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Abstract. In this article we study quasilinear elliptic equations with a singu-
lar operator and at critical Sobolev growth. We prove the existence of positive

solutions.

1. Introduction and statement of main results

In this article, we study the existence of solutions for the quasilinear elliptic
equation

−∆u− κα(∆(|u|2α))|u|2α−2u = |u|q−2u+ |u|2
∗−2u, in Ω,

u > 0, in Ω,
u = 0, on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is an open bounded domain with smooth boundary ∂Ω,
0 < α < 1/2, 2 ≤ q < 2∗, 2∗ = 2N

N−2 is the critical Sobolev exponent.
Equation (1.1) comes from mathematical physics and was used to model some

physical phenomena. Let us consider the following quasilinear Schrödinger equation
introduced in [13, 14]

i∂tz = −∆z + w(x)z − l(|z|2)z − κ∆h(|z|2)h′(|z|2)z, x ∈ RN , (1.2)

where w(x) is a given potential, κ > 0 is a constant, N ≥ 3. h, l are real functions
of essentially pure power form.

Note that if κ = 0, then (1.2) is the standard semilinear Schrödinger equation
which has been extensively studied, see [1, 2] for examples. For κ > 0, it is a
quasilinear problem which has many applications in physics. The case of h(s) = s
was used for the superfluid film equation in plasma physics by Kurihura in [10]. It
also appears in plasma physics and fluid mechanics [12], in the theory of Heisenberg
ferromagnetism and magnons [9, 17] in dissipative quantum mechanics [8] and in
condensed matter theory [15]. The case of h(s) = sα, α > 0 was used to models the
self-channeling of high-power ultrashort laser in matter [3].
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The study of standing waves to (1.2) of the form z(x, t) = exp(−iet)u(x) can
reduce to find solutions u(x) to the equation

−∆u+ c(x)u− κα(∆(h(|u|2)))h′(|u|2)u = l(|u|2)u, x ∈ RN , (1.3)

where c(x) = w(x)− e is a new potential function.
In recent years, problems with h(s) = s have been extensively studied under

different conditions imposed on the potential c(x) and the perturbation l(u), one
can refer to [5, 6, 7, 14] and some references therein. Note that when h(s) = s,
the main operator of the second order in (1.3) is unbounded. In order to prove
the existence of solutions, Liu and Wang etc. [14] defined a change of variable
v = f−1(u) and used it to reformulate the equation to a semilinear one, where
f is defined by ODE: f ′(t) = (1 + 2f2(t))−1/2, t ∈ (0,+∞) and f(t) = −f(−t),
t ∈ (−∞, 0). This method can also be found in some papers about such kind of
problems thereafter, e.g. [5, 6, 7].

For problems with h(s) = sα, α > 0, it is worthy of pointing out that when
α > 1/2, the number 2∗(2α) = 2∗ × 2α behaves like critical exponent for (1.3) (see
[13]), while when 0 < α ≤ 1/2, the critical number is still 2∗.

Besides the references mentioned above, there are some papers study such kind
of problems with nonlinear terms at critical growth. In [19], Silva and Vieira
considered the problem with h(s) = s, l(|u|2)u = K(x)u2(2∗)−1 + g(x, u), and
proved the existence of solutions of (1.3). In [16], Moameni studied the prob-
lem with h(s) = sα, α > 1/2 and l(u) at critical growth under radially symmet-
ric conditions. Recently, Li and Zhang in [11] proved the existence of a posi-
tive solution for the problem that h(s) = sα, l(s) = s(q−2)/2 + s(2∗−2)/2, where
α > 1/2, 2(2α) ≤ q < 2∗(2α).

There are two main difficulties in the study of problem (1.1). The first one is
the main operator of the second order is singular in the equation provided that
0 < α < 1/2. Another one is caused by the nonlinear term |u|2∗−2u since the
Sobolev imbedding from H1

0 (Ω) into L2∗(Ω) is not compact.
Recently, the authors in [20, 21] studied the existence of standing waves of (1.2)

with h(s) = sα, 0 < α < 1/2 in RN . We mention that (1.1) can be deduced from
(1.3) by choosing l(s) = s(q−2)/2 + s(2∗−2)/2. Inspired by [11], in this paper, we
consider (1.1) on bounded domain Ω ⊂ RN .

We denote X := H1
0 (Ω) endowed with the norm ‖u‖2 = 〈u, u〉 =

∫
Ω
∇u∇udx.

Let f(u) = |u|q−2u + |u|2∗−2u. We want to find weak solutions to (1.1). By weak
solution, we mean a function u in X satisfying that, for all ϕ ∈ C∞0 (Ω), there holds∫

Ω

∇u∇ϕdx+ κα

∫
Ω

∇(|u|2α)∇(|u|2α−2uϕ) dx =
∫

Ω

f(u)ϕdx. (1.4)

According to the variational methods, the weak solutions of (1.1) corresponds
to the critical points of the functional I : X → R defined by

I(u) =
1
2

∫
Ω

(1 + 2κα2|u|2(2α−1))|∇u|2 dx−
∫

Ω

F (u) dx, (1.5)

where F (t) =
∫ u

0
f(s) ds. For u ∈ X, I(u) is lower semicontinuous when 0 < α <

1/2, and not differentiable in all directions ϕ ∈ X. To overcome this difficulty, we
use a change of variable to reformulate functional I. This make it possible for us
to use the classical critical point theorem.
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Let g(t) = (1 + 2κα2|t|2(2α−1))1/2, then g(t) is monotone and decreasing in
t ∈ (0,+∞). Note that for t0 > 0 sufficiently small, we have∫ t0

0

g(s) ds ≤ 2α
√
κ

∫ t0

0

s2α−1 ds =
√
κt2α0 ,

thus we can define a function G : R→ R by

v = G(u) =
∫ u

0

g(s) ds. (1.6)

Then G is invertible and odd.
Let G−1 be the inverse function of G, then d

dvG
−1(v) ∈ [0, 1). Inserting u =

G−1(v) into (1.5), we get

J(v) := I(G−1(v)) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

F (G−1(v)) dx. (1.7)

We can prove that (see Proposition 3.1) J is well defined on X, and is continuous
in X. Moreover, it is also Gâteaux-differentiable, and for ψ ∈ C∞0 (Ω),

〈J ′(v), ψ〉 =
∫

Ω

∇v∇ψ dx−
∫

Ω

f(G−1(v))
g(G−1(v))

ψ dx. (1.8)

Assume that v ∈ X with v > 0, x ∈ Ω and v = 0, x ∈ ∂Ω be such that equality
〈J ′(v), ψ〉 = 0 holds for all ψ ∈ C∞0 (Ω). Let u = G−1(v), then by (1.6), ∇v =
g(u)∇u. Accordingly, ∇u = ∇v

g(G−1(v)) . Thus we get u ∈ X.

For ϕ ∈ C∞0 (Ω), let ψ = g(G−1(v))ϕ, then ∇ψ = g(G−1(v))∇ϕ+ g′(G−1(v))ϕ
g(G−1(v)) ∇v.

Since

∇v∇ψ = g(G−1(v))∇v∇ϕ+
g′(G−1(v))ϕ
g(G−1(v))

|∇v|2

= g2(u)∇u∇ϕ+ g(u)g′(u)ϕ|∇u|2,

from (1.8), we obtain that∫
Ω

g2(u)∇u∇ϕ+
∫

Ω

g(u)g′(u)ϕ|∇u|2 −
∫

Ω

f(u)ϕ = 0.

This implies that u such that (1.4) holds. In summary, to find a weak solution to
(1.1), it suffices to find a positive weak solution to the following equation

−∆v =
f(G−1(v))
g(G−1(v))

, x ∈ Ω. (1.9)

We assume that

(H1) assume that q ∈ (2, 2∗) and either
(i) 1

4 < α < 1
2 , q > 4

N−2 + 4α or
(ii) 0 < α ≤ 1

4 , q > N+2
N−2 holds.

Note that for 1
4 < α < 1

2 , we have q > 4
N−2 + 4α > N+2

N−2 . The following theorem is
the main result of this article.

Theorem 1.1. Assume that (H1) holds. Then problem (1.1) has a positive weak
solution in X.
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In Section 2, we study the properties of the function G−1 and show that the
functional J has the mountain pass geometry. In Section 3, we first prove that every
Palais-Smale sequence {vn} of J is bounded in X, then we employ the mountain
pass theorem to prove the existence of nontrivial solution to (1.9). A crucial step
is to prove that the weak limit v of {vn} is nonzero.

In this article, ‖ · ‖p denotes the norm of Lebesgue space Lp(Ω) and Ck, k =
1, 2, 3, · · · will denote positive constants.

2. Mountain pass geometry

The following lemma gives some properties of the transformation G−1.

Lemma 2.1. The function G−1(t) has the following properties,
(1) G−1(t) is odd, invertible, increasing and of class C1 for 0 < α < 1/2, of

class C2 for 0 < α < 1/4;
(2) | d

dtG
−1(t)| ≤ 1 for all t ∈ R;

(3) |G−1(t)| ≤ |t| for all t ∈ R;
(4) (G−1(t))2α/t→

√
2/κ as t→ 0+;

(5) 2αG−1(t)g(G−1(t)) ≤ 2αt ≤ G−1(t)g(G−1(t)) for t > 0;
(6) G−1(t)/t→ 1 as t→ +∞;

Proof. For (1) and (2), G−1(t) is odd and invertible by definition. Moreover,
d
dtG

−1(t) = [g(G−1(t))]−1 ∈ [0, 1]. Thus G−1(t) is increasing and of class C1

for 0 < α < 1/2. By direct computation, we have

d2

dt2
G−1(t) = 2κα2(1− 2α)

|G−1(t)|−4αG−1(t)(
2κα2 + |G−1(t)|2(1−2α)

)2 .
This implies that G−1(t) is of class C2 provided that 0 < α < 1/4.

For (3), assume that t > 0 and note that g(G−1(t)) > 1, we have

0 ≤ G−1(t) =
∫ G−1(t)

0

ds ≤
∫ G−1(t)

0

g(s) ds = t.

Then the conclusion follows since G−1 is odd.
For (4), note that from part (3), we have G−1(t) → 0 as t → 0. Thus by

employing L’Hôpital’s Rule, we get

lim
t→0+

(G−1(t))2α

t
= lim
t→0+

2α(G−1(t))2α−1

g(G−1(t))
=

√
2
κ
.

For (5), we prove the right-hand side inequality. Let H(t) = G−1(t)g(G−1(t))
and H̃(t) = H(t)− 2αt. Then H̃(0) = 0. We prove that d

dtH̃(t) ≥ 0, i.e. d
dtH(t) ≥

2α, and this implies the conclusion. In fact, for t = 0, by part (4) and note that
G−1(t) has same sign of t, we have

d
dt

∣∣∣
t=0

H(t) = lim
t→0

H(t)
t

= lim
t→0

√
2
κ

|H(t)|
|G−1(t)|2α

=

√
2
κ

√
2κα2 = 2α.

For t 6= 0, we have

d
dt
H(t) =

d
dt

(G−1(t)
(
2κα2 + |G−1(t)|2(1−2α)

)1/2
|G−1(t)|1−2α

)
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≥ |G
−1(t)|2(1−2α) − (1− 2α)|G−1(t)|2(1−2α)

|G−1(t)|2(1−2α)
= 2α.

The left-hand side inequality can be proved similarly.
For part (6), since d

dtG
−1(t) > 1/2 for t > 0 sufficiently large, we conclude that

G−1(t) → +∞ as t → +∞. Thus by employing L’Hôpital’s Rule again, we have
limt→+∞G−1(t)/t = limt→+∞

d
dtG

−1(t) = 1. �

By the definition and properties of G−1, we have the following imbedding results.

Lemma 2.2. The map: v → G−1(v) from X into Lp(Ω) is continuous for 2 ≤ p ≤
2∗, and is compact for 2 ≤ p < 2∗.

The above lemma can be proved by using (2)-(3) of Lemma 2.1. In the next two
lemmas, we estimate the remainder of v−G−1(v) at infinity. The results obtained
will be used to compute the mountain pass level in the proof of the main theorem.

Lemma 2.3. There exists d0 > 0 such that

lim
v→+∞

(v −G−1(v)) ≥ d0.

Proof. Assume that v > 0. By Lemma 2.1, it follows that G−1(v) ≤ v and
G−1(v)g(G−1(v)) ≤ v. Thus we have

v −G−1(v) ≥ v
(

1− 1
g(G−1(v))

)
= v

(2κα2 +G−1(v)2(1−2α))1/2 −G−1(v)1−2α

(2κα2 +G−1(v)2(1−2α))1/2

≥ κα2v

2κα2 +G−1(v)2(1−2α)

≥ κα2v

2G−1(v)2(1−2α)
for v large

:= d(α, v).

Case 1. If 1
4 < α < 1

2 , then 0 < 1− 2α < 1 and thus d(α, v)→ +∞ as v → +∞.
Case 2. If α = 1

4 , then 1− 2α = 1 and thus d(α, v)→ κα2

2 as v → +∞.
Case 3. If 0 < α < 1

4 , we claim that v − G−1(v) → 0 is impossible. Assume on
the contrary. Note that 4α < 1 and (G−1(v))4α−1 → 0 as v → +∞, by L’Hôpital’s
Rule, we have

0 ≤ lim
v→+∞

v −G−1(v)
G−1(v)4α−1

= lim
v→+∞

G−1(v)1−2α

4α− 1
[(2κα2 +G−1(v)2(1−2α))1/2 −G−1(v)1−2α]

=
κα2

4α− 1
< 0,

a contradiction. In summary, for all 0 < α < 1/2, there exists d0 > 0 such that the
conclusion of the lemma holds. �

Lemma 2.4. For G−1(v) defined in (1.6), we have
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(i) If 1
4 < α < 1

2 , then

lim
v→+∞

v −G−1(v)
v4α−1

=
κα2

4α− 1
;

(ii) If 0 < α ≤ 1
4 , then

lim
v→+∞

v −G−1(v)
logG−1(v)

≤

{
κ
16 , α = 1

4 ,

0, 0 < α < 1
4 .

Proof. (i) Assume that 1
4 < α < 1

2 . By the proof of Lemma 2.3, we have v −
G−1(v)→ +∞ as v → +∞. Then we can use L’Hopital Principle to get

lim
v→+∞

v −G−1(v)
v4α−1

= lim
v→+∞

g(G−1(v))− 1
(4α− 1)v4α−2g(G−1(v))

=
κα2

4α− 1

(ii) Assume that 0 < α ≤ 1
4 . If there exists a constant C > 0 such that v −

G−1(v) ≤ C, then the conclusion holds. Otherwise, we may assume that v −
G−1(v)→ +∞ as v → +∞. Again by L’Hopital Principle, we have

A := lim
v→+∞

v −G−1(v)
logG−1(v)

= lim
v→+∞

G−1(v)
( 1
g(G−1(v))

− 1
)

= lim
v→+∞

2κα2G−1(v)2α

(2κα2 +G−1(v)2(1−2α))1/2 +G−1(v)1−2α
.

Thus A = κ
16 when α = 1

4 and A = 0 when 0 < α < 1
4 . This completes the

proof. �

3. Proof of main results

In this section, we first prove that the functional J is well defined on X, moreover,
it is continuous and Gâteaux-differentiable in X; next we show that J has the
mountain pass geometry, then we use mountain pass theorem to prove our main
results, this include the construction of a path has level c ∈ (0, SN/2/N).

Proposition 3.1. The functional J has the following properties:
(1) J is well defined on X,
(2) J is continuous in X,
(3) J is Gâteaux-differentiable.

Proof. Conclusions (1) and (2) can be proved by using items (2)-(3) of Lemma 2.1
and Hölder’s inequality, we only prove conclusion (3). Since G−1 ∈ C1(R,R), for
v ∈ X, t > 0 and for any ψ ∈ X, by Mean Value Theorem, there exists θ ∈ (0, 1)
such that

1
t

∫
Ω

[
F (G−1(v + tψ))− F (G−1(v))

]
dx =

∫
Ω

f(G−1(v + θtψ))
g(G−1(v + θtψ))

ψ dx.

Then by items (2),(3) of Lemma 2.1, and Lebesgue’s dominated convergence theo-
rem, we have∣∣∣ ∫

Ω

f(G−1(v + θtψ))
g(G−1(v + θtψ))

ψ dx−
∫

Ω

f(G−1(v))
g(G−1(v))

ψ dx
∣∣∣
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≤
∫

Ω

∣∣∣f(G−1(v + θtψ))
g(G−1(v + θtψ))

ψ − f(G−1(v))
g(G−1(v + θtψ))

ψ
∣∣∣dx

+
∫

Ω

∣∣∣ f(G−1(v))
g(G−1(v + θtψ))

ψ − f(G−1(v))
g(G−1(v))

ψ
∣∣∣dx

≤
∫

Ω

∣∣f(G−1(v + θtψ))− f(G−1(v))
∣∣|ψ|dx

+
∫

Ω

∣∣f(G−1(v))
∣∣∣∣∣ 1
g(G−1(v + θtψ))

− 1
g(G−1(v))

∣∣∣|ψ|dx→ 0,

as t→ 0. Therefore,

1
t

∫
Ω

[
F (G−1(v + tψ))− F (G−1(v))

]
dx→

∫
Ω

f(G−1(v))
g(G−1(v))

ψ dx.

This implies that J is G-differentiable. �

Remark 3.2. Let v ∈ X. Assume that w ∈ X and w → v. By using similar
arguments as for Lemma 3.1, one can prove that

〈J ′(w)− J ′(v), ψ〉 → 0, ∀ψ ∈ X.
This means that J is Fréchet-differentiable.

In the following, we consider the existence of positive solutions to (1.9). From
variational point of view, non-negative weak solutions of the equation correspond
to the nontrivial critical points of the functional

J+(v) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

F (G−1(v)+) dx.

To avoid cumbersome notation, we denote J+(v) and F (G−1(v)+) by J(v) and
F (G−1(v)) respectively.

Proposition 3.3. There exist ρ0, a0 > 0 such that J(v) ≥ a0 for all ‖v‖ = ρ0.

Proof. Note that |G−1(v)| ≤ v, by Sobolev inequality, we have

J(v) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

F (G−1(v)) dx

≥ 1
2

∫
Ω

|∇v|2 dx− 1
q

∫
Ω

|v|q dx− 1
2∗

∫
Ω

|v|2
∗

dx

≥ C1‖v‖2 − C2(‖v‖q + ‖v‖2
∗
).

Since 2∗ > q > 2, there exist ρ > 0 and a0 > 0 such that J(v) ≥ a0 for all
‖v‖ = ρ. �

Proposition 3.4. There exists v0 ∈ X with ‖v0‖ > ρ0 such that J(v0) < 0.

Proof. Let ε > 0 be such that B2ε = {x ∈ RN : |x| < 2ε} ⊂ Ω. We take
ϕ ∈ C∞0 (Ω, [0, 1]) with suppt(ϕ) = B2ε and ϕ(x) = 1 for x ∈ Bε. Note that
limt→+∞G−1(tϕ)/tϕ = 1, we have F (G−1(tϕ)) ≥ 1

2F (tϕ) for t ∈ R large enough.
This gives

J(tϕ) ≤ t2

2

∫
Ω

|∇ϕ|2 dx− tq

2q

∫
Bε

|ϕ|q dx− t2
∗

22∗

∫
Bε

|ϕ|2
∗

dx

Choosing t0 > 0 sufficient large and letting v0 = t0ϕ, we have J(v0) < 0. �
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As a consequence of Propositions 3.3-3.4 and the Ambrosetti-Rabinowitz Moun-
tain Pass Theorem [18], there exists a Palais-Smale sequence {vn} of J at level c
with

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)) > 0, (3.1)

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) 6= 0, J(γ(1)) < 0}. That is, J(vn) →
c, J ′(vn)→ 0 as n→∞.

Proposition 3.5. Assume that {vn} is a Palais-Smale sequence for J , then {vn}
and {G−1(vn)} are bounded in X.

Proof. Since {vn} ⊂ X is a Palais-Smale sequence, we have

J(vn) =
1
2

∫
Ω

|∇vn|2 dx−
∫

Ω

F (G−1(vn)) dx→ c, (3.2)

and for any ψ ∈ X,

〈J ′(vn), ψ〉 =
∫

Ω

[
∇vn∇ψ −

f(G−1(vn))
g(G−1(vn))

ψ
]

dx = o(1)‖ψ‖. (3.3)

Note that G−1(t)g(G−1(t)) → 0 as t → 0, we have G−1(vn)g(G−1(vn)) ∈ X by
direct computation. Thus we can take ψ = G−1(vn)g(G−1(vn)) as test functions
and get

〈J ′(vn), ψ〉 =
∫

Ω

|∇vn|2 dx−
∫

Ω

f(G−1(vn))G−1(vn) dx

−
∫

Ω

2κα2(1− 2α)
2κα2 + |G−1(vn)|2(1−2α)

|∇vn|2 dx.
(3.4)

It follows that

c+ o(1) = J(vn)− 1
q
〈J ′(vn), ψ〉 ≥

(1
2
− 1
q

) ∫
Ω

|∇vn|2 dx.

Since q > 2, we obtain that {vn} is bounded in X. Note that |∇G−1(vn)|2 ≤ |∇vn|2,
we conclude that {G−1(vn)} is also bounded in X. �

Since vn is a bounded Palais-Smale sequence, there exists v ∈ X such that vn ⇀ v
in X. Then by Lemma 2.1 and Lebesgue’s dominated convergence theorem, for any
ψ ∈ X, we have

〈J ′(vn)− J ′(v), ψ〉

=
∫

Ω

(∇vn −∇v)∇ψ dx

−
∫

Ω

( |G−1(vn)|q−2G−1(vn)
g(G−1(vn))

− |G
−1(v)|q−2G−1(v)
g(G−1(v))

)
ψ dx

−
∫

Ω

( |G−1(vn)|2∗−2G−1(vn)
g(G−1(vn))

− |G
−1(v)|2∗−2G−1(v)
g(G−1(v))

)
ψ dx→ 0.

Note that 〈J ′(vn), ψ〉 → 0, we get J ′(v) = 0. This means that v is a weak solution
of (1.1). Now we show that v is nontrivial.

Proposition 3.6. Let {vn} be a Palais-Smale sequence for functional J at level
c ∈ (0, 1

N S
N/2), assume that vn ⇀ v in X, then v 6= 0.
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Proof. We prove the proposition by contradiction. Assume that v = 0. Let ψ =
G−1(vn)g(G−1(vn)). Reasoning as for (3.4), we get

〈J ′(vn), ψ〉 =
∫

Ω

4κα3 + |G−1(vn)|2(1−2α)

2κα2 + |G−1(vn)|2(1−2α)
|∇vn|2 dx−

∫
Ω

f(G−1(vn))G−1(vn) dx

≥
∫

Ω

|G−1(vn)|2(1−2α)

2κα2 + |G−1(vn)|2(1−2α)
|∇vn|2 dx−

∫
Ω

f(G−1(vn))G−1(vn) dx

=
∫

Ω

|∇G−1(vn)|2 dx−
∫

Ω

f(G−1(vn))G−1(vn) dx.

As the term |G−1(vn)|q is subcritical, we infer from 〈J ′(vn), G−1(vn)g(G−1(vn))〉 =
o(1) that

o(1) ≥ ‖G−1(vn)‖2 − ‖G−1(vn)‖2
∗

2∗ .

By Sobolev inequality, we have ‖u‖2 ≥ S‖u‖22∗ for all u ∈ X, where S is the best
constant for the imbedding H1

0 (Ω) ↪→ L2∗(Ω); then we obtain

o(1) ≥ ‖G−1(vn)‖2(1− S−2∗/2‖G−1(vn)‖2
∗−2).

Assume that ‖G−1(vn)‖ → 0, then by Sobolev inequality, we have ‖G−1(vn)‖r →
0, ∀r ∈ [2, 2∗]. Using (5) of Lemma 2.1, we conclude that∫

RN

|∇vn|2 dx = 〈J ′(vn), vn〉+
∫

RN

|G−1(vn)|q−2G−1(vn)
g(G−1(vn))

vn dx

+
∫

RN

|G−1(vn)|2∗−2G−1(vn)
g(G−1(vn))

vn dx

≤ 〈J ′(vn), vn〉+
1

2α

∫
RN

|G−1(vn)|q dx+
1

2α

∫
RN

|G−1(vn)|2
∗

dx

→ 0,

This contradicts J(vn)→ c > 0; therefore

‖G−1(vn)‖2
∗

2∗ ≥ SN/2 + o(1).

Again by (5) of Lemma 2.1, we have

c = lim
n→∞

{
J(vn)− 1

2
〈J ′(vn), vn〉

}
= lim
n→∞

{∫
RN

|G−1(vn)|q−2
(1

2
G−1(vn)vn
g(G−1(vn))

− 1
q
G−1(vn)2

)
dx

+
∫

RN

|G−1(vn)|2
∗−2
(1

2
G−1(vn)vn
g(G−1(vn))

− 1
2∗
G−1(vn)2

)
dx
}

≥ lim
n→∞

(1
2
− 1

2∗
)∫

RN

|G−1(vn)|2
∗

dx

≥ 1
N
SN/2

which contradicts c < 1
N S

N/2. Thus we conclude that {vn} does not vanish. �

Next, we construct a path which minimax level is less than 1
N S

N/2 and prove
Theorem 1.1. We follow the strategy used in [4].

Proposition 3.7. The minimax level c defined in (3.1) satisfies c < 1
N S

N/2.
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Proof. Let

v∗ =
[N(N − 2)ε2](N−2)/4

(ε2 + |x|2)(N−2)/2

be the solution of −∆u = u2∗−1 in RN . Then∫
RN

|∇v∗|2 dx =
∫

RN

|v∗|2
∗

dx = SN/2,

Let ηε(x) ∈ C∞0 (Ω, [0, 1]) be a cut-off function with ηε(x) = 1 in Bε = {x ∈ Ω :
|x| ≤ ε} and ηε(x) = 0 in Bc2ε = Ω \B2ε. Let vε = ηεv

∗. For any ε > 0, there exists
tε > 0 such that J(tεvε) < 0 for all t > tε. Define the class of paths

Γε = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = tεvε}

and the minimax level

cε = inf
γ∈Γε

max
t∈[0,1]

J(γ(t))

Let tε be such that
J(tεvε) = max

t≥0
J(tvε)

Note that the sequence {vε} is uniformly bounded in X, we conclude that {tε} is
upper and lower bounded by two positive constants. In fact, if tε → 0, we have
J(tεvε)→ 0; otherwise, if tε → +∞, we have J(tεvε)→ −∞. In both cases we get
contradictions according to Proposition 3.3. This proves the conclusion.

According to [4], we have, as ε→ 0,

‖∇vε‖22 = SN/2 +O(εN−2), ‖vε‖2
∗

2∗ = SN/2 +O(εN ). (3.5)

We define

H(tεvε) = −1
q

∫
Ω

G−1(tεvε)q dx+
1
2∗

∫
Ω

[(tεvε)2∗ −G−1(tεvε)2∗ ] dx.

By the definition of vε, for x ∈ Bε, there exist two constants c2 ≥ c1 > 0 such that
for ε small enough,

c1ε
−(N−2)/2 ≤ vε(x) ≤ c2ε−(N−2)/2

and by (6) of Lemma 2.1,

c1ε
−(N−2)/2 ≤ G−1(vε(x)) ≤ c2ε−(N−2)/2.

Note that tε is upper and lower bounded, there exists a constant C1 > 0 such that∫
Bε

G−1(tεvε)q dx ≥ C1ε
N−qN−2

2 = C1ε
( 2∗

2 −
q
2 )(N−2). (3.6)

Moreover, since G−1(tεvε) ≤ tεvε and 2∗ > 2, by Hölder inequality, we have

Rε :=
1
2∗

∫
Bε

[(tεvε)2∗ −G−1(tεvε)2∗ ] dx

≤
∫
Bε

(tεvε)2∗−1(tεvε −G−1(tεvε)) dx

≤
(∫

Bε

(tεvε)2∗ dx
) 2∗−1

2∗
(∫

Bε

(tεvε −G−1(tεvε))2∗ dx
) 1

2∗
.
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According to Lemma 2.4, there exists C2 > 0 such that for 1
4 < α < 1

2 ,

Rε ≤ C2

(∫
Bε

(tεvε)2∗(4α−1) dx
) 1

2∗ ≤ C2ε
(1−2α)(N−2); (3.7)

while for 0 < α ≤ 1
4 , there exists a constant δ ∈ (0, 1) such that

Rε ≤ C2

(∫
Bε

(tεvε)2∗δ dx
) 1

2∗ ≤ C2ε
1
2 (1−δ)(N−2). (3.8)

From the above estimations (3.6)-(3.8), we get

H(tεvε) ≤ −C1ε
( 2∗

2 −
q
2 )(N−2) + C2ε

(1−2α)(N−2) (3.9)

when 1
4 < α < 1

2 and

H(tεvε) leq − C1ε
( 2∗

2 −
q
2 )(N−2) + C2ε

1
2 (1−δ)(N−2) (3.10)

when 0 < α ≤ 1/4.
Now we have

J(tεvε) =
t2ε
2

∫
Ω

|∇vε|2 −
t2
∗

ε

2∗

∫
Ω

|vε|2
∗

+H(tεvε). (3.11)

Since the function ξ(t) = 1
2 t

2 − 1
2∗ t

2∗ achieves its maximum 1
N at point t0 = 1, by

using (3.5), we derive from (3.11) that

J(tεvε) ≤
1
N
SN/2 +H(tεvε) +O(εN−2). (3.12)

From assumption (H1), we conclude that

(i) for 1
4 < α < 1

2 and q > 4
N−2 +4α, we have ( 2∗

2 −
q
2 )(N−2) < (1−2α)(N−2);

(ii) for 0 < α ≤ 1
4 and q > N+2

N−2 , we have ( 2∗

2 −
q
2 )(N − 2) < 1

2 (1 − δ)(N − 2)
for δ > 0 small enough.

Combining (3.9), (3.10) and (3.12) and according to conclusions (i),(ii), we get

cε = J(tεvε) <
1
N
SN/2. (3.13)

Finally, since Γε ⊂ Γ, we have

c ≤ cε <
1
N
SN/2.

This completes the proof. �

Proof of Theorem 1.1. Firstly, by Propositions 3.3-3.4, the functional J has the
Mountain Pass Geometry. Then there exists a Palais-Smale sequence {vn} at level
c given in (3.1). Secondly, by Proposition 3.5, the Palais-Smale sequence {vn} is
bounded in X. By Proposition 3.6, if c < 1

N S
N/2, then the weak limit v of {vn} in

X is nonzero and is a critical point of J . Finally, by Proposition 3.7, there indeed
exists a mountain pass which maximum level cε is strictly less than 1

N S
N/2. This

implies that the level c < 1
N S

N/2 and v is a nontrivial weak solution of Eq.(1.9). By
strong maximum principle, v(x) > 0, x ∈ Ω. Let u = G−1(v). Since |∇u| ≤ |∇v|,
we obtain that u ∈ X and it is a positive weak solution of (1.1). �
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