§(u2 + bw?) + 3/§z(ui + 6v2) + /gz(uz + )\vg)
< /§t(u2 +b?) + C/f(u2 +0?%) + C’ /gu(uuz)| + C| /gv(vvz)| + Z/S[uv]z.
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Notice the second and third terms on the left-hand side. Assuming &, > 0, these
terms have positive signs, thus, allowing us to prove a gain in regularity. We
continue this procedure inductively. On each step, 3, of the induction, we take «
derivatives of 1 and 2 where |a| = a3 + ay = . We then multiply the
differentiated equations by 2£(du) and 2£(dv), respectively, where 9% = 0510y
and £ = g is our weight function to be described below. Integrating over R? and
integrating by parts as described above, if our weight function ¢ satisfies 0 < 94.¢ <
COF¢ for all j > k > 0, we arrive at the following inequality.

o [ €(oru? + 000 + € [ (00 + (070)

+C [ &l + (0°0,)

< C/gt ((0%u)? + (0%v) +C/§ ((0%u)® + (0°v)?) + C| /g(aau)aa(uux)\
+€| [ +2 [ d@ue .,

Choice of weight function. In what follows, we will be proving that if our initial
data decays sufficiently as x — oo, then the solution will experience a gain in
regularity. Consequently, we will choose weight functions which behave like powers
of x for x > 1. Since the bicharacteristics point into the left half-plane, it is
natural to choose weight functions which decay as © —+ —oo. We will choose weight
functions which behave like e?® where o > 0 for z < —1. We define the classes of
weight functions as follows.

Definition 2.1. A function £ = £(x,t) belongs to the weight class W, ;1 if it is a
positive C*° function on R X [0,T1], &, > 0, and there are constants ¢;, 1 < j <5
such that

0<c <t Fe7%(x,t)<cy Vor<-1,0<t<T,
0<cg<tFai¢(z,t)<ey Ve>1,0<t<T, (2.5)
(&) +107E)/E <es V(x,t) eRx[0,T], VjeZ'.

We now define weighted function spaces using the weight functions introduced
above.

Definition 2.2. Let N be a positive integer. Let H?(W, ;) be the space of
functions with finite norm

HO (W) = {0 B2 S R ol ., / S (0%0)? [e(, )| < 0} (26)
lo]<B
for any £ € Wy, 5>0,and 0 <t <T.
Remark 2.3. We note that although the norm above depends on &, all choices of £

in this class lead to equivalent norms. The usual Sobolev space is HY (R?) without
a weight.

Definition 2.4. For each fixed £ € W, 1, 8 > 0, we define the space
LP([0,T] : H’(Woix))
. T (2.7)
= {’U(;C,y,t) : ”’UHLP([O,T]:Hﬁ(WC,ik)) = A ||’U(-, s )”Hﬁ(W dt < +OO}
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L([0,T): H*(Woik))

= {U(xayat) : ||’U||%°C([O,T]:Hﬁ(Waik)) = t:;é%“] ”U('a 'at)HHﬁ(Waik)dt < +OO} (

2.8)

Moreover, we define the spaces

Wyir = Uj<iWo i ks (2.9)
LP(HY(Wo i) = Ujei LP (H* (W 1)) (2.10)
We shall use those spaces only in the case when i = —1.

In this article, we make use of the following Sobolev embedding estimates

1/2
T p— c(/R u? 402, + o) d dy) (2.11)
and (see [2, Th. 10.2, page 187])
1/4 1/2
(/Rz lu|* d dy) < (/R2 [u? +u? + uz] dx dy) . (2.12)
In general, we have the anisotropic imbedding. For 2 < n < 6,
. 1/n s o 1/2
(/}RQ [ul dxdy) < (/Rz[u +ug + uy dmdy) . (2.13)

3. MAIN INEQUALITY

In this section we state and prove the main lemma that will be used in our
main theorem on the gain of regularity. Specifically, we prove that if there exists a
solution (u,v) of sufficiently smooth and with sufficient decay at infinity, the
weighted Sobolev norms for (u,v) are bounded above by other weighted Sobolev
norms involving less derivatives of u and v.

Lemma 3.1. , For (u,v) a solution of (1.3)) sufficiently smooth and with sufficient
decay at infinity,

sup [l + 0o+ [ ' [sl@u + @)

0<t<T
i /oT / X5l(07vz)* + (070" < C

for 1 < B < L, where § = |a|, £ € Wy 1.-8.8, Xg € Wo,.—p-1,3 and C depends
only on ||u||gs, ||v|| g3, and

sup / &), sup / £,(070)? (3.2)

0<t<T 0<t<T

T
/O / xl(@712)% + (072 (3.3)

(3.1)

/0 : [rl@wy + @02, (3.4)

where v = |7| S 6 - 1; gl/ S WJ,L—V,V; and Xv € Wa’,L—v—l,u-
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The idea of the proof is the following. We would like to bound terms on the left-
hand side of in terms of integrals of the same form, but with a lower number
of derivatives. In particular, we hope to bound the left-hand side of in terms
of - . On each level of the induction, the weight function £ behaves like a
power of x for z > 1, an exponential e’ where o > 0 for x < —1 and a power of t.
As we proceed inductively, the powers of z for > 1 decrease while the powers of ¢
increase. In particular, for 8 =1, g ~ tal=1 for x > 1. For 8 = 2, &g ~ t22X =2 for
x > 1. We continue in this way, decreasing the power of = for z > 1 and increasing
the power of ¢t on each level of the induction.

Proof of Lemma[3. Let B > 1. Let a = (aq, ) where |a| = . Take o deriva-
tives of (|1.3));, multiply the differentiated equation by 2£3(0%u) where

Get) = [ " (et (3.5)

— 00

for x5 € W, 1.—5-1,, and integrate over R? x [0,¢] for 0 < ¢ < T. Letting £ = &g,
we conclude that

/5 ) (9%u) +3/ /ﬁx “u,) +/Ot/£x(8“uy)2
= / £(-,0)(8%u0)? + /O / [+ Eawa] (07u)* + 12 /0 t / £(0%u)0* (uuy)  (3.6)
w2 [ [

Similarly, take o derivatives of (L.3),, multiply the differentiated equation by
2£5(0%v), and integrate over R? x [0,¢] for 0 < ¢ < T. Doing so, we conclude

that
e s [ [o o[ [ewnr

- [ et 00w / [ 16+ uer el 00 (3.7)

+ 124 / / £(8%0) 0% (vvg) + 2 /O / £(0%u, ) (0%)

Then, adding (3.6)) and ( .7 we have

/g [(0°u)? + b(8%v) +3//£x “uy)? + 6(0%0,)?

; / / &0, + N0v,)?]

= /5(-,0)[(6%0)2 + (8%vp)?] +/Ot/[£t + e [(0%0)? + (8%0)?]
+/0t/ngz(a%)2+12/0t/5(8“u)8“(uu$) + 12u/0t/£(5“v)5a(vvz)
w2 [ [t
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Now using the fact that 92¢ < C¢ and £(-,0) = 0 for 8 > 1, we obtain the identity

/5 [(8%u)* + b(0™v) +3//fz “ug)? + (0%, )%

+ / [ &al@u)? 4 2@, )
<c| t Jle+ @i + @+ 12 | t [ e e )
+12 /0 t / £(0°0)0 (o, + 2 /0 t / £0,[(6%u)(9°0)].

The first term on the right-hand side above is bounded by terms of the form (3.3))
and (3.4). Integrating by parts and using the Cauchy-Schwarz inequality, we see
that the last term on the right-hand side satisfies

|//ga [(0°u)(9°v) |—|//g$aa )(8%v) <c//gx [(0°0)? + (8°v)?).

Each of these terms is bounded by terms of the form ) and . Therefore, we
conclude that

[ecol@w? + vy +3//5m 1,2 + 3(00,)?)
¥ / [ &l@ )+ 2@, ) (38)

< c+c\/0t/g(aau)aa(uux)}+C|/Ot/£(0“v)8“(vvx)|

where C' depends only on (3.3]) and (3.4]). Therefore, it remains to look for bounds
on the remainder terms

C’/Ot/f(aau)ao‘(uum)’ +C|/Ot/§(3av)3o‘(vvm)| (3.9)
for each § > 1.

Case 8 = 1. Let £ = & = [*_ xp(2,t)dz where x5 € W, 1—21. Therefore,
¢~ txt~! for x > 1 and & ~ te?® for x < —1.

Subcase a = (1,0). The remainder terms satisfies

|/ t [utunnd =1 [ t [ et + v
sc}/ot/fui|+c|/ot/£u<uz>il
< Clug|z /Ot/wiw/ot/\sru<um)2+sui|
< Cluy | [/gui+clulm /Ot/éxui
Clludaoe +fucli) | t [
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cof [

where C' depends only on |ju||gs. Similarly for the remainder term involving wv.
Combining this bound with (3.8) and the fact that £, = x3 we conclude that

T T
sup C / R e / / X2, + 03]+ C / / X2, +02,) < C
0<t<T 0 0

where x = xp and C depends only on || gs, ||v] gs and terms of the form (3.3
and ., as desired.

Subcase a = (0, 1). In this case, the remainder terms in u satisfy

|/ /guy (uuz) |_\/ /guy (ty e + Uty |
scmum/o /fuiwl/ot/au(ui) |
< Clua| /(Jt/£u§+0|/ot/§xuu§+£uxu§}
<Ol [ [ent+ctutun [ [
Ol + o) [ [ et
o o

where C' depends only on ||u| gz. Similarly for the terms in v. Combining these
estimates with (3.8)), we conclude that

T
sup C §(-,t)[u§+v§}+0// us, + v, +C’/ [uz, + vz, <C
0

0<t<T

where C' depends only on ||u|| g3, ||v||gs and terms in and (3.4).

Case f = 2. In this case, let £ = &5 = f_oo Xg(z,t)dz where xg € Wo 1—3.2.
Therefore, & ~ t2 L=2 for £ > 1 and & ~ t2e7" for < —1.

Subcase a = . In this case, the remainder terms satisfy

\/ /ﬁum W) g | = |/ /éum BUaplzg + Ullgas)|
< Clalae + ki) [ [ 2,
0
t
<c[ [ez
0
Subcase a = (1,1). In this case, the remainder terms satisfy

|/ t [ i

where C' depends only on ||ul|gs.
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t
— | / /guzy@uxuzy + Uy gy + uumy)|
0

t t t
0 0 0
t
<c [ [eut v,
0

where C' depends only on ||u|gs.

Subcase a = (0,2). In this case, the remainder terms satisfy

t t
‘/0 /fuyy(uux)yy| = |/0 /§Uyy(uyyuzc+2uyuacy+u“xyy)|
t ¢
<Clul [ [eid, +Clul- [ [et,+d,)
0 0
t
< c/ /g(u§y+u§y)
0

where C' depends only on ||ul|gs. Similarly for v. Combining these estimates with

, we conclude that
SupC/f aa +CZ// aa a)] C

=g OSE<T |ol=3

where C' depends only on ||ul| g3 ®2), ||v||#3r2) and terms in and (3.4).
Case 3 = 3. In this case, let £ = &3 = f_oo xp(z,t)dz where xg € Wor—43.

Therefore, ¢ ~ t3273 for 2 > 1 and ¢ ~ t3e°® for x < —1. We consider the
subcase @ = (3,0). The other cases can be handled similarly.

Subcase a = (3,0). The remainder terms satisfy

| /0 t [ €t i)

t
0

t
2 2
0

t t t
< Clug| i / / €u2,, +C / / €0 s + Olul e + s o) / / cu,,
0 0 0
t t
C(|U‘L°° + |uz|L°°)/ /fuim +C/ /guizummx
0 0
t t
0 0

where C' depends only on ||ul|gs.

To handle the last term on the right-hand side above, we use . In addition,
we consider the cases © > 1 and x < —1 separately. Let A = {# > 1} x R and let
B = {z < —1} x R. First, for z > 1,

t
2
0o JA
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—C/ /t3 L= 3umumx
3L—34 1/2 3,132 1/2
t x / / t°x zm
1/2 1/2
2(L=3)/ um / /t3 L-3 imz

A

/Ats (L=3)/4,, )2+t3([x(L—3)/4u$I]w)2+t3([x(L—3)/4uwm]y)2>
/tgfﬂL 3 2 1/2

A mxm

.
A

3p(L=3)/2,, 2 +t3$(L_3)/2U’iwz+t3$(L_3)/2uizy)

1/2
£3L-3,,2
’E’EI

| /\
\
\

&/\r\

1/2
Second, for xz < —1,

//ﬁumumzf/ /t3 T U
t
<Ct3/2 //t3 20,4 W(/ /Uim)l/z
0
1/2
< Cllull s //t3|e”/2um|4>
0 B

SC(/Ot/Bt3[(eax/2uwm>2+([emc/ZuII]w)2_,'_([eaa:/Qumj]y)z])

t . 2
<o [ [ et it i)

Combining these estimates, we have

\/Ot/fum(uuw)m! <C

where C' depends only on ||u||gs and terms of the form (3.3). The other terms
on the level § = 3 can be handled similarly. Similarly for v. Combining these
estimates with (3.8), we conclude that

PO ERICE R o A RCSTR R R

lor|=4

where C' depends only on [[ul| g3 g2y, [|v|| 73 (r2) and terms in (3.3) and (3.4).
Case 3 > 4. For B >4, let £ = &5 = [*__xp(z,t)dz where x5 € Wy _p_1p.

Therefore, £ ~ tP2L=F for £ > 1 and & ~ t%e?® for x < —1. We combine Lemma
given below, in which we estimate our remainder term (3.9) with our main

2
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inequality (3.8)) to conclude that

T

swp € [+ @ o)+ Y [ [xlomar+ @ <c

jaj=p OS*=T jal=p+1"0

where C' depends only on ||u|| g3, ||v||gs and terms in (3.2)-(3.4]). O
We now show the bounds on the remainder (3.9)) for 5 > 4.

Lemma 3.2. For4 < g < L, g = |a|, and (u,v) a solution of (1.3|) sufficiently
smooth and with sufficient decay at infinity, for 0 <t <T, we have

‘/Ot/‘fﬁ(aau)aa(uuw)’ <C, \/Ot/gﬁ(a%)aa(ww)y <C (3.10)

where £g € Wy r—5.8, X8 € Wo,L—p—1,8, 0 > 0 arbitrary and C' depends only on
l[ull s (2), [|v]l#rs ey, and on (3.2), (.3), and (3.4).
Before proving Lemma we describe the form of each term in (3.9)).

Lemma 3.3. FEvery term in the integrand of

t
/ £(0%u)0” (uuy) dz dy dt
0 JRr2

¢ (3.11)
/ £(0%0)0* (vvy) da dy dt
0 JR2
is of the form ( ’ ’ |
C& 8au 8TU 3Sux
CEO™)(0™v) (%) (3.12)

respectively, where r = (r1,73), s = (s1,82), 11 + 8; = a; fori=1,2.

The above lemma follows from the Leibniz formula applied to 0%(uu,) and
0% (vvy).
Proof of Lemma[3.2 By Lemma we can write every term in the integrand of

in the form where { = {g € W, —p,3. It remains to show that each
of these terms is bounded by constants depending only on —. In this part
we draw our attention to the case when x > 1. For z > 1, our weight function
€ ~ tF gt for k, £ > 0. For the case < —1, £ ~ tFe?? for ¢ > 0 arbitrary. That
case is even easier to handle. Let A = {(z,y) : « > 1}. Then for x > 1, we are

looking to get bounds on (3.11)) and (3.12)) in terms of
sup / 2l [(07u)? + (070)2), (3.13)
A

0<t<T

/0 ' /A LYV ug)? + (070,)2], (3.14)

/OT/AtuxL—u—l[(avuy)?+(37vy)2] (3'15)

where 8 —1 > v = |y| > 0. We need to break up each term of the form (3.12)) into
three parts, being sure to divide the weight function appropriately among the three
terms. To do so, we combine

Ha"/uHLm(Rz) < (/[(87u)2 -+ (8%“901»)2 -+ (aVuyy)2])1/2 (3.16)
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with
t* 2t (97 u) —tkz ( ) (07~ 2") (977 w)). (3.17)
In fact,
52 (@) e ) < ZH(]) (OO e (319)
7=0
Hence, combining (3.18) with (3.16]) we conclude that
sup ||t TV/2 m(Lf(”H))/Q(avu)HLoo(A) <C (3.19)
0<t<T

forv=|y| <p—3, and
T
/ Ht(l/+1)/2 L= +1)—1)/2 (0"u)|| Loy < C (3.20)
0

for v = |y| < B — 2, where the constant C' depends only (3.13), (3.14), (3.15).
Similarly for v. Then using the above inequalities, we look at terms of the form
(3.12)). For x > 1, these terms can be expressed as follows

‘/ [ ceraE@) <o /0 R IR CED

For notation, let v,, = r1 + 79 and v; = s1 + s3. Since 8 = a1 + g, it follows that
v+ v, = (.
Case v; < 8 — 4. In this case, we bound the remainder term as follows

/T ‘/ tﬁa:L—ﬁ(aau)(a’“u)(asuI)|

<supz™ TM sup ||t(”&+2 /2, (L= Vrl)/2( Uz )| Lo ()
z>1 0<t<T

g (vr—1) . L—(vp—1)—1/qr, \2)1/2 T B—1, L—(B—1)—1/9a,\2)1/2
X ( (A (0"u)?) " ( " (0%u)?) "
0o Ja 0o Ja

First, we show that M > 0 and N < 0, so that any extra powers of ¢t or x can be
thrown away. We see that

vs+2 v.—1 p-1
2 * 2 * 2
Therefore,
26=2M+4vs+2+4v,—1+3—1.
Therefore,
2M =8 —vs — v, = 0.

Therefore, M = 0. Next
L—pus—-1 L—-(v,—-1)—1 L—-(f-1)-1
2 + 2 + 2 '

L—-p=N+
Therefore,
2L -2 =2N+3L—-vs —v, — —1,
which implies —L + 1 = 2N. Therefore,
—L+1
2

N =

<0
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as long as L > 1. The others three terms are bounded by (3.19)), (3.14]) and (3.15).
Case  — 4 < vy < 8 — 2. In this case, we have
T
/ /tﬁxL’ﬁ(aau)(a’"u)(E)sum)
0
T 1/2 T 1/4
< CTMxN(/ /t,B—l:L,L—(ﬁ—l)—l(aau)Q) (/ /tuTxL—l/T—l<aru>4)
0 0
T 1/4
% (/ /tu5+1IL7(VS+1)71(aSUz)4)
0
T
< CTMxN(/ /tﬁ_le_(ﬁ_l)_l(ao‘u)z)1/2
0

X (\/()T/tVTzLVT1[(8Tur)2+(aTuy)2]>l/2

T
([ ettt @)+ 0
Then

1/2

2 2 2
Therefore, M = 0. Also,
L--1)-1 L—-v,—-1 L—-—(vg+1)—1
2 + 2 * 2 '

L-B=N+

Therefore,
2(L-p)=2N+3L—-8—v, —vs,—3.
Therefore, N <0 as long as 3 < L. But L > 8 > 4. Therefore, L > 3.

Case v, =  — 1. In this case, v, = 1. Therefore r = (1,0) or r = (0,1). Consider
first r = (1,0). Then

0
T T
/ /tﬂacL_ﬁ(aru)(as%)(@au):/ Pt Pug (9l =12) ) (9%u)
0o Ja 0

T
:/ /tﬁzlfﬁum(aau)2
0 A

T
SCT|’LL$|LOO/ /tﬁ_lzzzL_ﬂ(ao‘u)2
0o Ja

T
gC’THuHHs/ /tﬁfleﬁ*l)*l(aau)?.
0 A

Then the term on the right-hand side is bounded as desired. Similarly, if » = (0, 1),
we have

T
/ /tﬁszﬁ(aru)(asum)(aau)
0o Ja
T
:/ /t%L—Buy(anvaz—1)uy)(a“u)
0 Ja

T
SCT|'UJy‘L°°/ /tﬁflef(Bfl)fl[(a(al,azfl)uy)Q+(aau)2]'
0 A
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Case v, = 3. In this case v, = 0. Then
T
/ | / t? xL*ﬁ(aau)(aTu) (8Sux)|
0 A

= [1 ] et
o Y [ Pl

T
<CT (HUHLoo(A) + ||U1||L00(A)> (/ / tﬂ—le—5—1<60‘u)2)
0 A
T
<crllulls ([ [ b0 0v)2).
0 A

where again the right-hand side is bounded by (3.14)) or (3.15). Lemma [3.2]follows.
U

4. A PRIORI ESTIMATES

In this section we prove two lemmas that will be used in a local-in-time existence
theorem in Section 5. First we prove an a priori estimate for a linearized system
related to . Second, we prove existence of a unique solution of that linearized
system.

For the lemma involving the a priori estimate, we introduce the following function
space ijy . We define

ZN ={u: uwe L=(0,T] : HNT3(R?)), u; € L>°([0,T] : HY (R?))}, (4.1)
with the norm
HUHQZJTV = sup / [“2+ Z {(8auwm)2+(aa“yyy)2}+u§+ Z (8a“t)2]' (4.2)
= la|=N la|=N

Lemma 4.1. Let u, v, w, z be functions in ZN for all N and all t > 0 such that
u, v, w, z are solutions to

Up + Uggr + Uyyz — Uz — bwu, =0,

bvy + Vzer + AVyye + MUz — Uy — Bpzv, = 0. (4.3)
Then for all N > 0, the following inequality holds
ol + ol < e O+ Mot Olwes + O

+bllve (-, Ol Fn + Ctllwll gzx lullZy + Ctll2l 2 [0l 5
for allt > 0.
Proof. Fix N > 0 and choose « such that |a| = N. Applying 9 to (4.3)); we have

0%y + 0Ugg + 0Uyye — 0%V, — 6% (wug) = 0. (4.5)
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Multiplying (4.5) by 20%u and integrating over R? we obtain

9, / (0°0)? = 12 / (0°0) 0™ (wiry) + 2 / (0°0) (v,
<C\/ (0%u) 4 w(0%u,)] |+2/ 0°u) (0°v,)
< C’|/(3°‘w)u£(6”‘u)f +| w(0%u,)(0%u |+2/ 2%u)(0%v,)
(4.6)

The first term on the right-hand side of (4.6) is estimated using (2.11) together
with the Cauchy-Schwarz inequality

‘/(5aw)u$(8au)‘ < ||“w||Loo(/(8%)2)1/2(/(3@“)2)1/2

) 1/2
<o [l i+ a2y,)) ol e

< CHWHZIMHUHZM\

For the second to last term on the right-hand side of (4.6]), integrating by parts

and using (2.11]) we have

| [wruy@w| = [ w0 w? < Clulo [0

1/
<o [+t +u2,)) Ml

< CllwllzwalHuIIZ\ -

Therefore,

o [ (@ ul.B)" < Cllul o Il +2 (@)@ (@)
In a similar way applying the same idea to (4.3))2, we obtain

8tb/ (000 D) < Cllzl oo Iol2per + 2/(8%)(80“%). (4.8)
Then adding and we obtain

(9t/[(3%( )2+ 00 v(,1))*] < Cllwll gar el Zer + Cllzll ggor 011101 (49)
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Now, taking three z-derivatives of (4.5 and multiplying the result by 20%u,., we
have

815 / (aauwww)Q
< |/(8a (w ux)g;mw) (8auwmc) | + 2/(aauxxx)(aavxxxx)
<| /3“ (Waaz Ug + 3 Wag Uz + 3 Wa Uggz + W lzzes) (0% Usss) |

+ 2 [ (0%Uazz) (0% Vazaz)
| o

<| / 0" (Wreatia) (% Usss) | + 3| / 0° (Wrstias) (0% tsss) |
+ 3!/0a (Wallaoa) (8C’umm)}+|/3a (Wlazas) (0% Usas) |
+ 2 / (0thzz) (0 V)
R2
Iy 3Dyt 35+ Iy + 2 / (0%t} (0 V).

Each term in the above expression is estimate separately. For the first term it
follows that

Il - |/8a (wm:vzux) (3auacm:v) |

= ’ / [(0%Wera) U (0 Usazz) + - + Ware (0%Uz) (0 Uggs)] |

+C||3O‘um||Loo(/wgm>1/2(/(aaumx)2)1/2
= C(/ [0 + 0 + 12y, )1/2(/(aawm)a)l/Q(/(aaum)Q)1/2

I C’(/ [(aaux)2 + (aaumx)2 + (3auxyy)2] )1/2

c(for) ([ @)

< Cllullzollwll greallell got + - + Cllull gt [lwll zg [lull o
< Cllull grarllwll et llull g + -+ + Cllull et l[wll o flul] e

< Cllwll ggonluller-

Next, we consider Is.

12 - | o (wmxuzz) (aaummx) |
/ (4.11)

= | /[(8awmz) Uz (aaummz) T+t Wey (aaumz) (aauIZI)H
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Using the Cauchy-Schwarz inequality and (2.12)), for the first term in (4.11), we

have

| / (0% Waz) Usw (0% Usas) |

< ([ @) ([t o) ([ o)

< (10w + (070200 + (022 ( JACER IR, )"

([ 0rur)”

2

< cllwll g llull e

Integrating by parts the last term in (4.11]), using the Cauchy-Schwarz inequality,
and (2.12)), we have

1
‘/wm (0%Ugs) (0% Ugsy) | = §| /wml (80‘u$$)2 ’

(i) (f )"
< Sl ([ @) + @) + 0%y

< Clul o

zl~
For the third term in (4.10) we have

I3 = | /aa (wzuzmz) (8aurzx) |

1/2

= | / [(aawz) Uz (aauzxm’) + -t wy (8auzxm) (8aumzz)] |

1/2 1/2

< Cllwll gratlfullzg 0]l g1o1 + -+ - + Cllwll zg [[u]

< CH@UHZtIa\”uH?Z}a\ :

2
z}*!

Now we estimate the last term in (4.10)) as follows

-[4 - | /aa (wumxa:r) (aauzzm) |
| (4.12)
= | /[(aaw) Uz (8auxxm) +---F+w (aauzmazm) (ajuzzaz)”

If & = (0,0), then integrating by parts and using (2.11)),

1
§| k2 Wy uixm|
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2 2 2 1/2 2
< C(/ [wm T Wy T+ wzyy] ) /R? Ugga
< Cllullgy ]l .
For |a| > 0, using (2.11)) for the first term in (4.12)), we have
| [ (0%0) e %) |

< cnaawnm(/w ugm)m(/(aaumﬁ)w
<( / (070" + (0%w20)? + (9%wy)?] )1/ 2( / uim)” 2( / (aaumf)w

< Cllwl e ||U||221a|-
For the last term in (4.12)), integrating by parts and using (2.11)) we have
[e fe% 1 o 2
< CVHwIHLOc / (aauzrz)z

1/2
< C’(/ [wi + wim + wiyy] ) /Rz (3auml)2

< Cllwll ggo [l e
Consequently,
0 [ (0%nsa)? < Cllull ol + 2 (0P a) @ 0raz). (433)
In a similar way, applying the same idea to (4.3))2, we obtain
0t [(0%022)" < Clal g0l +2 [ (0% 00a) ). (419)
Then adding and we obtain
01 [ [0 usae)? +5(0%0020)?] < Clul gl + Cllell g ol (415)

Similarly, applying 6”‘65’ to each equation in (4.3]), and using similar analysis, we
obtain
3t/[(3auyyy)2 +0(0%yyy)?] < Cllw]] e Hu||2zt|a\ + Ozl e HUIIQZ@- (4.16)

On the other hand, applying one t-derivative to (4.5]), multiplying by 2 (0%u:)
and integrating over R? we arrive at the inequality

o, / (0%u)? < C / (0" (wur),) (0%ur) | +2 / (0°u) (0,
gc]/aa (wrs) (aaut)|+cy/aa (witzr) (0us) |

= K1 —|—K2 —|—2/(8aut)(8avxt).
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For the first term on the right hand side, we use (2.11)) and the Cauchy-Schwarz
inequality

K = ‘/8‘1 (wiug) (0%uy) |

SC’/(@awt)ux (8aut)’+"'+0‘/’wt (0“uy) (aaut”

< C’||ux||Loo(/(3awt)2>1/2</(80‘ut)2)1/2+...
+C||8auz\|Loc(/Rz wf)1/2</(aaut)2>l/2

< Clull gg ol gl g + -+ ellul g a0l 2 el o

< C||w||Zlu||\u||22t‘a‘.

We look at the second term on the right-hand side. If o = (0,0) we have
1
K = ’/wuwtut‘ - §|/wwu§‘ < CwaHLx/ w2 < Cllwll o ]2
R2 t t
If & # (0,0), we have
| [ o (wua) @)
=C| / (0%w) gt (0%ug) | + -+ + C| /w (0%ugt) (0%uy) |.

The first term in (4.17) is estimated as

|/(3aw)umt (0%uy) | SC”aaw”Lm(/Uitfﬂ(/(a“ut)?)l/g

< Cllwll o [|u]

(4.17)

2
zlel

Using integration by parts in the last term in (4.17) along with (2.11) and the
Cauchy-Schwarz inequality, we have

oo o
< Cllw, |~ / (07uy)’

< Clhwl il
Thus
8t/(8°‘ut)2 < O]l gl +2/(aaut)(a%m). (4.18)
In a similar way, we obtain
ot [ (00" < Clal gl +2 [ @ 01) (0" (4.19)

Then adding (4.18) and (4.19)) we obtain
01 [ [0%u)* + b(0%0)*) < Cllull gl o + Clal ooy (420)

zlel
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Then, for 0 < t< t, it follows that
6t / |: (aau('v '7;))2 +b (8041)(.7 '7;))2 + (8auzww('7 '75)2 +b (8avmzw('7 '7;))2

+ (aau?ﬂﬂ/(’ "%V))Q +b (8avyyy(" "%V))Q + (aaut('a ";))2 +b (aavt('a .,%“))2}

2

< cllwll gorllel e + Cllzl gorllol e

Integrating with respect to ¢, and using the fact that this estimate is true for all a
such that |a] = N, we obtain
||u||2ZtN + b||v||2ZtN < ||u(7 K O)H%IN'H’ + b”’l}(-, E O)H.%{N'W + ||ut('7 '70)”?{1\’
+blloe(c, -, 0)[Fw + Ctllwll 2 ullZn + Ctllz] 2 0]1Z,

as claimed. O

Next we prove an existence result for a linearized version of (1.3)). Consider the
linear system

U,En) + u(n) + u(n)z . U;n) o 6u(n—1) ugcn) — 07

TXT Yy

(4.21)
bvt(") + 0v{m) 4+ x4l —u(W — epp Yy =0

TTT Yyyx

where the initial conditions are u(™ (z,y,0) = ug(x,y) and v\ (z,,0) = vo(z, y),
and the first approximations are u(9 (z,y,t) = ug(z,y) and v (z,y,t) = vo(z,v).

Lemma 4.2. Given initial data ug, vy € ﬂNZOHN(RQ), there exists a unique so-
lution of system (4.21). The solution is defined in any time interval in which the
coefficients are defined.

Proof. The linear system (4.21)) which is to be solved at each iteration has the form
Ut + Uggy + Uyye — Vg — hty =0 (4.22)
bvy + dVpza + AVyya + MVe — Uy — Evz =0 (4.23)

where h, and h are smooth bounded coefficients. Fix a time 7' > 0 and a constant
M > 0. Define

L =0F + ADpyy + BOyys + CO, + DO, (4.24)

R R R (]
-6 ) o= ) =)

Let £ be defined on those functions (u,v) € H3(R?) x H3(R?). For functions

®; = (13,¢) € C([0,T): L2(R?)) x C ([0,T] : L*(R?)) which vanish at ¢ = 0, we
introduce the bilinear form

where

(4.25)

T
B(®1,®3) = (D1, 2) = / / e MDy - Dy da dydt
o Jrz

T
= / / e M (vivy 4 (1&) da dy dt.
0 JR2
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Integrating by parts, we have

1 1
/E\DWIldxdyzfat/ |\IJ|2dxdy77/ D,V - W dx dy
R2 2 R2 2 R2

1
> 7at/ |\IJ|2dxdy—E/ 0|2 dz dy
2 R2 2 R2

for some constant ¢ large enough. Multiplying (4.26) by e~** and integrating in
time from ¢t = 0 to t = T, we obtain for ¥ € C([0,T] : H3(R?)) x C([0,T] : H*(R?))
with W(z,y,0) = (v(z,9,0),n(z,y,0)) = (0,0),

1 T
T [0y )P dedy+ 500 —a) [ [ e o s dyar
0

(4.27)
Therefore, (LU, ) > (¥, U) provided M is large enough. Similarly, (£L*®, ) >
(®,®) for all ® € C([0,T] : H3(R?)) x C([0,T] : H3(R?)) with ®(z,y,T) = (0,0)
where £* denotes the formal adjoint of £. Therefore, (L*®, £L*V) is an inner product
on D = {® € C([0,T] : H*(R?)) x C([0,T] : H*(R?)) : ®(x,y,T) = (0,0)}. We
denote by Y the completion of D with respect to this inner product. By the Riesz
representation theorem, there exists a unique solution V' € Y such that for any
dcD,

(4.26)

=

(L, T) >

N =

(LV, L7®) = (V(0), B(z,y,0)) (4.28)

where we have used that (¥(0), ®(z,y,0)) is a bounded linear functional on D. Then
U = L£*V is a weak solution of LU = 0, with ¥ € L?(R?x [0, T])xL?(R?x[0,7]). O

Remark 4.3. To obtain higher regularity of the solution, we repeat the proof with
higher derivatives included in the inner product.

5. UNIQUENESS AND LOCAL EXISTENCE

In this section, we prove that for initial data (ug,vo) € HN(R?) x HYN(R?),
for N > 3 there exists a unique local solution (u,v) of such that (u,v) €
L>([0,T) : HN(R2)) x L>=([0,T] : HY (R?)) where the time T of existence depends
only on ||ug||gs and ||vg||gs. First we address the question of uniqueness.

Theorem 5.1. Let 0 < T < co. Assume that (ug,vo) € H3(R?) x H3(R?). Then
there is at most one solution (u,v) € L*([0,T] : H3(R?)) x L>([0,T] : H3(R?)) of
(1.3) with initial data (ug,vo)-

Proof. Assume that (u,v) and (u,?) are two solutions of in L*>=([0,T] :
H3(R?)) x L>([0,T] : H3(R?)) with the same initial data (uo(z,y), vo(z,y)). From
, ug, vy, Ug, vy € L([0,T) : L?(R?)), so the integrations below are justified.
Therefore, the differences (u — @) and (v — v) satisfy

(u—10)t + (U — Waze + (U — Wyya — (v — 1)y — 6(uuy — uty) = 0. (5.1)
Now, multiplying (5.1)) by 2(u — @) and integrating for (z,y) € R?, we have

2 (w42 [ (0= D D+ 2 [ (0= D~ D

- 2/(“ —u)(v = V)z — 12/(u — @) (uuy — T,) = 0. (5.2)
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Then the 2nd and 3rd terms in are shown to be identically zero. Hence
9, /(u _a@)2 - 2/(u C i) (0= D) = 12/(u @)y — ). (5.3)
On the other hand,
12/(u @) (i, — ) = 6/(u C )R — ), = — 6/(u _ @) — )
_ 6/(u—ﬂ)x(u—ﬂ)(u—|—ﬂ) :3/(u—ﬂ)2(uw+ﬂx)
<3 (sl + i) [ 0= <0 [
Combining this estimate with (5.3)), we have
at/ (-2 <C (u—a)2+2/ (1 — ) (v — D) (5.4)
R2 R2 R2

Similarly we have

b(v =)t 4+ 0(v — V)gga + AV = V)yye + (v — V),

—w(u — )y — 6p(vvy —V0,) = 0.
Now, multiplying by 2(v — ?) and integrating over R? we have
Qb/(v —0)(v—7)¢ + 25/(v —0)(v —0)gza
+ 2)\/(v —U)(V = V)gyy + 27)/(1} —0)(v—7), (5.6)
- 2/(1} —0)(u—1u), — 12u/(v —0)(vvgy — VU,) = 0.
Then the 2nd, 3rd, and 4th terms in are shown to be identically zero. Hence
8t/b(v —7)% - 2/(1} —0)(u—1u), = 12u/(v — V) (v v, — VU). (5.7)
On the other hand,
120 [ (0= Dows ~ ) = 6 [ (0 =90 = P = = 6 [ (0 -9 0? - )
—— o [0 Do =D+ ) =3 [0 -0+ T)
<3 (lallm + alo) [ 0= < [0-9"
Combining this estimate with , we have

atb/(v—aﬁ < C/(v—5)2+2/(v—'ﬁ)(u—ﬂ)z. (5.8)
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Adding with we obtain
8t/(u—ﬂ)2+8tb/(v—i?)2
SC/(u—ﬂ)2+0/(v—17)2+2/(u—ﬂ)(v—ﬁ)m (5.9)
+2/(U —0)(u — ).

The last two terms satisfy

2 [ (0= 2 [0 =D = [lw=De -] =0

Therefore,

at/ [(u— )2+ bv —0)?] < c/ [(u— ) + b(v — )] . (5.10)

Using that u(z,y,0) — @(z,y,0) = 0, v(z,y,0) — v(x,y,0) = 0 and Gronwall’s

inequality it follows that
/(u—a)2+/b<v—5)2 <.

We conclude that © = u and v = v. This proves the uniqueness of the solution. [

We now prove the existence of a local solution for . We show that for
each (ug,vo) € HVT3 (R?) x HV T3 (R?) there exists a solution (u,v) in the space
L ([0,T] : HNT3(R%)) x L> ([0, T]; HNT3(R?)) for a time T depending only on
||U0||H3(R2) and H’UO”HS(]R?).

Theorem 5.2. Let kg, kg > 0 and N be an integer > 0. Then there exists a time
0 < T < oo, depending only on ko and Ry such that for all ug,vy € HVNT3(R?),
with ||ug||gs w2y < Ko and [Jvol|gsw2y < Ko, there exists a solution of with
(u,v) € L ([0,T]: HN*3(R?)) x L= ([0,T) : HNT3(R?)) such that u(z,y,0) =
uo(z,y) and v(z,y,0) = vo(z,y).

The method of proof is as follows. We begin by approximating by a sequence
of linear equations. We then show that the sequence of solutions to our linear
equations is bounded in L*°([0,T]; H3(R?)) x L>([0,T] : H*(R?)) for a time T
depending only on ||ug|| g3, ||vo]| 2. Third, we prove that a subsequence of solutions
to our approximate equations converges to a solution

(u,v) € L((0, T]; H*(R?)) x L>((0, T]; H*(R?))
of (1.3). Lastly, we show that if (ug,vo) € HV+3(R?) x HN+3(R?) for N > 0, then

our solution (u,v) is in L>([0,T]; HN+3(R?)) x L>([0, T]; HN+3(R?)), where the
time T depends only on ||ug]| g3, ||vo| 3

Proof of Theorem[5.3 1t suffices to prove this result for ug, vy € ﬂNZOHN(RQ).
We can use the same approximation procedure as before to prove the result for
general initial data. We begin by approximating by the linear system
with initial data (™ (z,y,0) = ug(z,y), v (z,y,0) = vo(z,y), and where the first
approximations are given by u(®) (x,y,t) = uo(z,y) and v (z,y,t) = vo(x,y). By
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Lemma [£.2] this system can be solved at each iteration. In particular, for each n
there exists a unique solution (u(™,v(™) and by Lemma for N = 0 we have

a1 + bl ™ 1%

< ™ 0) 3z + 0™ (- )3 + g™ -, 0) 12 + bllof™ (-, 0) 7= (5.11)
+ Ctllut V| o [ut™][Z9 + CHl[o" =D 7o llo™ |3

for all ¢ > 0. By assumption, ko > |lug|| g3 w2y and Ko > ||vo||g3(r2). On the other
hand,

) (Ol + ™ - 0 = Ju®™ (- 0) 3

2
[ (M0 = o 0) ) (1 0) = 6uT D a0

(5.12)
S ||u0||%13 + C/ [ugzzx - ’ng + (quyy)Q - (UO U’OI)Q]
< K (Jluolls + llvollFs) < K (kg +Rg) -
In a similar way we have
Bl ™ (-5, 0) 35 + Bllof™ (-, 0)172
= bHU(n)(a K O)H?—I?’ + b/ [5 U:(cz)x(? K O) + ’r}va(cn)(a K 0) - u:(cn)(v *y 0)
R2
20 0 (-, 0) = 6 o™ D oM (- 0)]
{31, 0) — 6 (0] -

< bH’UO”%IS + C/ wv%zwz + nvgw - ugw + )"UOIZUZI)Q - (UO UOI)2]
R2
< K (JluollFs + llvolls)
<R3+ ),
where K and K are independent of n. Without loss of generality, suppose K > K.
Let ¢ = (2K (k% +KE) +1). Let
T¢" = sup{t : [[ul? 40 < ¢o for 0 < j < n}
Ty =sup{t : [[v? 20 < o for 0 < j < n}.

Let Tg(n) = min{Tén),fén)}. Then, for ¢t in the interval [07Tg(n)], from ([5.11)),
(5.12)), and (5.13)), it follows that

™10 + bllo™||
< [[u™ - 0)llFgs + b0 ™ (-, 0) 13 + g™ (- 02 + bllog™ (-, 0)l172
+ Ctl[u™ V| 2o ™[50 + Ctlo" V]| 2o][0™ || (5.14)
<K (k24 72) + K (k2 +72) + Ctc} + Oty
< 2K (K + Fg) + Ctcy.
Now choose T' > 0 such that CT'¢j = 1. We claim that TO*(") > T for all n and

therefore, the sequence of approximate solutions {(u(™,v(™)} is bounded for the
time T which is independent of n. If T}, () = o for all n, then clearly TO*(") > T for
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all n. So, assume there exists n such that Tg(") < 00. Suppose T > Tg(”). Then,

by the continuity of [[ul™ | 0, [[0(™ || zo with respect to t, we have ¢ = [|[ul?||2,
(n)
~ " To
for some j € [0,n] and ¢3 = ||v(j)H2ch<") for some integer j € [0,n]. Without loss of
T,

0
generality, suppose T, ) — Té"). Therefore, by (5.14),
g < [uPN50 4 o5
(m) (m
0 0
<2K (K2 4+ 72) + CT{ e
< 2K(ki +Fg) + CTcy = cj.

However, this implies ¢2 < ¢ and we have a contradiction. Thus, we conclude that
Ty () > T for all n, and, therefore,

sup / (@™ ()% + @) + (@)? + (u™)? < &,

0<t<T
sup / (@)% + @) + (o) + @) < &
0<t<T

for all n. Consequently, there exists a bounded sequence of solutions { (u(™,v(™)} €
79 x Z8.. Therefore,
u™ =y weak* in L™ ([0,7] : H*(R?))

- (5.15)
u” —uy  weak® in L™ ([0, 7] : L*(R?))

and
o™y weak® in L™ ([0,T] : H*(R?))

(n)

(5.16)
vy = weak® in L ([0,T] : L*(R?)) .

On the other hand, H3

loc

(R?) < H|

loc

(R?) — L2(R?). Then by the Lions-Aubin
compactness Theorem [20] there are subsequences u(™) := (™ and v(™) := y(™)
such that
u™ — u  strongly in L™ ([0,T] : Hyyo(R?)) (5.17)
v™ — v strongly in L™ ([0,T] : Hy,(R?)) .
Hence for subsequences u(™) := «(™ and v(™) := v(") we have
u™ —u ae. in L% ([0,7] : H (R?))
o™ v ae. in L% ([0,7] : Hy,o(R?)) .
Moreover, from (5.15]) we have
Ul S Uy Uy — Uy  Weakly™ in L ([0,7] : L*(R?))

Uéﬁ)x — Uzza, Ug:zz; — Ugyy weakly” in L™ ([O’T] : L2(R2)) ‘

(5.18)

(5.19)

Now we show that the nonlinear term converges to its correct limit. From (5.17)),
u™ Y 4 strongly in L ([0,7] : Hp,o(R?)) < L= ([0,T] : L} (R?))

loc

oY v strongly in L ([0,7] : Hib (R?)) < L ([0,T] : L (R?)) .

loc

(5.20)
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Moreover,
u" V=,  weak® in L™ ([0,7] : L*(R?)) (5.21)
Ua(gn—l)_\vw weak™® in L™ ([0, T]: LZ(RQ)) : |
Therefore,
u(n_l)ugjn)éuuz Weakly* in L™ ([OaT} : Llloc(RQ)) (5 22)

v V(M sy, weakly* in L™ ([0,T] : Li,.(R?)) .

Therefore, (u, v) is a solution to (|1.3).
Now, we prove that if (ug,vg) € HV3(R?) x HN*3(R?) for some integer N > 0,
then the solution (u,v) satisfies

(u,v) € L= ([0,T] : HNT3(R?)) x L™ ([0,T] : HN*3(R?))

for the time T chosen above. We already know that there is a solution (u,v) €
L ([0,T] : H3(R?)) x L>([0,T] : H*(R?)). Therefore, we only need to show that
the approximating sequence (u(”), v(")) is bounded in Z]TV X ZQJY and thus, by the
convergence arguments above, our solution (u,v) is in L ([O,T] : HN+3(]R2)) X
L>([0,T] : HN*3(R?)). We use the same argument as before. By Lemma we
know our linearized equation can be solved in any interval of time in which the
coefficients are defined. Therefore, for each iterate, ||u(")||ZtN and Hv(”)HZtN are
continuous in ¢ € [0, T]. Using Lemma [4.1]it follows that

HU(H)HQZ?’ + b”U(n)sztN < ||u(n)(‘» '70)”?{N+3(R2) + b”v(n)(‘a "O)H?JN-*—S(R?)
+ ™ 0) R ) + B0 o 0) [
+etul | g [u™ 5 + et[o™ D zx 005
As before, we have
1at™ (o, 0) v sagey + uf™ (5, 0) 3y ey < KAY;, (5:23)
Dl[0 (-, 0) 3w s ey + 0™ (-, 0) 3w oy < KRy (5.24)

where ky and Ky are independent of n. Without loss of generality, assume K > K
and define ¢k = (2K (k% + £%) + 1). Let

T = sup{t : ||U(j)||ZtN <cy for0<j<n}
T = sup{t s [0 < e for 0 < j < ).
Let T;:,(") = min{TJ(\,")7 TJ(\,")} Then, for ¢ in the interval [0, T;,(")L it follows that
IIU(")llétN + b||v<”>\|§tN < 2K N (K% +RY) + Otcy.

Now choosing Ty such that
CTNCz]))V = ].,

by the same arguments as in the case N = 0, we conclude that TI(V") > Ty, and,
therefore,

2 2 2 2

HU(n)HZJTVN < cy, HU(n)HZJTVN <cy-

Now, let

Ty =sup{t:u,v € ZV}.
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We claim that T > T, and, therefore, a time of existence can be chosen depending
only on |lug|| s, ||vo||gz. By Lemmal[d.2] the linear equation (4.2I)) can be solved in
any interval of time in which the coefficients are defined, and, thus 7% > T O

Corollary 5.3. Let ug,vo € HVNT3(R?) for some N >0 and let uén) be a sequence
converging to ug in HN13(R?), v(()") be a sequence converging to vg. Let (u,v) and
(u(”),v(”)) be the corresponding unique solutions, given by Theorems and
in L>([0,T) : HN*3(R?)) x L*([0,T] : HN*3(R?)) for a time T depending only
on sup,, Hu(()n) | 73 (r2) and sup,, ||U(()n) | 73 (r2). Then

u™ sy weak* in L= ([0,T] : HN3(R?))

5.25
v <y weak* in L™ ([O,T] : HN+3(R2)) . ( )

Proof. By assumption u(™, v € L>([0,T] : HN+3(R?)), then there exist weak*
convergent subsequences, still denoted {u(™} and {v(™} such that

u™ T weak* in L ([0,7] : HN*3(R?))
v =3 weak* in L= ([0,T] : HNT3(R?)).
Moreover, by equation (I.3), u(™,v(™ e L ([0,T] : HN+3(R?)) implies
u™ o™ e L% ([0,T] : L*(R?)).
By the Lions-Aubin Compactness theorem [20] we have

u™ — @ strongly in L>([0,T] : H1/2(R2))

loc

0™ =T strongly in L>=([0,T] : Hl/z(R2)).

loc

Now we just to show that each term in converges to its correct limit, and
thus ugn) — u; and vt(") — 0 for w,v € L> ([0,T]: HN*3(R?)). The only thing
we need to show is that the nonlinear term converges to its correct limit, namely
that u(™ u{™ — G ,. We know that ul™ - @, weakly in Le°([0,T] : H'(R?)) and
u™ — % strongly in L>=([0,T] : Hlt/f(RQ)). Therefore, their product converges in
L*([0,T] : L{,.(R?)). Clearly the linear terms also converge in L*([0,T] : L{. .(R?))
and therefore, we conclude that ui”) — U in L2([0,T) : LL _(R?)). In a similar
way we conclude that vt(") — o in L*([0,7] : L{_(R?)). We also know that
(w,v) € L=([0,T] : HN*3(R?)) x L>([0,T7] : HN*3(R?)). By the uniqueness
theorem, Theorem 5.1} (u,v) = (u,v). O

6. WEIGHTED ESTIMATES AND MAIN ESTIMATES OF ERROR TERMS

At the end of this section, we state and prove our main theorem, Theorem [6.4}
First, however, as a starting point for the a priori gain of regularity results that
will be discussed in Theorem we need to develop some estimates for solutions
of the coupled system in weighted Sobolev spaces. The existence of these
weighted estimates is often called a persistence property of the initial data (ug,vo).
Indeed, we prove that if our initial data (ug,vo) € H3(R?) x H3(R?) also lies in
some weighted space HX (Wy ;o) x HX (Wy;0), for integers K > 0 and i > 1, then
our solution (u,v) also lies in L ([0,T] : HX (Wy,0)) x L= ([0, T] : HX (Wy,0)).
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Theorem 6.1. Assume (u, v) is the solution to in L°°([0,T] : H3(R?)) x
L>°([0,T) : H3(R?)) with initial data (ug,vo) € H?(R?) x H*(R?) such that (ug,vo)
also lie in the weighted space HX (Wy;0) x HE(Wy,0) for some integers K > 0,
i >1. Then

we L=([0,7] : H*(R*) N H (W),

ve L°([0,T] : H3(R*) N HX (Woi0))

/OT/X(amw)M/OT/X(amy)? <C,
/OT/X(muz)%/OT/X(mvy)? <c

for |v| < K, where x is a weight function in W, ;_1,0 for o > 0 arbitrary, and C
depends only on T and the norms of ug,vo € H*(R?) N HX (Wy,0).

(6.1)

and

(6.2)

Proof. We will prove this result by induction on 3, for 0 < g < K. As before,
we need to derive a priori estimates for smooth solutions (u,v) which depend only
on the noms of u,v € L>([0,T); H3(R?)) and up,vo € H¥(Wyio). Then, we
can apply convergence arguments to show that the result holds true for general
solutions. In order to do so, we need to approximate general solutions u,v €
H?3(R?) by smooth solutions and approximate general weight functions & € Wy,
by smooth, bounded weight functions. We have discussed approximating solutions
in the previous section, so we will concentrate on the approximation of the weight
function here.

We begin by taking a sequence of bounded weight functions x,, which decay
as |z| — oo and which approximate x € Wy ;_10 from below, uniformly on any
half-line (—oo0, ¢). Let

& =1+ /f Xv(z,t)dz. (6.3)

— 00
Hence, the functions &, are bounded weight functions which approximate a weight
function £ € Wy, from below, uniformly on compact sets.

Now we will follow the same methodology as in the development of the Lemma
Indeed, for the A** induction step, we take a derivatives of 1, where
|a| = B, multiply the result by 2&, (9%u), and integrate over R2. Performing
straightforward calculations and using (£,):, (). < C&, we obtain the following
estimate

o [ & @up 3 [(€) 0w+ [(6), @0,
< c/g,, (0°u)? + 2/@ (0%u) 8° (uu) +2/gy(aau)(a%w).
Similarly, we take o derivatives of (L.3))2, where |a| = 3, multiply the result by

2¢, (0%v), and integrate over R2. Performing straightforward calculations as in
(6.4) we obtain the estimate

b [ 6,00 +35 [ (&), @0+ [ (€ 070"
< c/gy(a%)Q +2/5u (0%v) 0™ (vvs) +2/§V(aauz)(a%).

(6.4)

(6.5)
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Adding (6.4) and (6.5) and using the Cauchy-Schwarz inequality we have

0 [ & [070? + b0 07] +3 (€1, [0 45 (0%0,)"
+ [ [0 + 2@,
< [e @+ [e @0+ [26) @000 (u)
+ [26) @00 o) + 2 [ Galorn )
< [e@w s [e @0+ [ 26000 )
+ [ 26, @00 () + €| (€1 (07 0)(@%)
<c [e [@w?+ @] + [ 26 @00 (un,)
+ / 2, (8%v) 0% (vu) .

Case [ = 0. We need to estimate the terms

’ /{l, (0%u) 0% (uug) |, | /fl, (8%v) 0% (vvg) |- (6.7)

For (6.7))1, we have

| / & (0%0) 9 (uuy) | = | / T R / & u?
< CIIuIIJLﬁ/&/u2 < C/é“uu2

where C' depends only on the norm of u € L*([0,T] : H3*(R?)) (which depends
only on the norms of ug,vg € H3(R?)). Similarly,

|/€uv2vx\ < C/éuv2

Combining these estimates with , we conclude that
o [t + 07 +3 [(€1a0d+502) + [(&)tud + 202)

< C/(ﬁy)m(zﬂ + v?) +/2§l,u2ux +/2§Uv2fux (6.8)
< C/g,,(u2 + bv?)
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where C' depends only on ||ug||zs and ||vg||zs. Integrating ont € [0,7] we
obtain

Jeta +u) s / ' J@ntd a2+ / ' Jtetud +x0d)
</ﬁu(-,-,O)(uﬁ+v§)+0/0t/€u(u2+v2) (6.9)
SC’+C(/Ot/€y(u2+bv2)

Therefore, using Gronwall’s inequality,

sup C [ & (u? +v? —|—3/ /&,Iu + 6v?) //ﬁu u—l—)\v)<C
0<t<T

where C' does not depend on v, but only on 7" and the norm of ug, vy € 3 (RQ) N
H°(Wy;0). Passing to the limit,

sup C [ &(u® +0? +3//u+5v //u+/\v )< C. (6.10)
0<t<T 0 0

Case § = 1. Consider a = (1,0). In fact, for the case o = (1,0) we have

/éyux Uy)y | = !/{fuw 2t Ug,)| = \/fu S 4 Uy Ugy)|

< !/Rz &ul| +|/£uuumm|
= | el + 3 [eutidi (6.11)
<c| [eus]+of [

< C(julp~ + us|~) / el < C / e

where C' depends only on the norms of ug, vg € H3(R?). Performing similar calcula-
tions as in the case above, along with (6.6]), and Gronwall’s inequality we conclude
that

sup C §Vu —l—v —|—3/ /fl, m—i—évm)

0<t<T

+ /OT /(@»(uiy +M,) <C

where C does not depend on v, but only on T and the norm of ug, vy € H3(R?) N
HY(Wy,0). Passing to the limit,

sup C [ & (u? +v? +3/ / u?, + 6vt) / / gﬂy—l—)\vmy C
0<t<T

where C' depends only on the norms of ug, vy € H?(R?) N HY(Wy;0).
Next, we consider the case oo = (0,1). For the case oo = (0,1), we have

|/£,,uy(uum)y’ = |/f,,uy(uyux +uumy)|

(6.12)
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< |/§yuxu§| +|/§uuuyuxy|

< Clluli +luslos) [ <€ [ e

Therefore, using the same idea as above, we conclude that

sup C u+v +3// (u? +6vm // + v C.
O<t£T a Y U w) <

Case § = 2. We have oo = (2,0), a = (1,1), and o = (0,2). First, for the case
= (2,0) we have

—| / 0 (Buat, + U tiggtiags)|

= |3/ fuumuiz} + |1/§Vu(u2
R2 2
< C(julp~ + s =) / &, < C / e,

Performing similar calculations as in the cases given above together with and
using Gronwall’s inequality we have

(6.13)

T
sup O [ &2, +02)+ 3 / (6) (120 + 602,,) (6.14)
0<t<T R2 0 R2

T
+ / (6)e(t2yy + M2, < C (6.15)
0 R2

where C' depends on T and the norm of ug, vy € H3(R?) N H?(Wy;0), and does not
depend on v. Passing to the limit,

sup C E( Uzpy + va::v + 3/ / Ugpw wzx / / :mvy wzy) < C.
0<t<T

For the case a = (1,1) we have

| / Svligy (uur)ry|

— ’ /fyuzy(Qumumy + Uy gy + uumy)|

— ’ /fl,(Zuzuiy + UyUgy Uy + uuzyumy)|

< !2/§uuzuiy! +\/€Vuyuxyum| +|/£uuuajyuwzy|

< Clug|pe /f,,uiy + Cluy| L= /f,,ufw dx dy + Cluy| /f,,uiy
(s + fusli) [ 6,

<C+ C/&/uiy
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where C' depends only on ug,vo € H3(R?) N H2(Wy;0). Consequently, using the
same ideas as above,

T

where C depends only on ug, vy € H3(R?) N HQ(WOzo
For the case oo = (0, 2), our remainder term satisfies

|/£V“yy(uuz)yy| = ‘ /guuyy(uyy“r + 2uyuqy + ““zyy)|

< Clug|pe /§Vu§y+0|uy|mo /E,,uiy + Cluy| e /E,,uzy

Cluli= + fusli) [ 6,
Therefore,

sup C + 02 +3/ / us vy / / <C
O<tET f( Uyy vy yy T yy yyy yyy)

where C' depends only on ug, vy € H*(R?) N H?(Wy,0).

Case 8 = 3. For 8 = 3, we consider the case a = (3,0). The other cases can be
handled similarly. For o = (3,0), our remainder terms satisfy

} / &y Ugae (Wlle ) zae| = | / Ev Uz (32, + Malger + Ullgars)|

|3/§Vu oUaza| + \4/€Vumuim| +|/ S —
R2

First, we consider I;. We consider the case x > 1 and x < —1 separately. For

x > 1, we use the fact that 51/2 < C¢, for i > 1. In addition, we will use (2.13)).

_ c| / &(u)e] = 0 [ (61
Jeat) ([ ez

<
<c( f e 1) ([ ea)”

<o [ (/o + (6 wlae? + (€ 0s)an?) [ 602) "
(

1/2
C / 51/2 u + ua:a::v +u a;a:y / fl/ :E:v
2 2 2 2 1/2
< O N EV (uac + Ugza + uacxy N §Vuzcac .

Further, we note that

/OT (Afﬂ(ui + Uizm + Uimy)) (/Aﬁ,,uix> 1/2dt
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12 T
< C sup (/ é}uim) / / fy(ui + uixm + uizy)
0<t<T A 0 A

T
SC/ /&/(Ui+uim+uizy)
0 A

where C' depends only on the norms of ug,vg € H3(R?)NH?(Wy;o) by the previous
step of the induction. On the other hand, for x < —1, we use the fact that &, ~ C

to show

< c( / u;;)“( [ )"
B B
<o [ut vt sat,)( [ )
<Cluls [ . <C [ g
B B

For the term I, we have

(6.16)

| / Eugty,| < Cllus / €z 2y, < Cllull gz, / oty (6.17)

Lastly for I3, we have

< O (fulp + us]z) / e, (6.18)

< Cllullars ey / g2,

Combining these estimates with (6.4]) and using similar estimates for v, we conclude
that

T
0

0<t<T

§ C/gl/(?’t)ugamm +C/£V('7'7t)v(2h:$m (619)

T
+0 [ [ttt it i, + k)
0

for 0 <t < T. Using similar estimates for other derivatives on the level 8 = 3, we
conclude that

3 .. o o [} o \2
|a‘zgo§?§Tc €0 (- O[(0°0)? + (v +c§:4/ /gy [(0°0)2 + (8°v)?]

< Y ¢ [ el nlE ) + @0 +c§j//syaa (0]

la|=3 la|=3
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Therefore, by Gronwall’s inequality,

sup / CEy (-, D[(0%u)? + (8°0)?]
|a\:3 0<t<T

+C Z T (gu)x[(aau)2 + (aau)2] <C
>0

where C' does not depend on v, but only on T and the norms of ug, vy € H3(R?) N
H 3(W0¢0). Passing to the limit, we conclude that

T
|a|:30?tl£TC EC, - )[(0%u)? + (8%v) ]+C’§4/0 /X[(a w)? + (9°0)?] < C.

Case 3> 4. For K > 3>4,0<t<T, we use Lemma 6.2 below, where we prove
that

S / t / £,(07 )0 (uuy)| + | / t / £,(6°0)0 (v )|

lo|=8

<c+c Y (/Ot/gu(aauf)

la|=8

(6.20)

where C' depends only on terms bounded in previous steps of the induction. Con-
sequently,

T
sup &(0%u)? + (0%v)°] + C (&)2[(070)* + (0™0)?) < C
ost=T Iaz—:ﬁ/ a|§+1/0 /

where C' does not depend on v, but only on T and the norms of ug, vy € H*(R?) N
HP(Wyio). Passing to the limit, we obtain the desired estimates. O

Lemma 6.2. For¢, as defined in (6.3), a = (a1, a2) such that |a] = 8,4 < < K,
the following holds:

> [ we ] + | / [a@ o)

la|=p

. . (6.21)
<C+C > §(0°u)?) +C > £,(0%)?
lo|=8 (/0 / lo|=8 (/0 / )
for 0 <t < T, where C depends only on
2 2
OilgT/fu(@”U) ; OiltlET/ﬁy(mv) : (6.22)

/OT/(fy)x(87ux)2’ /()T/(fu)x(aw%)27 (6.23)
/OT /(fu)z(muy)27 /OT /(&/)w((?”vy)Q (6.24)

for v = (71,72) where |y| < 8 — 1.



EJDE-2023/11 SMOOTHING PROPERTIES FOR ZAKHAROV-KUZNETSOV SYSTEMS 35

The proof uses the same ideas as in the proof of Lemma [3.2] The primary
difference is in our weight function &,. First, our weight function here, &, is ap-
proximately constant for x < —1, whereas in Lemma the weight function
decayed exponentially for z < —1. Consequently, in our inductive proof of Lemma
below, we are not able to use the estimates we obtained on

/OT | [erd@r+ @y <c /OT | e @) + @)

from the previous step of the induction. In addition, for > 1, the weight function
&, =~ x* at all levels of the induction.

Proof. We estimate only the terms

|/ ' [& @0 )], (6.25)

| / : [e @ 0o )

are bounded in the same way. Each term in (6.25)) is of the form

|/ e @)

where r; + s; = «; for ¢ = 1,2. We use the notation ¢, = r1 + 12, g5 = s1 + S2,
With this notation, it follows that 8 = ¢, + ¢s.

The terms

Remark 6.3. In what follows, we combine the fact that

Y1

&(070) = 3 (-1 (j) 83((07:798,) (87" u)).

J=0

with (2.11]) to conclude that

sup [[€,(87u)?|| Lo w2y < C, for g < B -3, (6.26)
0<t<T
T
/ 1€, (87 u)?|| Lo (r2) < O, forg < B -2, (6.27)
0

where 1 + 72 = ¢ and C depends only on (6.22)-(6.24)).

We will use estimates (6.26) and (6.27) below in bounding each term in the
integrand.

Case ¢g; < 8 — 4. For this case we have
t
v (0%u) (0"u) (0% uy
[ [e@wew @)
t
=1 e om0l o)

< s 167 0w o= ( [ t Loa)"(] aww?)”
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The first term is bounded by (6.26)). If ¢. < §—1, then the second term is bounded

by (6.22)). If g, = 5, then the third term is bounded by

([ et
In either case, we obtain

\/Ot/é“u (0%u) (0"u) (0°uy) | sc+c|§ﬁ(/ot/sy (8O‘u)2) for g, < B — 4.

Case gs = f— 3. If gs = p — 3, then ¢, = 3. For this case, we consider = > 1
and x < —1 separately. For z > 1, £, < Cz?, while for z < —1, &, ~ C(1 + €7 %).
Again,let A={x>1} xRand B={z < -1} xR.

First, we consider x > 1. For x > 1, if 8 > 5, we use the estimate

! /O t /A &, (0%u) (9u) (0°uy) |

<( /Ot|<5y>x<aru>2|mo(mdt)l2 sw [ & @)

0<t<T
([ [ e

The first term is bounded by (6.27)) because ¢, < 5—2. The second term is bounded
by (6.22)) because gs +1=0—2. If § =4 and ¢; = 8 — 3, we have ¢s = 1, ¢, = 3,
in which case,

| /0 t /A & (0°u) (9"u) (9°uy) |
< (Ve amewt) (o, [ o) ([ [ o)’

The first time is bounded by because gs +1 =2 < 8 — 2. The second term
is bounded by because ¢, < 8 — 1.

We now consider z < —1. In that case £, ~ 1+ €?* < C. Since ¢; = 5 — 3, we
know that g, = 3 < g — 1. Therefore,

| / t / €,(0%u) (0'u) (9" u,)|
<0/ 6% uxILoo(m(/(a’" ?) /2(/(3%)2)1/2
< s ([ / sl / )"
<Cmp, /fv o) ([ [ o)™
/O [ 4@ + @ uann)? + <asuwy>2}) e,

al+a2 B
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The first term is bounded by (6.22)) since ¢, = 3 < 8 — 1. The other two terms are
bounded by

c / t / E(0°12)* + (B*ttzas)? + (0Uzyy)?} + C / t [etorar
= [ [
as desired.

\al B
Case ¢; = —2. If s =5 —2,then g, =2=4—-2 < g —2. We consider z > 1
and x < —1 separately.
First, for x > 1, as in the case ¢s = 8 — 3, we have

| /0 t /A €,(0%u) (0"u) (0°uy) |
S/Ot |0"u| 00 () /gy(asur)2 1/2 /gy(aau)z 1/2
SO;E)T /fu *ug)? 1/ /\fuzau \LooA) /2 //gyaa /2_

The first term is bounded by (6.22] - The second term is bounded by (6.27] - There-

fore,
¢ ¢
[ [e@woraeuw|<cic [ [e@r
0 0
where C' depends only on (6.22), (6.23)), and (6.24)).

Next, we consider x < —1. In this case, £, ~ 1+ e?® < C. In the case when
qs = B — 2 and B > 5, we can bound it as follows:

| /O t /B £,(0°u) (0" u) (0" s |
< /Ot |aru|Lw(B)(/}3(8st)2>1/2</B(aau)2>1/2

12 T 1/2
<C Sup |0"u| o () sup (/ (asum)Q) / (/(8au)2) .
0<t< 0<t<T \JB 0 B

Since gs + 1 = B — 1, the first two terms on the right-hand side are bounded by
(16.22]).

It remains to consider x < —1 when ¢; = f — 2 and 8 = 4. In that case, g5 = 2
and ¢, = 2. Then

¢
’/ /gy(aau)(a’"u)(asux)]
0o JB
1/2 1/2 1/2
SC( sup/ *ug)? /Ia U|L°°(B //
0<t<T JB

Since q, = 2, it follows that ¢;+1 = 3 = 8 — 1. Therefore, the first term is bounded
by (6.22)). Since ¢, = 2, the second term satisfies

t t
[orbie <c [ [ @up+ @)+ @0,
0 0 B
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t
= C/ / & {(07u)? + (9"tza)? + (0 uyy)? }

<c > //fyaa

a1 +az=p
Therefore, we conclude that for gs = 8 — 2,

|/0t/Bfu(6“u)<6T w)| <Y / /fu )

le|=5
where C depends only on
Case ¢s = —1. If g5 = ﬁ 1, then ¢, = 1. Therefore,

\//guaa () ()|
<C s 070l e /0 /B & (0u)?) / / £,(0%u)

<o s ([@w+0u s 0w ([ [ )"

U
= [ fo

Case g5 = . If ¢ = 8, then ¢, = 0 and s = . Therefore,

| / / £,(0%u)(0"u)(0u,)| = C /O | gty
Clllulioe + i) | t | sy
<C/Ot/Bgu(aau)2. 0

We now state and prove our main theorem, that if our initial data (ug,vo)
has minimal regularity and sufficient decay as * — oo, then the solution (u,v)
is smoother than (ug,vg). For simplicity, we introduce the following space which
will be used in the proof. Let

Zr = H3(R2) N HO(WOL())

\a| B

with the accompanying norm
1912, = [+ 0+ 3 @
|a|=3
where f eWoro.

Theorem 6.4. Let T > 0 and (u,v) be a solution of (1.3) in the region R? x [0, T
such that

(u,v) € L2([0,T] : Z1) x L=([0,T) : Z1) (6.28)
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for some L > 1. Then

sup /gﬁ[(aauﬁ + (0%v)?] < o0,

0<t<T

/ ' [sl@u)? + @%u,)7) < .
/ ' [sl@ e + @, < .

for 0 < 8 < L where B = a1 +ag, &g € W53, Xg € Wo,r—-1,3, 0 > 0
arbitrary, with the exception that for § = L, W, _1 1, is replaced by Wy _1 1.

Remark 6.5. If assumption ((6.28)) holds for all L > 1, then the solution is infinitely
differentiable in the = and y variables. In that case, from (1.3), the solution is C*°
in all of its variables.

Proof of Theorem[6.]] By assumption, u,v € L>([0,7]; Z1). Recall this means
u,v € H3(R?) and [ £(u? + v?) < oo for £ € Wy . The equations imply u, vy €
L>([0,T]; L?*(R?)). Therefore, u, v are weakly continuous functions of ¢ with values
in Zp, and, in particular, u(-,-,t),v(-, -, t) are in Zp, for every ¢t. Let {u(()n)}, {vén)}
be sequences of functions in C§°(R?) which converge to u(-, -, o), v(:, -, to) strongly
in Z, for 0 <ty < T. Let (u(™ (x,y,t),v™ (z,y,t)) be the unique solution of
with initial data (uén)(ac, Y), v(()n) (z,y)) at time ¢ = to. By Theorem [5.2] the solution
is guaranteed to exist in a time interval [to,to + §] where § does not depend on n.
By Theorem u(™, 0™ € L>([ty, to + 6]; Z1) and

to+6
/ / Xl(u$)? + ()2 da dy dt
fo (6.29)

to+o
+/ /x[(vi"))2 + (vé"))z] dx dydt < C,
to

where x € W, 11,0 and C depends only on the norms of u(()"), vé”) € Zr. Also by
Theorem we have (non-uniform) bounds on

sup sup (1 + |zF|%) 80‘u(")(a:,y,t)‘ < 400, (6.30)
t€[to,to+4] (z,y)ER?
sup sup (14 |z*|%) |8%0™ (z, y,t)‘ < +00 (6.31)

t€[to,to+4] (z,y)ER?

for each n, k, and a. Therefore, the main estimates in Lemma [3.1] are justified
for each ©(™ and v(™ in the interval [to,to + 6]. The multiplier x may be chosen
arbitrarily in its weight class and £ is defined by .

We start our induction with 5 = 1, in which case a = (1,0) or a = (0,1). Take
X € Wy r—21 and let & = ffoo X(z,t)dz. As shown in Lemma H, we have the
following bounds on the higher derivatives of u("), v(™),

to+9
sup / E[(ul™)? + (0§)?] + / / X)) + (uff)?]

[to,to+0]

s (6.32)
,U(n) 2 U(n) 2
[ [o@rragri<e
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to+o
sup / ™) + ()2 + / / @2 4 (ufmy?)
[to,to+9) to
to+d
/ / W) < c,

where C' depends only on the norms of u(™, v € L>(]0, T] ZL) and the terms in
- We conclude, therefore that the constants C in and ( - 6.33) depend
only on ||u(" ||z, and ||v0 |z, -

We continue this process inductively. For the 5" step, let

(6.33)

X € Wor—5-1.8

and define £ = ffoo x(z,t)dz. The non-uniform bounds on u(™ and v™ in (6.30)
and (6.31]) allow us to use Lemma and our inductive hypothesis to conclude

that
to+o
sup /5 aa (n) aa (n / / aa n) (8 (n )) }
[to,to+4]

to+d
4 / / X(@0™)? 4 (%02 < €,
to

where again C' does not depend on n, but only on the norms of u(n) (") € Zr. By
Corollary u(™ = weak* in L= ([tg, to + 0]; H3(R?)) and v(") — v weak® in
L ([to, to —|— 5]; H3(R?)). Therefore, we can pass to the limit and conclude that

to+0
@, \2 a, \2 « 2 fe 2
. [tz + @ op)+ / [ @+ @
to+6
+ / / X(0%0,) + (87v,)%] < C.

We continued the process inductively up to ﬁ = L, with the exception that on
the last level, 5 = L, we replace W, _; 1, with W, _; . Since ¢ is fixed, this result
is valid over the whole interval [0, T. O

7. CONCLUDING REMARKS

In this article, we proved that if the initial data decays faster than any polynomial
as x — 00, the solution of a coupled Zakharov-Kuznetsov system lies in C>°(R?) x
C>(R?). We quantified the gain in regularity of the solution depending on the
amount of decay of the initial data as x — co. In particular, we showed that if the
initial data (ug,vo) lies in H3(R?) x H3(R?) and lies in a weighted L? x L? space
with a weight function that behaves like ¥ as * — oo, then the solution (u,v) lies
in a weighted Sobolev space H* x H” for 0 < t < T where T is the existence time
of the solution.
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