
 

PARALLELIZING PATH EXPLORATION AND OPTIMIZING CONSTRAINT 

SOLVING FOR EFFICIENT SYMBOLIC EXECUTION 

 

by 

 

Junye Wen, M.S. 

 

A dissertation submitted to the Graduate Council of 

Texas State University in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

with a Major in Computer Science 

December 2020 

 

 

 

 

 

 

 

 

Committee Members: 

 Guowei Yang, Chair  

 Anne Hee Hiong Ngu  

 Yan Yan 

 Xiaoyin Wang 



 

 

COPYRIGHT 

by 

Junye Wen 

2020 



 

 

 

FAIR USE AND AUTHOR’S PERMISSION STATEMENT 

 

 

Fair Use 

 

This work is protected by the Copyright Laws of the United States (Public Law 94-553, 

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations 

from this material are allowed with proper acknowledgement. Use of this material for 

financial gain without the author’s express written permission is not allowed.  

 

 

 

Duplication Permission 

 

As the copyright holder of this work I, Junye Wen, authorize duplication of this work, in 

whole or in part, for educational or scholarly purposes only.



 

 

iv 

ACKNOWLEDGEMENTS 

 

I am ineffably indebted to my supervisor Dr. Guowei Yang, for his valuable 

guidance, financial support, encouragement, and patience. This dissertation would not 

have been possible without his persistent help. 

I am extremely thankful and pay my gratitude to the committee members, Dr. 

Anne Hee Hiong Ngu, Dr. Yan Yan and Dr. Xiaoying Wang, for their constant support 

and insightful comments in my research. 

I extend my gratitude to my classmates and best friends, Mujahid Khan and Tarek 

Mahmud, for all the inspiration and happiness they gave me in my past years of PhD 

study. 

Grateful acknowledgement is also made to all the faculties and staff in 

Department of Computer Science at Texas State University, for all the knowledge and 

help from them and most importantly, for this great PhD program. 

Finally, my thanks would go to my beloved family members, for always loving 

and supporting me unconditionally. Their good examples have taught me and given me 

confidence to achieve the best I can. 



 

 

v 

TABLE OF CONTENTS 

 

Page 

 

ACKNOWLEDGEMENTS ............................................................................................... iv 

 

LIST OF TABLES  ........................................................................................................... vii 

 

LIST OF FIGURES  ........................................................................................................ viii 

 

LIST OF ALGORITHMS  ................................................................................................. ix 

 

LIST OF ABBREVIATIONS  .............................................................................................x 

 

ABSTRACT  ...................................................................................................................... xi 

 

CHAPTER 

 

I. INTRODUCTION ................................................................................................1 

 

Problem Description ....................................................................................1 

Dissertation Topic ........................................................................................2 

Organization .................................................................................................4 

 

II. BACKGROUND .................................................................................................6 

 

Symbolic Execution .....................................................................................6 

Symbolic Pathfinder.....................................................................................9 

Memoized Symbolic Execution .................................................................10 

Checking Properties with Symbolic Execution .........................................13 

Deep Neural Network ................................................................................14 

 

III. PARALLEL PROPERTY CHECKING WITH  

      STATIC WORKLOAD PARTITIONING ......................................................16 

 

Overview ....................................................................................................16 

STAPAR ....................................................................................................19 

Evaluation ..................................................................................................23 

 

IV. PARALLEL PROPERTY CHECKING WITH  

      STAGED SYMBOLIC EXECUTION ............................................................31 



 

 

vi 

Overview ....................................................................................................31 

STASE .......................................................................................................36 

Evaluation ..................................................................................................40 

 

V. CONSTRAINT SOLVING WITH DEEP LEARNING ...................................51 

 

Overview ....................................................................................................51 

DeepSolver .................................................................................................53 

Symbolic Execution with DeepSolver .......................................................59 

Evaluation ..................................................................................................62 

 

VI. CONCRETIZATION FOR CONSTRAINT ANALYSIS...............................81 

 

Overview ....................................................................................................81 

Cocoa .........................................................................................................85 

Case Study .................................................................................................95 

Solving Concretized Constraint in Parallel ..............................................101 

Evaluation ................................................................................................105 

 

VII. RELATED WORK.......................................................................................111 

 

Parallel Symbolic Execution and Guided Symbolic Execution ...............111 

Machine Learning for Satisfiability Checking .........................................114 

Reuse for Efficient Constraint Solving ....................................................115 

 

VIII. FUTURE WORK AND DISCUSSION ......................................................118 

 

Hybrid of STAPAR and STASE .............................................................118 

Further Improvement of DeepSolver .......................................................118 

More Evaluation for Cocoa ......................................................................119 

Testing Deep Neural Networks ................................................................119 

Balancing the Training Dataset ................................................................121 

 

IX. CONCLUSION..............................................................................................124 

 

REFERENCES ................................................................................................................127 

 



 

vii 

LIST OF TABLES 

 

Table Page 

  

1. Results of parallel and regular property checking .........................................................26 

 

2. Property checking using guided and prioritized check and regular check .....................29 

 

3. Results of checking properties .......................................................................................45 

 

4. Results of checking properties in WBS .........................................................................46 

 

5. Results of checking more complicate properties ...........................................................48 

 

6. Results of checking properties with limited workers .....................................................50 

 

7. Number of records before and after balancing ..............................................................67 

 

8. Accuracy of DeepSolver (Balanced via Mutation) in classifying path conditions ........70 

 

9. Accuracy of DeepSolver (Balanced via GAN) in classifying path conditions ..............71 

 

10. Comparison of Accuracy between Mutation and GAN Balanced Datasets ................72 

 

11. Comparison of Loss between Mutation and GAN Balanced Datasets ........................73 

 

12. Results of symbolic execution with DeepSolver versus GreenTrie.............................77 

 

13. Result of Ranking Heuristics .......................................................................................97 

 

14. Performance of Z3 Solving Simplified PC ................................................................100 

 

15. Performance of CVC4 Solving Simplified PC ..........................................................100 

 

16. Time Cost of Solving PCs from MNIST2 .................................................................107 

 

17. Time Cost of Solving PCs from MNIST16 ...............................................................108 

 

18. Time Cost of Solving PCs from CIFAR10 ................................................................109 



 

viii 

LIST OF FIGURES 

 

Figure Page 

 

1. Symbolic Execution Sample:  

    (a) Code that swaps two integers,  

    (b) the corresponding symbolic execution tree, and  

    (c) test data and path constraints corresponding to different program paths .............8 

 

2. Illustration of JPF Core ....................................................................................................9 

 

3. JPF Listeners ..................................................................................................................10 

 

4. Example program ...........................................................................................................12 

 

5. (a) Example initial trie. (b) Updated trie in iterative deepening ....................................13 

 

6. Method to compute the middle value of three input numbers  

    and its annotated assertions  .....................................................................................18 

 

7. Static analysis approach: An overview of the approach ................................................20 

 

8. Parallel assertion checking:  

    (a) trie explored by the first stage;  

    (b) paths to be explored by multiple workers for parallel assertion checking .........34 

 

9. Training DNNs with constraint solutions ......................................................................53 

 

10. Classifying a path condition using a DNN ..................................................................58 

 

11. Average time cost (ms) of satisfiability checking........................................................75 

 

12. Sample data of MNIST database  ................................................................................82 

 

13. Example Plot of ReLUs  ..............................................................................................85 

 

14. Example Image from MNIST  .....................................................................................95 

 

15. Time Cost Distribution  .............................................................................................101 

 

16. Distribution of Time Cost of Solving Concretized PC in Parallel  ............................110 



 

ix 

LIST OF ALGORITHMS 

 

Algorithm Page 

 

1. Algorithm of Guided Property Checking .......................................................................22 

 

2. Algorithm of Finding Feasible Paths to Assertions in the First Stage ...........................37 

 

3. Algorithm of Guided Assertion Checking in the Second Stage ....................................39 

 

4. Algorithm of Vectorizing a Canonized PC into a Matrix ..............................................56 

 

5. Algorithm of Symbolic Execution with DeepSolver .....................................................61 

 

6. Algorithm of Ranking Heuristics ...................................................................................92 

 

7. Algorithm of STEP Heuristic.........................................................................................94 

 

 

 

 

  

 

  



 

x 

LIST OF ABBREVIATIONS 

 

Abbreviation Description 

 

CFG Control Flow Graph 

 

DNN  Deep Neural Network 

 

GAN  Generative Adversarial Networks 

 

JPF  Java Pathfinder 

 

JVM  Java Virtual Machine 

 

PC  Path Condition 

 

SMT  Satisfiability Modulo Theories 

 

SPF  Symbolic Pathfinder 

 

TACC  Texas Advanced Computing Center 

 



 

xi 

ABSTRACT 

Symbolic execution executes programs with symbolic inputs and systematically 

analyzes program behaviors by exploring all feasible paths. For each path it explores, it 

builds a path condition, and checks the path’s feasibility by solving its corresponding 

path condition using off-the-shelf constraint solvers. Symbolic execution is a powerful 

program analysis technique and has provided a basis for various software testing and 

verification techniques. However, it remains expensive and is difficult to be applied for 

large and complex programs due to two major challenges: (1) path explosion problem, 

i.e., the number of feasible paths in a program grows exponentially with an increase in 

program size, and (2) constraint solving is expensive. 

This dissertation presents four techniques for efficient symbolic execution. The 

first two techniques, STAPAR and STASE, address the problem of path explosion by 

parallelizing path exploration in the context of checking properties using symbolic 

execution. STAPAR statically partitions a check for the whole set of properties into 

multiple simpler sub-checks, so that different properties are checked in parallel. STASE 

runs two stages in parallel: one stage for locating all feasible paths to properties and the 

other stage for checking properties along these paths in parallel. The other two 

techniques, DeepSolver and Cocoa, optimize constraint solving to improve its efficiency. 

DeepSolver trains deep neural networks using existing constraint solutions and uses the 

trained deep neural networks to classify path conditions for their satisfiability. Cocoa 

reduces the complexity of path conditions by replacing unimportant symbolic variables 



 

xii 

with concrete values. Experimental evaluations have shown the efficacy of our 

techniques compared to the state-of-the-art techniques. 

 

 



 

1 

I. INTRODUCTION 

Problem Description 

 Symbolic execution (King, 1976; Clarke, 1976; Godefroid et al., 2005; Sen and 

Agha, 2006; Păsăreanu and Rungta, 2010; Cadar et al., 2008) uses symbolic values 

instead of concrete values, as inputs to execute the program, and represents the values of 

program variables as symbolic expressions on those symbolic inputs. The path condition 

is a (quantifier free) Boolean formula over the symbolic inputs, collecting constraints on 

the inputs in order for an execution to follow the associated path. Path conditions are 

solved by the underlying constraint solver to check the feasibility of the corresponding 

paths. Thus, symbolic execution can potentially explore all feasible paths of a program. It 

is a powerful technique for multiple software analyses such as program equivalence 

checking, regression analysis, and continuous testing (Siegel et al., 2008; Whalen et al., 

2010; Yang et al., 2014b). Despite its wide application, symbolic execution still suffers 

from problems (Anand et al., 2013) that make it difficult to scale to large and complex 

programs. Specifically, the two major problems are: 

• Path explosion. Symbolic execution tries to explore all feasible paths of a 

program to check program behaviors. However, such exhaustive exploration 

cannot scale to large or complex programs. The number of feasible paths in a 

program grows exponentially with an increase in program size and can even be 

infinite for programs with loops. In other words, it is impossible for symbolic 

execution to exhaustively explore all feasible program paths due to the potentially 

large number, and only a small subset of paths can be symbolically executed in 

practice. The goal of discovering a large number of feasible program paths is 



 

2 

further jeopardized because the typical ratio of the number of infeasible paths to 

the number of feasible paths is high (Ngo and Tan, 2007). This path explosion 

problem needs to be addressed for efficiency of a symbolic execution system. 

• Expensive constraint solving. Symbolic execution accumulates branch 

constraints at conditional statements along a path, and the accumulated 

constraints, termed path condition, is then solved by an off-the-shelf constraint 

solver (Barrett and Tinelli, 2007; Cho, 2019; Z3S, 2019) to check the satisfiability 

of the corresponding path. If a path condition is satisfiable, the corresponding path 

is feasible and the satisfiable solution to the path condition can be used as an input 

to execute the program following the corresponding path; otherwise, the path is 

infeasible and symbolic execution does not continue exploration along the path. 

However, solving a complex path condition (e.g., path condition involving 

nonlinear operations such as multiplication and division and mathematical 

functions such as sin and log) remains a hard problem and can be time 

consuming. The challenge in solving complex path conditions dampens the 

efficacy of symbolic execution. 

Dissertation Topic 

 Researchers have developed various approaches to improve the scalability of 

symbolic execution in the last few years (Yang et al., 2019). For example, some research 

addresses the path explosion problem by applying parallel algorithm to symbolic 

execution (Qiu, 2016; Qiu et al., 2017; Kim et al., 2012b), using heuristic-guided path 

exploration to check interesting paths (Li et al., 2013; Seo and Kim, 2014; Christakis et 



 

3 

al., 2016), or pruning or merging paths and states to reduce the number of paths in the 

first place (Makhdoom et al., 2014; Yi et al., 2015; Jaffar et al., 2013; Avgerinos 

et al., 2014). Some other research tries to reduce the cost of constraint solving by 

applying simplification, reuse and caching mechanism to symbolic execution (Visser et 

al., 2012; Romano and Engler, 2013; Lloyd and Sherman, 2015) or by leveraging more 

powerful constraint solvers specially designed for non-linear constraints and bit vectors 

(Borges et al., 2012; Bagnara et al., 2013; Hadarean et al., 2014). In this dissertation, we 

introduce multiple techniques to address path explosion and constraint solving problems 

in symbolic execution. Specifically, we explore two 

research directions in this work: 

• We address the path explosion problem by applying parallelization to symbolic 

execution in the context of assertion checking using symbolic execution. Our 

insight is that since assertions are, by definition, side effect free, distribution of 

assertion checking among multiple workers is a typical embarrassingly parallel 

problem that is relatively simple and highly effective to apply. Meanwhile, such 

specific symbolic execution application naturally divides the whole large state 

space into parts based on whether the state or path is related to assertion checking 

or not. As a result, we can potentially prune a large portion of the full state space 

and concentrate computation resources only on the interesting paths to further 

scale symbolic execution. 

• We optimize constraint solving to improve its efficiency. Our first technique in 

this direction is to apply deep learning and train a model that can quickly classify 

a path condition regarding its satisfiability. This technique “reuses” the previous 



 

4 

constraint solving results in an innovative way compared to traditional constraint 

solution reuse techniques. Instead of reusing a constraint solution directly, we use 

the collective constraint solutions to train a deep neural network as classifier for 

new path conditions. The second work is to simplify the constraints by replacing a 

subset of symbolic variables with their concrete input values. With fewer 

symbolic variables in a path condition, the problem is hopefully simpler and 

easier to solve by a constraint solver. This idea is inspired by the concept of 

dynamic symbolic execution, or concolic execution (Godefroid et al., 2005; Sen 

and Agha, 2006; Cadar et al., 2008; Tillmann and De Halleux, 2008), in which the 

concrete input is used to help discover new paths to explore in a program. 

Different from concolic execution, we only replace part of the symbolic variables 

with concrete values with a purpose to simplify a complex constraint to speed up 

its solving and thereby speed up symbolic execution as a whole. 

Organization 

 The rest of the dissertation is organized as follows: 

 Chapter II introduces the background for our research, including symbolic 

execution, Symbolic Pathfinder, memoized symbolic execution, checking properties with 

symbolic execution, and deep neural network. 

 Chapter III presents our first technique, which applies static analysis to distribute 

assertion checking into sub-checks to be performed in parallel. 

 Chapter IV presents our second technique, which employs two stages to 

dynamically partition the state space into several sub-state spaces that can be explored in 

parallel by symbolic execution. 



 

5 

 Chapter V presents our third technique, which speeds up constraint solving in 

symbolic execution by applying deep learning. 

 Chapter VI presents our fourth technique, which uses concretization to speed up 

constraint solving in symbolic execution. It ranks symbolic variables in a path condition 

according to their importance and replaces the least important ones with their concrete 

values. 

 Chapter VII discusses the related work in terms of parallel symbolic execution, 

guided symbolic execution, machine learning for satisfiability checking, and reuse for 

efficient constraint solving. 

 Chapter VIII discusses several directions we would like to explore in future. 

Chapter IX concludes the dissertation. 

 

  



 

6 

II. BACKGROUND 

 In this chapter, we introduce background for our research, including symbolic 

execution, memoized symbolic execution, checking properties with symbolic execution, 

deep neural network, and Symbolic Pathfinder, a widely used symbolic execution 

framework for Java. 

Symbolic Execution 

 Symbolic execution (King, 1976; Clarke, 1976; Godefroid et al., 2005; Sen and 

Agha, 2006; Păsăreanu and Rungta, 2010; Cadar et al., 2008) is a powerful analysis 

technique for systematic exploration of program behaviors, and provides a basis for 

various software testing and verification techniques, such as program equivalence 

checking, regression analysis, and continuous testing (Siegel et al., 2008; Whalen 

et al., 2010; Yang et al., 2014b). 

 Symbolic execution uses symbolic values, instead of concrete values, as program 

inputs, and computes values of program variables as symbolic expressions of symbolic 

inputs. The state of a symbolically executed program includes the values of program 

variables at a program location, a path condition on the symbolic values to reach that 

location, and a program counter, which indicates the next statement to be executed. 

The path condition (Path Condition (PC)) is a Boolean formula over the symbolic input, 

which is an accumulation of the constraints that must be satisfied by the input for an 

execution to follow that path. 

 During symbolic execution, off-the-shelf constraint solvers (Barrett and Tinelli, 

2007; Cho, 2019; Z3S, 2019) are used to check the satisfiability of path conditions 

whenever they are updated. For instance, at each branch point during symbolic execution, 



 

7 

the PC is updated with constraints on the inputs such that (1) if the PC becomes 

unsatisfiable, the corresponding path is infeasible, and symbolic execution does not 

continue further along that path and (2) if the PC is satisfiable, a solution to the PC can be 

used as a program input that executes the corresponding path. 

To illustrate, consider the code fragment in Figure 1(a) that swaps the values of integer 

variables 𝑥 and 𝑦, when the initial value of x is greater than the initial value of 𝑦; we 

reference statements in the figure by their line numbers. Figure 1(b) shows the symbolic 

execution tree for the code fragment. A symbolic execution tree is a compact 

representation of the execution paths followed during the symbolic execution of a 

program. In the tree, nodes represent program states, and edges represent transitions 

between states. The numbers shown at the upper right corners of nodes represent values 

of program counters. Before execution of statement 1, the PC is initialized to true because 

statement 1 is executed for any program input, and 𝑥 and 𝑦 are given symbolic values 𝑋 

and 𝑌, respectively. The PC is updated appropriately after execution of if statements 1 

and 5. The table in Figure 1(c) shows the PC’s and their solutions (if they exist) that 

correspond to three program paths through the code fragment. For example, the PC of 

path (1,2,3,4,5,8) is 𝑋 >  𝑌 & 𝑌 −  𝑋 ≤  0. Thus, a program input that causes the 

program to take that path is obtained by solving the PC. One such program input is 𝑋 =

 2, 𝑌 =  1. For another example, the PC of path (1,2,3,4,5,6) is an unsatisfiable 

constraint 𝑋 >  𝑌 & 𝑌 −  𝑋 >  0, which means that there is no program input for which 

the program will take that (infeasible) path. 



 

8 

 

Figure 1: Symbolic Execution Sample: (a) Code that swaps two integers, (b) the 

corresponding symbolic execution tree, and (c) test data and path constraints 

corresponding to different program paths. 

  

Symbolic execution offers the advantage that one symbolic execution may 

represent a large, usually infinite, class of normal executions. This can be used to make a 

great advantage in program analyzing, testing, and debugging. However, to build a 

symbolic execution system that is both efficient and automatic, three fundamental 

problems of the technique must be addressed: path explosion, path divergence and 

complex constraint solving (Anand et al., 2013). In other words, symbolic execution 

encounters a bottleneck that a target subject becomes too large and complicated to be 

fully explored in a reasonable time. In our research, we introduce different techniques to 

handle such difficulties in multiple aspects. 

 



 

9 

Symbolic Pathfinder 

 Symbolic Pathfinder (SPF) is a Java framework specially designed for symbolic 

execution. SPF combines symbolic execution with model checking and constraint solving 

for test case generation. In this tool, programs are executed on symbolic inputs instead of 

concrete values. Values of variables are represented as constraints over the symbolic 

variables, generated from analysis of the code structure. These constraints are then solved 

to generate test inputs. Essentially SPF performs symbolic execution for Java programs at 

the bytecode level. SPF uses the analysis engine of Java Pathfinder (JPF), a model 

checker for Java. The core of JPF (Havelund and Pressburger, 2000) is a modified visual 

machine for Java bytecode which is generally used as model checker. A brief illustration 

of its workflow is shown in Figure 2 (Picture taken from previous JPF wiki: 

https://github.com/javapathfinder/jpf-core/wiki). It is used to find defects in given Java 

programs, with the assertions, or specifications, to check given as input. JPF gets back to 

user with a report that says if the assertions hold and/or which verification artifacts have 

been created by JPF for further analysis (like test cases). 

 
 

Figure 2: Illustration of JPF Core 

  

 The Java Virtual Machine (JVM) of JPF is the Java specific state generator. By 

executing Java bytecode instructions, the JVM generates state representations that can be 



 

10 

checked, queried, stored, and restored. JPF provided interfaces for developer to control 

these behaviors. As shown in Figure 3 (Picture taken from previous JPF wiki: 

https://github.com/javapathfinder/jpf-core/wiki), listeners are used to monitor certain 

events (e.g. instruction executed, choice generator registered, state backtracked, etc.). By 

implementing listeners, developers can control the flow of execution or gather important 

information in the process. 

 

 
 

Figure 3: JPF Listeners 

 

SPF is an extension of JPF. It combines model checking of JPF with symbolic execution 

features. Model checking is used to explore different symbolic program executions, to 

systematically handle aliasing in the input data structures, and to analyze the 

multithreading present in the code, while the extended behavior introduced as listeners 

execute the program on symbolic inputs instead of concrete values and uses mounted 

solvers to solve the constraints and automatically generate test cases or determine path 

feasibility. It is a widely applied tool in academia and industry. 

Memoized Symbolic Execution 

 The key insight in memoized symbolic execution (Memoise) is that applying 

symbolic execution often requires several successive runs of the technique on largely 



 

11 

similar underlying problem instances. Memoise leverages the similarities to reduce the 

total cost of applying the technique by maintaining and updating the computations 

involved in a symbolic execution run. It reduces both the number of paths to explore by 

pruning the path exploration as well as the cost of constraint solving by re-using 

previously computed constraint solving results. 

 Specifically, Memoise uses a trie (Fredkin, 1960; Willard, 1984), an efficient 

tree-based data structure, for a compact representation of the paths visited during a 

symbolic execution run. Essentially, the trie records the choices taken when exploring 

different paths, together with bookkeeping information that maps each trie node to the 

corresponding condition in the code. Maintenance of the trie during successive runs 

allows re-use of previous computation results of symbolic execution without the need for 

re-computing as is traditionally done. Constraint solving is turned off for previously 

explored paths and the search is guided by the choices recorded in the trie. An initial run 

of Memoise performs standard symbolic execution as well as builds the trie on-the-fly 

and saves it on the disk for future re-use. To facilitate future runs of symbolic execution, 

a subset of the leaf nodes in a trie is partitioned into a set of boundary nodes, which are 

leaf nodes because of the chosen depth bound, and a set of unsatisfiable nodes, which are 

leaf nodes due to unsatisfiable path conditions. Based on the results cached in the trie, 

Memoise enables efficient re-execution, which is guided by the trie using algorithms that 

are specialized for the particular analysis that is performed. 



 

12 

 
 

Figure 4: Example program. 

 

 We illustrate Memoise for iterative deepening on the program in Figure 4. 

Method 𝑚 has three integer inputs: 𝑐𝑢𝑟𝑟 (current), 𝑡ℎ𝑟𝑒𝑠ℎ (threshold) and 𝑠𝑡𝑒𝑝, and 

calculates the relationship between the current and the threshold, in increments given by 

the step value. Since symbolic execution of programs with loops may result in an infinite 

number of paths to explore, symbolic execution is often run using iterative deepening, 

where a depth bound of the search is set for symbolic paths, and is iteratively increased 

until either an error is found or the desired testing coverage has been achieved. Memoise 

enables an efficient iterative deepening, by only considering paths bounded by the search 

depth bound to be re-executed during the new iteration, since other paths are ended 

naturally by execution at smaller depths and hence cannot have deeper successors. The 

paths that lead to boundary nodes are thus selected and guided by the trie, are executed 

up to the next depth bound. Figure 5 (a) shows the trie for a symbolic execution run on 

the program bounded at depth 4. The two nodes (5,1- 31,0 - 31,0) and (5,1 - 31,0 - 31,1) 



 

13 

are boundary nodes and the node (5,1- 31,1) is an unsatisfiable node. During re-execution 

constraint solving is turned off for the portion of the path that has already been explored 

in the previous iteration. Figure 5 (b) shows the updated trie bounded at depth 5, in which 

only paths highlighted (following 5,1 - 31,0) are explored. Memoise requires only 2 calls 

to the constraint solver to generate this trie; in contrast, standard symbolic execution 

would require 10 calls (1 for each branch). 

 
 

Figure 5: (a) Example initial trie. (b) Updated trie in iterative deepening. 

 
Checking Properties with Symbolic Execution 

 Annotating functional correctness properties of code, e.g., using assertions 

(Clarke and Rosenblum, 2006) or executable contracts (Leavens et al., 2005; Meyer et al., 

1987), enables automated conformance checking of program behaviors to expected 

properties, and is widely used for finding bugs (Corbett et al., 2000; Godefroid, 1997). 

However, effectively utilizing such properties in practice is complicated, in part due to 

the high computational cost of checking them. 

 When programs are annotated with functional correctness properties, symbolic 

execution can be naturally applied to automatically check program behaviors against the 

annotated properties to check their validity. Symbolic execution can systematically 

explore the program’s state space to find paths to assertion violations and provide users 



 

14 

with a counterexample for each violation by solving the corresponding path condition 

using the underlying constraint solver. However, suffering from problems of path 

explosion and complicated constraint solving, checking assertions using symbolic 

execution can be expensive. Symbolic execution is usually configured either to explore 

all the state space to find all possible assertion violations, or to stop when it finds the first 

assertion violation. In the former case, one symbolic execution run could take a long time 

before giving any results, and users have to wait for the whole exploration to complete 

before they could take any action to deal with the potential problems in their code or 

assertions. In the latter case, users have to run symbolic execution for multiple times to 

find all assertion violations in case there exists multiple assertion violations. 

Deep Neural Network 

 Deep Neural Network (DNN) have been widely used in many artificial 

intelligence areas, such as computer vision (Krizhevsky et al., 2017), natural language 

processing (Socher et al., 2013), and speech recognition (Mohamed et al., 2012). In a 

deep learning model, multiple layers of information processing stages in hierarchical 

architectures are utilized for pattern classifications or feature learning purposes. A typical 

DNN has one input layer which takes in input data, one output layer which generates 

final classification results, and several hidden layers to perform intermediate processing 

(e.g., feature extraction). Each layer of a DNN is comprised of nodes, termed neurons. 

The neurons refine and extract information based on the values received from the 

previous layer, and then compute a value for the next layer. DNNs use the multiple 

hidden layers to progressively extract higher level features from the input dataset. 



 

15 

 DNNs are commonly used as classifiers. Each record of an input dataset contains 

a pre-set label or class for classification, while each neuron in the output layer represents 

one such class. Each neuron takes inputs from other neurons (typically from the ones in 

the previous layer) and computes an output by applying an activation function (e.g., 

ReLUs or Sigmoid) to the weighted sum of its inputs according to a unique weight vector 

and a bias value. The output is then sent to other neurons for computation and 

propagation until it reaches neurons in the output layer. The computation result of an 

output neuron represents the “confidence” or the “possibility” of the input record to fall 

into the corresponding class, which is used by the DNN to make final decisions of the 

classification based on user’s design (e.g. outputting one or more classes with highest 

possibility, or outputting only classes with confidence scores over a certain threshold 

(Nielsen, 2018). In our work, we use rectified linear units (ReLUs) (Nair and Hinton, 

2010) as activation function. 

 

 

 

  



 

16 

III. PARALLEL PROPERTY CHECKING WITH  

STATIC WORKLOAD PARTITIONING 

 This chapter presents STAPAR, a technique to improve the scalability of 

symbolic execution on checking properties in parallel with a static analysis approach. Our 

approach partitions a check for the whole set of properties into multiple simpler 

sub-checks—each sub-check focusing on a single property, so that different properties 

are checked in parallel among multiple workers. Furthermore, each sub-check is 

guided by the checked property to avoid exploring irrelevant paths and is prioritized 

based on distances towards the checked property to provide early feedback. We 

implement our approach in SPF and experiments on systematically checking assertions in 

Java programs show the effectiveness of our approach. 

 This chapter is based on our previous publication in 2018 (Wen and Yang, 2018). 

Overview 

 Advances in symbolic execution have been made during the last decade. 

Specifically, parallel analysis (Bucur et al., 2011; Staats and Păsăreanu, 2010; Siddiqui 

and Khurshid, 2010, 2012) allows multiple workers to explore largely disjoint sets of 

program behaviors in parallel, and has shown promise in addressing the scalability issue 

of symbolic execution. However, to the best of our knowledge, none of the approaches 

consider the characteristics of the annotated properties in their parallelization strategies. 

Our key insight of this approach is that properties are normally written without side 

effects, and thus checking of each property is independent of checking of other 

properties. Our approach partitions a check for the whole set of properties into multiple 

simpler sub-checks—each focusing on one single property, so that different properties are 



 

17 

checked in parallel among multiple workers. Furthermore, each sub-check is guided by 

the checked property to avoid exploring irrelevant paths and is prioritized based on 

distances towards the checked property to provide earlier feedback, allowing users to fix 

bugs in code or refine properties earlier. Specifically, during state space exploration we 

statically check whether the checked property is reachable or not along the current path 

and prune the search when the checked property cannot be reached. Moreover, we 

prioritize the state space exploration so that the state whose corresponding location has 

the shortest distance towards the checked property is explored first, i.e., the shortest path 

to the checked property gets explored first. Therefore, the prioritized state space 

exploration can provide earlier feedback on the checked property. Note that the chance of 

pruning irrelevant state space is much higher in each sub-check than in the original 

check, since in a sub-check the program under analysis has only one property at a 

particular location in the program, while the program under analysis in the original check 

has multiple properties scattered in different locations in the program. 

 We implemented our approach in SPF (Păsăreanu et al., 2013). To evaluate the 

efficacy of our approach we apply it in the context of symbolic execution for checking 

Java programs annotated with assertions. We conduct experiments based on five subjects: 

three Java programs with manually written assertions and two Java programs with 

synthesized assertions. Experimental results show that our approach for parallel property 

checking detects more assertion violations and reduces the overall analysis time 

compared with regular non-parallel property checking. For one subject, while regular 

property checking timed out after executing for two hours, our parallel property checking 

technique completed within four seconds. In addition, for most sub-checks, our guided 



 

18 

check prunes state space and reduces the time cost, and our prioritized check provides 

earlier feedback compared to regular check.  

We use an example to illustrate how our approach leverages the annotated 

properties to improve the scalability of symbolic execution for property checking. 

Consider the source code shown in Figure 6. It computes the middle value of its three 

integer inputs; this method is adapted from previous work of Jones (2008), and five 

assertions are manually added to check the correctness of the program. For example, the 

user asserts 𝑥 ≤  𝑦  &&  𝑦 ≤  𝑧 at line 4, indicating that y should be the middle value of 

the three inputs; otherwise, an assertion violation is captured. 

 

 

Figure 6: Method to compute the middle value of three input numbers  

and its annotated assertions. 

  



 

19 

 The workload of checking five assertions in this program is conducted by five 

workers running in parallel, such that each worker checks one single assertion. For 

example, the worker responsible for checking assertion #1 analyzes a program version, 

where the code together with the target assertion #1 remain unchanged, while all the 

other four assertions are removed. 

 In addition, each sub-check is further optimized using guided and prioritized state 

space exploration based on the checked assertion. For checking assertion #1, the sub-

check is guided by assertion #1, avoiding exploring the irrelevant parts of the 

program. Therefore, instead of exploring all the six possible paths in the program, the 

guided check only explores one path, that satisfies path condition 𝑦 <  𝑧  && 𝑥 <  𝑦 and 

reaches the checked assertion. It results into up to 5/6 reduction in terms of the number of 

paths to be explored. If multiple paths can reach the checked assertion, we use shortest 

distance-based heuristics to prioritize the search so that the assertion can be checked as 

early as possible and a feedback, i.e., whether the assertion is violated or not, can be 

returned to the user as early as possible. 

STAPAR 

 STAPAR is focused on how to optimally utilize the computing resources 

available to check properties, specifically in a parallel setting where the checking can be 

conducted among several workers. Our key insight is that properties are normally written 

without side effects, and thus checking of each property is independent of checking of 

other properties. The result from checking all properties in one run should be the same as 

that from checking properties in multiple runs in parallel. This enables us to partition a 

check for the whole set of properties into multiple simpler checks–each focusing on one 



 

20 

single property, so that different properties are checked in parallel among multiple 

workers. Therefore, the original check is converted into multiple simpler sub-checks in 

parallel for better scalability. 

 

 

 

Figure 7: Static analysis approach: An overview of the approach 

 

 Figure 7 shows an overview of the approach. Consider a program P with multiple 

properties 𝑃𝑇 =  {𝑃𝑇1, 𝑃𝑇2, . . ., 𝑃𝑇𝑚} to check. Our approach first statically analyzes 

the program to find all the m properties to check, and accordingly prepare m program 

versions 𝑉 =  {𝑣1, 𝑣2, . . ., 𝑣𝑚} where each version contains only one property that does 

not appear in other versions. These versions are then checked by m workers, each worker 

focusing on one version and altogether checking all the properties in parallel. Each 

worker works on its own program version with one single property using guided and 



 

21 

prioritized check. Finally, the property checking results from these workers are delivered 

to the user. 

 The partition of properties not only simplifies the program to be checked due to 

the removal of other properties, but also allows further optimization of each sub-check. 

Since each sub-check focuses on one single property, it is more likely to have paths that 

do not reach the checked property compared with the original check that focuses on 

multiple properties. Leveraging this observation, each sub-check, i.e., a symbolic 

execution run for checking one single property, is guided by the checked property such 

that it only explores the program state space that is relevant to the checked property. If 

the current path cannot reach the checked property, symbolic execution does not continue 

along the path and backtracks. By effectively pruning paths that cannot reach the checked 

assertions, our approach avoids the cost of exploring irrelevant paths. 

Algorithm 1 shows the procedure check for performing property checking for a 

program with one single property. Given as input a program, a property to check, and a 

bound on the search depth, the procedure checks the conformance of the program 

behaviors with the checked property and return all property violations in the program. It 

starts with the initial state for 𝑠, 0 for 𝑑𝑒𝑝𝑡ℎ, and an empty set for 𝑉𝑆. It finds all enabled 

transitions at the current state (Line 1) to systematically search the state space. Lines 4-5 

locate the Control Flow Graph (CFG) nodes for the enabled transition, and the checked 

property, respectively. Both the enabled transition and the checked property could 

correspond to multiple CFG nodes, we simplify it here assuming that each corresponds to 

one CFG node. It checks whether the current transition reaches the checked property, and 

if not prune the search (Lines 6-7); otherwise, it executes the transition to get to the next 



 

22 

state and update the pc and depth (Lines 9-11). If 𝑝𝑐 is unsatisfiable (i.e., the 

corresponding path is infeasible), the checked property is violated, or search depth 

reaches the bound, it backtracks to explore other un-explored enabled transitions (Lines 

12-20); otherwise, it recursively explores the states rooted at the new state 𝑠′ (Line 22). 

Algorithm 1 Algorithm of Guided Property Checking 
 

Input: Program 𝑃, property 𝑃𝑇, search depth bound 𝐷𝑒𝑝𝑡ℎ𝐵𝑜𝑢𝑛𝑑 

Output: A set of property violations detected during symbolic execution 𝑉𝑆 

1: Queue 𝑡𝑞 ← enabled transitions at current state 𝑠 

2: while 𝑡𝑞 ← 𝑖𝑠𝐸𝑚𝑝𝑡𝑦() do 

3:  𝑡 ← 𝑡𝑞. 𝑟𝑒𝑚𝑜𝑣𝑒() 

4:  𝑛𝑡 ← 𝐺𝑒𝑡𝐶𝐹𝐺𝑁𝑜𝑑𝑒(𝑃, 𝑡) 

5:  𝑛𝑎 ← 𝐺𝑒𝑡𝐶𝐹𝐺𝑁𝑜𝑑𝑒(𝑃, 𝑃𝑇) 

6:  if  ¬𝐼𝑠𝐶𝐹𝐺𝑃𝑎𝑡ℎ(𝑛𝑡;  𝑛𝑎) then 

7:   continue 

8:  else 

9:   𝑠′ ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑠, 𝑡) 

10:   𝑝𝑐 ← current path condition 

11:   𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ +  1 

12:   if 𝑝𝑐 is not satisfiable then 

13:    continue 

14:   end if 

15:   if 𝑖𝑠𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑉𝑖𝑜𝑙𝑎𝑡𝑒𝑑(𝑠′) then 

16:    𝑉𝑆. 𝑎𝑑𝑑(𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑠′)) 

17:    continue 

18:   end if 

19:   if 𝑑𝑒𝑝𝑡ℎ = 𝐷𝑒𝑝𝑡ℎ𝐵𝑜𝑢𝑛𝑑 then 

20:    continue 

21:   else 

22:    𝑐ℎ𝑒𝑐𝑘(𝑠′) 

23:   end if 

24:  end if 

25: end while 
 

In addition, each sub-check is prioritized to provide early feedback to the user. In 

the context of property checking, usually one property violation is enough for 

investigating the violation, and there is no need to find all property violations. Our insight 

is that the earlier a property is checked, the earlier the user could start the investigation 



 

23 

and fix the potential problem either by modifying the code or by refining the checked 

property. As there is no precise way to predict the feasibility of paths and how long each 

path would take. We use a heuristic to prioritize the check. Specifically, we calculate the 

distances from the current point towards the checked property along all potential paths 

and choose the shortest path to explore first (Ma et al., 2011). 

To prioritize the search, at each branching point, we sort the list of enabled 

transitions based on an estimated distance to the checked property in a CFG. For each 

enabled transition 𝑡𝑖, we compute an estimated distance to the checked property. The 

enabled transitions queue (𝑡𝑞 in Algorithm 1) is sorted in ascending order based on the 

estimated distances of the transitions before the queue is explored. The enabled transition 

with the shortest distance is explored first. The distance is a lower bound on the number 

of CFG branches from a node ni (corresponding to 𝑡𝑖) to node 𝑛𝑗, that is corresponding to 

the checked property: ∀𝑛𝑖 . 𝑛𝑗 ∶  𝑑𝑖 ∶=  𝑚𝑖𝑛 ( 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ( 𝑛𝑖, 𝑛𝑗 )). 

In our approach, we use the all-pairs shortest path algorithm to compute the lower 

bound on the number of CFG branches. The complexity is cubic in the number of 

branches in the CFG. We note that metrics other than number of branches can also be 

used as a distance estimate, for example, the number of bytecodes. 

Evaluation 

We name our approach STAPAR, which stands for static partitioning. We 

empirically evaluate the effectiveness of STAPAR. 

Our evaluation addresses the following research questions: 

• RQ1: How does the efficiency of STAPAR compare with regular property 

checking? 



 

24 

• RQ2: How does the cost of guided check compare with regular check? 

• RQ3: How does prioritized check compare with regular check in terms of 

providing feedback to the user? 

In our evaluation, we use five subjects including median, testLoop, trityp, Wheel 

Brake System (WBS), and Traffic Collision Avoidance System (TCAS). All of them 

have been used before for evaluating symbolic execution techniques (Staats and 

Păsăreanu, 2010; Yang et al., 2014b, 2012, 2014a). 

The first subject median is shown in Figure 6. 

The second subject testLoop is used to investigate STAPAR can help deal with 

loops, as they pose particular challenges to symbolic execution and handling them 

efficiently is an active area of research. 

The third subject is a Java version of the classic triangle classification program by 

Ammann and Offutt. The classification logic of the trityp program. We consider the 

correct version of assertions developed for trityp in previous work (Yang et al., 2014a). 

For the two subject programs WBS and TCAS, we use mechanically synthesized 

assertions. To synthesize assertions for our experiments, we use the Daikon tool for 

invariant discovery (Ernst, 2000). Specifically, we apply Daikon on each subject to 

discover invariants and transform them to assertions. Daikon requires a test suite to 

execute the program under analysis and detect its likely invariants. TCAS had a test suite 

available in the Software Infrastructure Repository (SIR), so we used this test suite which 

contains 1608 tests. For WBS, we wrote a random test generator to create a test suite with 

1000 tests. We selected all the eight Daikon invariants for TCAS and randomly selected 

25 out of 35 invariants for synthesizing assertions. 



 

25 

Experiment Setup 

In this work, we use Symbolic PathFinder (SPF) (Păsăreanu et al., 2013), an 

open-source tool for symbolic execution of Java programs built on top of the Java 

PathFinder (JPF) model checker (Visser et al., 2003) to perform symbolic execution. We 

implemented guided and prioritized check in SPF as a customized listener, and we built 

customized control flow graphs to compute estimated distances and reachability 

information to guide and prioritize property checking. We also conduct experiments 

using regular symbolic execution as implemented in SPF for comparison. Choco 

constraint solver (Cho, 2019) is used for solving path conditions involved in symbolic 

execution. 

To evaluate RQ1 and RQ2, symbolic execution is configured to detect all 

assertion violations; while to evaluate RQ3, symbolic execution is configured to stop 

when it detects the first assertion violation, to check whether our prioritized check could 

provide earlier feedback than regular check. 

We perform the experiments on the Lonestar cluster at the Texas Advanced 

Computing Center (TACC) (lon). TACC provides powerful computation nodes with 

reliable and fast connectivity. The programs for each worker node are executed on 

independent processors without memory sharing. 

We assume that there are enough workers available for performing the tasks in 

parallel. We consider it is reasonable to make this assumption, for the workload in 

STAPAR is distributed based on the number of assertions, which is relatively small. The 

largest number of assertions in subjects is TCAS, which has 25 sub-versions in total, 

while a cluster for parallel processing can easily handle the task with no problem. For 



 

26 

instance, the Lonestar cluster we use to run the experiments has 64 nodes in a chassis, 

with 24 cores per node. The computing resource is, with no doubt, enough to cover our 

tasks for evaluation. 

Results and Analysis 

In this section, we present the results of our experiments, and analyze the results 

with respect to our three research questions. 

Table 1: Results of parallel and regular property checking. 

 

Subject 

STAPAR Regular Property Checking 

Violations 
Time 

(s) 

# of 

States 

Memory 

(MB) 
Violations 

Time 

(s) 

# of 

States 

Memory 

(MB) 

Median 

(5 assertions) 
0 

2 

(0-2) 

5 

- 

13 

965 

- 

965 

0 2 13 965 

testLoop 

(2 assertions) 
2 

31 

(0-30) 

103 

- 

180 

965 

- 

965 

- TO - - 

trityp 

(10 assertions) 
0 

49 

(18-48) 

33 

- 

49 

965 

- 

965 

0 103 81 965 

WBS 

(8 assertions) 
222 

7 

(0-7) 

359 

- 

671 

965 

- 

1,178 

92 2 533 965 

TCAS 

(25 assertions) 
251 

680 

(27-679) 

679 

- 

935 

965 

- 

1,685 

195 2,025 2,047 965 

 

• RQ1: How does the efficiency of STAPAR compare with regular property 

checking? 

Table 1 shows the experimental results for checking all assertions in the subject 

programs using STAPAR and using regular non-parallel property checking approach. It 

shows the number of detected assertion violations, and three types of checking cost, i.e., 

time, number of states explored, and the maximum memory cost, for each approach. 



 

27 

Since in the parallel property checking sub-checks are analyzed in parallel among 

multiple workers, the table shows cost ranges of values across all sub-checks, and it also 

shows the overall time cost for the parallel property checking; while for regular symbolic 

execution the cost is collected by running regular symbolic execution on the original 

program annotated with all assertions. We note that 0 in time cost means less than 1 

second. TO indicates that the corresponding check timed out. We find that there are no 

assertion violations for median and trityp, while for the other three subjects, the parallel 

approach detects more assertion violations than regular approach. This is because some 

expensive assertion checking happens only in the parallel property checking. Since 

Symbolic PathFinder backtracks as soon as it detects an assertion violation, the inputs 

reaching deep assertions may be reduced due to violations of the shallow assertions along 

the same path, and thus may not detect the possible violations of the deep assertions in 

regular property checking approach. Moreover, for all subjects except for WBS, the 

parallel approach is more efficient than regular approach in property checking. 

Specifically, it achieves almost 3X speedup for TCAS. For testLoop, while regular 

symbolic execution timed out after executing for two hours, the parallel property 

checking completed within 31 seconds. Without surprise, most sub-checks explored only 

part of the state space. We also note however for WBS, STAPAR took more time, and 

explored more states, which is because of the cost for detecting the 130 more violations. 

In addition, we find that although the parallel approach takes almost the same 

memory cost as regular symbolic execution for most runs, it takes more memory for 

some sub-checks for WBS and TCAS; we note however that the maximum memory 



 

28 

reported by SPF may vary a lot due to the underlying garbage collection, and thus this 

comparison is not very meaningful. 

• RQ2: How does the cost of guided check compare with regular check? 

Table 2 reports the experimental results for each sub-check using guided check 

and prioritized check compared to using regular check, i.e., regular symbolic execution. 

As we explained before, the comparison in memory cost is not very meaningful, thus here 

we only report the cost in terms of time and explored states. 

To evaluate RQ2, symbolic execution is configured to check for all assertion 

violations. We observe that for 44 out of 50 versions, the guided check explored fewer 

states than the regular check, since the guided check prunes state space exploration when 

the checked property is not reachable. For example, for v1 of testLoop, guided check 

explored 103 states while regular check explored 154 states, which is about 1/3 reduction. 

Accordingly, the guided check took less time than regular check for most of these cases. 

For example, for v1 of trityp, guided check took 18 seconds while regular check took 22 

seconds. However, we note that for some cases, although there was a reduction in states, 

the time cost of guided check was even higher than regular check due to the overhead of 

static analysis involved in guided check. 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 

Table 2: Property checking using guided and prioritized check and regular check. 

 

Subject Ver 

Check all violations Check first violation 

Guided Check Regular Check Prioritized Check Regular Check 

Time States Time States Time States Time States 

median 

v1 0 5 0 11 0 5 0 11 

v2 0 7 1 11 0 7 1 11 

v3 0 5 1 11 0 5 1 11 

v4 1 5 0 11 0 5 1 11 

v5 2 13 2 13 1 13 1 13 

testLoop 
v1 0 103 0 154 0 103 0 154 

v2 30 727 TO TO 0 180 TO TO 

trityp 

v1 18 33 22 40 18 33 22 40 

v2 18 35 18 36 18 35 21 36 

v3 33 49 40 57 34 49 35 57 

v4 29 39 29 39 29 39 32 39 

v5 48 35 53 36 45 35 55 36 

v6 28 37 30 42 28 37 29 42 

v7 26 37 27 40 26 37 29 40 

v8 19 35 20 36 21 35 21 36 

v9 22 39 19 42 22 39 20 39 

v10 20 39 23 39 23 39 21 39 

WBS 

v1 0 451 0 455 0 163 0 255 

v2 0 359 0 359 0 222 0 341 

v3 0 527 1 530 0 527 0 530 

v4 0 623 1 623 0 9 0 9 

v5 0 535 1 535 0 535 0 561 

v6 7 671 11 680 0 9 0 9 

v7 0 487 1 500 0 48 0 117 

v8 0 527 0 530 0 368 0 421 

TCAS 

v1 219 727 250 760 289 727 265 702 

v2 27 727 27 760 37 727 43 702 

v3 34 687 33 702 37 687 33 702 

v4 149 687 156 702 125 687 137 702 

v5 30 679 41 754 27 679 34 754 

v6 35 679 40 754 33 679 37 754 

v7 31 679 35 679 33 679 34 679 

v8 28 679 33 679 33 679 34 679 

v9 241 695 275 722 240 695 257 722 

v10 251 695 270 722 222 695 318 722 

v11 32 695 36 722 1 33 1 38 

v12 31 695 33 722 1 33 1 38 

v13 201 695 226 727 238 695 241 727 

v14 130 695 132 727 134 695 146 727 

v15 28 695 34 727 11 229 13 270 

v16 28 695 35 727 9 229 12 270 

v17 679 743 644 745 557 743 568 745 

v18 31 743 32 745 31 743 32 745 

v19 36 935 34 950 15 370 26 439 

v20 33 935 36 950 8 247 14 323 

v21 30 719 30 874 29 678 29 678 

v22 34 719 35 874 11 167 18 214 

v23 33 815 35 827 0 20 0 33 

v24 28 815 39 827 10 191 20 331 

v25 34 815 35 827 9 211 19 231 

 



 

30 

• RQ3: How does prioritized check compare with regular check in terms of 

providing feedback to the user? 

To evaluate RQ3, symbolic execution is configured to stop when it finds the first 

assertion violation. From Table 2, we observe that for 40 out of 50 versions, prioritized 

check explored fewer states than regular check, and for 8 versions, both techniques 

explored the same number of states. For instance, for v24 of TCAS, prioritized check 

explored 191 states, while regular check explored 331 states. However, for the other 2 

versions (i.e., v1 and v2 of TCAS, prioritized check explored slightly more states than 

regular check. This is not surprising as the shortest path selected by our heuristics is 

based on number of branches in CFG and may result in more states to explore in 

symbolic execution. Similar to previous experiments, prioritized check usually took less 

time when it explored fewer states, as the time cost is correlated with states exploration. 

For example, for v10 of TCAS, prioritized check took 222 seconds, while regular check 

took 318 seconds, which is about 1.5X speedup. Moreover, for v2 of testLoop, prioritized 

check completes in less than one second; in contrast, regular check timed out after 

running for two hours. Only for few versions, prioritized check took slightly more time 

than regular check. 

 

  



 

31 

IV. PARALLEL PROPERTY CHECKING WITH  

STAGED SYMBOLIC EXECUTION 

This chapter presents STASE, a technique to improve the scalability of symbolic 

execution on checking properties in parallel with a dynamic analysis approach. We 

introduce the approach for checking properties in parallel with staged symbolic 

execution. It consists of two stages running in parallel, one stage for finding all feasible 

paths to properties and the other stage for checking properties along these paths in 

parallel. Although there is some redundancy in state space exploration during the latter 

stage, we leverage memoization to efficiently explore the parts that have been explored 

before. We implement our approach on top of Symbolic PathFinder and evaluate it on 

several Java subjects with assertions. The experimental results show the effectiveness of 

our approach compared to sequential property checking using conventional symbolic 

execution. In particular, our approach finds the same assertion violations as sequential 

property checking while achieving up to 2.97X speedup for checking assertions and up to 

5.65X speedup for checking more complex assertions, thereby our approach provides 

users earlier reports of assertion checking. 

This chapter is based on our publication in 2019 (Wen and Yang, 2019). 

Overview 

We introduce a novel approach for parallel property checking with staged 

symbolic execution to improve the efficiency of symbolic execution on assertion 

checking. It consists of two stages running in parallel: the first stage focuses on finding 

all feasible paths to assertions as target paths, and the second stage checks assertions on 

each target path in parallel. Although there is some redundancy of state space exploration 



 

32 

during the second stage, we leverage memoization (Yang et al., 2012) to efficiently 

explore the parts that have been explored before. 

Our insight is to distribute the work of assertion checking to several workers in 

parallel, thus each worker solves a much simpler problem than exploring the whole state 

space. As a rule, assertions are usually written without any side effect, therefore the 

checking of one assertion is independent of the checking of other assertions. Thus, it 

guarantees that distribution of assertion checking would not change the final result. 

Compared with existing parallel symbolic execution techniques (Staats and Păsăreanu, 

2010; Siddiqui and Khurshid, 2010; Kim et al., 2012a; Bucur et al., 2011; Siddiqui and 

Khurshid, 2012; Qiu et al., 2018) that aim to speed up the overall state space exploration, 

our technique addresses the problem of checking properties. For each worker, paths that 

are irrelevant to property checking will be either ignored or quickly processed. Thus, 

each worker is only responsible to check a small portion of the state space, and the 

overall time cost of symbolic execution is minimized. Specifically, our work aims at 

finding assertion violations more efficiently in two aspects: first, one single run of the our 

technique could find all assertion violations, so users do not have to run potentially long 

symbolic execution for multiple times; second, if a potential violation is detected, users 

can get a report about it at the earliest time possible so they can start working on their 

code at once, even when the checking of other assertions is still going on. 

We implemented our technique in an open source framework for symbolic 

execution, Symbolic Pathfinder (Păsăreanu and Rungta, 2010). To evaluate the 

effectiveness of our technique, we conducted experiments based on multiple Java 

artifacts with assertions. The experimental results show that our technique can find all 



 

33 

assertion violations detected by sequential property checking with conventional symbolic 

execution, while using less time and providing users earlier reports of assertion checking. 

Our approach aims at finding assertion violations more efficiently in two aspects: 

first, one single symbolic execution run could find as many violations as possible, so 

users do not need to run a potentially long symbolic execution run for multiple times; 

second, if a potential violation is detected, users can get a report about it at the earliest 

time possible so they can start working on their code at once, even when the checking of 

other assertions is still going on. 

Our insight of parallel assertion checking among multiple workers is that as a 

rule, assertions are usually required to be side effect free, which means the checking 

result of one assertion is not dependent on the checking result of another assertion. Thus, 

it guarantees that distribution of assertion checking would not change the final result. 

Moreover, as a typical embarrassingly parallel problem, the partial result of each 

worker does not need to be reduced into one overall result. In other words, once the 

exploration is started, there is very limited amount of data transferring among workers, 

and complex synchronization mechanism between workers is not necessary. Thus, the 

partial results could be provided to users as soon as they come out, so users could use 

them to immediately check the possible problems in the assertion or in the code. 

We introduce a novel parallel assertion checking approach with staged symbolic 

execution, which partitions the exploration into two stages: the first stage explores 

program code to find out feasible paths to assertions while the second stage checks 

assertions in parallel guided by the target paths from the first stage. The trie created in the 

first stage is used to define workloads for parallel workers in the second stage: 



 

34 

• In the first stage, symbolic execution explores program code only to find all 

feasible paths that lead to the checked assertions. In this stage, we filter out 

infeasible paths or feasible paths that are irrelevant to assertion checking and save 

target paths which are used in the second stage with a focus on checking 

assertions. 

• In the second stage, multiple workers are launched in parallel to check assertions 

guided by the target paths provided by the first stage. Each worker explores the 

same program guided by a target path using Memoise and checks the assertion 

that is reached by the target path. All the workers are run in parallel, and 

individually output the results to users once any of them finishes its job. 

 

  

 

(a) (b) 

 

Figure 8: Parallel assertion checking: (a) trie explored by the first stage; (b) paths to 

be explored by multiple workers for parallel assertion checking. 

 

Figure 8 shows the two-stage analysis on a small subject with two assertions. In 

the first stage, a symbolic execution run is launched, where a state space trie is built as 

the exploration is proceeded and four target paths, which are feasible and lead to the 

checked assertions, are found. We note the state of checking assertion as a frontier state. 

After gathering all needed information, in the second stage, four workers are launched, 

each focusing on checking a assertion along one target path, while avoiding the 



 

35 

exploration of irrelevant states and efficiently exploring the four target paths by turning 

off constraint solving. Once a worker has reached the frontier state, the constraint solver 

will be turned back on, thus the worker can check the corresponding assertion as well as 

further exploring the deeper part of the trie from frontier state. 

Note that, the two stages do not necessarily have to run sequentially. Instead, as 

soon as first stage reaches an assertion, we can immediately start the second stage where 

an available worker is launched to check the reached assertion while the first stage 

continues looking for other feasible paths to assertions. In other words, the two stages are 

run simultaneously by multiple workers with different goals. 

Ideally, that enough resources are available to allocate for all workers to run at the 

earliest time possible. However, it is not always true in real execution. Different from the 

technique we introduced in Chapter III where the number of workers can be calculated by 

the number of assertions, for this work we do not have a way to predict how many 

workers we need, for the number of paths towards assertion checking can only be known 

in run time. Thus, we implement a waiting list mechanism for our solution. The worker of 

the first stage maintains two lists, one for the path detected and one for idle workers. 

Once a feasible path towards assertion checking is detected, we first check the worker list 

and see whether there is an available worker in the second stage. If there is a worker, we 

assign it with the detected path and start a symbolic execution immediately. If no worker 

is available at the time, the path information, typically the path choices, will be put into 

the waiting list. Once a worker in the second stage finished its task, it first checks 

whether there are any paths in the waiting list. If no path is waiting, worker adds itself to 



 

36 

the idle worker list to be called by the first stage. Otherwise, it will take one of the path 

information and start a new symbolic execution run with it. 

STASE 

Algorithms 

Algorithm 2 shows the algorithm for finding feasible paths to assertions in the 

first stage. A regular symbolic execution is applied to explore state space aiming to find 

assertions to check. This exploration collects the choices processed and maintains the list 

of choices as the state is advanced or backtracked (Lines 11 and 28). After a state is 

advanced, the instruction just executed is checked to see it belongs to the list of input 

assertion instructions. If it is an assertion instruction, the current state is a frontier state 

that stands for assertion checking. We first check whether there is an idol worker 

available. If we have such a worker, we launch it for checking this assertion with choice 

information for the current path (Lines 14-17). Otherwise, we put the detected path into a 

waiting list (Lines 18-20). Then, the exploration backtracks to find other paths to 

assertions (Line 21). 

 

 

 

 

 

 

 

 



 

37 

Algorithm 2 Algorithm of Finding Feasible Paths to Assertions in the First Stage 
 

Input: Program 𝑃, List of assertions 𝐴𝑠𝑠𝑒𝑟𝑡𝑠, Depth boundary 𝐷, List of detected paths 𝑃𝑎𝑡ℎ𝑠, 

List of idol workers 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 

Output: Report of symbolic execution R 

1: Path Choice 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒 ← 𝑛𝑢𝑙𝑙 

2: Path Choice List 𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠 ← 𝑒𝑚𝑝𝑡𝑦 

3: Current Depth 𝑑𝑒𝑝𝑡ℎ ← 0 

4: State 𝑠 ← root state of 𝑃 

5: while true do 

6:  if 𝑑 ==  𝐷 then 

7:   backtrack 

8:  end if 

9:  if state is advanced then 

10:   𝑠 ← 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑(𝑠) 

11:   𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠 ← 𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠. 𝑝𝑢𝑠ℎ(𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶ℎ𝑜𝑖𝑐𝑒()) 

12:   𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ +  1 

13:   Instruction 𝑖𝑛𝑠𝑡 ← 𝑔𝑒𝑡𝐿𝑎𝑠𝑡𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛() 

14:   if 𝑖𝑛𝑠𝑡 is in 𝐴𝑠𝑠𝑒𝑟𝑡𝑠 then 

15:    if 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 is not empty then 

16:     assign worker 𝑊 with (𝑃, 𝐷, 𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠) 

17:     Remove 𝑊 from 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 

18:    else 

19:     put 𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠 to 𝑃𝑎𝑡ℎ𝑠 

20:    end if 

21:    backtrack 

22:   end if 

23:  end if 

24:  if state is backtracked then 

25:   𝑠 ← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑠) 

26:   if 𝑠 == 𝑟𝑜𝑜𝑡 state then 

27:    break 

28:   else 

29:    𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠 ← 𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠. 𝑝𝑜𝑝() 

30:    𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ −  1 

31:   end if 

32:  end if 

33: end while 

34: return 𝑅  



 

38 

Algorithm 3 shows the algorithm for guided assertion checking in the second 

stage. Symbolic execution in this stage is guided by the given path choices to quickly 

traverse through the state space towards the assigned frontier state (Lines 7-10). 

Constraint solver is turned off since this path has been explored in the first stage and the 

path conditions along this path are guaranteed to be satisfied until the frontier state is 

reached. Upon reaching the frontier state, constraint solver is turned on to resume regular 

symbolic execution to check the corresponding assertion (Line 13). Search is stopped 

when it backtracks to the frontier state (Line 25-26), and a report is generated regarding 

the validity of all the checked assertions this worker has encountered (Line 33). Since all 

workers are run in parallel, earlier feedback could be expected in comparison to 

sequential property checking using the conventional symbolic execution configured to 

explore all errors, which only gives an overall report after exploring all the state space. 

Before the process ends, the worker first checks whether there are paths not assigned in 

the list that is maintained in the first stage (Line 34). If there is no such a path, the worker 

adds itself to the idle worker list and prepare to be assigned (Line 35). Otherwise, it gets 

one of the paths in the waiting least and start a new symbolic execution based on it (Lines 

37-38). 

  



 

39 

Algorithm 3 Algorithm of Guided Assertion Checking in the Second Stage 
 

Input: Program 𝑃, List of assertions 𝐴𝑠𝑠𝑒𝑟𝑡𝑠, Depth Boundary 𝐷, Path Choices List 

𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠, List of detected paths 𝑃𝑎𝑡ℎ𝑠, List of idol workers 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 

Output: Report of symbolic execution 𝑅 

1: Current Depth 𝑑𝑒𝑝𝑡ℎ ← 0 

2: State 𝑠 ← root state of 𝑃 

3: Frontier State 𝑓𝑠 ← 𝑛𝑢𝑙𝑙 

4: Choice Generator 𝑔𝑐 ← 𝑛𝑢𝑙𝑙 

5: Constraint Solver is turned off 

6: while 𝑡𝑟𝑢𝑒 do 

7:  if ¬𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠: 𝑖𝑠𝐸𝑚𝑝𝑡𝑦() then 

8:   𝑔𝑢𝑖𝑑𝑒𝑑𝐸𝑥𝑝𝑙𝑜𝑟𝑒(𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠. 𝑝𝑜𝑙𝑙()) 

9:   𝑠 ← 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑(𝑠) 

10:   𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ +  1 

11:  else 

12:   𝑓𝑠 ← 𝑠 

13:   Constraint Solver is turned on 

14:   while 𝑡𝑟𝑢𝑒 do 

15:    if 𝑑𝑒𝑝𝑡ℎ ==  𝐷 then 

16:     backtrack 

17:    end if 

18:    if state is advanced then 

19:     𝑠 ← 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑(𝑠) 

20:     𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ +  1 

21:    end if 

22:    if state is backtracked then 

23:     𝑠 ← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑠) 

24:     𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ −  1 

25:     if 𝑠 ==  𝑓𝑠 then 

26:      break 

27:     end if 

28:    end if 

29:   end while 

30:   break 

31:  end if 

32: end while 

33: return 𝑅 

34: if 𝑃𝑎𝑡ℎ𝑠 is empty then 

35:  add current worker to 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 

36: else 

37:  get path choices 𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠′ from Paths 

38:  start current worker with inputs (𝑃, 𝐷, 𝑝𝑎𝑡ℎ𝐶ℎ𝑜𝑖𝑐𝑒𝑠’) 

39: end if  



 

40 

Currently, our approach does not check the reachability of assertions statically. In 

other words, if there are no assertions at all in the program, the first worker will explore 

the whole state space in the same way as the conventional symbolic execution, while 

monitoring the execution of instructions. Even in this case, since the list of assertion 

instructions is empty, the cost should be similar as conventional symbolic execution, 

which is acceptable. 

Evaluation 

Our technique named as STASE, which stands for staged symbolic execution. 

STASE is intended to find all the assertion violations that could be found by sequential 

property checking using conventional symbolic execution, while reducing the cost of 

checking and producing earlier assertion checking reports. We examine the effectiveness 

and efficiency of STASE relative to sequential property checking using conventional 

symbolic execution. This leads to the following research questions: 

• RQ1: How effective is STASE in detecting assertion violations compared to 

sequential property checking using conventional symbolic execution? 

• RQ2: How does the cost of applying STASE compared to sequential property 

checking using conventional symbolic execution on checking assertions? 

• RQ3: How does the complexity of the checked assertions affect the efficacy of 

STASE? 

• RQ4: How does STASE perform when the number of workers is limited? 

Tool Support 

We implemented our technique in Symbolic Pathfinder (SPF) (Păsăreanu and 

Rungta, 2010). We have customized Memoise so that the trie nodes corresponding to 



 

41 

assertions are treated as frontier nodes, and each worker leverages Memoise analysis to 

check the assertion along the target path(s) which are feasible and lead to the checked 

assertions. Symbolic execution is guided by the target path and constraint solving is 

turned on only after the frontier node is reached. 

We used LoneStar 5 on Texas Advanced Computing Center (TACC) cluster for 

parallel execution. The configuration of our computing node is: 

• Dual Socket 

• Xeon E5-2690 v3 (Haswell): 12 cores per socket (24 cores/node), 2.6 GHz 

• 64 GB DDR4-2133 (8 x 8GB dual rank x8 DIMMS) 

• No local disk 

• Hyperthreading Enabled - 48 threads (logical CPUs) per node 

• JDK-1.8 

We chose the latest version of SPF to support the JDK-1.8. The communicating 

and allocating of jobs are controlled by TACC operation system and we confirmed its 

effectiveness. 

For the RQ4, we would like to evaluate the performance of STASE when the 

number of workers is limited. We first finish other evaluations and see the number of 

workers needed in total for each subject, and then set different number of workers to 

check the efficiency. 

Artifacts 

In our evaluation, we used one subject with manually created assertions and three 

other subjects with assertions synthesized from invariants that are inferred by (Ernst et 

al., 2007). These subjects have been used in research projects for evaluating the 



 

42 

performance of symbolic execution techniques (Yang et al., 2014b, a, 2012; Staats and 

Păsăreanu, 2010; Qiu et al., 2018). 

The first subject is WBS, which comes with official jpf-symbc package, and has 

been used in the literature for evaluating symbolic execution techniques. It is a 

synchronous reactive component from the automotive domain. It consists of one class 

and 231 lines of code. Since the original WBS code does not have assertions, we used 

Daikon (Ernst et al., 2007) to dynamically infer invariants for the program, and 

transformed them into Java assert statements. Since the eight invariants generated by 

Daikon represent post-conditions, they are all for the exit points of a method. We moved 

these assertions to different locations of the code which are randomly selected, to 

simulate the assertions written by users in practice. For this subject, it is not important 

whether the synthesized assertions are valid or not, as long as the subject can be 

successfully compiled. 

The second subject is an open-source Java subject named trityp. This method 

takes three integer inputs which stand for the length of three edges of a triangle, and 

return an integer indicating the type of the triangle (scalene, isosceles, equilateral, or not 

a triangle). For this subject, ten assertions are manually inserted by others (Yang et al., 

2014a). 

The third subject is MerArbiter, a component of the flight software for NASA 

JPL’s Mars Exploration Rovers (MER). This subject has 4.7 KLOC in 268 classes. 

Similar to trityp, we put 6 assertions generated from Daikon invariants at random 

locations while ensuring all these assertions are still valid. For this experiment, we would 



 

43 

like to see the performance with a relatively large subject where the assertions are all 

valid. 

The last subject is Apollo (RJC), which is also a Java subject used for evaluation 

in multiple works (Yang et al., 2014b). It is a Simulink model that was automatically 

translated to Java with 2.6 KLOC in 54 classes. For this subject, solving constraints is 

more expensive as they involve nonlinear calculation. We randomly pick up 7 assertions 

generated by Daikon, which are valid, invalid or irrelevant to the subject, and move them 

to different locations of the code which were also picked at random. 

To evaluate RQ3, we manually increased the complexity of assertions by putting 

together the conditions from multiple assertions. In this way, the conditions in the newly 

constructed assertions are more complex than previous assertions. As always, we inserted 

these assertions at randomly selected locations of the programs while making sure that 

programs can still compile. 

Variables and Measures 

The independent variable in our study is the property checking algorithm used in 

our empirical study. We use the parallel property checking algorithm, and as a control, 

we use sequential property checking using conventional symbolic execution as 

implemented in the SPF framework. 

For our study, we selected four dependent variables and measures: 

1. Time, which is measured as the total elapsed time reported by SPF. 

2. States explored, which provides a count of the number of symbolic states 

generated during symbolic execution. 

3. Constraint solver calls, which provides a count of calls made by symbolic 



 

44 

execution to the underlying constraint solver. 

4. Property violations, which provides a count of total violations of the 

checked properties detected during symbolic execution. 

For STASE, we collect the four types of information for each worker as well as 

for the overall process. The total time calculates the elapsed time from the very beginning 

to the very end of the whole parallel property checking approach. The total number of 

constraint solver calls is the sum of the number of constraint solver calls made by each 

worker; likewise, is the total property violations. In contrary, the total states number is 

not the sum of the number of states explored by each worker; instead, it is the total 

number of unique states explored by all workers, since the states explored by different 

workers could overlap. 

Results and Analysis 

In this section, we present the results of our case study, and analyze the results 

with respect to our three research questions. 

In Table 3, we list the results of running sequential property checking using one 

run of symbolic execution and STASE on each subject program. For each subject, we list 

cost including time (in the unit of milliseconds), number of states explored, and number 

of constraint solver calls made, for performing sequential property checking, and the 

number of property violations detected by sequential property checking. We also list the 

cost for STASE, and the number of property violations detected by parallel property 

checking. For STASE, we list both the cost and violations from each individual worker as 

well as the total cost and total violations from the whole parallel checking process. 

 

 



 

45 

Table 3: Results of checking properties 

 

Subject 

Sequential Checking Parallel Checking 

Time 

(ms) 
States 

Solver 

Calls 
Violations Workers Time (ms) States 

Solver 

Calls 
Violations 

WBS 612 127 126 12 8 
477 

(86-303) 

127 

(4-53) 

126 

(2-52) 

12 

(0-4) 

trityp 158,033 1,085 1,084 0 97 

134,852 

(3,182-

128,214) 

1,085 

(13-786) 

1,084 

(2-188) 
0 

MerArbiter 171,991 18,783 18,782 0 122 

124,497 

(514-

114,736) 

18,783 

(7-1,316) 

18,782 

(3-113) 
0 

Apollo 82,825    867 866 21 88 

27,859 

(86-

27,412) 

867 

(54-332) 

866 

(16-94) 

21 

(0-8) 

 

• RQ1: How effective is STASE in detecting assertion violations compared to 

sequential property checking using conventional symbolic execution? 

As shown in the table, STASE finds the same number of property violations as 

sequential property checking, despite of the difference in the number of violations across 

workers. For example, across the 88 workers for checking properties in Apollo, some 

worker detected 0 violation, while some other worker detected 8 violations, which is 

more than one third of the total violations detected. For subject MerArbiter, both 

sequential checking and parallel checking detected 0 property violations. 

To further examine this, we report the detailed results for WBS as shown in Table 

4. Worker 0 is the one aiming to find feasible paths to all assertions in the first stage, and 

thus it did not detect any property violations. Workers 1 - 8 are the newly launched 

workers specifically for checking properties. However, one worker (4) did not find any 

property violation, five workers (1, 2, 5, 6, 8) each found one property violation, while 

two workers (3 and 7) found more than 3 violations. In total, all the workers detected 12 

violations, that are exactly what sequential property checking found. 



 

46 

Table 4: Results of checking properties in WBS 

 

 

 
Time 

(ms) 

States 

Explored 

Solver 

Calls 

Violations 

Detected 

Sequential Checking 612 127 126 12 

Worker 0 303 53 52 0 

Worker 1 86 4 2 1 

Worker 2 198 16 8 1 

Worker 3 217 21 14 3 

Worker 4 143 23 10 0 

Worker 5 231 33 22 1 

Worker 6 261 46 4 1 

Worker 7 172 27 12 4 

Worker 8 243 15 2 1 

Overall 477 127/238 126 12 

 

• RQ2: How does the cost of applying STASE compared to sequential property 

checking using conventional symbolic execution on checking assertions compare? 

From Table 3, we find in total parallel checking explored number of states 

explored and made the same number of constraint solver calls as sequential checking. For 

example, both checking techniques explored 127 states and made 126 solver calls for 

subject WBS. However, we find that STASE reduced the time cost due to parallelism. 

The speedup achieved by parallel checking ranges from 1.17X (for tyityp) to 2.97X (for 

Apollo). Note that although the cost varies a lot on different workers, the biggest cost of 

one worker could become the bottleneck. Take trityp as an example, one worker took 

128, 214 milliseconds, which is 95% of the total cost. 

Again, in Table 4 which shows the details for WBS, we report both the total 

number of unique states (127) and the total number of states explored (238). Although 



 

47 

there is such difference in states, it is not the case for solver calls. The saving in the 

number of solver calls is due to the use of memoized symbolic execution, which turns off 

constraint solving for the path that has already explored before. 

Overall, we find that STASE reduced the time cost, while explored the same 

number of unique states and made the same number of solver calls compared to 

sequential checking. Moreover, due to the cost reduction as well as parallelism, the users 

get the property checking results much earlier in parallel checking than in sequential 

checking. 

• RQ3: How does the complexity of the checked assertions affect the efficacy of 

STASE? 

Table 5 shows the results of checking the same four programs with more complex 

assertions using sequential checking versus parallel checking. As we can find in the table, 

the previous observations for RQ1 and RQ2 remain the same here. In particular, parallel 

checking detected the same number of property violations as sequential checking. Parallel 

checking explored the same number of unique states and made the same number of solver 

calls as sequential checking. Parallel checking also reduced the time cost, but for most 

cases, the speedup achieved here is more significant than that in the previous study. For 

example, the speedup achieved for Apollo here is 5.65X, compared to 2.97X which was 

achieved for the same subject but with simpler assertions. Likewise, it is 3.58X vs. 1.38X 

for subject MerArbiter. However, we also notice that it is 1.10X vs. 1.17X for subject 

trityp, where the speedup is getting worse. We conjecture this is due to the fact that one 

worker took long time (140923 vs. total time 156392) to check the properties and became 



 

48 

the bottleneck. Overall, we see that for 3 out of 4 subjects, parallel checking for the same 

program but with more complex assertions achieved more significant speedup. 

Table 5: Results of checking more complicate properties 

 

Subject 

Sequential Checking Parallel Checking 

Time (ms) States 
Solver 

Calls 
Violations Workers Time (ms) States 

Solver 

Calls 
Violations 

WBS 14,018 592 591 42 67 

6,712 

(95- 

3,258) 

592 

(7- 

267) 

591 

(2-214) 

42 

(0-7) 

trityp 172,841 1,425 1,424 0 97 

156,392 

(3,921- 

140,923) 

1,425 

(13- 

1,224) 

1,424 

(2-193) 
0 

MerArbiter 918,461 161,231 161,230 0 93 

256,216 

(612- 

159,306) 

161,231 

(6,123- 

15,123) 

161,230 

(72- 

9,122) 

0 

Apollo 340,427 2,802 2,801 95 88 

60,252 

(104- 

59,306) 

2,802 

(83- 

725) 

2,801 

(31- 

254) 

 

95 

(0-27) 

 

 

• RQ4: How does STASE perform when the number of workers is limited? 

Finally, we evaluate the performance of STASE when the number of workers we 

have are limited. Since the results above have already shown that STASE will not miss 

the number pf property violations detected, in this experimental run we only concentrate 

on the time cost. 

Based on the result collected from Table 3 and Table 5, the number of workers 

needed for each subject (both with simple assertions and complicated assertions) ranges 

from 8 to 122. Based on these numbers, we conducted three extra groups of experiments 

with 16, 32 and 64 workers in the second stage. We consider these numbers are mediocre 

to describe common settings to run parallel programs on a cluster while not too large to 

run all workers at the same time. 



 

49 

The result of our experiments is shown in Table 6. This table has two parts, where 

the upper four lines show the result of the subjects with simple assertions and the bottom 

four lines show the result of subjects with more complex assertions. For each subject, we 

show the number of workers needed and the time cost of sequential symbolic execution 

as well as staged symbolic execution with unlimited, 16, 32 or 64 workers.  

As we can see from the results, as the number of workers decreases, for most 

cases the speedup drops slightly with STASE. However, in some of the cases, having a 

smaller number of workers do not result in a lower speedup. For instance, subject trityp 

with complex assertions performs as good with 32 workers and 64 workers as with 

unlimited resources, although the total number of required workers exceeds the 

configuration. We find the reason being that the paths toward assertion checking in this 

subject is, even with complicated assertions, relatively simple, so the workers will always 

finish the task within a reasonably short period of time and thus the idle worker list is 

never empty. Meanwhile, we have not found any case where the total time increases 

dramatically with smaller number of workers. This shows that the overhead of 

communication between workers is small and can be ignored. We consider it an expected 

result, for we only need to transfer the choices of a path between workers, which can be 

represented using a stream of small data types. No large block of data needs to be 

transferred between workers, as we do not need to collect the final result to one certain 

worker in our technique. 

 

 

 



 

50 

Table 6: Results of checking properties with limited workers 

 

Subject 

Sequential 

Workload 

Unlimited Workers 64 Workers 32 Workers 16 Workers 

Time (ms) Time (ms) 
Speed-

up 

Time 

(ms) 

Speed-

up 

Time 

(ms) 
Speedup 

Time 

(ms) 

Speed-

up 

WBS 612 8 477 1.28x 479 1.28x 476 1.29x 477 1.28x 

trityp 150,833 97 134,852 1.12x 135,123 1.12x 135,232 1.12x 145,142 1.04x 

MerArbiter 171,991 122 124,497 1.38x 140,245 1.23x 141,523 1.22x 163,512 1.05x 

Apollo 82,825 88 27,859 2.97x 28,142 2.94x 31,523 2.63x 35,312 2.35x 

WBS 14,018 67 6,712 2.09x 6,714 2.09x 6,881 2.04x 7,162 1.96x 

trityp 172,841 97 156,392 1.11x 156,916 1.10x 157,313 1.10x 167,806 1.03x 

MerArbiter 918,461 93 256,216 3.58x 281,561 3.26x 326,024 2.82x 359,186 2.56x 

Apollo 340,427 88 60,252 5.65x 62,681 5.43x 86,037 3.96x 114,621 2.97x 

 

Threats to validity 

The primary threat to external validity for this study involves the 

representativeness of our object programs. The programs are relatively small, and we 

only assume and simulate the situation when computing resources are enough to apply a 

full parallelism. Although this assumption allowed us to check the best efficiency of our 

technique, these threats still need to be addressed by additional studies on different 

workloads and run configurations. 

The primary threat to the internal validity of this experiment is possible faults 

when we implemented our technique, and in the tools and environment we selected to 

perform evaluation. This threat is handled by applying functional tests on our tools on 

test subjects where we can manually check the correctness of the implementation. A 

second threat involves inconsistent decisions and practices in the implementation of 

algorithms and in the execution of evaluation runs, which may lead to accidental unfair 

comparison with conventional symbolic execution. We controlled this threat by having 

the algorithms implemented and run by a same developer (the first author), in order to 

ensure consistency in both implementation and run configurations.  



 

51 

V. CONSTRAINT SOLVING WITH DEEP LEARNING 

 This chapter presents our work to reuse the constraint satisfiability results with 

deep learning technique to speed up symbolic execution. Different from the two works 

introduced in Chapter III and Chapter IV, which are aiming to reduce the impact of path 

explosion problem in a specific usage of symbolic execution, this approach aims to 

reduce the cost of constraint solving and can be applied to all symbolic execution 

techniques. 

Overview 

 As the most time-consuming task in symbolic execution, constraint solving is the 

key supporting technology that affects the effectiveness of symbolic execution. The 

advances in constraint solving techniques, for example, by leveraging multiple decision 

procedures in synergy (De Moura and Bjørner, 2008), have enabled symbolic execution 

to be applicable to larger programs. However, despite these technological advances, 

symbolic execution still suffers from the high cost of constraint solving. Several 

techniques have been developed to speed up constraint solving for symbolic execution by 

reusing previous solving results (Yang et al., 2012; Visser et al., 2012; Jia et al., 2015; 

Makhdoom et al., 2014; Hossain et al., 2014). Various forms of results caching are 

utilized, so that the solutions of path conditions encountered in previous analysis can be 

reused without calling a constraint solver. As a result, the total number of solver calls as 

well as the corresponding time cost is reduced. For example, Green (Visser et al., 2012) 

uses an in-memory database Redis (Red, 2019) to store path conditions and their 

constraint solutions as key-value pairs, in which key is a path condition string and value 

is a Boolean value showing whether the corresponding path condition is satisfiable or not, 



 

52 

and reuses constraint solutions based on string matching. GreenTrie (Jia et al., 2015) 

further improves the reuse rate of previous constraint solutions by applying logical 

reduction and logical subset and superset querying for given constraints. However, such 

reuse techniques require syntactic/semantic equivalence or implication relationship 

between constraints. If the equivalence or implication relationship is not satisfied, these 

techniques are not able to reuse previous constraint solutions. 

Deep learning is a popular machine learning technique which has found many 

applications (Krizhevsky et al., 2017; Socher et al., 2013; Mohamed et al., 2012; 

Tolstikhin et al., 2018). In deep learning, deep neural networks are trained by using a 

large set of labeled data, and learn to perform classification tasks directly from text, 

images or sound. It has been shown to be effective and efficient for difficult classification 

problems such as image classification (He et al., 2015) and speech recognition (Mohamed 

et al., 2012). In this paper, we introduce DeepSolver, a novel approach to constraint 

solving with deep learning for symbolic execution. In our approach, with the help of 

canonization and vectorization, path conditions are represented with informative and 

discriminating features for satisfiability classification, which are then extracted by deep 

learning. Instead of reusing each individual constraint solution, DeepSolver utilizes 

collective knowledge of constraint solutions to train deep neural networks, and then use 

the trained deep neural networks to classify path conditions for satisfiability during 

symbolic execution. We evaluate the accuracy and the efficiency of DeepSolver in 

classifying path conditions using 12 Java subjects, and compare DeepSolver with Z3, 

Green, and GreenTrie, the state-of-the-art constraint solving and constraint solution reuse 



 

53 

techniques. We also evaluate how DeepSolver supports symbolic execution compared to 

GreenTrie. 

DeepSolver 

In this section, we present DeepSolver, a novel approach to constraint solving 

with deep learning for symbolic execution. DeepSolver consists of two stages: training 

DNNs with constraint solutions and classifying path conditions with DNNs for 

satisfiability. 

Training DNNs with Constraint Solutions 

 

Figure 9: Training DNNs with constraint solutions 

 

Figure 9 shows the overall process of training DNNs with constraint solutions. 

First, we organize the existing constraint solutions using PC-satisfiability pairs where PC 

is a path condition and satisfiability is a Boolean value (i.e., True or False) indicating 

whether the PC is satisfiable or not. Then we canonize and vectorize each path condition 

into a matrix, as DNNs require input data to be in the form of matrices. As shown in 

Figure 9, all the PC-satisfiability pairs are transformed into matrix-satisfiability pairs. 

Next, we group the matrix-satisfiability pairs into multiple datasets based on the size of 



 

54 

each matrix. Matrices with the same number of rows and the same number of columns 

will be grouped together into a dataset, which will be used to train a specific DNN. And 

this particular DNN later will be selected to classify path conditions, whose matrix forms 

possess the same size as the input matrices here in training this DNN. 

Canonizing 

Path conditions generated during symbolic execution do not have a common form 

by default. For instance, the name space of symbolic variables differs from subject to 

subject. Canonizing follows the standard approach to transform a path condition into a 

normal form and helps eliminate equivalent records in training datasets. Specifically, for 

a linear integer arithmetic path condition (conjunction of constraints), each constraint in 

the path condition is transformed into a normal form as 𝑐0𝑣0 + 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ +

𝑘 𝑜𝑝 0, where 𝑐𝑛 is the coefficient of variable 𝑐𝑛, 𝑘 is the constant term, and 𝑜𝑝 ∈ {=, ≠,

≤}. We handle constraints with =, ≠, or ≤ by themselves, but constraints with other 

operators such as >, < and ≥ are transformed into the canonical form over ≤. 

Meanwhile, constraints are sorted in a lexicographic order and symbolic variables are 

renamed based on their appearances in the path condition from left to right. For instance, 

both 𝑃𝐶1: 𝑥 + 𝑦 < 𝑧 ∧ 𝑥 = 𝑧 ∧ 𝑥 − 10 > 𝑦 and 𝑃𝐶2: 𝑎 + 𝑏 < 𝑐 ∧ 𝑎 = 𝑐 ∧ 𝑎 − 𝑏 > 10 

are canonized into the same shape 𝑣0 +  𝑣1 −  𝑣2 +  1 ≤  0 ∧  𝑣0 −  𝑣2 =  0 ∧

 −𝑣0 +  𝑣1 +  11 ≤  0. 

Vectorizing 

Vectorizing is to transform a path condition into a 2-dimensional matrix. After 

canonizing, each constraint is in the form of 𝑐0𝑣0 + 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑘 𝑜𝑝 0. 

Therefore, a path condition can be vectorized into a matrix as follows: each row in the 



 

55 

matrix represents a constraint, and each column in the matrix stands for the coefficient of 

each symbolic variable, the constant term, or the integer value representing op. Due to 

this simple representation of constraints as respective rows of a matrix, DeepSolver 

supports any number of constraints, say 𝑛 - as long as there is a training dataset of path 

conditions with n constraints. 

Algorithm 4 shows how to vectorize a canonized path condition into a matrix. We 

first initialize Matrix by the number of constraints and the largest index of symbolic 

variable in the path condition (Lines 1-3). The path condition is split by “∧” into a list of 

constraints BCS (Line 4). Each constraint in 𝐵𝐶𝑆 is checked to setup a row in 𝑀𝑎𝑡𝑟𝑖𝑥 

(Lines 5-24). For each constraint, we first check its operator and set the corresponding 

item in the row as 0, 1 or 2 (Lines 7-13). we assign value 0 for =, 1 for ≠, and 2 for ≤, 

respectively. Then the constraint is further broken down to a list of terms 𝑇𝑒𝑟𝑚𝑠 after 

removing the equation operator op (Lines 14-15) As we go through each term in 𝑇𝑒𝑟𝑚𝑠, 

if the term is in a shape of 𝑐𝑗 ×  𝑣𝑗, we set the 𝑗-th item in the row as 𝑐𝑗 (Lines 17 - 18); 

otherwise, the term is a constant value 𝑘, which is set as the value of the second last item 

in the row (Lines 20-21). 

After all constraints are processed, 𝑀𝑎𝑡𝑟𝑖𝑥 is the final vectorized result of the 

path condition (Line 25). For instance, the previous example path condition 𝑣0 +  𝑣1 −

 𝑣2 +  1 ≤  0 ∧  𝑣0 −  𝑣2 =  0 ∧  −𝑣0 +  𝑣1 +  11 ≤  0 can be transformed into a 

matrix with size 3 ×  5 as follows: 



 

56 

Algorithm 4 Algorithm of Vectorizing a Canonized PC into a Matrix 
 

Input: A canonized path condition 𝑃𝐶, which is linear and in shape of 𝐵𝐶0  ∧  𝐵𝐶1  ∧ … ∧ 𝐵𝐶𝑚 , 
where 𝐵𝐶𝑚is in shape of 𝑐0𝑣0 + 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑘 𝑜𝑝 0 (𝑜𝑝 ∈ {=, ≠, ≤}) 

Output: Vectorized PC as matrix 𝑀𝑎𝑡𝑟𝑖𝑥 

1: 𝑋 ← 𝑚 + 1 

2: 𝑌 ← 𝑛 + 3 

3: Array[𝑋][𝑌] 𝑀𝑎𝑡𝑟𝑖𝑥 ← 𝑒𝑚𝑝𝑡𝑦 

4: List 𝐵𝐶𝑆 ← 𝑃𝐶 split by " ∧ " 

5: 𝑖 ← 0 

6: while 𝑖 <  𝑋 do 

7:  if 𝑜𝑝 in 𝐵𝐶𝑆[𝑖] is " = " then 

8:   𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑌 − 1] ← 0 

9:  else if 𝑜𝑝 in 𝐵𝐶𝑆[𝑖] is " ≠ " then 

10:   𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑌 − 1] ← 1 

11:  else if 𝑜𝑝 in 𝐵𝐶𝑆[𝑖] is " ≤ " then 

12:   𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑌 − 1] ← 2 

13:  end if 

14:  𝐵𝐶𝑆[𝑖] ← 𝐵𝐶𝑆[𝑖] remove 𝑜𝑝 

15:  List 𝑇𝑒𝑟𝑚𝑠 ← 𝐵𝐶𝑆[𝑖] split by " + " 

16:  for all 𝑡𝑒𝑟𝑚 in 𝑇𝑒𝑟𝑚𝑠 do 

17:   if term in shape of 𝑐𝑗 ×  𝑣𝑗 then 

18:    𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑗] ← 𝑐𝑗 

19:   else 

20:    {𝑡𝑒𝑟𝑚 is the constant term 𝑘} 

21:    𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑌 − 2] ← 𝑘 

22:   end if 

23:  end for 

24: end while 

25: return 𝑀𝑎𝑡𝑟𝑖𝑥  

 

Grouping  

Now all the PC-satisfiability pairs are transformed into matrix-satisfiability pairs. 

As shown in Figure 9, these matrix-satisfiability pairs are then regrouped according to the 

size of each matrix, i.e., the matrices that have the same number of rows and the same 

number of columns will form a training dataset as input data to train the corresponding 

DNN. 

 

 



 

57 

Training 

Classifying path conditions is a binary classification problem, in which the 

labeled training data sample belongs to either one of the two known classes or categories, 

i.e., satisfiable and unsatisfiable. Class imbalance occurs when one class (the majority 

group) contains significantly more samples than the other class (the minority group), and 

could cause bias towards the majority class and may ignore the minority class altogether 

in extreme cases (Johnson and Khoshgoftaar, 2019). 

In order to ensure the efficacy of DNNs in classifying path conditions, if a 

training dataset has the class imbalance problem, it needs to be balanced before being 

used to train a DNN. How to balance a training dataset is an important area of research. 

Essentially, there are three categories of methods for handling class imbalance in 

machine learning: data-level techniques, algorithm-level methods, and hybrid approaches 

(Krawczyk, 2016). In particular, data-level techniques use data sampling methods to 

reduce the level of imbalance. In our work, we use two particular methods to add more 

data to the minority group. One method is using mechanical transformations or mutation 

analysis (Acree et al., 1979). For example, we can create unsatisfiable path conditions 

from an existing satisfiable path condition by randomly mutating coefficients of variables 

to a randomly generated value or mutating the relational operator to one of the other two 

operators. The mutated path conditions are then sent to a constraint solver to check 

satisfiability. If unsatisfiable, it is added to the training dataset; otherwise, it is discarded. 

The other method is using Generative Adversarial Networks (GAN) (Goodfellow et al., 

2014) to generate new path conditions. In a GAN, we simultaneously train two models: a 

generative model G that captures the data distribution, and a discriminative model D that 



 

58 

estimates the probability that a sample came from the training data rather than G. The 

training stops when G becomes capable to generate data that could confuse D, which 

means the later one could not tell whether the data are real or generated. In our case, we 

use the collected path conditions to train a GAN framework and use the generator to 

create more path conditions that are supposed to be similar to the data collected from real 

subjects. Similar to the mutation-based method, we send the GAN-generated path 

conditions to the solver and add to the training dataset only the path conditions that 

belong to a minority group. As illustrated in Figure 9, multiple DNNs are trained with 

existing constraint solutions, and will be used to classify path conditions. 

Classifying Path Conditions Using DNNs 

 
 

Figure 10: Classifying a path condition using a DNN 

 

Figure 10 shows the steps to classify a path condition generated in symbolic 

execution with a DNN that has been trained with existing constraint solutions. The path 

condition is canonized and vectorized as discussed in the training stage and is 

transformed into a matrix. Based on the size of the matrix, one of a previously trained 

DNNs is retrieved to classify this path condition. The classification result (satisfiable or 

unsatisfiable) is then returned to symbolic execution to decide whether the corresponding 

path is feasible or not. If no DNN is applicable for the given matrix, a regular constraint 

solver is called to solve the path condition. As long as there is a previously trained DNN 

that matches the size of the matrix of a path condition, our approach is capable of 



 

59 

classifying the path condition for its satisfiability. Moreover, since DNNs are trained off-

line, users can train different DNNs as needed while the classification with existing 

DNNs is still in progress. 

Symbolic Execution with DeepSolver 

It is difficult for DNNs to reach 100% accuracy in classification. In fact, 100% 

accuracy indicates the possibility of over-fitting problem Cawley (2012), which happens 

when a DNN is overly refined to a certain dataset and thus is unable to classify other 

inputs while keeping high accuracy. As a result, DNNs are usually used with high 

accuracy while tolerating potential misclassification. DeepSolver has two types of 

potential misclassification: satisfiable path conditions are misclassified as unsatisfiable 

(SAT-To-UNSAT misclassification) or unsatisfiable path conditions are misclassified as 

satisfiable (UNSAT-To-SAT misclassification). We discuss in the following our 

strategies for addressing these two types of misclassification to ensure the soundness of 

symbolic execution with DeepSolver. 

SAT-To-UNSAT Misclassification 

When a satisfiable path condition is misclassified as unsatisfiable, the 

corresponding path is incorrectly identified as infeasible, and symbolic execution will not 

continue the exploration along this path. This misclassification causes symbolic 

execution to explore fewer states and must be avoided. To address this problem, we 

propose to double check the classification result when a path condition is classified by 

DeepSolver as unsatisfiable, by calling a conventional constraint solver. To the best of 

our knowledge, for most programs, the number of unsatisfiable path conditions 

encountered by symbolic execution is much smaller than the number of satisfiable path 



 

60 

conditions. Therefore, as long as we ensure DeepSolver works with high classification 

accuracy, the chance of having a path condition misclassified by DeepSolver as 

unsatisfiable is small, and the overhead introduced by calling a conventional constraint 

solver is acceptable. 

UNSAT-To-SAT Misclassification 

When an unsatisfiable path condition is classified as satisfiable, the corresponding 

path is incorrectly identified as feasible, and symbolic execution will continue exploring 

states that are in fact not feasible. For intermediate states, we may ignore this type of 

misclassification based on the following two observations: first, it is safe to explore 

infeasible states; second, state exploration along this misclassified feasible path will 

quickly stop when DeepSolver’s classification accuracy is relatively high. More 

specifically, assuming DeepSolver’s accuracy in classifying unsatisfiable path conditions 

is 90%, the chance of UNSAT-To-SAT Misclassification is 10%. When such 

misclassification happens on an infeasible path with a path condition 𝑃𝐶, symbolic 

execution will continue to explore the next infeasible path with path condition updated to 

𝑃𝐶′ =  𝑃𝐶 ∧  𝑐, where c is the new constraint collected along the path. As 𝑃𝐶 and 𝑃𝐶′ 

are vectorized to two matrices with different sizes, they are classified independently with 

two DNNs; thus, the chance of misclassifying both of them is 10% ×  10% =  1%. For 

the same reason, the chance of three consecutive UNSAT-To-SAT misclassification is 

10% ×  10% ×  10% =  0.1%. Therefore, the chance of continuous UNSAT-TO-SAT 

misclassification drops significantly as the exploration goes deeper. In other words, even 

if an unsatisfiable path condition is misclassified as satisfiable, it is very likely that the 

exploration will only explore very few infeasible states before DeepSolver will make 



 

61 

correct classification (and symbolic execution will backtrack). For leaf states, which 

represent complete paths or paths stopped due to errors, the conventional constraint 

solver is called to find input values for the two most popular applications of symbolic 

execution: test case generation and error detection. 

Algorithm  

Algorithm 5 Algorithm of Symbolic Execution with DeepSolver 
 

Input: Previously trained DNN model collection 𝑀 

Output: Test suit 𝑇 

1: Test Suit 𝑇 ← ∅ 

2: 𝑖𝑛𝑖𝑡_𝑠𝑡𝑎𝑡𝑒. 𝑃𝐶 ← 𝑇𝑟𝑢𝑒 

3: 𝑠𝑡𝑎𝑐𝑘. 𝑝𝑢𝑠ℎ(𝑖𝑛𝑖𝑡_𝑠𝑡𝑎𝑡𝑒) 

4: Boolean 𝜑 ← 𝑇𝑟𝑢𝑒 

5: while ¬𝑠𝑡𝑎𝑐𝑘. 𝑒𝑚𝑝𝑡𝑦() do 

6:  𝑠 ← 𝑠𝑡𝑎𝑐𝑘. 𝑝𝑜𝑝() 

7:  𝜑 ←d𝑒𝑒𝑝𝑆𝑜𝑙𝑣𝑒(𝑠. 𝑃𝐶, 𝑀) 

8:  if 𝜑 is 𝐹𝑎𝑙𝑠𝑒 or 𝑠. 𝑃𝐶 is not supported by 𝑀 then 

9:   𝜑 ← 𝑠𝑜𝑙𝑣𝑒(𝑠. 𝑃𝐶) 

10:  end if 

11:  if 𝜑 is 𝑇𝑟𝑢𝑒 then 

12:   while 𝑖𝑛𝑠𝑡 ! =  𝑛𝑢𝑙𝑙 do 

13:    if 𝑖𝑛𝑠𝑡 is 𝑖𝑓(𝑐) then 

14:     {Let 𝑐 be constraint for 𝑇𝑟𝑢𝑒 branch} 

15:     𝑠′. 𝑃𝐶 ← 𝑠. 𝑃𝐶 ∧  𝑐 

16:     𝑠𝑡𝑎𝑐𝑘: 𝑝𝑢𝑠ℎ(𝑠′) 

17:     𝑠’’. 𝑃𝐶 ← 𝑠. 𝑃𝐶 ^ ¬𝑐 

18:     𝑠𝑡𝑎𝑐𝑘: 𝑝𝑢𝑠ℎ(𝑠′′) 

19:     break 

20:    else if 𝑖𝑛𝑠𝑡 is 𝑎𝑏𝑜𝑟𝑡 or ℎ𝑎𝑙𝑡 then 

21:     Test case 𝑡 ← 𝑠𝑜𝑙𝑣𝑒(𝑠. 𝑃𝐶) 

22:     𝑇 ← 𝑇 ∪ {𝑡} 

23:     break 

24:    else 

25:     𝑠 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑖𝑛𝑠𝑡, 𝑠) 

26:     𝑖𝑛𝑠𝑡 ← 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛() 

27:    end if 

28:   end while 

29:  end if 

30: end while 

31: return 𝑇  

 



 

62 

Algorithm 5 presents the key steps in symbolic execution with DeepSolver. 

Similar to traditional forward symbolic execution, it uses depth-first search to explore all 

feasible program paths. In particular, Lines 7-9 first use DeepSolver to classify the 

current path condition, and then use the conventional constraint solver to solve the path 

condition if DeepSolver classifies it as unsatisfiable (double check to avoid 

misclassification) or if DeepSolver does not support the path condition (i.e., matrix size 

does not match). On the other hand, if DeepSolver classifies the path condition as 

satisfiable, the execution continues until a conditional instruction is encountered or the 

path is naturally completed or aborted due to errors (Lines 12-28). For a conditional 

instruction, the execution forks for each branch, and the path condition is updated with 

different conditions accordingly (Lines 13-19). When the path is completed or aborted, 

the conventional constraint solver is called to generate test values for the completed or 

aborted paths (Lines 20-23). 

Evaluation 

This section evaluates DeepSolver on its performance in classifying path 

conditions and in supporting symbolic execution. The evaluation aims to answer the 

following five research questions: 

• RQ1: How accurate is DeepSolver in classifying path conditions? 

• RQ2: How do mutation and GAN based balancing methods impact the accuracy 

of DeepSolver? 

• RQ3: How efficient is DeepSolver in classifying path conditions? 

• RQ4: How does the number of hidden layers/neurons impact DeepSolver’s 

efficacy in classifying path conditions? 



 

63 

• RQ5: How efficient is symbolic execution with DeepSolver? 

We use baseline techniques including Z3 (Z3S, 2019) for conventional constraint 

solving, Green (Visser et al., 2012) and GreenTrie (Jia et al., 2015) for constraint solution 

reuse. 

Implementation and Subjects 

We implemented canonizing and vectorizing modules, and symbolic execution 

with DeepSolver in Symbolic Pathfinder (SPF) (Păsăreanu and Rungta, 2010), a widely 

used open-source symbolic execution framework for Java programs. We trained DNNs 

with Keras (Chollet et al., 2015), which is a high-level deep learning API written in 

Python and ran it on top of TensorFlow (Abadi et al., 2015). 

The subjects chosen for our evaluation have been widely used as benchmarks for 

evaluating symbolic execution techniques (Albert et al., 2011; Inkumsah and Xie, 2008; 

Yang et al., 2014b, 2012; Souza et al., 2011; Rojas and Păsăreanu, 2013; Yang et al., 

2014a; Qiu et al., 2015; Burnim et al., 2009; Jia et al., 2015): 

• Traffic Anti-Collision Avoidance System (TCAS) is a Java version of a classic 

anti-collision system available from the SIR repository (SIR). Its code in C 

together with 41 mutants are available at SIR repository (SIR). We manually 

converted the code to Java and only used the original version for this case study. 

• Wheel Brake System (WBS) is a Java version of the synchronous reactive 

component from the automotive domain, which is used to determine how much 

braking pressure to apply based on the environment. The Java model is based on a 

Simulink model derived from the WBS case example found in ARP 4761 (SAE-

ARP4761, 1996; Joshi and Heimdahl, 2005). The Simulink model was translated 



 

64 

to C using tools developed at Rockwell Collins and manually translated to Java. 

• MerArbiter is a component of the flight software for NASA JPL’s Mars 

Exploration Rovers (MER). This subject has 4.7K LOC in 268 classes. 

• Red-Black Tree is an implementation of the red-black tree data structure from 

JDK 1.5. Red-Black Tree contains 7 symbolic elements. 

• MergeSort, QuickSort, and HeapInsert are three commonly used sorting 

algorithms from JDK 1.5. 

• Dijkstra is a benchmark program for finding the shortest paths between nodes in 

a graph, which may represent road networks for instance, developed by Jacob 

Burnim from University of California, Berkeley. It contains 109 LOC in one 

class. 

• TSP is a benchmark program for traveling salesman problem, developed by 

Sudeep Juvekar and Jacob Burnim from California, Berkeley. It contains 124 

LOC in one class. 

• Rational is a case study for computing greatest common divisor and its related 

operations on rational numbers. It contains 96 LOC in one class. 

• BinTree implements a binary search tree with element insertion, deletion. This 

subject is used to evaluate GreenTrie and distributed as a benchmark. 

• BinomialHeap is a Java implementation of binomial heap. 

All relevant research artifacts, including subjects, training data, and DNNs 

generated in the experiments, etc. are publicly available for download (Dee, 2020). 

  



 

65 

DNN Training 

We ran SPF with Z3 on TCAS, WBS and MerArbiter, and collected all the 

encountered constraint solutions for training DNNs. In total, we collected 514, 230 

constraint solutions, which were then canonized, vectorized, and grouped into different 

datasets. Matrices with the same size, decided by the number of columns and the number 

of rows, are put in the same dataset. 

A training dataset for deep learning usually has thousands of records. For 

example, UCF-101 (Soomro et al., 2012) has 13K videos, and HMDB-51 (Kuehne et al., 

2011) has 6.8K videos. Therefore, to maintain the efficacy of DNNs in DeepSolver, we 

fixed the size of column to 22 (20 columns for coefficients of 20 symbolic variables, 1 

column for the constant term, and 1 column for the relational operator), such that most 

datasets after grouping have reasonable number of records for training purpose. Matrices 

with less than 22 columns are enlarged by adding columns with all 0s. For instance, the 

path condition 𝑣0 +  𝑣1 −  𝑣2 +  1 ≤  0 ∧  𝑣0 −  𝑣2 =  0 ∧  −𝑣0 +  𝑣1 +  11 ≤  0 

can be transformed into a matrix with size 3 ×  5: 

This matrix can also be enlarged to a matrix with size 3 ×  6 as follows.  

Since the 4th column represents the coefficients of the 4th symbolic variable in 



 

66 

three constraints, and all 0s indicate that variable is not existent in the path condition. 

Similarly, during classification stage, if the matrix of a path condition has less than 22 

columns, it will get enlarged to 22 columns before classification. 

While DeepSolver supports arbitrary number of constraints, the size of matrix 

used in our evaluation ranges from 11 ×  22 to 28 ×  22 for two reasons: first, our 

training data have path conditions with 28 constraints at most; second, the training 

datasets of path conditions with less than 11 constraints have less than 2000 records, 

which are not enough to train effective DNNs, and thus we decided not to train DNNs for 

these datasets. In the following, we use the size of a path condition to refer to the size of 

its corresponding matrix. 

Class imbalance occurred in our datasets. In particular, unsatisfiable path 

conditions were much fewer than satisfiable path conditions in each dataset. This is 

reasonable since most programs have more feasible paths than infeasible paths explored 

by symbolic execution, due to the fact that symbolic execution continues exploring along 

feasible paths but backtracks when the path becomes infeasible. Therefore, we used the 

methods mentioned earlier in Section V to balance the datasets. We first apply mutation 

to balance our datasets, in which new path conditions are generated and solved in parallel 

to speed up this process until we have 45% - 55% unsatisfiable path conditions in the 

training dataset. In order to answer RQ2, we also train a group of GAN frameworks 

based on the original datasets and apply the generators to balance the datasets. We stop 

the generation when the numbers of unsatisfiable path conditions are the same as in the 

datasets balanced by mutation. Table 7 shows the records in each training dataset before 

and after balancing.  

 



 

67 

Table 7: Number of records before and after balancing 

 

 

To evaluate RQ4, we used two DNN structures, small structure and large 

structure, according to the number of hidden layers and the number of neurons in each 

layer. The small structure (5 ×  5) has 5 hidden layers and 5 neurons in each layer, and 

the large structure (10 ×  10) has 10 hidden layers and 10 neurons in each layer. Both 

structures use dense connection with ReLU (Agarap, 2018), which is a widely used 

activation function in deep learning. 

 

 

 

 

Size 
Before Balancing After Balancing 

SAT UNSAT Total SAT UNSAT Total 

11x22 3,894 2 3,896 3,894 4,283 8,177 

12x22 7,503 4 7,507 7,503 7,503 15,006 

13x22 10,590 6 10,596 10,590 10,590 21,180 

14x22 14,673 11 14,684 14,673 16,140 30,813 

15x22 19,019 24 19,043 19,019 17,117 36,136 

16x22 25,526 68 25,594 25,526 22,973 48,499 

17x22 33,975 144 34,119 33,975 37,372 71,347 

18x22 42,545 537 43,082 42,545 38,290 80,835 

19x22 49,917 1,356 51,273 49,917 54,908 104,825 

20x22 56,262 800 57,062 56,262 56,262 112,524 

21x22 56,158 1,084 57,242 56,158 61,773 117,931 

22x22 52,512 780 53,292 52,512 47,260 99,772 

23x22 46,042 354 46,396 46,042 41,437 87,479 

24x22 36,681 195 36,876 36,681 36,681 73,362 

25x22 24,705 63 24,768 24,705 27,175 51,880 

26x22 15,934 66 16,000 15,934 14,340 30,274 

27x22 9,201 15 9,216 9,201 10,121 19,322 

28x22 3,581 3 3,584 3,581 3,581 7,162 



 

68 

Results and Analysis 

• RQ1: How accurate is DeepSolver in classifying path conditions? 

 We ran SPF with Z3 on the nine remaining subjects that were not used for 

training DNNs, collected path conditions solved by Z3, and then applied DeepSolver to 

classify these path conditions. Since our previously trained DNNs only support path 

conditions sized from 11 ×  22 to 28 ×  22, SPF was run with a depth bound 28 and we 

collected only path conditions with 11-28 constraints for this experiment. Path conditions 

were grouped according to their vectorized matrix size and were classified by the 

corresponding DNN. We used Z3’s solving results as ground truth to compute the 

accuracy of each DNN. 

Table 8 shows the results using DNNs trained by datasets that balanced via 

mutation. It gives the number of satisfiable path conditions (# PC-SAT), unsatisfiable 

path conditions (# PC-UNSAT), and total path conditions (# PC-Total). For each group 

of path conditions, it gives the number of path conditions that were correctly classified (# 

Correct Classification), and the corresponding accuracy (i.e., 
# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

# 𝑃𝐶
). 

Similarly, we also report the data when using DNNs balanced via GAN in Table 9. The 

results show that the accuracy of DeepSolver is consistently high across DNNs for 

different sizes of path conditions. In Table 8, the accuracy is always over 95% in 

classifying satisfiable path conditions, while it is always over 83% in classifying 

unsatisfiable path conditions. For example, the accuracy is 98.9% in classifying 

satisfiable path conditions for size 16 × 22. In Table 9, we observe the accuracy being 

similar with the data in Table 9, where the accuracy is always over 93% in classifying 

satisfiable path conditions and is always over 82% in classifying unsatisfiable path 



 

69 

conditions. We observe that the accuracy in classifying unsatisfiable path conditions is 

slightly worse than classifying satisfiable path conditions. We speculate that this accuracy 

difference is caused by the difference in training data: while satisfiable constraint 

solutions were all collected from symbolic execution on real subjects, a portion of 

unsatisfiable constraint solutions were generated through mechanical transformation on 

existing constraint solutions, which may not be as diverse as satisfiable constraint 

solutions. This problem may be addressed in future by collecting more unsatisfiable 

constraint solutions from real subjects. Nevertheless, we note the overall accuracy of 

DeepSolver is still high.



 

 

 

7
0
 

  Table 8: Accuracy of DeepSolver (Balanced via Mutation) in classifying path conditions 

 

Size 
# PC 

5x5 DNN 10x10 DNN 

# Correct Classification Accuracy # Correct Classification Accuracy 

SAT UNSAT Total SAT UNSAT Total SAT UNSAT Overall SAT UNSAT Total SAT UNSAT Overall 

11x22 674 37 711 658 31 689 97.6% 83.8% 96.9% 653 33 686 96.9% 89.2% 96.5% 

12x22 982 32 1,014 937 28 965 95.4% 87.5% 95.2% 959 29 988 97.7% 90.6% 97.4% 

13x22 1,435 29 1,464 1,392 27 1,419 97.0% 93.1% 96.9% 1,377 25 1,402 96.0% 86.2% 95.8% 

14x22 2,215 71 2,286 2,178 63 2,241 98.3% 88.7% 98.0% 2,181 65 2,246 98.5% 91.5% 98.3% 

15x22 3,536 272 3,808 3,441 232 3,673 97.3% 85.3% 96.5% 3,408 242 3,650 96.4% 89.0% 95.9% 

16x22 5,492 119 5,611 5,432 104 5,536 98.9% 87.4% 98.7% 5,305 102 5,407 96.6% 85.7% 96.4% 

17x22 7,110 165 7,275 6,961 141 7,102 97.9% 85.5% 97.6% 6,989 149 7,138 98.3% 90.3% 98.1% 

18x22 8,313 177 8,490 7,973 156 8,129 95.9% 88.1% 95.7% 8,046 162 8,208 96.8% 91.5% 96.7% 

19x22 10,392 416 10,808 9,914 378 10,292 95.4% 90.9% 95.2% 10,225 356 10,581 98.4% 85.6% 97.9% 

20x22 8,189 630 8,819 7,796 567 8,363 95.2% 90.0% 94.8% 7,886 564 8,450 96.3% 89.5% 95.8% 

21x22 8,311 198 8,509 8,187 172 8,359 98.5% 86.9% 98.2% 7,945 176 8,121 95.6% 88.9% 95.4% 

22x22 7,555 328 7,883 7,253 286 7,539 96.0% 87.2% 95.6% 7,252 288 7,540 96.0% 87.8% 95.6% 

23x22 6,487 135 6,622 6,241 115 6,356 96.2% 85.2% 96.0% 6,370 120 6,490 98.2% 88.9% 98.0% 

24x22 5,221 163 5,384 4,960 140 5,100 95.0% 85.9% 94.7% 5,053 139 5,192 96.8% 85.3% 96.4% 

25x22 3,156 73 3,229 3,112 67 3,179 98.6% 91.8% 98.5% 3,058 65 3,123 96.9% 89.0% 96.7% 

26x22 2,083 43 2,126 2,023 38 2,061 97.1% 88.4% 96.9% 2,003 38 2,041 96.2% 88.4% 96.0% 

27x22 1,330 102 1,432 1,291 94 1,385 97.1% 92.2% 96.7% 1,303 92 1,395 98.0% 90.2% 97.4% 

28x22 474 28 502 456 26 482 96.2% 92.9% 96.0% 455 24 479 96.0% 85.7% 95.4% 

 



 

 

 

7
1
 

  Table 9: Accuracy of DeepSolver (Balanced via GAN) in classifying path conditions 

 

Size 

# 

PC 

5x5 DNN 10x10 DNN 

# Correct Classification Accuracy # Correct Classification Accuracy 

SAT UNSAT Total SAT UNSAT Total SAT UNSAT Overall SAT UNSAT Total SAT UNSAT Overall 

11x22 674 37 711 639 34 673 94.8% 91.9% 94.7% 637 33 670 94.5% 89.2% 94.2% 

12x22 982 32 1,014 937 29 966 95.4% 90.6% 95.3% 926 27 953 94.3% 84.4% 94.0% 

13x22 1,435 29 1,464 1,374 24 1,398 95.7% 82.8% 95.5% 1,350 26 1,376 94.1% 89.7% 94.0% 

14x22 2,215 71 2,286 2,141 63 2,204 96.7% 88.7% 96.4% 2,164 62 2,226 97.7% 87.3% 97.4% 

15x22 3,536 272 3,808 3,431 252 3,683 97.0% 92.6% 96.7% 3,419 232 3,651 96.7% 85.3% 95.9% 

16x22 5,492 119 5,611 5,286 105 5,391 96.2% 88.2% 96.1% 5,315 110 5,425 96.8% 92.4% 96.7% 

17x22 7,110 165 7,275 6,996 147 7,143 98.4% 89.1% 98.2% 6,955 152 7,107 97.8% 92.1% 97.7% 

18x22 8,313 177 8,490 7,854 149 8,003 94.5% 84.2% 94.3% 7,934 162 8,096 95.4% 91.5% 95.4% 

19x22 10,392 416 10,808 9,677 351 10,028 93.1% 84.4% 92.8% 9,939 352 10,291 95.6% 84.6% 95.2% 

20x22 8,189 630 8,819 8,015 528 8,543 97.9% 83.8% 96.9% 7,808 570 8,378 95.3% 90.5% 95.0% 

21x22 8,311 198 8,509 8,065 179 8,244 97.0% 90.4% 96.9% 8,184 177 8,361 98.5% 89.4% 98.3% 

22x22 7,555 328 7,883 7,210 274 7,484 95.4% 83.5% 94.9% 7,369 285 7,654 97.5% 86.9% 97.1% 

23x22 6,487 135 6,622 6,391 122 6,513 98.5% 90.4% 98.4% 6,403 119 6,522 98.7% 88.1% 98.5% 

24x22 5,221 163 5,384 5,094 143 5,237 97.6% 87.7% 97.3% 5,013 147 5,160 96.0% 90.2% 95.8% 

25x22 3,156 73 3,229 3,088 65 3,153 97.8% 89.0% 97.6% 3,040 65 3,105 96.3% 89.0% 96.2% 

26x22 2,083 43 2,126 1,977 36 2,013 94.9% 83.7% 94.7% 2,001 39 2,040 96.1% 90.7% 96.0% 

27x22 1,330 102 1,432 1,297 89 1,386 97.5% 87.3% 96.8% 1,305 94 1,399 98.1% 92.2% 97.7% 

28x22 474 28 502 468 25 493 98.7% 89.3% 98.2% 452 25 477 95.4% 89.3% 95.0% 



 

 

72 

• RQ2: How do mutation and GAN based balancing methods impact the accuracy of 

DeepSolver? 

 To answer RQ2, we evaluate all DNNs trained with both mutation-based balanced 

datasets and GAN-based balanced datasets. We report both the accuracy in Table 10, and 

the data loss in Table 11. From these two tables, we observe that the two dataset 

balancing methods the original training datasets have little impact on the trained DNNs in 

their performance in classifying path conditions. In general, all DNNs reached high 

accuracy and small data loss in classifying path conditions, while the accuracy of 

classifying UNSAT path conditions dropped as we discussed above. In other words, the 

two methods can be considered equally effective in balancing the training datasets. 

Table 10: Comparison of Accuracy between Mutation and GAN Balanced Datasets 

 

Size 

Mutation-balanced Training Datasets GAN-balanced Training Datasets 

5x5 DNN 10x10 DNN 5x5 DNN 10x10 DNN 

SAT UNSAT Overall SAT UNSAT Overall SAT UNSAT Overall SAT UNSAT Overall 

11x22 97.6% 83.8% 96.9% 96.9% 89.2% 96.5% 94.8% 91.9% 94.7% 94.5% 89.2% 94.2% 

12x22 95.4% 87.5% 95.2% 97.7% 90.6% 97.4% 95.4% 90.6% 95.3% 94.3% 84.4% 94.0% 

13x22 97.0% 93.1% 96.9% 96.0% 86.2% 95.8% 95.7% 82.8% 95.5% 94.1% 89.7% 94.0% 

14x22 98.3% 88.7% 98.0% 98.5% 91.5% 98.3% 96.7% 88.7% 96.4% 97.7% 87.3% 97.4% 

15x22 97.3% 85.3% 96.5% 96.4% 89.0% 95.9% 97.0% 92.6% 96.7% 96.7% 85.3% 95.9% 

16x22 98.9% 87.4% 98.7% 96.6% 85.7% 96.4% 96.2% 88.2% 96.1% 96.8% 92.4% 96.7% 

17x22 97.9% 85.5% 97.6% 98.3% 90.3% 98.1% 98.4% 89.1% 98.2% 97.8% 92.1% 97.7% 

18x22 95.9% 88.1% 95.7% 96.8% 91.5% 96.7% 94.5% 84.2% 94.3% 95.4% 91.5% 95.4% 

19x22 95.4% 90.9% 95.2% 98.4% 85.6% 97.9% 93.1% 84.4% 92.8% 95.6% 84.6% 95.2% 

20x22 95.2% 90.0% 94.8% 96.3% 89.5% 95.8% 97.9% 83.8% 96.9% 95.3% 90.5% 95.0% 

21x22 98.5% 86.9% 98.2% 95.6% 88.9% 95.4% 97.0% 90.4% 96.9% 98.5% 89.4% 98.3% 

22x22 96.0% 87.2% 95.6% 96.0% 87.8% 95.6% 95.4% 83.5% 94.9% 97.5% 86.9% 97.1% 

23x22 96.2% 85.2% 96.0% 98.2% 88.9% 98.0% 98.5% 90.4% 98.4% 98.7% 88.1% 98.5% 

24x22 95.0% 85.9% 94.7% 96.8% 85.3% 96.4% 97.6% 87.7% 97.3% 96.0% 90.2% 95.8% 

25x22 98.6% 91.8% 98.5% 96.9% 89.0% 96.7% 97.8% 89.0% 97.6% 96.3% 89.0% 96.2% 

26x22 97.1% 88.4% 96.9% 96.2% 88.4% 96.0% 94.9% 83.7% 94.7% 96.1% 90.7% 96.0% 

27x22 97.1% 92.2% 96.7% 98.0% 90.2% 97.4% 97.5% 87.3% 96.8% 98.1% 92.2% 97.7% 

28x22 96.2% 92.9% 96.0% 96.0% 85.7% 95.4% 98.7% 89.3% 98.2% 95.4% 89.3% 95.0% 

 

 



 

 

73 

 Table 11: Comparison of Loss between Mutation and GAN Balanced Datasets 

 
 

Size 
Mutation-balanced Training Datasets GAN-balanced Training Datasets 

5x5 DNN 10x10 DNN 5x5 DNN 10x10 DNN 

SAT UNSAT Overall SAT UNSAT Overall SAT UNSAT Overall SAT UNSAT Overall 

11x22 0.0447 0.1103 0.0453 0.0410 0.0239 0.0319 0.0510 0.1021 0.1013 0.0841 0.0372 0.0751 

12x22 0.0013 0.0681 0.0629 0.0582 0.0448 0.0488 0.0523 0.0512 0.0514 0.0896 0.0877 0.0882 

13x22 0.0769 0.0218 0.0373 0.0708 0.1175 0.1149 0.0672 0.1034 0.0785 0.1014 0.0584 0.0990 

14x22 0.0392 0.1029 0.0458 0.0789 0.0189 0.0251 0.0104 0.0239 0.0133 0.0587 0.0094 0.0398 

15x22 0.0191 0.1197 0.1057 0.1008 0.1096 0.1056 0.0604 0.1169 0.0614 0.0412 0.0795 0.0767 

16x22 0.0761 0.0199 0.0252 0.0906 0.0691 0.0698 0.0073 0.0784 0.0505 0.0618 0.0220 0.0285 

17x22 0.0119 0.0249 0.0164 0.0727 0.0769 0.0738 0.0162 0.0217 0.0193 0.0713 0.0429 0.0621 

18x22 0.0380 0.0651 0.0418 0.0044 0.0414 0.0330 0.0128 0.0081 0.0108 0.0910 0.0475 0.0896 

19x22 0.0333 0.0264 0.0306 0.0347 0.0566 0.0386 0.0570 0.0277 0.0483 0.0504 0.0721 0.0710 

20x22 0.1021 0.0136 0.0189 0.0435 0.1051 0.0799 0.1167 0.1018 0.1069 0.0847 0.0352 0.0379 

21x22 0.0204 0.0134 0.0148 0.0624 0.0304 0.0589 0.0757 0.1035 0.0938 0.1085 0.0663 0.1016 

22x22 0.1172 0.1019 0.1128 0.0289 0.0636 0.0479 0.0456 0.0528 0.0511 0.0364 0.0549 0.0545 

23x22 0.1195 0.0910 0.0911 0.0781 0.0748 0.0759 0.0981 0.0087 0.0526 0.0847 0.0216 0.0348 

24x22 0.0405 0.0172 0.0264 0.0993 0.0986 0.0987 0.0336 0.0327 0.0335 0.0875 0.1087 0.0904 

25x22 0.0270 0.0083 0.0106 0.0483 0.0478 0.0478 0.1116 0.1031 0.1071 0.0520 0.0964 0.0546 

26x22 0.0123 0.0757 0.0429 0.0440 0.1154 0.0765 0.0717 0.0263 0.0603 0.0211 0.0130 0.0157 

27x22 0.0565 0.0916 0.0730 0.0635 0.0031 0.0537 0.0819 0.0058 0.0618 0.0778 0.0308 0.0570 

28x22 0.0239 0.0741 0.0427 0.0149 0.1091 0.0169 0.0653 0.1154 0.0893 0.0417 0.0496 0.0452 

 

However, compared to directly mutating existing path conditions, training a GAN 

is far more expensive in time cost. Since the matrix sizes are different, for each DNN we 

need to train a GAN, which usually takes more than 20 hours before we can generate new 

path conditions, while mutation can simply be applied on all matrices with different sizes. 

Meanwhile, different from common GAN on images, we do not have a direct yet 

objective method to evaluate the generated path conditions. In other words, it is hard to 

tell the quality of generator itself. More importantly, theoretically GAN only generates 

data that are similar to the samples in the original dataset, which does not necessarily 

increase the diversity of the training dataset. As we see from Table 10 and Table 11, 

using a GAN does not lead to a higher accuracy on classifying UNSAT path conditions. 

In contrary, for many cases the accuracy dropped compared to using the mutation-based 



 

 

74 

balancing method while the data loss remains low. Thus, mutation-based balancing 

method is more cost-effective, and we use DNNs trained with mutation-based training 

datasets for the rest of our evaluation. 

• RQ3: How efficient is DeepSolver in classifying path conditions?  

We performed satisfiability checking using Z3, Green, GreenTrie, and 

DeepSolver on the same set of path conditions as collected in the experiment for RQ1. 

For Green and GreenTrie, all the balanced training data (1, 016, 524 constraint solutions) 

are used for their solution store, and Z3 is invoked when a cache miss happens.  

Table 9 shows the average time cost of each technique for satisfiability checking 

for path conditions sized from 11 ×  22 to 28 ×  22 for each subject. The number of 

path conditions in each subject range from 716 to 23, 175. Our observation is that 

DeepSolver (both 5 × 5 and 10 × 10) outperforms Green and GreenTrie for all subjects, 

while all three techniques are faster than Z3 as expected. Consider MergeSort as an 

example, Z3 took 98.18 milliseconds on average, Green took 70.88 milliseconds (1.39X 

faster than Z3), GreenTrie took 66.76 milliseconds (1.47X faster than Z3), and 

DeepSolver with 5 ×  5 DNNs and DeepSolver with 10 ×  10 DNNs took 3.63 

milliseconds (27.04X faster than Z3) and 6.72 milliseconds (14.62X faster than Z3), 

respectively. Moreover, the cost of DeepSolver is consistently low across different 

subjects. Particularly, DeepSolver (5 ×  5) spends 3-4 milliseconds in classifying a path 

condition. In contrast, the performance of Green and GreenTrie is not consistent because 

they highly depend on the reuse rate, as they still need to invoke Z3 when there is no 

matching of record for reuse. 

  



 

 

75 

• RQ4: How does the number of hidden layers/neurons impact DeepSolver’s 

efficacy in classifying path conditions? 

 We use the results from the experiments for RQ1 and RQ3 to answer this research 

question. 

 

Figure 11: Average time cost (ms) of satisfiability checking 

 

 Table 8 shows the results of DeepSolver, when the two configurations of hidden 

layers/neurons (i.e., 5 ×  5 and  10 ×  10) were used. For each size of the path 

conditions, we highlighted the cells in the table where DeepSolver (10 ×  10) achieved 

higher accuracy than DeepSolver (5 ×  5). We find exactly half of the SAT cells, half of 

the UNSAT cells, and half of the Overall cells are highlighted. Moreover, the difference 

in accuracy achieved by the two DNN configurations is small. For example, for path 

conditions sized 22 × 22, DNN (10 ×  10) achieved slightly higher accuracy than DNN 

(5 × 5), while for path conditions sized 26 ×  22 it is just the opposite. The results 

indicate that the number of hidden layers/neurons does not have significant impact on the 



 

 

76 

accuracy of DeepSolver. For reference, DNNs trained by GAN-balanced datasets are also 

reported and highlighted in Table 9. We will not expand the discussion as no significant 

difference to data in Table 8 is observed. On the other hand, according to the efficiency 

results shown in Figure 11, DeepSolver (10 × 10) consistently cost about double the time 

of DeepSolver (5 × 5) across all the subjects, which indicates that the configurations of 

hidden layers/neurons do have an impact on the efficiency of DeepSolver. This is 

expected since the input data must go through more layers and neurons in a larger DNN 

mode. 

• RQ5: How efficient is symbolic execution with DeepSolver? 

 According to the results for RQ3, GreenTrie is more efficient than Green and Z3, 

so we compare DeepSolver with only GreenTrie to answer this research question. 

 We ran SPF with DeepSolver (Algorithm 5) on the nine subjects that were not 

used for training DNNs. Z3 was used to solve path conditions, when they are not 

supported by the DNNs that have been trained, or when they need to be solved by a 

conventional constraint solver (for double-check and test generation). For comparison, 

we ran SPF with GreenTrie on the same subjects, and Z3 was invoked when a cache miss 

happens. All symbolic execution runs were configured with a time bound of 5 hours and 

a depth bound of 28, since we have no DNNs trained for path conditions with more than 

28 constraints. Please note this is not a limitation of DeepSolver. In fact, DeepSolver can 

be used to classify path conditions with any number of symbolic variables and 

constraints, as long as we have enough data to train the DNNs. 



 

 

77 

Table 12: Results of symbolic execution with DeepSolver versus GreenTrie 

 

Subject 

SPF with GreenTrie SPF with DeepSolver 

# PC # State 
Time Cost 

(s) 
# PC 

SAT-To-UNSAT 

Misclassification 

UNSAT-To-SAT 

Misclassification 
# State 

# Leaf 

State 

Time Cost 

(s) 

Red-Black 

Tree 
1,329 1,330 461 1,342 41 13 1,343 107 216 

MergeSort 8,044 8,045 2,243 8,105 197 61 8,106 825 1,963 

QuickSort 23,209 23,210 4,193 23,271 730 62 23,272 984 2,599 

HeapInsert 2,580 2,581 683 2,589 65 9 2,590 115 525 

Dijkstra 10,646 10,647 1,823 10,706 400 60 10,707 526 1,371 

TSP 13,212 13,213 2,422 13,276 350 64 13,277 857 1,262 

Rational 744 745 303 745 28 1 746 15 137 

BinTree 3,467 3,468 1,036 3,480 85 13 3,481 119 390 

BinomialHeap 23,216 23,217 8,164 23,304 76 88 23,305 472 3,192 

 

Table 12 shows the results. For both techniques, we report the number of path 

conditions (# PC) that were analyzed, the number of states explored by SPF (# State), and 

the total time cost. For SPF with DeepSolver we also report two types of 

misclassification errors and the number of leaf states. We observe that number of 

misclassification errors is relatively small compared to the total number of path 

conditions, due to the high accuracy of DeepSolver. Also because of UNSAT-To-SAT 

Misclassification, SPF with DeepSolver analyzed slightly more path conditions and 

thereby explored more states than SPF with GreenTrie. Despite the overhead introduced 

to address the two types of misclassification, we find that SPF with DeepSolver is still 

faster than SPF with GreenTrie across all the nine subjects. For example, SPF with 

DeepSolver achieved 2.56X speedup on BinomialHeap). Please note that we used Z3 to 

solve path conditions sized from 1 × 22 to 10 × 22. If we have enough constraint 

solutions to train DNNs to support these path conditions, the performance of DeepSolver 

could be even better. The results demonstrate that our strategies proposed in Section V 



 

 

78 

are effective in addressing the two types of misclassification, and DeepSolver can enable 

more efficient symbolic execution while ensuring its soundness. 

Discussions 

Threats to Validity 

 The primary threat to external validity in this study involves the subjects selected 

for our study, the constraint solutions collected for training DNNs, deep learning 

algorithm and the two DNN structures used in our study. Although we used the subjects 

that were widely used in the literature, the results may not generalize to other subjects. 

While mechanical transformation can generate more constraint solutions and address 

class imbalance problem, the experimental results suggest that constraint solutions 

generated in such way may not be as diverse as those collected from real programs and 

may decrease the accuracy of DeepSolver. These threats need to be further addressed by 

additional studies on different subjects, with more real constraint solutions, using other 

deep learning algorithms and other DNN structures. 

 The primary threat to internal validity lies in the possible errors in our 

implementation and the tools used in our study including Keras, TensorFlow, and SPF. 

We controlled for this threat through the use of extensive functional tests on our 

implementation and these tools and verification against cases in which we can manually 

determine correct results. Meanwhile, over-fitting is a common problem when training 

DNNs. The experimental results show that all DNNs used in the study have stable and 

high accuracy on different datasets, and there seems no over-fitting problem with these 

DNNs. 

 



 

 

79 

Limitations 

 While DeepSolver can classify path conditions for satisfiability, it does not 

provide a solution for satisfiable path condition like conventional constraint solvers. 

When a solution is required, e.g., for generating test cases, a conventional constraint 

solver would be required. In addition, our work currently supports for classification of 

linear integer arithmetic path conditions. Choosing informative, discriminating, and 

independent features is a crucial step for effective algorithms in pattern recognition and 

classification. For example, the features for computer vision are different from features 

for speech recognition. Similarly, path conditions in other theories (e.g., theories of bit 

vectors, strings, and arrays) may expose different features, and thus require different 

algorithms to learn those features. We would like to extend the range of theories 

supported by DeepSolver for our future work. 

Comparison with Random Approach 

 Given that the majority of the path conditions in symbolic execution are 

satisfiable, a random approach without the trained DNNs may be believed to outperform 

DeepSolver. More specifically, such random approach would randomly guess the 

satisfiability according to the percentage of satisfiable path conditions. For example, if 

90% path conditions are satisfiable for a program, then the random approach would 

blindly guess a path condition is satisfiable with a 90% possibility. While the strategies 

we proposed in Section V may still work for random approach to deal with the two types 

of misclassification, we would like to argue that random approach is not applicable in 

practice. First of all, there is no prior knowledge on the percentage of 

satisfiable/unsatisfiable path conditions of a program. Second, even such knowledge is 



 

 

80 

available and the random approach may provide a high accuracy for classifying 

satisfiable path condition, it would lead to a low accuracy for classifying unsatisfiable 

path conditions, which makes symbolic execution to explore many infeasible states.

 To confirm our understanding, we implemented such random approach and 

evaluated on the nine subjects listed in Table 12. We ran symbolic execution with this 

random approach using the same time bound and depth bound as in RQ4. For each 

subject, we ran 10 times. The results indicate that many symbolic execution runs with the 

random approach timed out, and when it did not time out, the time cost is still higher than 

DeepSolver. For example, for BinomialHeap, six out of 10 runs timed out, one run took 

8, 305 seconds, two runs took around 5, 500 seconds, and one run took 4, 162 seconds, 

compared to 3,192 seconds taken by DeepSolver. 

  



 

 

81 

VI. CONCRETIZATION FOR CONSTRAINT ANALYSIS 

This chapter introduces Cocoa, an optimized constraint solving solution by 

reducing the complicity of PC with concretization. We will use the example of running 

symbolic execution on DNNs as a typical scenario to describe our approach in this 

chapter, as DNNs turned to generate complex PC that could not be solved in a short time. 

Overview 

Being a cutting-edge technique, Deep Neural Networks (DNN) are increasingly 

and widely developed and used in both research area and industry. One typical example 

is DNNs are used for image classifying tasks. It takes in an image or video, which is 

usually considered a high dimensional and complex matrix input and calculates and 

transforms the input data through neurons on multiple layers, which finally assign the 

input to a predefined output label. Such DNNs are integrated into the structure of auto 

driving vehicles to help the system decide its behavior, and multiple major car companies 

such as Tesla and BMW are putting their resources on developing them. Obviously, such 

applications need to be carefully tested before deployment, for a wrong decision-making 

may lead to great economic loss or even fatal incidence. However, many of the DNN 

applications are with substantial safety and security concerns (LeCun et al., 2015), for 

thoroughly testing a deep neural network remains a difficult task. Validating DNNs is 

complex and challenging, due to the nature of the learning techniques that create these 

models. Although it is possible to convert a DNN implementation into a traditional 

software with relatively simple source code, it is challenging applying conventional 

techniques such as symbolic execution on it directly. 



 

 

82 

We use an example of a DNN trained on learning library of MNIST (mni, 2019) 

to explain our insight. MNIST is a database of handwritten digits that is widely used for 

evaluating deep learning techniques. Each digit is a gray-scale image of the size 28x28. A 

sample data from MNIST is shown in Figure 12. Typically, a deep neural network treats 

each pixel of the image as an independent input variable, and each neuron in the deep 

neural network performs a calculation based on these values and then compares the result 

with a threshold. The calculation accumulates and propagates till the output layer, and the 

final calculation result is used to make a decision. 

 
 

Figure 12: Sample data of MNIST database 

 

Obviously, since this accumulation of calculation and comparison are very similar 

to symbolic execution, we can apply symbolic execution on a DNN to generate test cases 

that covers a new path of classification. However, in practice, we noticed that even 

though the DNN is usually simple in the shape of conventional programming source code 

and the state space is easy to explore, solving a PC generated by DNN can be extremely 

slow due to following reasons: 



 

 

83 

• Large number of symbolic variables. Since each pixel is considered a different 

input parameter for a neural network, this method will have 784 inputs and one 

return value, indicating the classification result. As we can see, comparing to a 

common method in traditional programs, the number of input of parameters is 

much larger. If the neural network is using a fully connected structure, each 

constraint will involve all symbolic variables. It obviously increases the 

complexity of the whole path condition. 

• Extra restriction of symbolic variables. Since each input parameter represents a 

pixel in the image, we need to put a data range for each of them. The original data 

range for a pixel in gray-scale image is an integer between 0 and 255. Meanwhile, 

normalization is a widely used technique in image processing and analysis 

(Finlayson et al., 1998), so that the data for a deep neural network is commonly 

not as integer values. For instance, a gray-scale image is commonly normalized 

into a range of [0, 1]. If we take this factor into consideration in symbolic 

execution, we need to treat the path constraints as a calculation between real 

numbers, which further increased the difficulty of finding a potential solution. 

• Large number of constraints. Generally speaking, a deep neural network is 

commonly built by multiple dense layers, which means each neuron in a layer is 

fully connected to all the neurons in its previous and following layer. Consider a 

neural network with 10 neurons in each layer to classify a MNIST image. If we 

look at a neuron in the second hidden layer, it takes the output from all 10 neurons 

in the first hidden layer. Remember that each of the neurons in the first layer 

represents a constraint of 784 symbolic variables. Thus, a path condition towards a 



 

 

84 

neuron in second layer should be consisted of 10 such constraints. We can see that 

as the neural network goes deeper, the complexity of path condition increases 

dramatically. 

In order to make symbolic execution applicable on subject with complex PCs 

such as DNNs, we need to reduce the time cost of solving complex PCs. Our solution is 

to concretize a PC by replacing part of the symbolic variables with their concrete values. 

This solution is partially inspired by the concept of concolic execution (Kim et al., 

2012a), in which the concrete input value is used to direct symbolic execution in order to 

improve its efficiency to reach a high coverage. Unlike in normal concolic execution 

where concrete values of all inputs are used to discover new paths in the state space, we 

only use part of the data to concretize the least “important” symbolic variables in the PC. 

We still take the DNN for MNIST image classification as an example. Our insight is that 

not all pixels are equally important for an image classification task. For MNIST database, 

each image can be considered containing both a “background” (the dark pixels) and the 

“actual data” (the light pixels). Ideally, we can skip or ignore the background part of 

image when classifying the number, as the pixels in background do not have any 

interesting features. In other words, we can assume at since the unimportant pixels 

contribute less on decision-making, in a new path it would be safe to keep them as their 

original concrete value, and we are more interested in whether changing only the most 

important input variables can change the output of a program. Concretization may not 

only reduce the number of symbolic variables but also the number of constraints, as after 

the replacement it is possible to have some constraints converted into a simple 

comparison between constant values, which is fast to justify. Nevertheless, we expect the 



 

 

85 

concretized PC to be less complex than the original one and thus we need less time to 

solve it. We need to mention that in this dissertation, we only use DNNs as example for it 

is a typical type of programs that can generate a PC that cannot be solved in a short time. 

However, the insight of optimizing constraint solving by concretization can be applied on 

any subject that has complex PCs. 

Cocoa 

Symbolic Execution on DNNs 

In order to apply symbolic execution on DNNs, the first step is to convert the 

DNN into an imperative code. By definition, a neuron in DNN takes the output from 

other neurons (in most cases, the neurons from its previous layer) as an input matrix. 

These input matrices are then processed and calculated, and a threshold will be used to 

decide the output. This process is usually referred as “activation functions” (Nwankpa et 

al., 2018). One typical activation function is rectified linear units, or ReLUs (Nair and 

Hinton, 2010), which is widely used for it is biologically plausible (Glorot et al., 2011).  

 

Figure 13: Example Plot of ReLUs 

 

Figure 13 shows a plot of ReLUs. In DNNs, ReLUs can be expressed as 𝑓 (𝑥)  =

 𝑚𝑎𝑥(0, 𝑊𝑇 ×  𝑥 +  𝑏), where 𝑥 represents the input matrix, 𝑊𝑇 represents the weight 

matrix and 𝑏 represents the bias. Calculation result is only used when it is greater than a 



 

 

86 

threshold (which is 0 in our example), or else the neuron will output the threshold 

instead, which is also referred as “inactivated.” 

Based on the fact that each neuron in DNN represents an activation function, it is 

possible to convert a neuron in DNN model into a method in conventional programs, 

while each method has a branch to decide the output. A DNN model is then transformed 

into a chain of method calls, where classifying one input can be considered a certain 

execution path in the program. As a result, symbolic execution can then be applied on the 

converted program as we try to generate inputs for different classification paths. In our 

work, we apply the technique of DeepCheck (Gopinath et al., 2018) for DNN conversion. 

For the rest of our paper, we note a program converted from DNN as “DNN program” to 

better explain the technique and evaluation. 

Constraint Concretization 

Our solution aims to speed up the constraint solving by concretizing the PC 

generated from a DNN program. Similar to concolic execution (Kim et al., 2012a), we 

first apply a concrete execution by running the DNN program with an input and collect 

the constraints following the path. Then, we flip one of the constraints and apply 

symbolic execution on the corresponding path, so we can collect the full PC of it to 

generate the input. However, instead of solving the original PC with all symbolic 

variables as in normal concolic execution, we concretize part of the symbolic variables 

with their concrete value from original input. 

Ranking Heuristics 

While replacing a symbolic variable is technically easy, how to choose symbolic 

variables to replace remains worthy of being discussed. The most straightforward way is 



 

 

87 

to randomly pick up a subset of variables, and this solution can be applied in traditional 

programs for the variables can be considered equally important. However, it is too naive 

as a solution to apply on DNN programs. In practice, it’s common that the symbolic 

variables are in fact not equally important. Since artificial neural network can be 

considered inspired by biology nervous system (Zhang, 2000), we can use a classic 

psychology problem called “cocktail party effect” (Bronkhorst, 2015) to reason such an 

observation. This effect shows that there is a mechanism in our nervous system that can 

pick up and process only the information we are more interested in from a noisy 

background. Similarly, in our DNN program example, although DNN reads in all pixels 

in the image, not all of them are “interesting.” On the contrary, the pixels or areas 

containing the features to make classification decision is actually limited. As a result, a 

more reasonable way to choose symbolic variables for concretization is to rank the 

symbolic variables based on an importance score. If a symbolic variable has a high 

importance score, it represents certain features for decision-making. Thus, we can keep it 

as symbolic, and only replace the least important pixels with their concrete values. 

In our work, we introduce and evaluate 5 different ranking heuristics. 

• COE: We consider the actual values of the coefficients to determine the impact of 

the input variables on decision-making. Defining a PC as 𝑦1 ∧  𝑦2 ∧ … ∧ 𝑦𝑛, where 

𝑦𝑛 = 𝑐1
𝑛  ×  𝑥1 + 𝑐2

𝑛  ×  𝑥2 + ⋯ + 𝑐𝑘
𝑛  ×  𝑥𝑘 + 𝑏 𝑜𝑝 0, for each symbolic variable 

𝑥𝑘, we can calculate its importance score 𝐼𝑚𝑝𝑘 as 𝑐𝑘
1 + 𝑐𝑘

2 + ⋯ +  𝑐𝑘
𝑛. We 

maintain a list of symbolic variables sorted based on their importance scores in 

ascending order, for a symbolic variable with less coefficient can be considered 

contributing less to calculation and final decision-making. 



 

 

88 

• ABS: One potential weakness of COE is that it could be difficult to argue whether 

simply sum up the value of coefficient of a variable can reflect its importance in 

decision-making. Consider a simple path constraint 2 × 𝑥1 +  𝑥2 = 0 ∧

 −1 × 𝑥1 = 0 as example. With COE, both 𝑥1 and 𝑥2 have the same importance 

score of 1, which is counter-intuitive for while 𝑥1 participated in two constraints, 

𝑥2 only appeared once. To reflex this problem, we introduce our second ranking 

heuristic ABS, which sum up the absolute value of coefficients for a variable one 

calculating the importance score: 𝐼𝑚𝑝𝑘 =  |𝑐𝑘
1| + |𝑐𝑘

2| + ⋯ + |𝑐𝑘
𝑛|. 

• COE-VAL: Result of an active function depends not only on the weight of each 

variable, but the value of it as well. In other words, in order to identify pixels that 

can be attributed for the classification decision for the specific given input, we 

need to consider the input values as well. This can be determined by multiplying 

the coefficient values with the corresponding input values, similar to techniques 

such as DeepLIFT (Shrikumar et al., 2016). The importance score can be noted 

as 𝐼𝑚𝑝𝑘 = (𝑐𝑘
1 +  𝑐𝑘

2 + ⋯ +  𝑐𝑘
𝑛) × 𝑣𝑘, where 𝑣𝑘 represents the concrete value of 

variable 𝑥𝑘 . 

• ABS-VAL: Similar to COE-VAL, we consider both the coefficient and value of a 

variable to calculate the importance score, while in this strategy we use the 

absolute value of coefficients as in ABS instead of true value. The importance 

score can be noted as 𝐼𝑚𝑝𝑘 = (|𝑐𝑘
1| + |𝑐𝑘

2| + ⋯ + |𝑐𝑘
𝑛|) × 𝑣𝑘. 

• STEP: The last ranking heuristic is designed to support concolic execution. 

Different from the previous strategies, in STEP we cannot simply calculate the 

importance score for ranking. In concolic execution, a common way to decide the 



 

 

89 

next path to explore is by negating the last constraint in PC. Thus, the variables in 

the last constraint can be considered most important. However, since a symbolic 

variable usually appears in multiple constraints, it is possible for other symbolic 

variables to participate the calculation as well. These symbolic variables who 

participated in the calculation with important symbolic variables can also be 

considered as important. That is to say, the number of important variables can be 

decided as we update the list in multiple iterations. In our heuristic, we use a 

constant S to decide the number of iterations. When S is set to 0, we add only the 

symbolic variables in the last constraint to the list of important symbolic variables. 

As the value of S increases, we update the list with the other variables which 

participated in calculation with the variables that are already on the list. 

Consider an example PC of 𝑎 + 𝑏 + 𝑐 = 0 ∧ 𝑏 + 𝑐 + 𝑑 = 0 ∧ 𝑑 + 𝑒 =

0 ∧ 𝑒 + 𝑓 = 0. In this example, we have six symbolic variables (𝑎 𝑡𝑜 𝑓) in total. 

If we apply Step with 𝑆 = 0, we only consider the variables appeared in the last 

constraint, which are 𝑒 and 𝑓, and put them in the list of important variables we 

would like to keep symbolic. If 𝑆 = 1, we apply one iteration of updating the list, 

in which we find variable 𝑑 participated in calculation with variable 𝑒, so we add 

variable 𝑑 to the list as well. Similarly, if 𝑆 = 2, variable 𝑏 and 𝑐 will also be 

added to the list, in which case only symbolic variable 𝑎 will be replaced by its 

concrete value. 

Noted that these heuristics we introduced in this work is typically designed for 

symbolic execution on our DNN program of MNIST database, which is used in our case 

study shown later. It is possible that other ranking heuristic can be applied for different 



 

 

90 

DNN model. In this dissertation, these five heuristics are chosen only to better illustrate 

our technique. 

Implementation 

We use two algorithms to show the detail of our implementation. First, Algorithm 

6 shows the process of calculating the rankings that is used for COE, ABS, COE-VAL, 

and ABS-VAL. Note that this algorithm is only for the convenience of description. Note 

that this algorithm is only for the convenience of description. In actual implementation, 

we do not need to calculate all four ranking scores at the same time. We consider the four 

heuristics are combinations of two configurations, which are whether we should use 

absolute value of coefficients, and whether we should consider the concrete value of 

symbolic variables. We use two Boolean values, namely 𝐴𝐵𝑆 and 𝑉𝐴𝐿, to represent these 

two settings. After initializing the coefficient map 𝑀𝑎𝑝 and return list 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡 (Lines 

1-2), we first break down the input path condition 𝑃𝐶 into constraints and then into the 

calculation between symbolic variables 𝑐𝑜 ×  𝑠𝑦𝑚 (Lines 3-4). We update the 

coefficient map using value of coefficient 𝑐𝑜 based on 𝐴𝐵𝑆 : if 𝐴𝐵𝑆 is false, we update 

𝑀𝑎𝑝 with the actual value of 𝑐𝑜, which can be used for COE and COE-VAL (Lines 5-11). 

Otherwise, we update Map with the absolute value of 𝑐𝑜, which can be used for ABS and 

ABS-VAL (Lines 12-17). After checking all the calculations on symbolic variables in 𝑃𝐶, 

𝑀𝑎𝑝 contains the information of the symbolic variables with their importance based on 

coefficients, where the keys in 𝑀𝑎𝑝 are symbolic variables (noted as 𝑠𝑦𝑚) and the values 

are the scores (noted as 𝑠𝑐𝑜𝑟𝑒). If 𝑉𝐴𝐿 is false (Line 22), we do not consider the concrete 

value of symbolic variables and we put all the key-value pair in 𝑀𝑎𝑝 into 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡 in 

shape of (𝑠𝑐𝑜𝑟𝑒, 𝑠𝑦𝑚) directly (Lines 23 - 25). Otherwise, we get the concrete value for 



 

 

91 

each symbolic variable 𝑠𝑦𝑚 from the concrete value map 𝐶𝑜𝑛𝑀𝑎𝑝, and use the concrete 

value 𝑐𝑜𝑛 as well as the importance from Map to update 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡 with (𝑠𝑐𝑜𝑟𝑒 ×

 𝑐𝑜𝑛, 𝑠𝑦𝑚) (Lines 26-31). Finally, we sort 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡 in ascending order based on score 

(Line 32) so that the least important symbolic variables appear at the front of the list. 

After we return this list (Line 33), we can use different strategies to decide the portion of 

the list for concretization such as using fixed numbers or a percentage. 

  



 

 

92 

Algorithm 6 Algorithm of Ranking Heuristics 

Input: Path constraint 𝑃𝐶, Absolute mode Boolean 𝐴𝐵𝑆, Value mode Boolean 𝑉𝐴𝐿, Map of 

concrete value 𝐶𝑜𝑛𝑀𝑎𝑝 

Output: Ranking List of symbolic variables 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡 

1:  Map of coefficient 𝑀𝑎𝑝 ← 𝑛𝑢𝑙𝑙 

2: 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡 ← 𝑛𝑢𝑙𝑙 

3: for all Constraint 𝑐 in 𝑃𝐶 do 

4:  for all 𝑐𝑜 ×  𝑠𝑦𝑚 in 𝑐 do 

5:  if 𝐴𝐵𝑆 is 𝑓𝑎𝑙𝑠𝑒 then 

6:    if 𝑀𝑎𝑝. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑠𝑦𝑚) then 

7:     𝑀𝑎𝑝. 𝑝𝑢𝑡(𝑠𝑦𝑚;  𝑐𝑜) 

8:    else 

9:     𝑝𝑟𝑒𝑣𝑎𝑙 ← 𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑠𝑦𝑚) 

10:    𝑀𝑎𝑝. 𝑝𝑢𝑡(𝑠𝑦𝑚, 𝑐𝑜 +  𝑝𝑟𝑒𝑣𝑎𝑙) 

11:    end if 

12:   else 

13:    if 𝑀𝑎𝑝. 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑠𝑦𝑚) then 

14:    𝑀𝑎𝑝. 𝑝𝑢𝑡(𝑠𝑦𝑚, |𝑐𝑜|) 

15:    else 

16:     𝑝𝑟𝑒𝑣𝑎𝑙 ← 𝑀𝐴𝑃. 𝑔𝑒𝑡(𝑠𝑦𝑚) 

17:     𝑀𝑎𝑝. 𝑝𝑢𝑡(𝑠𝑦𝑚, |𝑐𝑜|  +  𝑝𝑟𝑒𝑣𝑎𝑙) 

18:   end if 

19:  end if 

20: end for 

21: end for 

22: if 𝑉𝐴𝐿 is 𝑓𝑎𝑙𝑠𝑒 then 

23: for all (𝑠𝑦𝑚, 𝑠𝑐𝑜𝑟𝑒) in 𝑀𝑎𝑝 do 

24:   𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡. 𝑝𝑢𝑡(𝑠𝑐𝑜𝑟𝑒;  𝑠𝑦𝑚) 

25: end for 

26: else 

27:  for all (𝑠𝑦𝑚, 𝑠𝑐𝑜𝑟𝑒) in 𝑀𝑎𝑝 do 

28:   𝑐𝑜𝑛 ← 𝐶𝑜𝑛𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑠𝑦𝑚) 

29:   𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡. 𝑝𝑢𝑡(𝑠𝑐𝑜𝑟𝑒 × 𝑐𝑜, 𝑠𝑦𝑚) 

30:  end for 

31: end if 

32: 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡. 𝑠𝑜𝑟𝑡_𝑎𝑠𝑐( ) 

33: return 𝑹𝒂𝒏𝒌𝑳𝒊𝒔𝒕 
 

Algorithm 7 shows the algorithm of heuristic STEP. We do not rank symbolic 

variables based on an importance score, but we need to iteratively update a list of 

important variables that we want to keep as symbolic. The number of iterations as an 

input is noted as 𝑆. First, we generate two list of symbolic variables: one to keep all the 



 

 

93 

important variables noted as 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡 (Line 1), and one to keep the symbolic 

variables we want to concretize noted as 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 (Line 2). Since the algorithm is 

similar to traversing a map with multiple start points, where each symbolic variable is a 

node and the relationship between symbolic variables is an edge. We need to maintain a 

map of two-way “edges” noted as Relations (Line 3). We check all constraints in PC in 

order, and for each pair of symbolic variables (𝑠𝑦𝑚, 𝑠𝑚′) appeared in the constraint, we 

add both (𝑠𝑦𝑚, 𝑠𝑦𝑚′) and (𝑠𝑦𝑚′, 𝑠𝑦𝑚) into 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 to show that they are directly 

related to each other (Lines 4-7). Meanwhile, for all the symbolic variables we 

encountered, we add it to the 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 (Line 8-9). As we reached the last constraint 

in 𝑃𝐶, we add all symbolic variables in that constraint to 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡 to create 

the start point for traversing (Lines 10-14). After the map is generated, we recursively 

update 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡 on the value of 𝑆 (Line 16). In each iteration, we create a 

temporary list to store the symbolic variables to be updated (Line 17). We check all the 

symbolic variables in current 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡, and put all the “nodes” that can be 

reached with one step into the temporary list (Lines 18-20). Then, we delete the two-way 

edge from relationship map to speed up further iterations (Lines 21-24). Once 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡 is fully processed, we update it with the symbolic variables in the 

temporary list (Line 25) and decrease the value of S by one before entering the next 

iteration (Lines 26-27). When 𝑆 reduced to 0, the list of important symbolic variables is 

fully updated. Then, we remove all the symbolic variable in this list from the 𝑅𝑒𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡, 

and return 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 (Lines 28-31). Once 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 is ready, a path constraint can 

be simplified by replacing the symbolic variables in it (either a portion of 𝑅𝑎𝑛𝑘𝐿𝑖𝑠𝑡 in 

Algorithm 6 or the 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 in Algorithm 7) with provided concrete value map, as 



 

 

94 

𝐶𝑜𝑛𝑀𝑎𝑝 we used in Algorithm 6. For our task, this map is easy to get by storing the 

actual values used in actual classification, while the coordinates of pixels are used to 

generate the names of symbolic variable. 

Algorithm 7 Algorithm of STEP Heuristic  

Input: Path constraint PC, Number of steps S 

Output: List of symbolic variables to be replaced 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 

1: 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡 ← 𝑛𝑢𝑙𝑙 
2: 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 ← 𝑛𝑢𝑙𝑙 
3: Map of symbolic variable pairs 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑛𝑢𝑙𝑙 
4: for all Constraint 𝑐 in 𝑃𝐶 do 

5:  for all symbolic variable pair (𝑠𝑦𝑚, 𝑠𝑦𝑚′) in c do 

6:   𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠. 𝑝𝑢𝑡(𝑠𝑦𝑚, 𝑠𝑦𝑚′) 

7:   𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠. 𝑝𝑢𝑡(𝑠𝑦𝑚′, 𝑠𝑦𝑚) 

8:   𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡 ← 𝑠𝑦𝑚 

9:  end for 

10:  if 𝑐 is the last constraint in 𝑃𝐶 then 

11:   for all symbolic variable 𝑠𝑦𝑚 in 𝑐 do 

12:    𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡. 𝑝𝑢𝑡(𝑠𝑦𝑚) 

13:   end for 

14:  end if 

15: end for 

16: while 𝑆 >  0 do 

17:  Temporary list 𝑡𝑒𝑚𝑝 ← 𝑛𝑢𝑙𝑙 
18:  for all symbolic variable 𝑠𝑦𝑚 in 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡 do 

19:   for all (𝑠𝑦𝑚, 𝑠𝑦𝑚′) in Relations do 

20:    𝑡𝑒𝑚𝑝. 𝑝𝑢𝑡(𝑠𝑦𝑚′) 

21:    𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠. 𝑝𝑢𝑡(𝑠𝑦𝑚, 𝑠𝑦𝑚′) 

22:    𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠. 𝑝𝑢𝑡(𝑠𝑦𝑚′, 𝑠𝑦𝑚) 

23:   end for 

24:  end for 

25:  𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡. 𝑝𝑢𝑡(𝑡𝑒𝑚𝑝) 

26:  𝑆 ← 𝑆 − 1 

27: end while 

28: for all symbolic variable 𝑠𝑦𝑚 in 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡𝑉𝑎𝑟𝐿𝑖𝑠𝑡 do 

29:  𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑠𝑦𝑚) 

30: end for 

31: return 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝐿𝑖𝑠𝑡  

 

 

 

 

 



 

 

95 

Case Study 

Before we evaluate our solution, we first conduct a case study on two questions. 

• Case study question 1: Among all 5 heuristics, which one is more promising to 

be applied in evaluation? 

• Case study question 2: What is the performance we can expect from solving a 

concretized PC? 

Experiment Setup 

We implement a fully connected DNN with the neuron structure of 

784 × 10 × 10 × 10 (784 inputs, 10 hidden layers with 10 neurons in each layer, and 10 

classification results). The DNN is trained on all 60,000 images in the training data of the 

MNIST dataset and reached an accuracy of 94%. We converted this DNN into a program, 

and applied Badger (Noller et al., 2018), a fuzzing and symbolic execution framework, to 

generate PCs. Badger is executed on the DNN program with an image of digit 6 (Figure 

14) as the initial concrete input. Then, we ran the fuzzing for 24 hours and generated a 

collection of 1,216 satisfiable PCs in total. 

 
 

Figure 14: Example Image from MNIST 

 

Case Study on Heuristics 

For this case study, we use the PC for correctly classifying the input (Figure 14) 

to check the five heuristics. For heuristics COE, ABS, COE-VAL and ABS-VAL, we 



 

 

96 

setup the percentage of important pixels from 50% to 0% with pace of 5%, which 

represent 11 decisions ranging from keeping half of the pixels in the original image as 

symbolic to not to concretize any of the pixels. Accordingly, we run the STEP heuristic 

with the value of S set from 0-9, representing only keep the pixels in the last constraint in 

each PC to running up to 9 iterations of updating the list of replacement. We run each 

heuristic with different configurations and mark the most important pixels for 

concretization in red color for manually comparison. Noted that these red pixels are 

supposed to be left as symbolic in concretization. The output images for each 

configuration are shown in Table 13. Based on the results, we have the following two 

observations: 

First, for our DNN program, heuristic STEP appears to be the least reasonable. As 

we can see from the result images, this heuristic failed to reflect or capture logically 

important partition of the input image. The highlighted pixels (or input variables) expand 

from the left top corner, which is black background without any feature. We consider this 

a result caused by the design of our DNN: Since the task is a typical image processing, 

we introduced a convolutional layer, which uses a 3 ×  3 convolution kernel, as the first 

hidden layer. As a result, the last constraint in PC always represents the first window with 

9 pixels for calculation. We find that for a convolution kernel with the size of 𝐾 ×  𝐾, the 

number of important pixels shows a cubic growth of 𝑁 =  (𝐾 +  2 ×  𝑆 )2 as the value 

of S increases. This shows another weakness of this heuristic that we cannot obtain a 

finer control of the number of symbolic variables to be kept, for we cannot manually 

decide the size of list holding important variables as it is updated based on a strict logic 

on the relationship between variables. 



 

 

97 

Table 13: Result of Ranking Heuristics 

 

 

Second, comparing with a ranking heuristic purely based on coefficients (COE 

and ABS), considering the concrete values with coefficients (COE-VAL and ABS-VAL) 

is more powerful in discovering the logical important part of the image. While the 

important pixels are relatively evenly distributed in COE and ABS, COE-VAL and ABS-

VAL concentrate more on the parts that has some interesting features i.e. the “circle” of 

digit 6. Meanwhile, ABS-VAL turns to have a faster discovery of the features. When we 

set the ratio of replacement to 25%, ABS-VAL concentrates the most on the circle part of 

digit 6 comparing with all other heuristics, while COE-VAL can only reach a similar 

Ratio of 

Important 

Variables 

 
COE 

 
ABS 

 
COE-VAL 

 
ABS-VAL 

 
Iterations 

 
STEP 

 
50%     

 
9  

 
45%     

 
8  

 
40%     

 
7  

 
35%     

 
6  

 
30%     

 
5  

 
25%     

 
4  

 
20%     

 
3  

 
15%     

 
2  

 
10%     

 
1  

 
5%     

 
0  



 

 

98 

discovery with a ratio of 30%. This result shows that ABS-VAL heuristic can identify 

important pixels that are closest to manual judgment.  

Based on these observations, we choose ABS-VAL as our heuristic for the rest of 

evaluation. However, we also need to mention that our ABS-VAL algorithm is typically 

designed for a DNN trained on gray-scale images with black background. Should the 

characteristic of input data be changed (e.g. inverted into white background with black 

digits), the heuristic needs to be updated accordingly. It is not always easy to find a 

reasonable way to calculate the coefficient with the value. For instance, a colored image 

usually has a higher dimension (e.g. RGB images has at least three layers while a gray-

scale images only have one). This can lead to the problem of “curse of dimensionality” 

(Keogh and Mueen, 2017). That is two say, among all the dimensions of the input data, it 

is difficult to decide the importance of each dimension, and more difficult to find a 

reasonable way to express it. 

Case Study on Performance 

For our case study, we concretize the 1,216 PCs generated by Badger from the 

DNN program. Each PC is concretized with ABS-VAL heuristic and a concretization 

ratio ranges from 50% to 0%. Please be noted that this ratio has a different meaning than 

in the last case study: in Table 13, a ratio of 5% means we consider 5% of the pixels as 

important, so we will replace 95% of symbolic variables with concrete values, while in 

this case study (as well as the rest of this dissertation), a 5% ratio means we would like to 

concretize 5% of symbolic variables. 



 

 

99 

We apply two widely used Satisfiability Modulo Theories (SMT) solver Z3 (Z3S, 

2019) and CVC4 (CVC, 2020) to solve all PCs before and after concretization with a two 

hours’ time limit.  

Results and Analysis 

The performance is shown in Table 14 and Table 15. We group the results into 

three categories based on the result from the solver, namely the PC is satisfiable (SAT), 

unsatisfiable (UNSAT) or cannot be solved within the time limit (TimeOut) and report 

their number for each ratio. For SAT and UNSAT PCs, we also report the number of 

concretized PCs that took more time to solve comparing with original PC (Longer) and 

the number of those took less time (Shorter), and calculate the possibility of getting a 

speedup as the percentage of Shorter among the sum of Longer and Shorter PCs in the 

same category. Meanwhile, we also report the accuracy for simplified PCs calculated as 

the percentage of SAT concretized PCs among all the 1,216 generate PC for each ratio. 

To have a better look at the distribution of the performance, we further group the 

result into a figure as shown in Figure 15. For all concretized PCs result in SAT or 

UNSAT, we calculate the percentage of the time cost of solving the corresponding 

original PC. Furthermore, each concretized PC is categorized based on the solver and the 

result as shown in this bar chart. 

 

 

 

 

 



 

 

100 

Table 14: Performance of Z3 Solving Simplified PC 

 
Z3 

Ratio of 

Concretization 
Total 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% 

S

A

T 

Longer 3,055 48 86 110 116 127 125 178 367 644 630 624 

Shorter 3,013 93 133 149 146 151 166 191 299 509 584 592 

Total 6,068 141 219 259 262 278 291 369 666 1,153 1,214 1,216 

Speedup 

Possibility 
49.65% 65.96% 60.73% 57.53% 55.73% 54.32% 57.04% 51.76% 44.89% 44.15% 48.11% 48.68% 

U

N

S

A

T 

Longer 2,030 147 172 206 222 261 268 387 333 34 0 0 

Shorter 5,249 928 822 751 732 677 656 457 205 21 0 0 

Total 7,279 1,075 994 957 954 938 924 844 538 55 0 0 

Speedup 

Possibility 
72.11% 86.33% 82.70% 78.47% 76.73% 72.17% 71.00% 54.15% 38.10% 38.18% 100.00% 100.00% 

Time Out 29 0 3 0 0 0 1 3 12 8 2 0 

Accuracy 45.36% 11.60% 18.01% 21.30% 21.55% 22.86% 23.93% 30.35% 54.77% 94.82% 99.84% 100.00% 

 

Table 15: Performance of CVC4 Solving Simplified PC 

 
CVC4 

Ratio of  

Concretization 
Total 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% 

S 

A 
T 

Longer 3,104 53 93 111 119 124 131 184 369 661 628 631 

Shorter 2,964 88 126 148 143 154 160 185 297 492 586 585 

Total 6,068 141 219 259 262 278 291 369 666 1,153 1,214 1,216 

Speedup 

Possibility 
48.85% 62.41% 57.53% 57.14% 54.58% 55.40% 54.98% 50.14% 44.59% 42.67% 48.27% 48.11% 

U 

N 

S 

A 
T 

Longer 2,058 158 178 211 227 259 273 385 334 33 0 0 

Shorter 5,221 917 816 746 727 679 651 459 204 22 0 0 

Total 7,279 1,075 994 957 954 938 924 844 538 55 0 0 

Speedup 

Possibility 
71.73% 85.30% 82.09% 77.95% 76.21% 72.39% 70.45% 54.38% 37.92% 40.00% 100.00% 100.00% 

Time Out 29 0 3 0 0 0 1 3 12 8 2 0 

Accuracy 45.36% 11.60% 18.01% 21.30% 21.55% 22.86% 23.93% 30.35% 54.77% 94.82% 99.84% 100.00% 

 

We have two very important observations from the data. Logically, replacing 

symbolic variables with concrete values in a PC should have reduced the complexity and 

lead to a faster solution. However, to our surprise, we did not observe a consistent 

reduction of time cost after concretizing the PC. The chance for Z3 to get a speedup on 

concretized SAT PC is only 49.65%. While on UNSAT PCs the possibility is a little 

higher (72.11%), but there are still some cases that we took longer to solve the 

concretized PC. CVC4 showed a similar performance with the speedup possibility being 

48.45% on SAT PCs and 71.73% on UNSAT PCs. Meanwhile, there is a 55% of chance 



 

 

101 

for a PC to become unsatisfiable after concretization, and the accuracy drops significantly 

as we concretize more symbolic variables. As we concretize 10% of the symbolic 

variables, we have 95% of the chance for the satisfiability does not change, and the 

possibility greatly drops to only 54% if we increase the ratio to 15%. 

 
 

Figure 15: Time Cost Distribution 

 

Clearly, these two observations make our technique non-applicable. At the first 

glance, it does not make sense for a concretized PC, which is simpler, needs more time to 

solve. Also, the low accuracy greatly challenges the soundness of the result from 

symbolic execution. Therefore, we need to know the reason behind these behaviors and 

find solution to these problems. 

Solving Concretized Constraint in Parallel 

Observed Problems 

We identified two major problems which caused the unexpected results in the 

case study. 



 

 

102 

 Random behavior of SMT solvers 

The first question we need to answer is why the time cost could increase on the 

concretized PCs, which are supposed to be easier to solve. As we have a closer look at 

the evaluation results, we have noticed an even more surprising fact that the performance 

can be very different when solving exactly the same PC. Data in Table 14 and Table 15 to 

show an example of this behavior. As we set the ratio to 0%, no symbolic variable is 

actually replaced, thus the “simplified” PC stays identical with the original version. 

However, we noticed that there is a 50% chance to get a faster solving and vice versa. We 

found a similar behavior among all the PCs as we conducted more experiments. In the 

worst case, a PC that could be solved within one minute in one solving run may even end 

up passing the 2 hours’ time limit we set in another run without any change applied. 

To understand this behavior, we looked into details of the solvers we choose, and 

find out it could be caused by the random behavior of SMT solving algorithms which is 

very common for modern SMT solvers including Z3 and CVC4. Based on the research 

paper “The Proof Complexity of SMT Solvers” (Robere et al., 2018), a typical SMT 

solver applies a collection of heuristics that interact with each other in very complicated 

ways, and it is difficult to discern which sets of heuristics are universally useful. As a 

result, off-the-shelf solvers usually embrace a non-deterministic strategy to choose the 

solving heuristic (or “model”). This is a reasonable solution for SMT solvers: since it is 

almost impossible to develop a fixed strategy to choose the heuristic for all constraints, 

introducing randomness can improve the possibility to solve a complex constraint in a 

shorter time. As for the two SMT solvers we used (Z3 and CVC4), even though the 



 

 

103 

documentation is limited, we find a related research (Reynolds et al., 2015) showing both 

solvers have the same randomness behavior. 

We need to mention that this randomness exists for every application including 

when used in symbolic execution runs introduced in previous chapters. The reason why it 

is not observed before is that the PCs generated by a conventional program are relatively 

simple and are able to suppress the impact of choosing different solving heuristic. When 

a PC has a very small number of symbolic variables and constraints, normally it won’t 

take a SMT solver a long time to find out a solution and there is not so much “space” for 

randomness in the first place. However, for PCs with a large number of constraints and 

symbolic variables, choosing different models can have a great impact on the 

performance. In our experiments, the solving time for one same concretized PC ranges 

from almost 0% of the original time cost to not able to solve it within 2 hours regardless 

of the final result. Meanwhile, this impact is not only on the time cost but also on the 

memory cost. We find that while some PCs can be solved given enough time (as we lift 

off the time limit of 2 hours), occasionally the solvers use up all 16 GB memory and 

result in a JVM error when solving the same PC. This shows that different heuristics 

chosen by SMT solvers impact on performance in terms of both time and space. 

 Change of satisfiability 

 The second problem that draws our attention is the change of satisfiability after 

replacing symbolic variables with a concrete value. In evaluation, we have a 55% of 

chance for the concretized PC to become unsatisfiable, and the rate increases as we 

replace more variables with concrete values in a PC. It is worth noting that it is not 

always wrong for the concretized PC to become unsatisfiable. On the contrary, it is a 



 

 

104 

reasonable behavior of concretization. With fewer variables kept symbolic, the solution 

space becomes smaller. As a result, it is possible to have an original satisfiable PC 

become unsatisfiable after replacing some variables, while an unsatisfiable will always 

remain unsatisfiable after concretization. Meanwhile, if a PC is unsatisfiable, there is a 

higher chance to get a faster solving result than the satisfiable PCs. To be more particular, 

the possibility for faster solving on satisfiable PCs is approximately 49%, while on 

unsatisfiable PCs the possibility is around 71%. We anticipate the reason as by using 

concrete values, it is possible to introduce logic short circuits into the PC e.g., some 

constraints can be identified as false in a very short time. 

 Although the change of satisfiability being expected, in our research, we would 

rather employ a more conservative thinking on the applicability of our technique, for 

being a symbolic execution approach, we need to make the result of constraint solving 

sound by all means. That is to say, we need to find a way to address this low accuracy 

problem. Since we cannot foresee whether an incoming PC is satisfiable or not before 

concretization, in order to maintain the soundness of the result, all unsatisfiable results 

must be double-checked, similar to DeepSolver. 

Parallelization on Constraint Solving 

 As we described, randomness of SMT algorithms is widely accepted and adopted 

by solvers. In addition, our technique is implemented in a well-developed symbolic 

execution framework which uses solvers as black-boxes and changing the solver itself 

may introduce unexpected side effects. Thus, currently we don’t aim a complete removal 

of such non-deterministic behaviors. Instead, we would like to employ parallelization to 

minimize the impact of the randomness. To be more specific, we assign multiple threads 



 

 

105 

(noted as “Cocoa threads”) to solve a copy of the same concretized PC simultaneously to 

increase the possibility of getting a fast solving heuristic. If any of these threads returned 

a solution, all other Cocoa threads can be stopped. In this way, the risk for choosing a 

heuristic that ends in a long solving time is much lower. For instance, let us say we assign 

10 threads to solve a simplified PC. If the chance for choosing a “bad” solving strategy 

for this PC is 50% (which is a conservative high number for an assumption), the 

possibility for all threads ending in this category is only 0.098%. 

 Meanwhile, parallelism can also be used to address the problem of low accuracy. 

In addition to major threads, we also launch several “backup threads” that are set to solve 

the original PC. If a major thread returns the concretized PC to be satisfiable, we consider 

it a reliable result and stop all threads. Otherwise, if a Cocoa thread returns unsatisfiable 

as result, we stop all the running major threads which are solving the same concretized 

PC and wait for a report from a backup thread. No matter the backup thread reports the 

PC to be satisfiable or not, it can be trusted for these threads are solving the original PC. 

Note that in order to minimize the impact of randomness of SMT solvers, we need to run 

more than 1 backup threads so that the time cost won’t change too much from not using 

our technique at all. 

Evaluation 

 We name our solution with parallelization as Cocoa, which represents 

concretization for constraint analysis. Since the major purpose of Cocoa is to optimize 

constraint solving, we ask the following two research questions for evaluation: 

• RQ1: How efficient Cocoa comparing with solving PC without concretization? 

• RQ2: How does the number of concretized symbolic variables impact the 



 

 

106 

performance of Cocoa? 

Experiment Setup 

 We introduce additional evaluation runs to examine the performance of the 

parallel solution. We randomly collected 75 PCs from multiple DNN programs 

(MNIST2, MNIST16, CIFAR10). All PCs have different complexity for each of these 

DNNs have different structure and takes different number of inputs. We still use ABS-

VAL as our heuristic, and for each PC we apply four ratios to decide the number of 

symbolic variables for concretization (5%, 10%, 15% and 20%). 

 For SMT solvers, we only use Z3 for this evaluation since we did not observe a 

clear difference in performance between Z3 and CVC4 in last evaluation. 

 We run each concretized PC with two different settings for comparison, both 

using 10 threads in total for solving. For experimental group (which we use Cocoa to 

solve constraints), we set 8 Cocoa threads which solve the concretized PC and 2 backup 

threads which solves the original PC, while for the comparison group all 10 threads are 

setup to solve original PCs. 

Results and Analysis 

 Table 16, Table 17 and Table 18 show the time cost of solving a PC with Cocoa 

on different configurations, which is the time cost of getting the first reliable result (SAT 

from a Cocoa thread or the result from backup thread). We also report the time cost of the 

comparison group and calculate the speedup with Cocoa. For each subject, we report not 

only the time cost and speedup for each PC, but also the average time cost and speedup 

among all 25 PCs with a certain ratio of concretization. To have a clearer look of the 



 

 

107 

data, we use a box chart (Figure 16) to show the distribution of speedup of Cocoa 

comparing with the comparison group. 

Table 16: Time Cost of Solving PCs from MNIST2 
 

PC 

Comparison 

Group 

Experimental Group (MNIST2) 

5% 10% 15% 20% 

Time Cost 

(ms) 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

pc-01 562,844 523,444 93.00% 503,029 89.37% 486,932 86.51% 560,029 99.50% 

pc-02 151,050 140,477 93.00% 135,700 89.84% 151,805 100.50% 151,503 100.30% 

pc-03 253,450 243,312 96.00% 232,119 91.58% 254,463 100.40% 252,436 99.60% 

pc-04 253,450 235,708 93.00% 224,629 88.63% 215,868 85.17% 206,801 81.59% 

pc-05 196,672 188,805 96.00% 179,364 91.20% 195,885 99.60% 197,458 100.40% 

pc-06 299,243 281,288 94.00% 273,411 91.37% 263,841 88.17% 252,231 84.29% 

pc-07 147,772 139,332 94.29% 132,922 89.95% 127,738 86.44% 120,712 81.69% 

pc-08 266,389 250,405 94.00% 243,393 91.37% 236,091 88.63% 265,057 99.50% 

pc-09 332,030 308,787 93.00% 296,435 89.28% 287,245 86.51% 332,362 100.10% 

pc-10 42,490 40,791 96.00% 39,036 91.87% 37,318 87.83% 35,750 84.14% 

pc-11 8,830 8,565 97.00% 8,785 99.49% 8,874 100.50% 8,794 99.59% 

pc-12 199,958 187,961 94.00% 181,382 90.71% 175,940 87.99% 167,670 83.85% 

pc-13 21,121 19,642 93.00% 19,249 91.14% 21,015 99.50% 21,184 100.30% 

pc-14 138,663 128,956 93.00% 124,313 89.65% 139,356 100.50% 138,385 99.80% 

pc-15 188,279 176,982 94.00% 170,256 90.43% 164,978 87.62% 155,574 82.63% 

pc-16 251,690 237,794 94.48% 228,757 90.89% 222,809 88.53% 252,193 100.20% 

pc-17 30,561 28,727 94.00% 30,622 100.20% 30,713 100.50% 30,438 99.60% 

pc-18 233,407 217,068 93.00% 212,727 91.14% 203,792 87.31% 232,706 99.70% 

pc-19 276,998 260,378 94.00% 249,963 90.24% 239,964 86.63% 276,444 99.80% 

pc-20 289,141 271,792 94.00% 258,745 89.49% 252,276 87.25% 242,941 84.02% 

pc-21 13,313 12,781 96.00% 12,193 91.59% 13,286 99.80% 13,273 99.70% 

pc-22 172,707 160,617 93.00% 155,316 89.93% 148,792 86.15% 139,715 80.90% 

pc-23 341,250 317,362 93.00% 301,811 88.44% 340,226 99.70% 340,567 99.80% 

pc-24 20,921 19,874 95.00% 19,238 91.96% 20,816 99.50% 20,941 100.10% 

pc-25 214,174 205,607 96.00% 197,999 92.45% 191,861 89.58% 213,531 99.70% 

Average 196,256 184,258 93.89% 177,256 90.32% 177,275 90.33% 185,148 94.34% 

Medium 199,958 188,805 94.00% 181,382 90.89% 191,861 88.53% 197,458 99.60% 

 

• RQ1: How efficient Cocoa comparing with solving PC without concretization? 

 Our first observation from the bar chart is that there is no clear sign of out-liners. 

 Since the impact of randomness is minimized by parallelization on both Cocoa 

and the comparison group, even though we did not get as large reduction in time cost as 

shown in previous evaluation, the performance is more stable in general. We can observe 

a trend of performance that the more symbolic variables we concretized, the larger of 

reduction of constraint solving time can be expected. Although the overall speedup for 



 

 

108 

each configuration differs from subject to subject, we can get the largest speedup when 

replacing 10% to 15% of symbolic variables with concrete values. 

Table 17: Time Cost of Solving PCs from MNIST16 

 

PC 

Comparison 

Group 

Experimental Group (MNIST16) 

5% 10% 15% 20% 

Time Cost 

(ms) 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

pc-01 717,627 644,591 89.82% 670,224 93.39% 723,810 100.86% 723,320 100.79% 

pc-02 171,593 145,131 84.58% 140,777 82.04% 204,527 119.19% 204,099 118.94% 

pc-03 257,506 257,715 100.08% 258,474 100.38% 267,067 103.71% 284,432 110.46% 

pc-04 325,937 286,212 87.81% 279,915 85.88% 276,276 84.76% 272,408 83.58% 

pc-05 248,201 214,021 86.23% 210,169 84.68% 271,187 109.26% 286,323 115.36% 

pc-06 337,247 318,102 94.32% 313,967 93.10% 308,630 91.51% 302,766 89.78% 

pc-07 168,165 146,525 87.13% 144,474 85.91% 140,140 83.33% 137,197 81.58% 

pc-08 330,856 281,718 85.15% 273,266 82.59% 265,068 80.12% 386,812 116.91% 

pc-09 379,843 350,381 92.24% 340,220 89.57% 334,436 88.05% 442,579 116.52% 

pc-10 41,641 34,998 84.05% 34,648 83.21% 34,232 82.21% 33,547 80.56% 

pc-11 9,263 8,475 91.49% 9,824 106.06% 9,933 107.23% 10,987 118.61% 

pc-12 219,554 203,125 92.52% 200,891 91.50% 195,266 88.94% 192,728 87.78% 

pc-13 22,959 20,449 89.07% 19,999 87.11% 23,940 104.27% 24,455 106.52% 

pc-14 137,832 123,400 89.53% 120,932 87.74% 159,160 115.47% 142,920 103.69% 

pc-15 229,136 190,560 83.16% 185,987 81.17% 180,593 78.81% 176,981 77.24% 

pc-16 327,197 276,531 84.52% 268,512 82.06% 260,725 79.68% 358,012 109.42% 

pc-17 36,215 30,438 84.05% 30,103 83.12% 37,159 102.61% 38,847 107.27% 

pc-18 260,949 220,467 84.49% 216,058 82.80% 210,440 80.64% 303,873 116.45% 

pc-19 267,581 248,689 92.94% 243,218 90.90% 239,083 89.35% 235,019 87.83% 

pc-20 348,994 311,827 89.35% 302,472 86.67% 293,398 84.07% 286,356 82.05% 

pc-21 12,661 11,367 89.78% 11,219 88.61% 12,837 101.39% 14,112 111.46% 

pc-22 214,157 183,945 85.89% 179,898 84.00% 176,300 82.32% 171,187 79.94% 

pc-23 414,619 398,303 96.06% 389,142 93.86% 380,970 91.88% 414,479 99.97% 

pc-24 20,294 17,777 87.60% 17,510 86.28% 17,072 84.12% 21,288 104.90% 

pc-25 236,877 214,969 90.75% 209,165 88.30% 203,099 85.74% 250,801 105.88% 

Average 229,476 205,589 89.59% 202,843 88.39% 209,014 91.08% 228,621 99.63% 

Medium 236,877 214,021 89.07% 209,165 86.67% 204,527 88.94% 235,019 104.90% 

 

  



 

 

109 

Table 18: Time Cost of Solving PCs from CIFAR10 

 
 

PC 
Comparison 

Group 

Experimental Group (CIFAR10) 

5% 10% 15% 20% 

Time Cost 

(ms) 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

Time Cost 

(ms) 
Speedup 

pc-01 1,788,155 1,662,982 93.00% 1,598,123 89.37% 1,546,983 86.51% 1,779,212 99.50% 

pc-02 459,494 427,331 93.00% 412,799 89.84% 461,791 100.50% 460,872 100.30% 

pc-03 933,040 877,056 94.00% 852,495 91.37% 822,656 88.17% 786,456 84.29% 

pc-04 750,875 694,688 92.52% 687,047 91.50% 667,810 88.94% 659,130 87.78% 

pc-05 1,142,899 965,923 84.52% 937,912 82.06% 910,712 79.68% 1,250,536 109.42% 

pc-06 583,232 542,404 93.00% 524,502 89.93% 502,471 86.15% 471,818 80.90% 

pc-07 839,995 709,683 84.49% 695,491 82.80% 677,406 80.64% 978,167 116.45% 

pc-08 911,317 856,636 94.00% 832,647 91.37% 807,667 88.63% 906,760 99.50% 

pc-09 1,140,855 1,060,992 93.00% 1,018,551 89.28% 986,974 86.51% 1,141,996 100.10% 

pc-10 678,457 637,752 94.00% 615,429 90.71% 596,964 87.99% 568,904 83.85% 

pc-11 421,674 392,155 93.00% 378,036 89.65% 423,782 100.50% 420,829 99.80% 

pc-12 859,449 825,071 96.00% 787,116 91.58% 862,884 100.40% 856,010 99.60% 

pc-13 753,760 700,996 93.00% 668,047 88.63% 641,991 85.17% 615,026 81.59% 

pc-14 594,736 570,946 96.00% 542,397 91.20% 592,356 99.60% 597,113 100.40% 

pc-15 769,416 726,936 94.48% 699,310 90.89% 681,127 88.53% 770,954 100.20% 

pc-16 778,179 723,705 93.00% 709,232 91.14% 679,443 87.31% 775,842 99.70% 

pc-17 940,576 884,139 94.00% 841,697 89.49% 820,654 87.25% 790,287 84.02% 

pc-18 676,361 649,307 96.00% 625,281 92.45% 605,897 89.58% 674,331 99.70% 

pc-19 580,001 505,365 87.13% 498,291 85.91% 483,343 83.33% 473,192 81.58% 

pc-20 1,027,970 875,298 85.15% 849,037 82.59% 823,566 80.12% 1,201,825 116.91% 

pc-21 799,532 743,083 92.94% 726,735 90.90% 714,380 89.35% 702,237 87.83% 

pc-22 1,073,506 959,180 89.35% 930,404 86.67% 902,492 84.07% 880,831 82.05% 

pc-23 723,851 621,734 85.89% 608,055 84.00% 595,894 82.32% 578,612 79.94% 

pc-24 1,382,340 1,327,942 96.06% 1,297,399 93.86% 1,270,154 91.88% 1,381,873 99.97% 

pc-25 63,216 55,375 87.60% 54,544 86.28% 53,179 84.12% 66,312 104.90% 

Average 826,915 759,867 91.89% 735,623 88.96% 725,303 87.71% 791,565 95.73% 

Medium 778,179 723,705 93.00% 699,310 89.84% 679,443 87.31% 770,954 99.60% 

 

• RQ2: How does the number of concretized symbolic variables impact the 

performance of Cocoa? 

 Meanwhile, we can also see from the distribution that as the ratio set to 15%, 

occasionally Cocoa would take the similar or more time to solve a PC. Once the ratio is 

set to 20%, for all 3 DNNs the speedup bounced back to over 94% on average. This is 

due to the fact that as more symbolic variables increased, there is a higher chance for us 

to get the report from solving the original PC. In our case study, we have already 

discovered that the accuracy drops as the ratio increases, thus it is safe to anticipate that 

the overall speedup will continue dropping with a higher ratio of concretization. Among 



 

 

110 

all evaluation results, we can see that the worst performance happens on PC-02 of 

MNIST16 with 20% symbolic variables being concretized, which costs 118.94% time of 

the comparison group. We conjuncture the reason being that since the result of Cocoa 

comes from a backup thread, and we only have 2 of them in setting, we did not get a 

better solving heuristic as among the 10 backup threads in comparison group. In practice, 

user may need to try different configurations to get the best speedup for different 

subjects. In the worst scenario, all PCs will be solved by a backup thread, and we can still 

expect the overall performance being similar to conventional constraint solving. 

 
 

 

Figure 16: Distribution of Time Cost of Solving Concretized PC in Parallel 

 

 

  



 

 

111 

VII. RELATED WORK 

Parallel Symbolic Execution and Guided Symbolic Execution 

 The area of parallel symbolic execution (Bucur et al., 2011; Staats and Păsăreanu, 

2010; Kim et al., 2012a; Siddiqui and Khurshid, 2010, 2012; Qiu et al., 2018) has been 

widely studied. These techniques essentially divide the symbolic execution tree into sub-

trees and distribute them to different workers to explore them in parallel. A primary 

difference between our work and previous work is no previous technique is specifically 

focused on property checking like our technique, which uses locations of assertions in the 

state space as “cut points” to distribute the exploration in order to get earlier reports about 

assertion violations. The parallel symbolic execution tool Cloud9 (Bucur et al., 2011) 

utilizes load balancing that first assigns the whole program to a worker. Whenever an idle 

worker becomes available, the load balancer instructs the busy worker to suspend 

exploration and breaks off some of its unexplored sub-tree to send to the idle worker to 

balance the workload. The workload is transferred among different workers as branches 

in the program. 

 SCORE framework (Kim et al., 2012a) distributes concolic testing (Sen et al., 

2005) so that whole execution paths are generated one by one on distributed nodes in a 

systematic manner while preventing redundant test case. In concolic testing, a symbolic 

path formula is extracted on the path traversed during each concrete execution, and 

further symbolic path formulas are then generated by negating path condition. The 

concrete executions based on the values generated by solving these symbolic path 

formulas can traverse different new paths in the program. Rather than exploring these 



 

 

112 

paths sequentially in regular concolic testing, the SCORE framework employs distributed 

nodes to explore these paths in parallel. 

 Static partitioning (Staats and Păsăreanu, 2010) leverages an initial shallow 

symbolic execution run to minimize the communication overhead during parallel 

symbolic execution. It creates pre-conditions using conjunctions of clauses on path 

conditions encountered during the shallow run and restricts symbolic execution by each 

worker to explore only paths that satisfy the pre-condition. 

 Another parallel symbolic execution tool ParSym (Siddiqui and Khurshid, 2010) 

first executes the program on an initial input and collects the constraints along the 

executed path. By negating individual constraints in the path condition, new path 

conditions are generated and sent to distributed workers, so each worker explores 

different paths of the program in parallel. A symbolic execution monitor controls the 

work distribution and stops exploration when all path constraints are analyzed or a certain 

bound of constraint number is reached. 

 Several other projects (Siddiqui and Khurshid, 2012; Qiu et al., 2018) use ranges 

as the basis for parallel symbolic execution. Ranged symbolic execution (Siddiqui and 

Khurshid, 2012) introduced the idea of bounding a run of symbolic execution using a 

range defined by a pair of two ordered tests (t1, t2) such that symbolic execution is 

restricted to program paths that are lexicographically between the path executed by t1 and 

the path executed by t2. Rui et al. (Qiu et al., 2018) extended ranged symbolic execution 

with two new types of ranges, i.e., feasible ranges and unexplored ranges. These projects 

partition the workload using ranges with respect to an initial shallow depth exploration 



 

 

113 

and assign the ranges to available workers who perform a deeper exploration and use 

work stealing for load balancing. 

 Much work has been done for guiding symbolic execution (Santelices and 

Harrold, 2010; Yang et al., 2014b; Ma et al., 2011). Directed symbolic execution (Yang 

et al., 2014b) uses a def-use analysis to compute change affected locations and then uses 

this information to guide symbolic execution to explore only program paths that are 

affected by the changes. Santelices and Harrold (Santelices and Harrold, 2010) use 

control and data dependencies to symbolically execute groups of paths, rather than 

individual paths. Ma et al. (Ma et al., 2011) propose a call chain backward search 

heuristic to find a feasible path to the target location. Our work leverages reachability of 

properties to guide symbolic execution to only explore paths relevant to the checked 

properties. 

 Some recent projects (Guo et al., 2015; Yang et al., 2014a; Zhang et al., 2014) 

have explored more efficient checking of properties. Guo et al. (Guo et al., 2015) 

introduce assertion guided symbolic execution for eliminating redundant executions in 

multi-threaded programs to reduce the overall computational cost. An execution is 

considered redundant when it shares the same reason why it cannot reach the bad state 

with previous executions, and thus can be eliminated for the purpose of checking 

assertions. While it focuses on eliminating redundant executions for multi-threaded 

programs, our guided check focuses on eliminating irrelevant executions for single-

threaded programs. iProperty (Yang et al., 2014a) computes differences between 

assertions of related programs in a manner that facilitates more efficient incremental 

checking of conformance of programs to properties. Our approach is orthogonal and can 



 

 

114 

use iProperty to compute differences between assertion versions when the checked 

assertion is changed, thus speeding up the assertion checking carried out by each worker. 

iDiscovery (Zhang et al., 2014) uses assertion separation to focus symbolic execution on 

checking one assertion at a time, and violation restriction to generate at most one 

violation of each assertion. While our work shares some insight with assertion separation 

on checking assertions separately, the guided and prioritized check in our work has 

potential to check each assertion more efficiently. 

Machine Learning for Satisfiability Checking 

 Researches Arbelaez et al. (2010); Xu et al. (2011); Gent et al. (2010); Xu et al. 

(2011); Kadioglu et al. (2010); Pulina and Tacchella (2007); O’Mahony et al. (2008); 

Kotthoff (2014); Map (2020) have applied machine learning techniques to constraint 

satisfiability checking with different models and techniques including linear regression, 

decision tree learning, clustering, k-nearest neighbors, and so on. Deep learning-based 

solvers have recently been developed to improve the efficiency of satisfiability checking. 

Selsam et al. Selsam et al. (2018) proposed NeuroSAT, a deep learning-based SAT solver 

using a single-bit supervision. It was developed to understand the extent to which neural 

networks can do precise logical reasoning. It classifies a SAT problem as satisfiable or 

unsatisfiable after a certain number of iterations when it finds a satisfying solution. To 

the best of our knowledge, most learning-based constraint solvers are designed to solve 

SAT problems, while symbolic execution frameworks usually apply SMT solvers for the 

path conditions that use a more general language model. DeepSolver currently supports 

linear integer arithmetic path conditions, which cannot be solved directly by a SAT 

solver. 



 

 

115 

 Xu et. al Hong Xu and Kumar (2018) applied deep learning to predict the 

satisfiability of Boolean binary constraint satisfaction problems. Different from our 

approach, this approach uses randomly generated constraint satisfaction problems as 

training data and applied a convolutional neural network (CNN) as the deep learning 

model, while we take existing constraint solutions as training dataset and use a simpler 

DNN structure. Moreover, this approach aims to predict the satisfiability of Boolean 

binary constraints, while our approach classifies the satisfiability of linear integer 

arithmetic path conditions. 

 Another related work is Path Constraint Classifier (PCC) Wen et al. (2019). PCC 

is a deep learning model whose aim is to reduce overall constraint solving latency by 

dynamically selecting a solver per query. The goal is to be able to predict which solver is 

the best for a given path condition in terms of efficiency. DeepSolver on the other hand 

focuses on using deep learning to classify path conditions as satisfiable or not. 

Reuse for Efficient Constraint Solving 

 Many techniques have been developed to speed up symbolic execution by reusing 

previous constraint solutions. For example, KLEE Cadar et al. (2008) optimizes 

constraint solving by an approach named counterexample caching. With the cached 

constraint solving results, KLEE can quickly check satisfiability of a path condition if it 

is a similar query to one of the stored records: if a path condition has a subset that is 

already known as unsatifiable, it is unsatifiable as well. Similarly, if a path condition has 

an already known satisfiable superset in the cache, it is satisfiable.  

 Green (Visser et al., 2012) applies Redis in-memory database to maintain the 

constraint solutions and uses slicing and canonizing to path conditions in order to 



 

 

116 

increase the reuse rate. To further improve Green, GreenTrie (Jia et al., 2015) stores 

constraints and solutions into L-Trie, which is indexed by an implication partial order 

graph of constraints and is able to carry out logical reduction and logical subset and 

superset querying for given constraints. Compared to Green and GreenTrie, our approach 

reuses the collective knowledge of constraint solutions: once the DNN is trained, 

DeepSolver does not reuse individual constraint solution, and can quickly classify the 

satisfiability of path conditions as long as they can be transformed into the required form 

of matrix. Similar to Green, PLATINUM (Zheng et al., 2020) reuses constraint solving 

results in checking Alloy (Jackson, 2012) specifications. Alloy specifications are usually 

translated by Kodkod (Torlak et al., 2013) into a Boolean formula, which is then solved 

by a SAT solver. Instead of solving it directly, PLATINUM slices and canonizes it into a 

normalized format, and searches whether an equivalent record exists in the storage. If 

such a slice exists, previous results will be reused. 

 Unlike techniques that store path conditions and their satisfiability information, 

memoized symbolic execution (Yang et al., 2012) stores positions and choices taken 

during symbolic execution in a trie – an efficient tree-based data structure. When applied 

to regression analysis, the trie guided symbolic execution would potentially skip 

exploration of portions of program paths, whereas symbolic execution using our approach 

would only skip calls to the underlying constraint solver. Our approach could work 

together with memoized symbolic execution to provide a fast classification of path 

conditions when program paths cannot be skipped by memoized symbolic execution. 

Some techniques, e.g. (Makhdoom et al., 2014), take advantage of test suites to reduce 

expensive constraint solving calls typically in regression testing. While these approaches 



 

 

117 

reuse existing test cases for efficient regression testing, our technique reuses constraint 

solving results to efficiently classify path conditions encountered in symbolic execution. 

  



 

 

118 

VIII. FUTURE WORK AND DISCUSSION 

This chapter discusses several directions for future work. 

Hybrid of STAPAR and STASE 

 Although the evaluation results have demonstrated the efficiency of STAPAR and 

STASE, there is still space for further improvement of efficiency of property checking 

using symbolic execution. Specifically, STASE uses dynamic analysis to partition the 

workload, and thus the worker in the first stage may explore paths and states that are 

irrelevant to property checking, and it may cause a delay in starting workers in the second 

stage. Meanwhile, for STAPAR, since each worker is assigned for checking a sub-

version, currently we do not have a finer granularity for the workload balancing even 

though the exploration is optimized with guided and prioritized checking. We consider a 

hybrid of STAPAR and STASE leveraging the strength of each technique could address 

these shortcomings in both and can reach a better solution to distribute the workload for 

parallel property checking with symbolic execution. 

Further Improvement of DeepSolver 

While working on DeepSolver, we designed the DNNs with two structures with 

different layers and neurons. The evaluation result shows the two DNN structures does 

not have significant impact on the accuracy while the small DNN can classify path 

conditions faster. In future, we would like to explore more types of DNN structures, for 

example, with different connection between neurons and different activation functions, 

aiming to find a better DNN structure for higher accuracy as well as better performance. 

We would also like to explore the impact of using a single universal matrix for all PCs 

instead of grouping PCs based on the size of matrices. Furthermore, currently our 



 

 

119 

algorithm supports linear integer arithmetic path conditions. We would like to expand the 

support for path conditions involving other theories. 

More Evaluation for Cocoa 

For Cocoa, we generated 75 path conditions from three DNNs to evaluate the 

performance of the technique. In practice, the number of paths in a DNN is usually 

tremendous, which means 25 PCs may not be enough to expose the best configuration in 

the heuristics for a DNN. Also, we currently do not have enough DNN programs in Java 

at hand for evaluation, as Cocoa is currently implemented on top of Symbolic Pathfinder. 

In future, we plan to further optimize our algorithm of Cocoa, and search for both DNN 

programs and conventional programs to further evaluate the performance of Cocoa. 

Testing Deep Neural Networks 

Due to the limitation of SMT solvers, the technique Cocoa introduced in Chapter 

VI is less stable and efficient than we expected. However, as we mentioned earlier in that 

chapter, the ranking of symbolic variables can be used to improve symbolic execution in 

other applications. For instance, we can use the importance score to guide a fuzz testing 

by mutating the most important pixels in an image. If the mutated input is classified a 

different result than the original one, we consider the input an interesting input (or “a 

faulty case”). Technically, these guided fuzzing for DNNs can be expected to detect 

faulty cases faster than randomly fuzzing the same input. We have implemented the 

methodology and are currently conducting experiments to evaluate it. During our 

experiments, we noticed that unlike conventional programs, generating test cases for deep 

neural networks can be far more challenging. There are two major problems: 



 

 

120 

The first problem is how to decide whether a test suite sufficient or not. Usually a 

test suite can be evaluated based on different coverage criteria (Hemmati, 2015) such as 

statement coverage, branch coverage, path coverage, etc. This evaluation is based on an 

assumption that all statements/branches/paths in a program are purposely created by the 

programmer. For instance, if a programmer writes an if-statement in the program, 

both branches are assumed to be executed with some inputs. Thus, generating tests to 

cover both branches can be helpful: if a test case can be generated, programmer can use it 

to execute the program and see whether the software behaves as he expected; if such a 

test case cannot be generated, programmer can get a report about the infeasible branch 

and check whether there is a problem in the code. In the recent years, researchers have 

proposed various coverage criteria such as path coverage (Wang et al., 2019) and neuron 

coverage (Xie et al., 2019) to evaluate test generation techniques for DNNs. However, 

these coverage criteria, despite being applicable, are not as persuasive on DNN testing. 

The key reason is that unlike regular programs a DNN is not manually programmed 

based on a clear specification. In contrary, the overall goal of deep learning is to 

automatically extract features whose structure is “unknown.” As a result, the problem of 

being non-interpretable remains a big problem in deep learning techniques (Gilpin et al., 

2018). Therefore, we have little idea about the “meaning” of each neuron and path in a 

DNN, and thus we cannot decide whether a coverage criterion is suitable or not. In other 

words, if a certain path in a DNN model is missed in testing, we do not know whether it 

means the test suite is not complete or that path is in fact “not meant to be covered.” 

That said, we can still generate test cases to cover all paths in a DNN with 

symbolic execution regardless of the meaning of each path. However, another problem 



 

 

121 

arises as not all test inputs generated by symbolic execution are meaningful for a DNN. 

Take a DNN trained on MNIST database as an example. A valid input for the DNN 

should contain the same features of the training data. In some cases, the generated data 

can be decided invalid based manually — for example, if an image is not a white digit 

with black background, one can easily tell that the data are invalid. However, there are 

also cases that can be arbitrary, especially if the input comes from fuzz testing. Consider 

an image generated by lowering the brightness of an original image in MNIST without 

changing anything else. We end up with a question on how to reason about the 

classification result of the new image: with an image that is clearly “darker” than the 

training data, both classification results would make sense. If the classification result is 

correct, that is because the change did not affect the important features in the original 

image. If the classification result is wrong, it also makes sense for the DNN as it may not 

trained to identify a “dark” image from the very beginning. As a result, one cannot avoid 

manual efforts to double-check the test cases. 

Due to the aforementioned problems, automated detection of invalid/unreasonable 

inputs for DNNs is highly demanded for test generation techniques such as fuzzing and 

symbolic execution and is an interesting direction for future work. 

Balancing the Training Dataset 

Class imbalance problem is a common problem in deep learning area. In reality, 

the sizes of data in each class/category can be very different, for some data are 

statistically rare in the first place or are difficult to produce. For instance, the number of 

patients who have a rare disease is, with no doubt, much smaller than the number of 

people who do not. To address data balancing problem, two kinds of techniques are 



 

 

122 

widely developed: techniques to generate a balanced training dataset from real data, and 

techniques to train a DNN with limited and imbalanced data (Batista et al., 2004; DÃez-

Pastor et al., 2015; Batista et al., 2003). For instance, one can apply different sampling 

techniques to discard some data in a larger category (under-sampling) or duplicate data in 

a smaller category (over-sampling). Some alternative ways include admitting the 

imbalance in dataset if it accurately represents the ratio of data in the real world or 

building a cost-sensitive classifier Hall et al. (2009) by setting the smaller category with 

less tolerance. In our work, we applied methods to generate new data based on existing 

data, which is similar to an over-sampling technique SMOTE (Bowyer et al., 2011). 

However, as we took a deeper look into this class imbalance problem, we 

discovered that these widely accepted techniques have only considered “size balancing.” 

In other words, they only consider the size of each categories in the training dataset, 

assuming that if each category has the same amount of training data, no category would 

be ignored by the model as all categories are treated as equally important. However, deep 

learning is in fact a decision maker based on features, not the size of data, which was 

commented by Yoshua Bengio, one of the leading scientists in deep learning and a 

winner of Turing Award in 2018. In his paper (Bengio, 2012), he mentioned that “Deep 

learning algorithms seek to exploit the unknown structure in the input distribution in 

order to discover good representations, often at multiple levels, with higher-level learned 

features defined in terms of lower-level features.” Simply put, a deep learning model is in 

fact a feature extractor, and it extracts features from the input data and checks the 

relationship between the distribution of features with the final classification result. Thus, 



 

 

123 

simply balancing the training dataset based on the number of data records in each 

category can be insufficient. 

Developing an approach to decide whether a dataset is balanced in terms of 

features can be very challenging. Yet, since deep learning is more and more widely 

considered a useful in software engineering, it is an interesting topic for future research. 

  



 

 

124 

IX. CONCLUSION 

Symbolic execution is a powerful technique for checking properties such as 

assertions. However, it could be very expensive due to problems like path explosion and 

time-consuming constraint solving. In this dissertation, we introduce four of our works 

aiming to increase the scalability of symbolic execution by different approaches. 

Specifically, the first two works employs parallel programming to distribute workload to 

multiple processes, while the third and fourth work aim to address expensive constraint 

solving problem in symbolic execution. 

The first part of this dissertation introduced a novel approach STAPAR for 

partitioning the problem of property checking using symbolic execution into simpler sub-

checks where each check is focused on checking one single property. All sub-checks are 

performed by multiple workers in parallel for better scalability. The parallelized property 

checking enabled us to further optimize each sub-check by pruning irrelevant paths 

regarding the checked property. Moreover, check is prioritized to explore shorter paths 

towards properties so that earlier feedback on the checked property can be provided to the 

user. Experiments using five subject programs with assertions that are manually written 

as well as automatically synthesized, showed that STAPAR reduced the overall analysis 

time compared with regular non-parallel property checking; and in sub-checks which 

focus on checking one single assertion, our guided check pruned state space exploration 

and thus reduced the time cost, and our prioritized check provided earlier feedback 

compared to regular check. 

The second part of this dissertation addressed property checking with symbolic 

execution in an alternative way. Normally, to check all assertions in a program, users are 



 

 

125 

usually forced to run symbolic execution sequentially for multiple times, or to wait for a 

long time before results of assertion checking are reported. In this work, we presented an 

approach STASE to checking assertions in two stages, so that the assertions are checked 

in parallel. The overhead due to redundancy of some state space exploration between 

workers is mitigated by memoization. We implemented STASE on top of Symbolic 

Pathfinder and conducted an evaluation with checking assertions in four different Java 

programs and demonstrated the effectiveness and efficiency of STASE. Overall, STASE 

detected the same assertion violations as sequential checking technique, while achieving 

up to 5.65X speedup. Moreover, due to the cost reduction as well as parallelism, the users 

get the assertion checking results much earlier in parallel checking than in sequential 

checking. 

Our third part of this dissertation introduced DeepSolver, a novel approach to 

solve constraints based on deep learning, which leverages existing constraint solutions for 

training DNNs to classify path conditions for their satisfiability during symbolic 

execution. To the best of our knowledge, this is the first work that results in a fully 

functional and applicable solution to use deep learning on constraint solution reuse for 

symbolic execution. Our evaluation shows that DeepSolver is highly applicable with a 

high accuracy. It is more efficient than conventional constraint solving and multiple 

existing constraint solution reuse frameworks in classifying path conditions for 

satisfiability. Meanwhile, the evaluation results show that DeepSolver can well support 

overall symbolic execution task. For future work, we plan to further evaluate our 

approach on additional real-world artifacts and compare our solution with other 

constraint solution reuse techniques. 



 

 

126 

The last part of this dissertation in this dissertation aimed to optimize constraint 

solving with concretization, which means replacing less-important symbolic variables 

with concrete values so that the complexity of the constraint is reduced. We consider a 

typical scenario of running symbolic execution on a DNN for image classification as 

example so that we can develop multiple heuristics to calculate the importance score of 

symbolic variables. As our case study exposed a thread of the unstable performance 

caused by the randomness of solvers, we reinforced the solution with parallelization to 

reduce its impact as well as solving the low correct rate problem at the same time. The 

evaluation results show that our solution, Cocoa, can reduce the time cost of constraint 

solving with a carefully selected number of symbolic variables to concretize.  



 

 

127 

REFERENCES 

SIR Repository. http://sir.unl.edu. 

Lonestar cluster. https://www.tacc.utexas.edu/systems/lonestar.  

(2019). Choco. choco solver. http://www.choco-solver.org/. 

(2019). Redis. redis nosql database. http://redis.io/. 

(2019). The mnist database. http://yann.lecun.com/exdb/mnist/.  

(2019). Z3 theorem prover. https://github.com/Z3Prover/z3/wiki/.  

(2020). Cvc4. https://cvc4.github.io/. 

(2020). Deepsee data repository. https://sites.google.com/view/deepsolver/. 

(2020). Maplesat. https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/maplesat. 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., 

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., 

Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., 

Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., 

Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., 

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). 

TensorFlow: Large-scale machine learning on heterogeneous systems. Software 

available from tensorflow.org. 

Acree, A., Budd, T., Demillo, R., Lipton, R., and Sayward, F. (1979). Mutation analysis. 

page 92. 

Agarap, A. F. (2018). Deep learning using rectified linear units (ReLU). CoRR, 
abs/1803.08375. 

Albert, E., Gómez-Zamalloa, M., Rojas, J. M., and Puebla, G. (2011). Compositional 

clp-based test data generation for imperative languages. In LOPSTR 2011. 

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., Harman, 

M., Harrold, M. J., and Mcminn, P. (2013). An orchestrated survey of methodologies 

for automated software test case generation. J. Syst. Softw., 86(8):1978–2001. 

Arbelaez, A., Hamadi, Y., and Sebag, M. (2010). Continuous search in constraint 

programming. In ICTAI 2010, pages 53–60. 

http://sir.unl.edu/
http://www.tacc.utexas.edu/systems/lonestar
http://www.choco-solver.org/
http://redis.io/
http://yann.lecun.com/exdb/mnist/


 

 

128 

Avgerinos, T., Rebert, A., Cha, S. K., and Brumley, D. (2014). Enhancing Symbolic 

Execution with Veritesting. Proceedings of the 36th International Conference on 

Software Engineering - ICSE 2014, pages 1083–1094. 

Bagnara, R., Carlier, M., Gori, R., and Gotlieb, A. (2013). Symbolic path-oriented test 

data generation for floating-point programs. Proceedings - IEEE 6th International 

Conference on Software Testing, Verification and Validation, ICST 2013, pages 1–10. 

Barrett, C. and Tinelli, C. (2007). CVC3. In CAV 2007, pages 298–302. 

Batista, G., Prati, R., and Monard, M.-C. (2004). A study of the behavior of several 

methods for balancing machine learning training data. SIGKDD Explorations, 6:20–

29. 

Batista, G. E. A. P. A., Bazzan, A. L. C., and Monard, M. C. (2003). Balancing 

training data for automated annotation of keywords: a case study. In WOB. 

Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer 

learning. In Guyon, I., Dror, G., Lemaire, V., Taylor, G. W., and Silver, D. L., 

editors, Unsupervised and Transfer Learning - Workshop held at ICML 2011, 

Bellevue, Washington, USA, July 2, 2011, volume 27 of JMLR Proceedings, pages 

17–36. JMLR.org. 

Borges, M., D’Amorim, M., Anand, S., Bushnell, D., and Păsăreanu, C. S. (2012). 

Symbolic execution with interval solving and meta-heuristic search. Proceedings - 

IEEE 5th International Conference on Software Testing, Verification and 

Validation, ICST 2012, (1):111–120. 

Bowyer, K. W., Chawla, N. V., Hall, L. O., and Kegelmeyer, W. P. (2011). SMOTE: 
synthetic minority over-sampling technique. CoRR, abs/1106.1813. 

Bronkhorst, A. (2015). The cocktail-party problem revisited: early processing and 
selection of multi-talker speech. Attention, perception & psychophysics, 77. 

Bucur, S., Ureche, V., Zamfir, C., and Candea, G. (2011). Parallel symbolic execution 

for automated real-world software testing. In EuroSys, pages 183–198. 

Burnim, J., Juvekar, S., and Sen, K. (2009). WISE: Automated test generation for 

worst-case complexity. In ICSE 2009, pages 463–473. 

Cadar, C., Dunbar, D., and Engler, D. R. (2008). KLEE: Unassisted and automatic 

generation of high-coverage tests for complex systems programs. In OSDI 2008, 

pages 209–224. 

 



 

 

129 

Cawley, G. C. (2012). Over-fitting in model selection and its avoidance. In Hollmén, J., 

Klawonn, F., and Tucker, A., editors, IDA 2012, pages 1–1. 

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras. 

Christakis, M., Müller, P., and Wüstholz, V. (2016). Guiding dynamic symbolic 

execution toward unverified program executions. Proceedings of the 38th 

International Conference on Software Engineering - ICSE ’16, pages 144–155. 

Clarke, L. A. (1976). A program testing system. In ACM ’76, pages 488–491. 

Clarke, L. A. and Rosenblum, D. S. (2006). A historical perspective on runtime 

assertion checking in software development. SIGSOFT Software Engineering 

Notes. 

Corbett, J. C., Dwyer, M. B., Hatcliff, J., and Robby (2000). Bandera: a source-level 

interface for model checking java programs. In ICSE, pages 762–765. 

De Moura, L. and Bjørner, N. (2008). Z3: An efficient SMT solver. In TACAS 

2008/ETAPS 2008, pages 337–340. 

DÃez-Pastor, J. F., RodrÃguez, J. J., GarcÃa-Osorio, C., and Kuncheva, L. I. (2015). 

Random balance: Ensembles of variable priors classifiers for imbalanced data. 

Knowledge-Based Systems, 85:96 – 111. 

Ernst, M. D. (2000). Dynamically Discovering Likely Program Invariants. PhD thesis, 

University of Washington Department of Computer Science and Engineering, Seattle, 

Washington. 

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S., and 

Xiao, C. (2007). The daikon system for dynamic detection of likely invariants. Sci. 

Comput. Program., 69(1-3):35–45. 

Finlayson, G. D., Schiele, B., and Crowley, J. L. (1998). Comprehensive colour image 

normalization. In Burkhardt, H. and Neumann, B., editors, Computer Vision — 

ECCV’98, pages 475–490, Berlin, Heidelberg. Springer Berlin Heidelberg. 

Fredkin, E. (1960). Trie memory. Commun. ACM, 3(9):490–499. 

Gent, I. P., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N. C. A., Nightingale, P., and 
Petrie, K. (2010). Learning when to use lazy learning in constraint solving. In ECAI 
2010, pages 873–878. 

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018). 

Explaining explanations: An approach to evaluating interpretability of machine 

learning. CoRR, abs/1806.00069. 

 



 

 

130 

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. 

In Gordon, G., Dunson, D., and DudÃk, M., editors, Proceedings of the 

Fourteenth International Conference on Artificial Intelligence and Statistics, 

volume 15 of Proceedings of Machine Learning Research, pages 315–323, Fort 

Lauderdale, FL, USA. PMLR. 

Godefroid, P. (1997). Model checking for programming languages using verisoft. In 

Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of 

Programming Languages, POPL ’97, pages 174–186, New York, NY, USA. 

ACM. 

Godefroid, P., Klarlund, N., and Sen, K. (2005). DART: directed automated random 

testing. In PLDI 2005, pages 213–223. 

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., 

Courville, A., and Bengio, Y. (2014). Generative adversarial networks. 

Gopinath, D., Wang, K., Zhang, M., Păsăreanu, C. S., and Khurshid, S. (2018). 

Symbolic execution for deep neural networks. CoRR, abs/1807.10439. 

Guo, S., Kusano, M., Wang, C., Yang, Z., and Gupta, A. (2015). Assertion guided 
symbolic execution of multithreaded programs. In ESEC/FSE, pages 854–865. 

Hadarean, L., Bansal, K., Jovanovi, D., Barrett, C., and Tinelli, C. (2014). A tale of 

two solvers: Eager and lazy approaches to bit-vectors. Lecture Notes in Computer 
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 

Notes in Bioinformatics), 8559 LNCS:680–695. 

Hall, M. A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. 

(2009). The WEKA data mining software: an update. SIGKDD Explorations, 

11(1):10–18. 

Havelund, K. and Pressburger, T. (2000). Model checking java programs using java 

pathfinder. International Journal on Software Tools for Technology Transfer, 

2(4):366–381. 

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image 

recognition. CoRR, abs/1512.03385. 

Hemmati, H. (2015). How effective are code coverage criteria? In 2015 IEEE 

International Conference on Software Quality, Reliability and Security, QRS 
2015, Vancouver, BC, Canada, August 3-5, 2015, pages 151–156. IEEE. 

Hong Xu, S. K. and Kumar, T. K. S. (2018). Towards effective deep learning for 
constraint satisfaction problems. In CP 2018, pages 588–597. 

Hossain, M., Do, H., and Eda, R. (2014). Regression testing for web applications 

using reusable constraint values. In ICST 2014, pages 312–321. 

 



 

 

131 

Inkumsah, K. and Xie, T. (2008). Improving structural testing of object-oriented 

programs via integrating evolutionary testing and symbolic execution. In ASE 2008, 

pages 297–306. 

Jackson, D. (2012). Software Abstractions: Logic, Language, and Analysis. The MIT 

Press. 

Jaffar, J., Murali, V., and Navas, J. a. (2013). Boosting concolic testing via interpolation. 

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering - 

ESEC/FSE 2013, pages 53–63. 

Jia, X., Ghezzi, C., and Ying, S. (2015). Enhancing reuse of constraint solutions to 

improve symbolic execution. In ISSTA 2015, pages 177–187. 

Johnson, J. and Khoshgoftaar, T. (2019). Survey on deep learning with class 

imbalance. Journal of Big Data, 6:27. 

Jones, J. A. (2008). Semi-Automatic Fault Localization. PhD thesis, Georgia Institute 

of Technology, Atlanta, GA. 

Joshi, A. and Heimdahl, M. P. E. (2005). Model-based safety analysis of simulink models 

using scade design verifier. In SAFECOMP 2005, pages 122–135. 

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. (2010). ISAC–instance-

specific algorithm configuration. In ECAI 2010, pages 751–756. 

Keogh, E. and Mueen, A. (2017). Curse of Dimensionality, pages 314–315. Springer 

US, Boston, MA. 

Kim, M., Kim, Y., and Rothermel, G. (2012a). A scalable distributed concolic testing 

approach: An empirical evaluation. In Proceedings of the 2012 IEEE Fifth 

International Conference on Software Testing, Verification and Validation, 

ICST ’12, pages 340–349, Washington, DC, USA. IEEE Computer Society. 

Kim, Y., Kim, M., Kim, Y. J., and Jang, Y. (2012b). Industrial application of concolic 

testing approach: A case study on libexif by using CREST-BV and KLEE. 

Proceedings - International Conference on Software Engineering, pages 1143–1152. 

King, J. C. (1976). Symbolic execution and program testing. Commun. ACM, 

19(7):385–394. 

Kotthoff, L. (2014). Algorithm selection for combinatorial search problems: A survey. 

AI Magazine, 35(3):48–60. 

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future 

directions. Progress in Artificial Intelligence, 5(4):221–232. 

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with 

deep convolutional neural networks. Commun. ACM, 60(6):84–90. 



 

 

132 

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T. (2011). HMDB: A large 

video database for human motion recognition. In ICCV 2011, pages 2556–2563. 

Leavens, G. T., Cheon, Y., Clifton, C., Ruby, C., and Cok, D. R. (2005). How the 

design of jml accommodates both runtime assertion checking and formal 

verification. Sci. Comput. Program., pages 185–208. 

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–44. 

Li, Y., Su, Z., Wang, L., and Li, X. (2013). Steering symbolic execution to less 

traveled paths. ACM SIGPLAN Notices, 48(10):19–32. 

Lloyd, J. and Sherman, E. (2015). Minimizing the Size of Path Conditions Using Convex 

Polyhedra Abstract Domain. ACM SIGSOFT Software Engineering Notes, 40(1):1–5. 

Ma, K.-K., Phang, K. Y., Foster, J. S., and Hicks, M. (2011). Directed symbolic 

execution. In SAS, pages 95–111. 

Makhdoom, S., Khan, M. A., and Siddiqui, J. H. (2014). Incremental symbolic 
execution for automated test suite maintenance. In Proceedings of the 29th 
ACM/IEEE international conference on Automated software engineering - ASE ’14, 
pages 271–276. ACM Press. 

Meyer, B., Nerson, J.-M., and Matsuo, M. (1987). Eiffel: Object-oriented design for 
software engineering. In ESEC, pages 221–229. 

Mohamed, A., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using deep 

belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 

20(1):14–22. 

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann 

machines. In ICML 2010, pages 807–814. 

Ngo, M. N. and Tan, H. B. K. (2007). Detecting large number of infeasible paths 

through recognizing their patterns. In Proceedings of the the 6th Joint Meeting of the 

European Software Engineering Conference and the ACM SIGSOFT Symposium on 

The Foundations of Software Engineering, ESEC-FSE ’07, pages 215–224, New 

York, NY, USA. ACM. 

Nielsen, M. A. (2018). Neural networks and deep learning. 

Noller, Y., Kersten, R., and Păsăreanu, C. S. (2018). Badger: Complexity analysis with 
fuzzing and symbolic execution. CoRR, abs/1806.03283. 

Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation 

functions: Comparison of trends in practice and research for deep learning. CoRR, 

abs/1811.03378. 

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., and O’Sullivan, B. (2008). Using 

case-based reasoning in an algorithm portfolio for constraint solving. In AICS 2008. 



 

 

133 

Păsăreanu, C. S., Visser, W., Bushnell, D., Geldenhuys, J., Mehlitz, P., and Rungta, N. 

(2013). Symbolic Pathfinder: integrating symbolic execution with model checking for 

Java bytecode analysis. Automated Software Engineering, pages 391–425. 

Păsăreanu, C. S. and Rungta, N. (2010). Symbolic PathFinder: Symbolic execution of 

java bytecode. In ASE 2010, pages 179–180. 

Pulina, L. and Tacchella, A. (2007). A multi-engine solver for quantified boolean 

formulas. In Bessière, C., editor, CP 2007, pages 574–589. 

Qiu, R. (2016). Scaling and certifying symbolic execution. PhD dissertation, 

University of Texas at Austin. 

Qiu, R., Khurshid, S., Păsăreanu, C. S., Wen, J., and Yang, G. (2018). Using test 

ranges to improve symbolic execution. In Dutle, A., Muñoz, C., and Narkawicz, A., 

editors, NASA Formal Methods, NFM 2018, pages 416–434, Cham. 

Qiu, R., Khurshid, S., Păsăreanu, C. S., and Yang, G. (2017). A synergistic approach for 

distributed symbolic execution using test ranges. In ICSE ’17 - Companion, pages 

130–132. 

Qiu, R., Yang, G., Păsăreanu, C. S., and Khurshid, S. (2015). Compositional symbolic 

execution with memoized replay. In ICSE 2015, pages 632–642. 

Reynolds, A., Blanchette, J. C., Cruanes, S., and Tinelli, C. (2015). Model finding for 

recursive functions in smt. In IJCAR. 

Robere, R., Kolokolova, A., and Ganesh, V. (2018). The proof complexity of smt 

solvers. In Chockler, H. and Weissenbacher, G., editors, Computer Aided 

Verification, pages 275–293, Cham. Springer International Publishing. 

Rojas, J. M. and Păsăreanu, C. S. (2013). Compositional symbolic execution through 

program specialization. In BYTECODE 2013 (ETAPS). 

Romano, A. and Engler, D. (2013). Expression reduction from programs in a symbolic 

binary executor. Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7976 LNCS:301–

319. 

SAE-ARP4761 (1996). Guidelines and Methods for Conducting the Safety Assessment 

Process on Civil Airborne Systems and Equipment. SAE International. 

Santelices, R. and Harrold, M. J. (2010). Exploiting program dependencies for 

scalable multiple-path symbolic execution. In ISSTA, pages 195–206. 

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., and Dill, D. L. 

(2018). Learning a SAT solver from single-bit supervision. CoRR, 

abs/1802.03685. 



 

 

134 

Sen, K. and Agha, G. (2006). CUTE and jCUTE: Concolic unit testing and explicit 

path model-checking tools. In CAV 2006, pages 419–423. 

Sen, K., Marinov, D., and Agha, G. (2005). Cute: A concolic unit testing engine for c. In 

Proceedings of the 10th European Software Engineering Conference Held Jointly 

with 13th ACM SIGSOFT International Symposium on Foundations of Software 

Engineering, ESEC/FSE-13, pages 263–272, New York, NY, USA. ACM. 

Seo, H. and Kim, S. (2014). How We Get There: A Context-guided Search Strategy in 

Concolic Testing. Proceedings of the 22Nd ACM SIGSOFT International Symposium 

on Foundations of Software Engineering, pages 413–424. 

Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje, A. (2016). Not just a black 
box: Learning important features through propagating activation differences. CoRR, 
abs/1605.01713. 

Siddiqui, J. H. and Khurshid, S. (2010). ParSym: Parallel symbolic execution. In ICSE, 
pages V1–405 – V1–409. 

Siddiqui, J. H. and Khurshid, S. (2012). Scaling symbolic execution using ranged 

analysis. In OOPSLA, pages 523–536. 

Siegel, S. F., Mironova, A., Avrunin, G. S., and Clarke, L. A. (2008). Combining 

symbolic execution with model checking to verify parallel numerical programs. 

ACM Trans. Softw. Eng. Methodol., 17(2). 

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. 

(2013). Recursive deep models for semantic compositionality over a sentiment 

treebank. In EMNLP 2013, pages 1631–1642. 

Soomro, K., Zamir, A. R., and Shah, M. (2012). UCF101: A dataset of 101 human 

actions classes from videos in the wild. CoRR, abs/1212.0402. 

Souza, M., Borges, M., d’Amorim, M., and Păsăreanu, C. S. (2011). CORAL: solving 

complex constraints for Symbolic PathFinder. In NFM, pages 359–374. 

Staats, M. and Păsăreanu, C. (2010). Parallel symbolic execution for structural test 

generation. In ISSTA ’10, pages 183–194. 

Tillmann, N. and De Halleux, J. (2008). Pex: White box test generation for .net. In 

Proceedings of the 2Nd International Conference on Tests and Proofs, TAP’08, pages 

134–153, Berlin, Heidelberg. Springer-Verlag. 

Tolstikhin, I. O., Bousquet, O., Gelly, S., and Schölkopf, B. (2018). Wasserstein 
auto-encoders. CoRR, abs/1711.01558. 

Torlak, E., Taghdiri, M., Dennis, G., and Near, J. (2013). Applications and extensions 

of alloy: Past, present, and future. Mathematical Structures in Computer Science, 

23:915–933. 



 

 

135 

Visser, W., Geldenhuys, J., and Dwyer, M. B. (2012). Green: Reducing, Reusing and 

Recycling Constraints in Program Analysis. In Proceedings of the ACM SIGSOFT 

20th International Symposium on the Foundations of Software Engineering - 

FSE ’12, page 1, New York, New York, USA. ACM Press. 

Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F. (2003). Model checking 

programs. Automated Software Engg., pages 203–232. 

Wang, D., Wang, Z., Fang, C., Chen, Y., and Chen, Z. (2019). Deeppath: Path-driven 

testing criteria for deep neural networks. In IEEE International Conference On 

Artificial Intelligence Testing, AITest 2019, Newark, CA, USA, April 4-9, 2019, 

pages 119–120. IEEE. 

Wen, J. and Yang, G. (2018). Parallel property checking with symbolic execution. 

pages 554–603. 

Wen, J. and Yang, G. (2019). Parallel property checking with staged symbolic 
execution. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied 
Computing, SAC ’19, pages 1802–1809, New York, NY, USA. ACM. 

Wen, S.-H., Mow, W.-L., Chen, W.-N., Wang, C.-Y., and Hsiao, H.-C. (2019). 
Enhancing symbolic execution by machine learning based solver selection. 

Whalen, M. W., Godefroid, P., Mariani, L., Polini, A., Tillmann, N., and Visser, W. 

(2010). FITE: future integrated testing environment. In FoSER 2010, pages 401–

406. 

Willard, D. E. (1984). New trie data structures which support very fast search 

operations. J. Comput. Syst. Sci., 28(3):379–394. 

Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J., Li, B., Yin, J., and 

See, S. (2019). Deephunter: a coverage-guided fuzz testing framework for deep neural 

networks. In Zhang, D. and Møller, A., editors, Proceedings of the 28th ACM 

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019, 

Beijing, China, July 15-19, 2019, pages 146–157. ACM. 

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Satzilla: Portfolio-based 

algorithm selection for SAT. CoRR, abs/1111.2249. 

Yang, G., Filieri, A., Borges, M., Clun, D., and Wen, J. (2019). Chapter five - advances 
in symbolic execution. volume 113 of Advances in Computers, pages 225 – 287. 
Elsevier. 

Yang, G., Khurshid, S., Person, S., and Rungta, N. (2014a). Property differencing for 
incremental checking. In ICSE, pages 1059–1070. 

Yang, G., Person, S., Rungta, N., and Khurshid, S. (2014b). Directed incremental 

symbolic execution. ACM Trans. Softw. Eng. Methodol., 24(1):3:1–3:42. 



 

 

136 

Yang, G., Păsăreanu, C. S., and Khurshid, S. (2012). Memoized symbolic execution. 

In ISSTA 2012, pages 144–154. 

Yi, Q., Yang, Z., Guo, S., Wang, C., Liu, J., and Zhao, C. (2015). Postconditioned 

symbolic execution. 2015 IEEE 8th International Conference on Software Testing, 

Verification and Validation, ICST 2015 - Proceedings. 

Zhang, L., Yang, G., Rungta, N., Person, S., and Khurshid, S. (2014). Feedback-driven 

dynamic invariant discovery. In ISSTA, pages 362–372. 

Zhang, X.-S. (2000). Introduction to Artificial Neural Network, pages 83–93. Springer 

US, Boston, MA. 

Zheng, G., Bagheri, H., Rothermel, G., and Wang, J. (2020). Platinum: Reusing 

constraint solutions in bounded analysis of relational logic. In Wehrheim, H. and 

Cabot, J., editors, Fundamental Approaches to Software Engineering, pages 29–52, 

Cham. Springer International Publishing. 

 


