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SCHOUTEN TENSOR EQUATIONS IN CONFORMAL
GEOMETRY WITH PRESCRIBED BOUNDARY METRIC

OLIVER C. SCHNÜRER

Abstract. We deform the metric conformally on a manifold with boundary.

This induces a deformation of the Schouten tensor. We fix the metric at the
boundary and realize a prescribed value for the product of the eigenvalues of

the Schouten tensor in the interior, provided that there exists a subsolution.

This problem reduces to a Monge-Ampère equation with gradient terms. The
main issue is to obtain a priori estimates for the second derivatives near the

boundary.

1. Introduction

Let (Mn, gij) be an n-dimensional Riemannian manifold, n ≥ 3. The Schouten
tensor (Sij) of (Mn, gij) is defined as

Sij = 1
n−2

(
Rij − 1

2(n−1)Rgij
)
,

where (Rij) and R denote the Ricci and scalar curvature of (Mn, gij), respectively.
Consider the manifold (M̃n, g̃ij) = (Mn, e−2ugij), where we have used u ∈ C2(Mn)
to deform the metric conformally. The Schouten tensors Sij of gij and S̃ij of g̃ij
are related by

S̃ij = uij + uiuj − 1
2 |∇u|

2gij + Sij ,

where indices of u denote covariant derivatives with respect to the background
metric gij , moreover |∇u|2 = gijuiuj and (gij) = (gij)−1. Eigenvalues of the
Schouten tensor are computed with respect to the background metric gij , so the
product of the eigenvalues of the Schouten tensor (S̃ij) equals a given function
s : Mn → R, if

det(uij + uiuj − 1
2 |∇u|

2gij + Sij)
e−2nu det(gij)

= s(x). (1.1)

We say that u is an admissible solution for (1.1), if the tensor in the determinant in
the numerator is positive definite. At admissible solutions, (1.1) becomes an elliptic
equation. As we are only interested in admissible solutions, we will always assume
that s is positive.
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Let now Mn be compact with boundary and u : Mn → R be a smooth (up to
the boundary) admissible subsolution to (1.1)

det(uij + uiuj − 1
2 |∇u|

2gij + Sij)

e−2nu det(gij)
≥ s(x). (1.2)

Assume that there exists a supersolution u to (1.1) fulfilling some technical con-
ditions specified in Definition 2.1. Assume furthermore that Mn admits a strictly
convex function χ. Without loss of generality, we have χij ≥ gij for the second
covariant derivatives of χ in the matrix sense.

The conditions of the preceding paragraph are automatically fulfilled if Mn

is a compact subset of flat Rn and u fulfills (1.2) and in addition det(uij) ≥
s(x)e−2nu det(gij) with uij > 0 in the matrix sense. Then Lemma 2.2 implies
the existence of a supersolution and we may take χ = |x|2.

We impose the boundary condition that the metric g̃ij at the boundary is pre-
scribed,

g̃ij = e−2ugij on ∂Mn.

Assume that all data are smooth up to the boundary. We prove the following

Theorem 1.1. Let Mn, gij, u, u, χ, and s be as above. Then there exists a metric
g̃ij, conformally equivalent to gij, with g̃ij = e−2ugij on ∂Mn such that the product
of the eigenvalues of the Schouten tensor induced by g̃ij equals s.

This follows readily from the next statement.

Theorem 1.2. Under the assumptions stated above, there exists an admissible
function u ∈ C0(Mn) ∩ C∞(Mn \ ∂Mn) solving (1.1) such that u = u on ∂Mn.

Recently, in a series of papers, Jeff Viaclovsky studied conformal deformations
of metrics on closed manifolds and elementary symmetric functions Sk, 1 ≤ k ≤ n,
of the eigenvalues of the associated Schouten tensor, see e. g. [41] for existence
results. Pengfei Guan, Jeff Viaclovsky, and Guofang Wang provide an estimate that
can be used to show compactness of manifolds with lower bounds on elementary
symmetric functions of the eigenvalues of the Schouten tensor [14]. An equation
similar to the Schouten tensor equation arises in geometric optics [18, 42]. Xu-Jia
Wang proved the existence of solutions to Dirichlet boundary value problems for
such an equation, similar to (1.1), provided that the domains are small. In [39] we
provide a transformation that shows the similarity between reflector and Schouten
tensor equations. For Schouten tensor equations, Dirichlet and Neumann boundary
conditions seem to be geometrically meaningful. For reflector problems, solutions
fulfilling a so-called second boundary value condition describe the illumination of
domains. Pengfei Guan and Xu-Jia Wang obtained local second derivative estimates
[18]. This was extended by Pengfei Guan and Guofang Wang to local first and
second derivative estimates in the case of elementary symmetric functions Sk of the
Schouten tensor of a conformally deformed metric [16]. We will use the following
special case of it

Theorem 1.3 (Pengfei Guan and Xu-Jia Wang/Pengfei Guan and Guofang Wang).
Suppose f is a smooth function on Mn × R. Let u ∈ C4 be an admissible solution
of

log det(uij + uiuj − 1
2 |∇u|

2gij + Sij) = f(x, u)
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in Br, the geodesic ball of radius r in a Riemannian manifold (Mn, gij). Then,
there exists a constant c = c(‖u‖C0 , f, Sij , r, M

n), such that

‖u‖C2(Br/2) ≤ c.

Boundary-value problems for Monge-Ampère equations have been studied by
Luis Caffarelli, Louis Nirenberg, and Joel Spruck in [4] an many other people later
on. For us, those articles using subsolutions as used by Bo Guan and Joel Spruck
will be especially useful [12, 13, 37, 38].

There are many papers addressing Schouten tensor equations on compact mani-
folds, see e. g. [3, 5, 6, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33,
34, 36, 41]. There, the authors consider topological and geometrical obstructions to
solutions, the space of solutions, Liouville properties, Harnack inequalities, Moser-
Trudinger inequalities, existence questions, local estimates, local behavior, blow-up
of solutions, and parabolic and variational approaches. If we consider the sum of
the eigenvalues of the Schouten tensor, we get the Yamabe equation. The Yamabe
problem has been studied on manifolds with boundary, see e. g. [1, 2, 7, 24, 35],
and in many more papers on closed manifolds. The Yamabe problem gives rise to
a quasilinear equation. For a fully nonlinear equation, we have to apply different
methods.

The present paper addresses analytic aspects that arise in the proof of a pri-
ori estimates for an existence theorem. This combines methods for Schouten tensor
equations, e. g. [16, 41], with methods for curvature equations with Dirichlet bound-
ary conditions, e. g. [4, 12].

We can also solve Equation (1.1) on a non-compact manifold (Mn, gij).

Corollary 1.4. Assume that there are a sequence of smooth bounded domains Ωk,
k ∈ N, exhausting a non-compact manifold Mn, and functions u, u, s, and χ, that
fulfill the conditions of Theorem 1.2 on each Ωk instead of Mn. Then there exists
an admissible function u ∈ C∞(Mn) solving (1.1).

Proof. Theorem 1.2 implies that equation (1.1) has a solution uk on every Ωk
fulfilling the boundary condition u = u on ∂Ωk. In Ωk, we have u ≤ uk ≤ u, so
Theorem 1.3 implies locally uniform C2-estimates on uk on any domain Ω ⊂ Mn

for k > k0, if Ω b Ωk0 . The estimates of Krylov, Safonov, Evans, and Schauder
imply higher order estimates on compact subsets of Mn. Arzelà-Ascoli yields a
subsequence that converges to a solution. �

Note that either s(x) is not bounded below by a positive constant or the manifold
with metric e−2ugij is non-complete. Otherwise, [14] implies a positive lower bound
on the Ricci tensor, i. e. R̃ij ≥ 1

c g̃ij for some positive constant c. This yields
compactness of the manifold [11].

It is a further issue to solve similar problems for other elementary symmetric
functions of the Schouten tensor. As the induced mean curvature of ∂Mn is related
to the Neumann boundary condition, this is another natural boundary condition.

To show existence for a boundary value problem for fully nonlinear equations
like Equation (1.1), one usually proves C2-estimates up to the boundary. Then
standard results imply Ck-bounds for k ∈ N and existence results. In our situation,
however, we don’t expect that C2-estimates up to the boundary can be proved. This
is due to the gradient terms appearing in the determinant in (1.1). It is possible to
overcome these difficulties by considering only small domains [42]. Our method is
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different. We regularize the equation and prove full regularity up to the boundary
for the regularized equation. Then we use the fact, that local interior Ck-estimates
(Theorem 1.3) can be obtained independently of the regularization. Moreover, we
can prove uniform C1-estimates. Thus we can pass to a limit and get a solution in
C0(Mn) ∩ C∞(Mn \ ∂Mn).

To be more precise, we rewrite (1.1) in the form

log det(uij + uiuj − 1
2 |∇u|

2gij + Sij) = f(x, u), (1.3)

where f ∈ C∞(Mn × R). Our method can actually be applied to any equation of
that form provided that we have sub- and supersolutions. Thus we consider in the
following equations of the form (1.3). Equation (1.3) makes sense in any dimension
provided that we replace Sij by a smooth tensor. In this case Theorem 1.2 is valid
in any dimension. Note that even without the factor 1

n−2 in the definition of the
Schouten tensor, our equation is not elliptic for n = 2 for any function u as the trace
gij(Rij − 1

2Rgij) equals zero, so there has to be a non-positive eigenvalue of that
tensor. Let ψ : Mn → [0, 1] be smooth, ψ = 0 in a neighborhood of the boundary.
Then our strategy is as follows. We consider a sequence ψk of those functions that
fulfill ψk(x) = 1 for dist(x, ∂Mn) > 2

k , k ∈ N, and boundary value problems

log det(uij + ψuiuj − 1
2ψ|∇u|

2gij + Tij) = f(x, u) inMn,

u = u on ∂Mn.
(1.4)

We dropped the index k to keep the notation simple. The tensor Tij coincides
with Sij on

{
x ∈Mn : dist(x, ∂Mn) > 2

k

}
and interpolates smoothly to Sij plus a

sufficiently large constant multiple of the background metric gij near the boundary.
For the precise definitions, we refer to Section 2.

Our sub- and supersolutions act as barriers and imply uniform C0-estimates.
We prove uniform C1-estimates based on the admissibility of solutions. Admissi-
bility means here that uij + ψuiuj − 1

2ψ|∇u|
2 + Tij is positive definite for those

solutions. As mentioned above, we can’t prove uniform C2-estimates for u, but we
get C2-estimates that depend on ψ. These estimates guarantee, that we can ap-
ply standard methods (Evans-Krylov-Safonov theory, Schauder estimates for higher
derivatives, and mapping degree theory for existence, see e. g. [10, 12, 32, 40]) to
prove existence of a smooth admissible solution to (1.4). Then we use Theorem 1.3
to get uniform interior a priori estimates on compact subdomains of Mn as ψ = 1
in a neighborhood of these subdomains for all but a finite number of regulariza-
tions. These a priori estimates suffice to pass to a subsequence and to obtain an
admissible solution to (1.3) in Mn \ ∂Mn. As uk = u = u for all solutions uk of
the regularized equation and those solutions have uniformly bounded gradients, the
boundary condition is preserved when we pass to the limit and we obtain Theorem
1.2 provided that we can prove ‖uk‖C1(Mn) ≤ c uniformly and ‖uk‖C2(Mn) ≤ c(ψ).
These estimates are proved in Lemmata 4.1 and 5.4, the crux of this paper.

Proof of Theorem 1.2. For admissible smooth solutions to (1.4), the results of Sec-
tion 3 imply uniform C0-estimates and Section 4 gives uniform C1-estimates. The
C2-estimates proved in Section 5 depend on the regularization. The logarithm of
the determinant is a strictly concave function on positive definite matrices, so the
results of Krylov, Safonov, Evans, [40, 14.13/14], and Schauder estimates yield
Cl-estimates on Mn, l ∈ N, depending on the regularization.
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Once these a priori estimates are established, existence of a solution uk for the
regularized problem (1.4) follows as in [12, Section 2.2].

On a fixed bounded subdomain Ωε := {x : dist(x, ∂Mn) ≥ ε}, ε > 0, however,
Theorem 1.3 implies uniform C2-estimates for all k ≥ k0 = k0(ε). The estimates
of Krylov, Safonov, Evans, and Schauder yield uniform Cl-estimates on Ω2ε, l ∈ N.
Recall that we have uniform Lipschitz estimates. So we find a convergent sequence
of solutions to our approximating problems. The limit u is in C0, 1(Mn)∩C∞(Mn\
∂Mn). �

The rest of the article is organized as follows. We introduce supersolutions and
some notation in Section 2. We mention C0-estimates in Section 3. In Section 4, we
prove uniform C1-estimates. Then the C2-estimates proved in Section 5 complete
the a priori estimates and the proof of Theorem 1.2.

The author wants to thank Jürgen Jost and the Max Planck Institute for Math-
ematics in the Sciences for support and Guofang Wang for interesting discussions
about the Schouten tensor.

2. Supersolutions and Notation

Before we define a supersolution, we explain more explicitly, how we regularize
the equation. For fixed k ∈ N we take ψk such that

ψk(x) =

{
0 dist(x, ∂Mn) < 1

k ,

1 dist(x, ∂Mn) > 2
k

and ψk is smooth with values in [0, 1]. Again, we drop the index k to keep the
notation simple. We fix λ ≥ 0 sufficiently large so that

log det(uij + ψuiuj − 1
2ψ|∇u|

2gij + Sij + λ(1− ψ)gij) ≥ f(x, u) (2.1)

for any ψ = ψk, independent of k. As log det(·) is a concave function on positive
definite matrices, (2.1) follows for k sufficiently large, if

log det(uij + uiuj − 1
2 |∇u|

2gij + Sij) ≥ f(x, u) on Mn

and
log det(uij + Sij + λgij) ≥ f(x, u) near ∂Mn,

provided that the arguments of the determinants are positive definite.
We define

Definition 2.1 (supersolution). A smooth function u : Mn → R is called a super-
solution, if u ≥ u and for any ψ as considered above,

log det(uij + ψuiuj − 1
2ψ|∇u|

2gij + Sij + λ(1− ψ)gij) ≤ f(x, u)

holds for those points in Mn for which the tensor in the determinant is positive
definite.

Lemma 2.2. If Mn is a compact subdomain of flat Rn, the subsolution u fulfills
(1.2) and in addition

det(uij) ≥ s(x)e−2nu det(gij)

holds, where uij > 0 in the matrix sense, then there exists a supersolution.
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Proof. In flat Rn, we have Sij = 0. The inequality

det(uij + ψuiuj − 1
2ψ|∇u|

2gij)

e−2nu det(gij)
≥ s(x) (2.2)

is fulfilled if ψ equals 0 or 1 by assumption. As above, (2.2) follows for any ψ ∈ [0, 1].
Thus (2.1) is fulfilled for λ = 0.

Let u = sup
Mn

u + 1 + ε|x|2 for ε > 0. It can be verified directly that u is a

supersolution for ε > 0 fixed sufficiently small. �

Our results can be extended to topologically more interesting manifolds, that
may not allow for a globally defined convex function.

Remark 2.3. Assume that all assumptions of Theorem 1.2 are fulfilled, but the
convex function χ is defined only in a neighborhood of the boundary. Then the
conclusion of Theorem 1.2 remains true.

Proof. We have employed the globally defined convex function χ only to prove
interior C2-estimates for the regularized problems. On the set

{x : dist(x, ∂Mn) ≥ ε} , ε > 0,

Theorem 1.3 implies C2-estimates. In a neighborhood

U = {x : dist(x, ∂Mn) ≤ 2ε}

of the boundary, we can proceed as in the proof of Lemma 5.4. If the function
W defined there attains its maximum over U at a point x in ∂U ∩ Mn, i. e.
dist(x, ∂Mn) = 2ε, W is bounded and C2-estimates follow, otherwise, we may
proceed as in Lemma 5.4. �

Notation. We set

wij =uij + ψuiuj − 1
2ψ|∇u|

2gij + Sij + λ(1− ψ)gij

=uij + ψuiuj − 1
2ψ|∇u|

2gij + Tij

and use (wij) to denote the inverse of (wij). The Einstein summation convention
is used. We lift and lower indices using the background metric. Vectors of length
one are called directions. Indices, sometimes preceded by a semi-colon, denote
covariant derivatives. We use indices preceded by a comma for partial derivatives.
Christoffel symbols of the background metric are denoted by Γkij , so uij = u;ij =
u,ij − Γkijuk. Using the Riemannian curvature tensor (Rijkl), we can interchange
covariant differentiation

uijk =ukij + uag
abRbijk,

uiklj =uikjl + ukag
abRbilj + uiag

abRbklj .
(2.3)

We write fz = ∂f
∂u and trw = wijgij . The letter c denotes estimated positive

constants and may change its value from line to line. It is used so that increasing
c keeps the estimates valid. We use (cj), (ck), . . . to denote estimated tensors.
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3. Uniform C0-Estimates

The techniques of this section are quite standard, but they simplify the C0-
estimates used before for Schouten tensor equations, see [41, Proposition 3]. Here,
we interpolate between the expressions for the Schouten tensors rather than between
the functions inducing the conformal deformations.

We wish to show that we can apply the maximum principle or the Hopf boundary
point lemma at a point, where a solution u touches the subsolution from above or
the supersolution from below.

Note that u can touch u from below only in those points, where u is admissible.
We did not assume that the upper barrier is admissible everywhere. But at those
points, where it is not admissible, u cannot touch u from below. More precisely, at
such a point, we have ∇u = ∇u and D2u ≤ D2u. If u is not admissible there, we
find ξ ∈ Rn such that 0 ≥ (uij + ψuiuj − 1

2ψ|∇u|gij + Tij)ξiξj . This implies that
0 ≥ (uij+ψuiuj− 1

2ψ|∇u|gij+Tij)ξ
iξj , so u is not admissible there, a contradiction.

The idea, that the supersolution does not have to be admissible, appears already
in [9].

Without loss of generality, we may assume that u touches u from above. Here,
touching means u = u and ∇u = ∇u at a point, so our considerations include the
case of touching at the boundary. It suffices to prove an inequality of the form

0 ≤ aij(u− u)ij + bi(u− u)i + d(u− u) (3.1)

with positive definite aij . The sign of d does not matter as we apply the maximum
principle only at points, where u and u coincide.

Define

Sψij [v] = vij + ψvivj − 1
2ψ|∇v|

2gij + Tij .

We apply the mean value theorem and get for a symmetric positive definite tensor
aij and a function d

0 ≤ log detSψij [u]− log detSψij [u]− f(x, u) + f(x, u)

=

1∫
0

d

dt
log det

{
tSψij [u] + (1− t)Sψij [u]

}
dt−

1∫
0

d

dt
f(x, tu+ (1− t)u)dt

=aij((uij + ψuiuj − 1
2ψ|∇u|

2gij)− (uij + ψuiuj − 1
2ψ|∇u|

2gij))

+ d · (u− u).

The first integral is well-defined as the set of positive definite tensors is convex. We
have |∇u|2 − |∇u|2 = 〈∇(u− u),∇(u+ u)〉 and

aij(uiuj − uiuj) =aij
1∫

0

d

dt
((tui + (1− t)ui)(tuj + (1− t)uj))dt

=2aij
1∫

0

(tuj + (1− t)uj)dt · (u− u)i,

so we obtain an inequality of the form (3.1). Thus, we may assume in the following
that we have u ≤ u ≤ u.
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4. Uniform C1-Estimates

Lemma 4.1. An admissible solution of (1.4) has uniformly bounded gradient.

Proof. We apply a method similar to [38, Lemma 4.2]. Let

W = 1
2 log |∇u|2 + µu

for µ� 1 to be fixed. Assume that W attains its maximum over Mn at an interior
point x0. This implies at x0

0 = Wi =
ujuji
|∇u|2

+ µui

for all i. Multiplying with ui and using admissibility gives

0 =uiujuij + µ|∇u|4

≥− ψ|∇u|4 + 1
2ψ|∇u|

4 − c|∇u|2 − λ|∇u|2 + µ|∇u|4.

The estimate follows for sufficiently large µ as λ, see (2.1), does not depend on ψ. If
W attains its maximum at a boundary point x0, we introduce normal coordinates
such that Wn corresponds to a derivative in the direction of the inner unit normal.
We obtain in this case Wi = 0 for i < n and Wn ≤ 0 at x0. As the boundary
values of u and u coincide and u ≥ u, we may assume that un ≥ 0. Otherwise,
0 ≥ un ≥ un and ui = ui, so a bound for |∇u| follows immediately. Thus we obtain
0 ≥ uiWi and the rest of the proof is identical to the case where W attains its
maximum in the interior. �

Note that in order to obtain uniform C1-estimates, we used admissibility, but
did not differentiate (1.3).

5. C2-Estimates

C2-Estimates at the Boundary. Boundary estimates for an equation of the
form det(uij + Sij) = f(x) have been considered in [4]. It is straightforward to
handle the additional term that is independent of u in the determinant and to use
subsolutions like in [12, 13, 37, 38]. We want to point out that we were only able
to obtain estimates for the second derivatives of u at the boundary by introducing
ψ and thus removing gradient terms of u in the determinant near the boundary.
The C2-estimates at the boundary are very similar to [38]. We do not repeat the
proofs for the double tangential and double normal estimates, but repeat that for
the mixed tangential normal derivatives as we can slightly streamline this part. Our
method does not imply uniform a priori estimates at the boundary as we look only
at small neighborhoods of the boundary depending on the regularization or, more
precisely, on the set, where ψ = 0.

Lemma 5.1 (Double Tangential Estimates). An admissible solution of (1.4) has
uniformly bounded partial second tangential derivatives, i. e. for tangential direc-
tions τ1 and τ2, u,ijτ i1τ

j
2 is uniformly bounded.

Proof. This is identical to [38, Section 5.1], but can also be found at various other
places. It follows directly by differentiating the boundary condition twice tangen-
tially. �

All the remaining C2-bounds depend on ψ.
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Lemma 5.2 (Mixed Estimates). For fixed ψ, an admissible solution of (1.4) has
uniformly bounded partial second mixed tangential normal derivatives, i. e. for a tan-
gential direction τ and for the inner unit normal ν, u,ijτ iνj is uniformly bounded.

Proof. The strategy of this proof is a follows. The differential operator T , defined
below, differentiates tangentially along ∂Mn. We want to show that the normal
derivative of Tu is bounded on ∂Mn. This implies a bound on mixed derivatives.
To this end, we use an elliptic differential operator L that involves all higher order
terms of the linearization of the equation. Thus, we can use the differentiated
equation to bound LTu. Based on the subsolution u, we construct a function ϑ ≥ 0
with Lϑ < 0. Finally, we apply the maximum principle to

Θ± := Aϑ+B|x− x0|2 ± T (u− u)

with constants A, B. This implies that Θ± ≥ 0 with equality at x0. Thus, the
normal derivative of Tu at x0 is bounded.

This proof is similar to [38, Section 5.2]. The main differences are as follows. The
modified definition of the linear operator T in (5.4) clarifies the relation between T
and the boundary condition. The term Tij does (in general) not vanish in a fixed
boundary point for appropriately chosen coordinates. In [38], we could choose such
coordinates. Similarly as in [38], we choose coordinates such that the Christoffel
symbols become small near a fixed boundary point. Here, we can add and subtract
the term Tij in (5.7) as it is independent of u. Finally, we explain here more
explicitly how to apply the inequality for geometric and arithmetic means in (5.9).

Fix normal coordinates around a point x0 ∈ ∂Mn, so gij(x0) equals the Kro-
necker delta and the Christoffel symbols fulfill

∣∣Γkij∣∣ ≤ cdist(·, x0) = c|x − x0|,
where the distance is measured in the flat metric using our chart, but is equiva-
lent to the distance with respect to the background metric. Abbreviate the first
n− 1 coordinates by x̂ and assume that Mn is locally given by {xn ≥ ω(x̂)} for a
smooth function ω. We may assume that (0, ω(0)) corresponds to the fixed bound-
ary point x0 and ∇ω(0) = 0. We restrict our attention to a neighborhood of x0,
Ωδ = Ωδ(x0) = Mn ∩ Bδ(x0) for δ > 0 to be fixed sufficiently small, where ψ = 0.
Thus the equation takes the form

log det(uij + Tij) = log det(u,ij − Γkijuk + Tij) = f(x, u). (5.1)

Assume furthermore that δ > 0 is chosen so small that the distance function to
∂Mn is smooth in Ωδ. The constant δ, introduced here, depends on ψ and tends
to zero as the support of ψ tends to ∂Mn.

We differentiate the boundary condition tangentially

0 = (u− u),t(x̂, ω(x̂)) + (u− u),n(x̂, ω(x̂))ω,t(x̂), t < n. (5.2)

Differentiating (5.1) yields

wij(u,ijk − Γliju,lk) = fk + fzuk + wij(Γlij,kul − Tij,k). (5.3)

This motivates the definition of the differential operators T and L. Here t < n is
fixed and ω is evaluated at the projection of x to the first n− 1 components

Tv :=vt + vnωt, t < n,

Lv :=wijv,ij − wijΓlijvl.
(5.4)

On ∂Mn, we have T (u− u) = 0, so we obtain

|T (u− u)| ≤ c(δ) · |x− x0|2 on ∂Ωδ. (5.5)
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As in [38, Section 5.2], [4, 12], we combine the definition of L, (5.4), and the
differentiated Equation (5.3)

|LTu| ≤ c · (1 + trwij) inΩδ.

Derivatives of u are a priorily bounded, thus

|LT (u− u)| ≤ c · (1 + trwij) inΩδ. (5.6)

Set d := dist(·, ∂Mn), measured in the Euclidean metric of the fixed coordinates.
We define for 1 � α > 0 and µ� 1 to be chosen

ϑ := (u− u) + αd− µd2.

The function ϑ will be the main part of our barrier. As u is admissible, there exists
ε > 0 such that

u,ij − Γlijul + Tij ≥ 3εgij .

We apply the definition of L

Lϑ =wij(u,ij − Γlijul + Tij)− wij(u,ij − Γlijul + Tij)

+ αwijd,ij − αwijΓlijdl

− 2µdwijd,ij − 2µwijdidj + 2µdwijΓlijdl

(5.7)

We have wij(u,ij −Γlijul+Tij) = wijwij = n. Due to the admissibility of u, we get
−wij(u,ij − Γlijul + Tij) ≤ −3ε trwij . We fix α > 0 sufficiently small and obtain

αwijd,ij − αwijΓlijdl ≤ ε trwij .

Obviously, we have

−2µdwijd,ij + 2µdwijΓlijdl ≤ cµδ trwij .

To exploit the term −2µwijdidj , we use that |di − δni | ≤ c · |x− x0| ≤ c · δ, so

−2µwijdidj ≤ −µwnn + cµδmax
k, l

∣∣wkl∣∣ .
As wij is positive definite, we obtain by testing

(
wkk wkl

wkl wll

)
with the vectors (1, 1)

and (1,−1) that |wkl| ≤ trwij . Thus (5.7) implies

Lϑ ≤ −2ε trwij − µwnn + c+ cµδ trwij (5.8)

We may assume that (wij)i, j<n is diagonal. Recall that our C0-estimates imply
that f is bounded. Thus

e−f = det(wij) =det



w11 0 · · · 0 w1n

0
. . . . . .

...
...

...
. . . . . . 0

...
0 · · · 0 wn−1n−1 wn−1n

w1n · · · · · · wn−1n wnn


=

n∏
i=1

wii −
∑
i<n

∣∣wni∣∣2 ∏
j 6=i
j<n

wjj ≤
n∏
i=1

wii

(5.9)
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implies that trwij tends to infinity if wnn tends to zero. So we can fix µ� 1 such
that the absolute constant in (5.8) can be absorbed. Note also that the geometric
arithmetic means inequality implies

1
n trwij = 1

n

n∑
i=1

wii ≥
( n∏
i=1

wii
)1/n

,

so (5.9) yields a positive lower bound for trwij . Finally, we fix δ = δ(µ) sufficiently
small and use (5.8) to deduce that

Lϑ ≤ −ε trwij . (5.10)

We may assume that δ is fixed so small that ϑ ≥ 0 in Ωδ.
Define for A, B � 1 the function

Θ± := Aϑ+B|x− x0|2 ± T (u− u).

Our estimates, especially (5.5) and (5.6), imply that Θ± ≥ 0 on ∂Ωδ for B � 1,
depending especially on δ(ψ), fixed sufficiently large and LΘ± ≤ 0 in Ωδ, when
A� 1, depending also on B, is fixed sufficiently large. Thus the maximum principle
implies that Θ± ≥ 0 in Ωδ. As Θ±(x0) = 0, we deduce that Θ±,n ≥ 0, so we obtain
a bound for (Tu),n and the lemma follows. �

Lemma 5.3 (Double Normal Estimates). For fixed ψ, an admissible solution of
(1.4) has uniformly bounded partial second normal derivatives, i. e. for the inner
unit normal ν, u,ijνiνj is uniformly bounded.

Proof. The proof is identical to [38, Section 5.3]. Note however, that the notation
there is slightly different. There −u,ij + aij is positive definite instead of u,ij −
Γkijuk + Tij here. �

Interior C2-Estimates.

Lemma 5.4 (Interior Estimates). For fixed ψ, an admissible solution of (1.4) has
uniformly bounded second derivatives.

Proof. Note the admissibility implies that wij is positive definite. This implies a
lower bound on the eigenvalues of uij .

For λ� 1 to be chosen sufficiently large, we maximize the functional

W = log(wijηiηj) + λχ

over Mn and all (ηi) with gijη
iηj = 1. Observe that W tends to infinity, if and

only if uijηiηj tends to infinity. We have

2uijηiζj =2wijηiζj − 2(ψuiuj − 1
2ψ|∇u|

2gij + Tij)ηiζj

≤wijηiηj + wijζ
iζj + c,

so it suffices to bound terms of the form wijη
iηj from above. Thus, a bound on W

implies a uniform C2-bound on u.
In view of the boundary estimates obtained above, we may assume that W

attains its maximum at an interior point x0 of Mn. As in [8, Lemma 8.2] we
may choose normal coordinates around x0 and an appropriate extension of (ηi)
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corresponding to the maximum value of W . In this way, we can pretend that w11

is a scalar function that equals wijηiηj at x0 and we obtain

0 = Wi =
1
w11

w11;i + λχi, (5.11)

0 ≥Wij =
1
w11

w11;ij −
1
w2

11

w11;iw11;j + λχij (5.12)

in the matrix sense, 1 ≤ i, j ≤ n. Here and below, all quantities are evaluated at
x0. We may assume that wij is diagonal and w11 ≥ 1. Differentiating (1.4) yields

wijwij;k = fk + fzuk, (5.13)

wijwij;11 − wikwjlwij;1wkl;1 = f11 + 2f1zu1 + fzzu1u1 + fzu11. (5.14)

Combining the convexity assumption on χ, (5.12) and (5.14) gives

0 ≥ 1
w11

wijw11;ij −
1
w2

11

wijw11;iw11;j + λ trwij

=
1
w11

wij(w11;ij − wij;11)

+
1
w11

wikwjlwij;1wkl;1 −
1
w2

11

wijw11;iw11;j

+
1
w11

(f11 + 2f1zu1 + fzzu1u1 + fzu11) + λ trwij ,

≡ 1
w11

(P4 + P3 +R) + λ trwij ,

(5.15)

where

P4 = wij(w11;ij − wij;11),

P3 = wikwjlwij;1wkl;1 −
1
w11

wijw11;iw11;j ,

R = f11 + 2f1zu1 + fzzu1u1 + fzu11.

It will be convenient to decompose wij as follows

wij = uij + rij ,

rij = ψuiuj − 1
2ψ|∇u|

2gij + Tij .
(5.16)

The quantity rij is a priorily bounded, so the right-hand side of (5.14) is bounded
from below by −c(1 + w11),

R ≥ −c · (1 + w11). (5.17)
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Let us first consider P3. Recall that wij is diagonal and w11 ≥ wii, 1 ≤ i ≤ n.
So we get wjl ≥ 1

w11
gjl. We also use (5.16) and the positive definiteness of wij

P3 =wikwjlwij;1wkl;1 −
1
w11

wijw11;iw11;j

≥ 1
w11

wij(wi1;1wj1;1 − w11;iw11;j)

=
1
w11

wij((ui11 + ri1;1)(uj11 + rj1;1)− (u11i + r11;i)(u11j + r11;j))

≥ 1
w11

wij(ui11uj11 − u11iu11j + 2ui11rj1;1 − 2u11ir11;j − r11;ir11;j)

≡P31 + P32 + P33,

(5.18)

where

P31 =
1
w11

wij(ui11uj11 − u11iu11j),

P32 =
2
w11

wijui11rj1;1,

P33 = − 2
w11

wiju11ir11;j −
1
w11

wijr11;ir11;j .

We will bound P31, P32, and P33 individually. The term r11;i is of the form ci+ckuki
or, by (5.16), of the form ci + ckwki.

P33 =− 2
1
w11

wiju11ir11;j −
1
w11

wijr11;ir11;j

=− 2
1
w11

wij(w11i − r11;i)r11;j −
1
w11

wijr11;ir11;j

≥2λwijχir11;j by (5.11)

=2λwijχi(cj + ckwkj)

≥− cλ(1 + trwij).

To estimate P32, we use (2.3), (5.16), (5.11), wikwkj = δij , and the fact that rj1;1
is of the form cj + ψcjw11 + ckwkj

P32 =
2
w11

wij(u11i + uag
abRb1i1)rj1;1

=
2
w11

wij(w11;i − r11;i + uag
abRb1i1)rj1;1

=− 2λwijχirj1;1 +
2
w11

wij(−r11;i + uag
abRb1i1)rj1;1

=− 2λwijχi(cj + ψcjw11 + ckwkj)

+
2
w11

wij(ci + ckwki)(cj + ψcjw11 + ckwkj)

≥− cλ(1 + trwij + ψw11 trwij)− c(1 + trwij).

It is crucial for the rest of the argument that the highest order error term contains
a factor ψ. We interchange third covariant derivatives and get

P31 =
1
w11

wij(ui11uj11 − (ui11 + uag
abRb11i)(uj11 + ucg

cdRd11j))
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≥− 2
1
w11

wijui11uag
abRb11j − c

1
w11

trwij

=2λwijχiuagabRb11j + 2
1
w11

wijri1;1uag
abRb11j − c

1
w11

trwij

by (5.11) and (5.16). Now, we obtain that

P31 ≥− c(1 + λ)(1 + trwij).

Recall that trwij is bounded below by a positive constant. We employ (5.18) and
get the estimate

1
w11

wikwjlwij;1wkl;1 −
1
w2

11

wijw11;iw11;j ≥ −c(λψ +
λ

w11
) trwij . (5.19)

Next, we consider P4. Equation (2.3) implies

u11ij =uij11 + ua1g
abRbi1j + uag

abRbi1j;1 + u1ag
abRbij1 + uiag

abRb1j1

+ uajg
abRb11i + uag

abRb11i;j

≥uij11 − cij(1 + w11).

We use (5.16)

wij(w11;ij − wij;11) = wij(u11ij − uij11) + wij(r11;ij − rij;11)

≥wij(r11;ij − rij;11)− cw11 trwij

=wij(ψiju2
1 + 4ψiu1u1j + 2ψu1ju1i + 2ψu1u1ij)

+ wij(−ψ11uiuj − 4ψ1ui1uj − 2ψu1iu1j − 2ψuiuj11)

+ wij(− 1
2ψij |∇u|

2g11 − 2ψiukukjg11 − ψukjukig11 − ψukukijg11)

+ wij( 1
2ψ11|∇u|2gij + 2ψ1u

kuk1gij + ψuk1uk1gij + ψukuk11gij)

+ wij(T11;ij − Tij;11)− cw11 trwij

=P41 + P42 − cw11 trwij ,

where

P41 =wij(ψiju2
1 + 4ψiu1u1j + 2ψu1ju1i)

+ wij(−ψ11uiuj − 4ψ1ui1uj − 2ψu1iu1j)

+ wij(− 1
2ψij |∇u|

2g11 − 2ψiukukjg11)

+ wij( 1
2ψ11|∇u|2gij + 2ψ1u

kuk1gij)

+ wij(T11;ij − Tij;11),

and

P42 =wij(2ψu1u1ij − 2ψuiuj11 − ψukukijg11 + ψukuk11gij)

+ wij(−ψukjukig11 + ψuk1uk1gij).

The last term in the first line and the last term in the second line of the definition
of P41 cancel. Note once more, that

wijujk = wij(wjk − rjk) = δik − wijrjk.
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Moreover, wij is positive definite, diagonal, and w11 ≥ wii, 1 ≤ i ≤ n, so |wij | ≤ w11

for any 1 ≤ i, j ≤ n. We obtain

P41 ≥ −cw11 trwij .

Note that this constant depends on derivatives of ψ. So our estimate does also
depend on ψ. We interchange covariant third derivatives (2.3) and employ once
again (5.16)

wij(w11;ij − wij;11) ≥wij(2ψu1u1ij − 2ψuiuj11 − ψukukijg11 + ψukuk11gij)

+ wij(−ψukjukig11 + ψuk1uk1gij)− cw11 trwij

=2ψu1w
ijuij1 + 2ψu1w

ijuag
abRbi1j

− ψg11u
kwijuijk − ψg11u

kwijuag
abRbikj

− 2ψuiwiju11j − 2ψuiwijuagabRb1j1

+ ψuku11k trwij + ψukuag
abRb1k1 trwij

− ψg11w
ij(wik − rik)(wjl − rjl)gkl

+ ψ(w1k − r1k)(w1l − r1l)gkl trwij − cw11 trwij

≥P43 + P44 − cw11 trwij ,

where

P43 = 2ψu1w
ijuij1 − ψg11u

kwijuijk − 2ψuiwiju11j + ψuku11k trwij ,

P44 = −ψg11wij(wik − rik)(wjl − rjl)gkl + ψ(w1k − r1k)(w1l − r1l)gkl trwij .

As above, we see that

P44 ≥ ψw2
11 trwij − cw11 trwij .

We continue to estimate P4 and replace third derivatives of u by derivatives of wij .
Equations (5.13) and (5.11) allow us to replace these terms by terms involving at
most second derivatives of u

wij(w11;ij − wij;11)

≥2ψu1w
ijwij;1 − 2ψu1w

ijrij;1 − ψg11u
kwijwij;k + ψg11u

kwijrij;k

− 2ψuiwijw11;j + 2ψuiwijr11;j + ψukw11;k trwij − ψukr11;k trwij

+ ψw2
11 trwij − cw11 trwij

≥− 2ψuiwijw11;j + ψukw11;k trwij + ψw2
11 trwij − cw11 trwij

≥2λψw11w
ijuiχj − λψw11u

kχk trwij + ψw2
11 trwij − cw11 trwij

≥− cλψw11 trwij + ψw2
11 trwij − cw11 trwij .

This gives
1
w11

wij(w11;ij − wij;11) ≥ −cλψ trwij + ψw11 trwij − c trwij . (5.20)

We estimate the respective terms in (5.15) using (5.17), (5.19), and (5.20) and
obtain

0 ≥
{
ψ(w11 − cλ) + (λ− c− cλ

w11
)
}

trwij . (5.21)

Recall once more, that c = c(ψ, . . . ) depends on the regularization.
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Assume that all c’s in (5.21) are equal. Now we fix λ equal to c+1. Then (5.21)
implies that w11 is bounded above. �
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