
ENERGY EFFICIENCY ANALYSIS AND OPTIMIZATION OF CONVOLUTIONAL

NEURAL NETWORKS FOR IMAGE RECOGNITION

by

Xinbo Chen, B.Eng.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

With a Major in Computer Science
May 2016

Committee Members:

 Ziliang Zong, Chair

 Yijuan Lu

Martin Burtscher

COPYRIGHT

By

Xinbo Chen

2016

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Xinbo Chen, authorize duplication of this work, in
whole or in part, for educational or scholarly purposes only.

DEDICATION

Dedicated to my parents and my United States family, whose support and encouragement

during my two years graduate studies motivated me to complete this thesis.

v

ACKNOWLEDGEMENTS

I am very appreciated Dr. Ziliang Zong for his guidance and support during my graduate

study; he is a great advisor not only in teaching and researching, but also in life

principles. I would also like to thank Da Li, Dr. Yijuan Lu, and Dr. Martin Burtscher for

their expertise, feedback, and overall support in achieving this thesis work.

vi

TABLE OF CONTENTS
Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ... xii

ABSTRACT ... xiii

CHAPTER

1.INTRODUCTION ... 1

2.BACKGROUND ... 5

3.RELATED WORK .. 9

4.ENERGY CONSUMPTION ANALYSIS OF NEURAL NETWORKS IN

INNN DIFFERENT LEARNING FRAMEWORKS .. 11

4.1 Introduction of Training Framework .. 11
4.1.1 Caffe ... 11
4.1.2 Torch .. 12
4.1.3 TensorFlow .. 12
4.1.4 MXNet ... 12

4.2 Benchmark Setup .. 13
4.2.1 Data Benchmark ... 13
4.2.2 Neural Network Benchmark .. 14
4.2.3 System Setup .. 14

4.3 GPU Mode Results and Discussions .. 15

vii

4.3.1 Native GPU v.s. GPU with cuDNN Library 15
4.3.2 Overall Framework Energy Consumption and Performance
INNN Comparison ... 25

4.4 CPU Mode Results and Discussions ... 27
4.4.1 Math Libraries for CPU ... 27
4.4.2 Caffe - CPU Mode Energy Efficiency Analysis with BLAS 28

4.5 Conclusion .. 30

5.NETWORK WISE ENERGY CONSUMPTION ANALYSIS 32

5.1 Each Layer Energy Occupation .. 32
5.2 Batch Size Factor of Neural Network ... 36

6.LAYER WISE ENERGY CONSUMPTION ANALYSIS 39

6.1 Convolutional Layer ... 39
6.1.1 Common Convolutional Layers ... 39
6.1.2 Data Input Size ... 43
6.1.3 Kernel Size ... 45
6.1.4 Kernel Number ... 46
6.1.5 Conclusion ... 47

6.2 Fully Connected Layer .. 48
6.3 Pooling Layer .. 50

6.3.1 Input Size ... 51
6.3.2 Filter Kernel Size ... 52
6.3.3 Pooling Method .. 53

6.4 Conclusion .. 54

7.HARDWARE TUNING .. 55

7.1 DVFS .. 55
7.2 K20m and Titan X GPU Comparison ... 61
7.3 Conclusion .. 63

8.CONCLUSION .. 64

9.FUTURE WORK ... 65

viii

REFERENCES ... 66

ix

LIST OF TABLES
 Table Page

1-1: Recent Year CNNs Top 5 Error .. 2
4-1: Community involvements of four deep learning frameworks
 as of 03/18/2016 .. 11
4-2: Convent Benchmark parameters setting for four deep learning frameworks 14
4-3: Caffe and Torch energy and performance comparison in native GPU 17
4-4:Caffe and Torch 7 performance and energy with OverFeat 18
4-5: Caffe and Torch7 energy efficiency comparison in GPU with cuDNN 19
4-6: Caffe and Torch7 actual execution time and energy efficiency comparison in

GPU with cuDNN ... 25
4-7: Four framework’s overall energy consumption and performance 27
4-8: BLAS library energy efficiency and performance comparison in Caffe 30
5-1: Separate Layer Time and Energy Consumption .. 34
5-2: AlexNet Energy Consumption with different batch size 36
6-1: Convolution Layer Specification ... 40
6-2: The performance comparison of six convolutional layers 40
6-3: The GPU energy comparison of six convolutional layers 41
6-4: Kernel and input size parameter of six convolutional layer 42
6-5: Convolutional layer with different data input size .. 44
6-6: Convolutional layer with different kernel size .. 46
6-7: Convolutional layer with different kernel number .. 47
6-8: The variety impact of performance and energy of convolutional layer 48
6-9: The configuration setting of three fully connected layers 49
6-10: The performance of three fully connected layer .. 49
6-11: The energy consumption of three fully connected layer 49
6-12: Different input size of pooling layer ... 51
6-13: Different input size of pooling layer performance and energy 51
6-14: Configuration setting of three pooling layers .. 52
6-15: Different kernel size of pooling layer performance .. 52
6-16: Different kernel size of pooling layer GPU energy ... 52
6-17: The pooling method configuration of pooling layers 53
6-18: Pooling layers performance with various pooling method 53
6-19: Pooling layers energy consumption with various pooling method 54

x

7-1: Support memory frequency and core frequency options in K20m GPU 56
7-2: Titan X and K20m hardware comparison [Nvidia, 2012; Nvidia 2014] 61
7-3: Titan X GPU and K20m GPU comparison ... 61

xi

LIST OF FIGURES
 Figure Page

2-1: LeNet: an algorithm to recognize hand write letter ... 5
4-1: Caffe’s power consumption with native GPU ... 15
4-2: Torch’s power consumption with native GPU .. 16
4-3: Caffe’s power consumption in GPU Mode with cuDNN 18
4-4: Torch’s AlexNet power consumption in GPU Mode with cuDNN 19
4-5: Torch benchmark script file source code ... 20
4-6: Torch’s power consumption in GPU Mode with cuDNN in 50 Dry-run 23
4-7: The actual execution time and power consumption of Caffe 24
4-8: The actual execution time and power consumption of Torch 24
4-9: TensorFlow’s power consumption in GPU Mode with cuDNN 26
4-10: MXNet’s power consumption in GPU Mode with cuDNN 26
4-11: Caffe - CPU mode with Atlas energy consumption .. 28
4-12: Caffe - CPU mode with OpenBLAS energy consumption 29
4-13: Caffe - CPU mode with MKL energy consumption .. 29
5-1: Time Occupation percentage of layers .. 35
5-2: Energy Occupation percentage of layers ... 35
5-3: Batch size parameter influence of performance .. 37
5-4: Batch size parameter influence of energy ... 37
6-1: Convolutional layer GPU energy with varied data input size 45
6-2: One pooling method: max pooling .. 50
7-1: Performance impact of DVFS in K20m .. 57
7-2: Total system energy impact of DVFS ... 58
7-3: GPU Average Power with the impact of DVFS .. 59
7-4: GPU energy portion with the impact of DVFS ... 60
7-5: K20m energy curve of Caffe with AlexNet .. 62
7-6: Titan X energy curve of Caffe with AlexNet .. 62

xii

LIST OF ABBREVIATIONS

Abbreviation Description

CPU - Central Processing Unit
GPU - Graphic Processing Unit
GPGPU - General-purpose GPU
CUDA - Compute Unified Device Architecture
CNN - Convolutional Neural Network
AI - Artificial Intelligence
FC - Fully Connected Layer
cuDNN - CUDA Deep Neural Network Library

xiii

ABSTRACT

In recent years, convolutional neural network (CNN) has been widely used to

improve the training time and accuracy of image recognition applications. These CNNs

are based on deep learning algorithms, which simulate the learning process of human’s

brain. After sufficient number of images being used to train the neural networks, high

recognition accuracy of images can be achieved. In the past few years, especially after

GPUs are utilized to carry heavy-duty computation, the accuracy and training time of

machine learning algorithms have been significantly improved (e.g. the error rate has

dropped from 28.2% in 2010 to 6.66% in 2014). The newest neural network developed

by Microsoft in 2015 has already surpassed human’s recognition ability with the error

rate less than 5%. This is an exciting achievement but also indicates that the room for

accuracy improvement is narrowing. On the other hand, due to the massive volume of

training data sets, the increasing complexity of neural network structure, and the

significant amount of computation, the training process consumes more and more time

and energy. In this thesis, we conduct a comprehensive study on analyzing the

performance and energy impact of a variety of outer and inner factors in popular CNN

algorithms, which provides detailed workload characterization to facilitate the design of

more energy efficient CNN algorithms and training frameworks.

 1

1. INTRODUCTION

In 1958, Frank Rosenblatt proposed the Perceptron concepts and a theory on how do

neurons in human brains operate [Rosenblatt, 1958]. This theory created a new field of

artificial intelligence, called neural network. In 1989, Yann LeCun et al. applied neural

network algorithms to recognize handwritten ZIP codes with the training time to be

approximately 3 days. After that, numerous interesting practices such as the wake-sleep

algorithm [Hinton, 1995] and vanishing gradient problem [Hochreiter, 1998] appeared.

However, the slow speed of training continues to be a key factor to impede the

advancement of neural network’s algorithms and applications. This situation started to

change after 2010 with the high speed GPGPU’s being utilized to speedup the training

time. For example, a single K20 GPU can achieve 1.17 trillion floating-point operations

per second [NVIDIA, 2013] and the new Maxwell GPU Titan X is even faster, which

makes it feasible to train complex neural networks with large data sets in reasonable time.

In the past few years, we have witnessed the rapid growth of deep learning algorithms (i.e.

Learning algorithms with more than one stage of non-linear feature transformation),

which have been successfully used to solve challenging problems such as image

recognition, speech recognition, and natural language processing. This thesis focus on the

image recognition field.

To evaluate a variety of deep learning algorithms for object detection and image

classification at large scale, the ImageNet Large Scale Visual Recognition Challenge

 2

(ILSVRC) has been held annually since 2010. The imageNet benchmark with 15 million

manual-labeled high-resolution images belonging to roughly 22,000 categories is used to

train and evaluate the accuracy of state of art neural network algorithms [Russakovsky,

2015]. This challenge uses the percent of top 5 error rate (i.e. If correct class is not int the

top 5 classification recommended by the algorithm, it is counted as an error) as the

evaluation metric for accuracy. Table 1-1 shows the error rate of winner algorithms in the

past six years, which clearly demonstrates the significant improvement in accuracy

[Russakovsky, 2015].

Table 1-1: Recent Year CNNs Top 5 Error

Year Percent of Top 5 Error

2015 3.57 (Microsoft)

2014 6.66 (GoogLeNet)

2013 13.8 (OverFeat)

2012 16.42 (AlexNet)

2011 25.8

2010 28.2

After Microsoft’s algorithm already surpassed human recognition ability (~5%) [He,

2015], neural network research has achieved the goal of matching or beating human’s

capability on image recognition in terms of accuracy. However, human consumes

extremely less amount of energy to recognize a picture. One new direction of neural

 3

network research is to design more energy-efficient deep learning algorithms without

compromising accuracy. This is a challenging task because there are too many factors

(e.g. hardware configurations, different learning framework, external matrix calculation

libraries, neural network structure, configuration setting of each layer inside a network,

etc) that can affect the training time, the energy consumption and the accuracy. All such

factors have unknown contribution to the total energy consumption. To the best of my

knowledge, there is no existing study that comprehensively investigates the energy

behavior of neural network, especially CNN based deep learning algorithms.

The major contributions of this thesis are summarized below:

1) It describes a strategy to analyze neural network energy consumption from the high

level to the detailed level.

2) It presents a comparative study of performance and energy efficiency of four popular

neural network training frameworks and finds the most energy efficient framework.

3) It studies the impact of a variety of external math libraries (for both GPUs and CPUs)

on the performance and energy consumption of deep learning algorithms.

4) It presents the decomposed energy consumption of each layer in AlexNet and studies

how do different factors affect energy behaviors of each layer.

5) It studies the impact of DVFS on the energy consumption of deep learning algorithms

when running them on K20 and Titan X GPUs.

 4

This thesis is organized as follows. In Chapter 4, I discuss the energy efficiency of

several popular deep learning frameworks. Since neural network training mostly in GPU,

I mainly focus on GPU mode of those frameworks. In Chapter 5, I analyze the network

wise energy consumption of neural networks. Particularly, I show the energy percentage

of each layer consumes during the total network training time. In Chapter 6, major energy

consuming layers are broken down from neural network and analyzed separately. In

Chapter 7, I use GPU tuning technology to optimize the energy consumption of neural

network training and also compare different hardware.

 5

2. BACKGROUND

In this Chapter, I present the background information and terminologies that help to

understand how do deep learning algorithms work and the experimental results shown in

later chapters.

The convolutional neural network simulates the way human process and recognize images.

It consists of multiple layers. The classic CNNs have three kinds of layers: the

convolutional layer, the pooling layer and the fully connected layer. For example, Figure

2-1 shows a simple CNN include all these three layers [LeCun, 1998]. Each layer

contains thousands or millions of neurons. A single neuron takes some input, computes the

weighted sum of inputs, and sends output to the neurons in the next layer.

Figure 2-1: LeNet: an algorithm to recognize hand write letter

The following example briefly illustrates how convolution neural network works.

CNNs take images as input, for gray image, the channel is 1, for RGB image, the channel

is 3. Most current CNNs accept fixed size RGB image as input. If there is a 5 x 5 size

gray (channel = 1) image pixel matrix and a 3 x 3 size kernel (or filter). We assume this

kernel is used to capture border feature of this image.

 6























00110
01100
11100
01110
00111

















101
010
101

With the setting of stride = 1, and bias = 1, kernel does inner production with picture

matrix, and move one stride, continuing inner production to traverse the whole image

matrix, the result is

















432
342
434

with (5 - 3 +1) width and (5 - 3 +1) height. This process called convolution and the result

called feature map is the following matrix. The kernel is used to detect a specified feature

from an image. Each inner production needs to add a bias, so the final feature map matrix

is

















543
453
545

If we want to capture as many features as possible from this image, we need more

different kernels. If there are 100 kernels, then we have 100 feature maps as output after

this convolutional layer.

We can use the following two formula to measure the workload of one convolutional layer,

(1) Parameter = (Kernel width x Kernel height + 1) x feature map quantity x channel

 7

(2) Connection = Parameter x Feature map width x Feature map height

Based on the formula, the parameter of this convolutional layer is (3 x 3 +1) x 100 x 1=

1000. The connection quantity is 1000 x 3 x 3 = 9000.

Typically, a threshold function (or activation function) will follow a convolution layer. For

example, in AlexNet, the activation function is called a Rectified Linear Unit, or ReLu

layer. Its formula is f(x) = max (0, x). The x is the input of a neuron. If x >0, the neuron will

be activated and pass value to the next layer (not activated otherwise).

The pooling layers, or down sampling layer, are usually placed between two convolutional

layers. It partitions the input feature map into a set of non-overlapping rectangles (the stride

size is equal to the filter size). There are mainly two methods of pooling: max pooling and

average pooling which will be explained in section 6.3. The pooling layer progressively

reduces the amount of parameters as well as controls overfitting. Overfitting means that the

training model has higher accuracy in recognizing images of pre-trained data sets, but has

lower accuracy in recognizing unseen images. This is usually caused by data noises or

limited training data sets.

Finally, after several convolutional and pooling layers, the CNN algorithms finalize the

results via fully connected layers. Neurons in a fully connected layer have full connections

to all neurons in the previous layer. The output can hence be computed with an

one-dimensional matrix multiplication followed by a bias offset. Each value of this

 8

one-dimensional matrix is the classification probability of this image.

Forward propagation refers to the learning process from convolution layers to fully

connected layers. Classifying an image only needs forward propagation. Backward

propagation is needed to adjust deviation when the training algorithms leverage the

temporary training results to verify whether or not the temporary recognition results have

a big offset.

 9

3. RELATED WORK

Over the last decade, graphics processing units (GPUs) have been widely used in many

fields for application accelerations (e.g. Bioinformatics [Truong, 2014], Graph [Li, 2013],

Nested Parallelism [Wu, 2016], Irregular Loops [Li, 2015]). Nowadays, the peak

double-precision performance of high-end GPUs from Nvidia is well above 1 teraFLOPS

[NVIDIA, 2013]. With the emergence of high speed GPUs and the availability of large

data sets for training, we have witnessed the significant improvement of deep learning

algorithms in terms of training time and accuracy and the boom of deep learning

applications. The Visual Geometry Group (VGG) of University of Oxford has designed a

16 layers model with 7.4% top 5 error and a 19-layer model with 7.3% top 5 error rate

[Simonyan, 2014]. In 2015, Microsoft implemented a model with 152 layers - 8x deeper

then VGG nets with 3.57 % error [Zhang, 2015]. The fast development not only

represents in the structure of neural network, but also reflects in wider scope. For

example, The Deep Face deployed at Facebook for Auto tagging [Taigman, 2014];

Estimation of person pose [Tompson, 2014]; Generating a descriptive sentence [Lebret,

2015] etc. In spite of the advancement in developing deeper and more complicated neural

network structures, the research on investigating the energy consumption behavior of

different neural network and training framework is still in its infancy. To the best of my

knowledge, there are no comprehensive studies on analyzing the energy-aware deep

learning algorithms. With the size of data sets increase exponentially and the ever

 10

increased energy consumption for training such data sets, it is desirable to design more

energy efficient deep learning algorithms. This thesis contributes to this field by

presenting the energy behaviors of numerous well-known deep learning algorithms and

exploring the impact of various factors on the energy consumption of these algorithms.

Although other accelerators like Xeon Phi and FPGA can provide high throughput and

are widely used in high performance computing domains including tree/graph traversal

[Li, 2014], information fusion [Song, 2011] and deep learning [Lacey, 2016], this thesis

focuses on quantifying and studying power and energy behaviors on GPU platforms.

 11

4. ENERGY CONSUMPTION ANALYSIS OF NEURAL NETWORKS IN
DIFFERENT LEARNING FRAMEWORKS

In this chapter, I present a comparative study of four popular deep learning frameworks,

namely Caffe, Torch, TensorFlow, and MXNet, in terms of performance and energy

efficiency. I evaluate these two aspects for both CPU and GPU settings.

4.1 Introduction of Training Framework

In this section, I first briefly introduce each framework and their features.

Table 4-1 shows the number of users in Google groups and the number of open source

contributors for each framework in their Github repositories. It is clear that these four

frameworks are widely used and supported by the deep learning community.

Table 4-1: Community involvements of four deep learning frameworks as of 03/18/2016

Measures Caffe Torch7 TensorFlow MXNet
Number of
members in

Google groups

4589 2062 780 N/A

Number of
contributors in

Github

182 84 153 107

4.1.1 Caffe

Caffe, an abbreviation of Convolutional Architecture for Fast Feature Embedding, is a

well-known and widely used open source framework that was originally designed by the

U.C. Berkeley Vision and Learning Center (BVLC) then co-designed by community

contributors. Caffe is written in C++, and supports CUDA for GPU computation. It is

designed with expressive architecture and supports open source math libraries to ensure

 12

high performance. In addition, Caffe emphasizes usability by allowing users to configure

each layer of a neural network easily without complicated coding [Jia, 2014].

4.1.2 Torch

Torch is a computational framework written in Lua, which is a multi-paradigm scripting

language. Compared with C, Lua is more readable and easy to learn. In addition, rich

interfaces to C keeps Lua’s high performance for large scale applications. Torch currently

is used by large tech companies such as Google DeepMind and Facebook, which devote

in-house teams to customize their deep learning platforms. In our experiments, we used

the newest version Torch 7 to train neural networks.

4.1.3 TensorFlow

TensorFlow is another open source framework which derives from the Google Brain

project. It is an interface for expressing machine learning algorithms, and an

implementation for executing neural network training algorithms [Abadi, 2016].

TensorFlow is famous for its flexibility to express a wide variety of algorithms, including

computer vision, robotics, and natural language processing etc. It also has strong

portability to run on desktop, server, or even mobile computing platforms.

4.1.4 MXNet

MXNet is a lightweight, portable and flexible mobile deep learning framework. It

supports Python, R, Julia, Go, and JavaScript, which is the framework that supports most

programming languages [Chen, 2015].

 13

4.2 Benchmark Setup

There are two types of benchmark in this thesis. The first type of benchmark is the data

benchmark, which includes the training data with training setting such as iteration

quantity. The second type of benchmark is neural network algorithms. Due to numerous

memory occupation during training, the K20 GPU can only fully support AlexNet

[Krizhevsky, 2012], and partly support OverFeat [Sermanet, 2013] because some

frameworks require more memory to run.

4.2.1 Data Benchmark

The benchmark I select comes from an open source project called Convent Benchmark,

which supports most publicly accessible implementation of CNNs under the same data

sets entry [Convent-Benchmark, 2015]. In this benchmark, the author, Soumith Chintala,

a member of Facebook AI research team, picked popular ImageNet models and clock the

time for full forward and backward pass in his machine. However, this benchmark does

not measure the energy consumption of each learning framework. I provide valuable

extension to this benchmark by comparing the energy consumption of the aforementioned

four frameworks. The benchmark parameters are shown in Table 4-2.

 14

Table 4-2: Convent Benchmark parameters setting for four deep learning frameworks

Convent Benchmark Parameter

Data Set Random generated data
Training Iteration 10 times

The data sets in Convent Benchmark is randomly generated and able to response to a

variety of input size at different layers. The data will be fixed and reused during each

iteration's training. I set the training iteration number as 10 to ensure sufficient number of

power samples can be collected for energy consumption calculation.

4.2.2 Neural Network Benchmark

I select AlexNet and OverFeat as algorithm benchmarks. Both of them have 128 batch

size for each iteration’s input. Other configurations are the same as the published

configurations in BVLC’s model zoo [Model Zoo, 2015].

4.2.3 System Setup

All experiments are performed on a single machine running on CentOS 7 with Intel Xeon

E5 - 2650 v2 @ 2.6GHz; Nvidia Tesla K20m with 5GB memory; 32GB DDR3 main

memory; and 128 GB SSD hard drive. The drivers and libraries used in our experiments

include CUDA 7.0, cuDNN v3, OPENBLAS 0.2.16, Caffe (commit ID be163be), Torch

7 (commit ID eb8d7f2), and TensorFlow (commit ID fd464ca), MXNet (commit ID

d25053). For the power measurement, the CPU and DRAM power data are collected via

the Intel Running Average Power Limit (RAPL) interface [Intel, 2012] and the GPU

power is obtained via the Nvidia’s System Management Interface.

 15

4.3 GPU Mode Results and Discussions

4.3.1 Native GPU v.s. GPU with cuDNN Library

In this subsection, I define the GPU without cuDNN library as native GPU. The NVIDIA

CUDA Deep Neural Network Library (cuDNN) is a GPU-accelerated library of

primitives for deep neural networks. The cuDNN allows deep learning developers and

researchers to focus on designing and training neural network models rather than

spending their time to tune the low-level hardware performance counters for the best

performance [cuDNN, 2013].

Since TensorFlow and MXNet are already embeded with cuDNN when released, Caffe

and Torch7 are used to evaluate the impact of cuDNN on performance and energy

consumption.

Figure 4-1: Caffe’s power consumption with native GPU

 16

Figure 4-1 shows the energy curve of Caffe during benchmark training. As shown in this

figure, at the beginning the GPU power (red line) stays idle (< 50W) for around one

second. Then after one fluctuation’s initialization, ten iterations of similar

fluctuations are observed, which represent the ten training iterations. When GPU is idle,

CPU is running the benchmark to load and locate the training data, read neural network

configuration file, etc. When GPU is doing initialization, CPU goes back to the idle state,

followed by CPU’s power burst to over 60Wto transfer the data GPU requested for

training.

Figure 4-2: Torch’s power consumption with native GPU

As we can see from figure 4-2, GPU stays in idle over three seconds, which means there

are three seconds of performance loss and energy waste for the CPU waiting for GPU

finishing its work. During running, CPU has two power spikes. The first one appears

 17

right after GPU initialization and the second one happens after Torch starts doing

backward calculation.

Table 4-3: Caffe and Torch energy and performance comparison in native GPU
Native
GPU

Time (s) CPU
average
Power
(W)

GPU
average
Power
(W)

CPU
energy (J)

GPU
energy

(J)

GPU and
CPU

energy
(J)

Caffe 9.64 63.55 98.47 612.62 949.25 1561.87

Torch7 11.35 66.6 94.19 755.91 1069.06 1824.97

Table 4-3 shows the performance and energy consumption of two frameworks on

AlexNet with native GPU. Under these restrictions, Caffe results in the best performance

and the lowest energy consumption. Note that in Figure 4-2 of Torch, the power of GPU

keeps idle for 3.5 seconds, then GPU instantly goes up to over 120 W. The similar

initialization (GPU stays idle) in Caffe only takes 0.9 second. If consider without

initialization time, Torch and Caffe have very similar performance and energy

consmpution.

To compare whether caffe is always faster than Torch in native GPU, I also executed the

same benchmark with the OverFeat neural network.

 18

Table 4-4:Caffe and Torch 7 performance and energy with OverFeat
Native
GPU

Time (s) CPU
average
Power
(W)

GPU
average
Power
(W)

CPU
energy (J)

GPU
energy

(J)

GPU and
CPU

energy
(J)

Caffe 25.82 67.76 109.95 1752 2839 4591

Torch7 28.55 62.96 114.09 1798 3257 5055

Table 4-4 shows that Caffe saves 9% of time and 9.1% of energy when training the

OverFeat algorithm than using Torch. Next, I evaluate how can cuDNN accelerate these

two frameworks.

Figure 4-3 demonstrates several interesting observations: 1) the total training time drops

from 9.64 second to 6.61 second; 2) the average GPU power is much higher than native

Figure 4-3: Caffe’s power consumption in GPU Mode with cuDNN

GPU.

 19

Since cuDNN has nothing to do with CPU acceleration, and its optimization does not

affect Caffe’s architecture, the initialization and CPU power curve doesn’t change.

However, this three seconds time saving saves energy for both GPU and CPU.

Table 4-5: Caffe and Torch7 energy efficiency comparison in GPU with cuDNN
GPU with
cuDNN

Time (s) CPU
average
Power
(W)

GPU
average

Power(W)

CPU
energy (J)

GPU
energy(J)

GPU and
CPU

energy(J)

Caffe 6.61 62.99 111.67 416.4 742.61 1159.01
Torch7 18.47 55.64 87.51 1027.67 1616.31 2643.98

In addition, there are huge difference in Torch diagram. From Figure 4-4, we can observe

Figure 4-4: Torch’s AlexNet power consumption in GPU Mode with cuDNN

a long straight power line (at 85 W) that lasts over ten seconds after GPU’s idle state and

 20

before the training starts.

On the contrary, based on the execution log of Torch, it finishes its training process in

2.58 second, which is the same duration for forward and backward propagation in Figure

4-4 (From the highest point to the end of the red line). However, the time recorded by our

power meter reflects the true execution time of the entire benchmark script, which means

that Torch starts its own timer right after the first forward propagation and ignored the

time before training. To figure out this conflict, I check the source code of Torch’s

benchmark. The crucial portion is marked in Figure 4-5.

 23 print('Running on device: ' .. cutorch.getDeviceProperties(cutorch.getDevice ()).name)

 24 print('cuDNN version: ' .. cudnn.version)

 25

 26 steps = 10 -- nb of steps in loop to average perf

 27 nDryRuns = 50

 28

 29 function makeInput(config, size)

 30 local layout = config[4]

 31 local osize

 32 if layout == 'BDHW' then

 33 osize = size

 34 elseif layout == 'DHWB' then

 35 osize = {size[2],size[3],size[4],size[1]}

 36 elseif layout == 'BHWD' then

 37 osize = {size[1], size[3], size[4], size[2]}

 38 end

 39 return torch.randn(torch.LongStorage(osize))

 40 end

 41

 42 for i=1,#nets do

 43 for j=1,#libs do

Figure 4-5: Torch benchmark script file source code

 21

 44 collectgarbage()

 45 local model,model_name,size = nets[i](libs[j])

 46 model=model:cuda()

 47 local input = makeInput(libs[j],size):cuda()

 48 local lib_name = libs[j][5]

 49 print('ModelType: ' .. model_name, 'Kernels: ' .. lib_name,

 50 'Input shape: ' .. input:size(1) .. 'x' .. input:size(2) ..

 51 'x' .. input:size(3) .. 'x' .. input:size(4))

 52 -- dry-run

 53 -- for i=1,nDryRuns do

 54 -- model:zeroGradParameters()

 55 -- local output = model:updateOutput(input)

 56 -- local gradInput = model:updateGradInput(input, output)

 57 -- model:accGradParameters(input, output)

 58 -- cutorch.synchronize()

 59 -- collectgarbage()

 60 -- end

 61

 62 local tmf, tmbi, tmbg

 63 sys.tic()

 64 for t = 1,steps do

 65 output = model:updateOutput(input)

 66 end

 67 cutorch.synchronize()

 68 tmf = sys.toc()/steps

 69 print(string.format("%-30s %25s %10.2f", lib_name, ':updateOutput():', tmf*1000))

 70

 71 collectgarbage()

 72 sys.tic()

 73 for t = 1,steps do

 74 model:updateGradInput(input, output)

 75 end

 76 cutorch.synchronize()

 77 tmbi = sys.toc()/steps

 78 print(string.format("%-30s %25s %10.2f", lib_name, ':updateGradInput() :', tmbi*1000))

 79

 80 collectgarbage()

 81 sys.tic()

Figure 4-5: Continued

 22

 82 local ok = 1

 83 for t = 1,steps do

 84 ok = pcall(function() model:accGradParameters(input, output) end)

 85 end

Figure 4-5: Continued

In Figure 4-5, line 52 to line 60 is the Dry-run code, which is used to prepare for training.

To verify whether the straight line is related to the Dry-run code, I first set up

independent timer to measure duration of each portion of code. Initialization takes 4.2

second, Dry-run portion takes near 12 seconds, forward and backward propagation takes

2.58 second, which altogether represent the energy curve in Figure 4-4. Additionally, I

change the value of nDryRuns from 1 to 50 and retrain again, the result shows in Figure

4-5. The initialization time in Figure 4-5 stays the same (4.2 second), the Dry-run portion

takes 25.1 second, and the forward and backward propagation remains the same (2.58

second). Therefore, its clear that the straight line is related to the Dry-run code.

Lua is known as one of the fastest scripting languages and very popular in game industry,

which requires low latency [Lua Docuement, 2016]. This delay phenomenon in Torch

should not relate to which programming language the framework choose.

 23

Figure 4-6: Torch’s power consumption in GPU Mode with cuDNN in 50 Dry-run

Then I decide to comment the whole Dry-run code and execute again. We surprisingly

find that the forward and backward propagation time increases from 2.58 second to 14.67

second, while Dry Run time becomes 0 second. It means the over ten seconds straight

line still exists. Therefore the Dry-run is not meaningless and its the true initialization for

forward and backward propagations. If such initialization time is included in the actual

training time, Torch will be much slower and less energy efficient than Caffe.

Note that Caffe also has near one second initialization time on GPU, I would like to see

how much energy and time are actually used to train the neural network. I cut off both

 24

Caffe and Torch’s initialization time. The results are shown in Figure 4-7 and Figure 4-8.

Figure 4-7: The actual execution time and power consumption of Caffe

Figure 4-8: The actual execution time and power consumption of Torch

 25

Table 4-6: Caffe and Torch7 actual execution time and energy efficiency comparison in

GPU with cuDNN
GPU Time

(s)
CPU

average
Power
(W)

GPU
average

Power(W)

CPU
energy

(J)

GPU
energy(J)

GPU and CPU
energy(J)

Caffe-cudnn 5.06 65.01 122.78 328.95 621.27 950.22
Caffe-native 7.99 65.13 103.04 520.39 823.29 1343.68

Torch7-cudnn 2.58 65.13 135.9 168.04 350.62 518.65
Torch7-native 7.35 67.2 112.89 493.92 829.74 1323.66

Table 4-6 shows the energy consumption and performance caused by the training code.

To analyze how cuDNN promote the training process and ensure the results are

comparable, I also isolate the actual execution of Caffe and Torch with native GPU. With

the help of cuDNN, Caffe trains the same data sets with 1.58 time faster and consumes

1.41 time less energy. Torch achieves 2.85 times of speedup and saves 2.55 times of

energy.

4.3.2 Overall Framework Energy Consumption and Performance Comparison

In this experiment, I only evaluate the impact of cuDNN on the TensorFlow and the

MXNet (results are shown in Figure 4 -9, Figure 4 -10 and Table 4 – 7).

 26

.

Figure 4-9: TensorFlow’s power consumption in GPU Mode with cuDNN

Figure 4-10: MXNet’s power consumption in GPU Mode with cuDNN

 27

Table 4-7: Four framework’s overall energy consumption and performance

GPU Time (s) CPU
average
Power
(W)

GPU
average

Power(W)

CPU
energy (J)

GPU
energy(J)

GPU and
CPU

energy(J)

Caffe 6.61 62.99 111.67 416.4 742.61 1159.01
Torch7 18.47 55.64 87.51 1027.67 1616.31 2643.98

TensorFlow 15.21 68.26 130.41 1038.23 1983.54 3021.76
MXNet 9.71 57.9 112.37 562.2 1091.11 1653.31

Table 4-7 shows the total energy consumption and performance of four deep learning

frameworks, which include their initialization and actual training process. Overall, Caffe

has the best performance and energy efficiency among these four benchmarks.

4.4 CPU Mode Results and Discussions

4.4.1 Math Libraries for CPU

The Basic Linear Algebra Subprograms, or BLAS libraries, are used to support CPU

performing linear algebra operations such as matrix operations. Since Caffe provides

flexible interfaces to incorporate different external libraries, I choose Caffe to compare

three popular BLAS libraries: Atlas, OpenBLAS, and MKL. Atlas is the abbreviation of

Automatically Tuned Linear Algebra Software, which provides C and Fortran interfaces

to a portable and efficient BLAS implementation. OpenBLAS is an open source project

of BLAS with many optimizations for specific processor type. MKL, or Math Kernel

Library, is the commercialized BLAS of Intel Corporation, which has been specially

optimized for Intel CPUs. All of these three BLAS libraries support multiple threads.

 28

4.4.2 Caffe - CPU Mode Energy Efficiency Analysis with BLAS

It’s predictable that CPU will train neural network much slower than GPU. Therefore, I

only select AlexNet to reduce the time of generating experimental results.

Figure 4-11: Caffe - CPU mode with Atlas energy consumption

 29

Figure 4-12: Caffe - CPU mode with OpenBLAS energy consumption

Figure 4-13: Caffe - CPU mode with MKL energy consumption

 30

Table 4-8: BLAS library energy efficiency and performance comparison in Caffe
Caffe -CPU Time (s) CPU average Power

(W)
CPU energy (J)

Atlas 145.35 88.08 12802

OpenBLAS 189.82 148.86 28257

MKL 63.7 154.51 9842

From Figure 4-11, 4-12, 4-13, and Table 4-8, we can observe that MKL helps CPU

running in a high average power with less fluctuation. Fluctuated utilization of hardware

is normal in deep learning training process because of its iterate characteristics. From the

Atlas and OpenBLAS energy figures we can see that after each iteration’s training, power

drops to the same or similar level of the idle state, which is the first point drawing in the

blue curve. This means after every training iteration, the CPU takes a break and needs a

short amount of time to warm up again before training next iteration. However, MKL

keeps CPU in high power after one iteration, which helps CPU better utilize its resources

during training time. Compared to Atlas, MKL achieves 2.28 times of speedup and

saves1.3 times of energy.

4.5 Conclusion

In this chapter, I compare the performance and energy behavior of four learning

frameworks in the GPU mode, and then discuss the impact of three math libraries on

performance and energy in the CPU mode. For the overall training process, Caffe is the

best choice because of its good training performance and short initialization time. For

 31

only training portion, Torch 7 is the fastest one. Since the initialization step is

unavoidable for each framework, so Caffe is the best choice both in performance and

energy saving. In the CPU mode, MKL shows much better acceleration of Intel CPUs

than other two libraries. Therefore, in the experiments shown in Chapters 5 and 6, I

chose Caffe to train the neural network with the cuDNN and MKL acceleration libraries

enabled for GPU and CPU respectively.

 32

5. NETWORK WISE ENERGY CONSUMPTION ANALYSIS

In Chapter 4, I investigate the energy efficiency of different training framework and

conclude that Caffe shows good energy efficiency and performance cross two neural

networks. This Chapter focuses on studying the energy efficiency of the neural network

itself. Since Caffe is both user friendly and highly efficient, I choose Caffe in this

Chapter as the training framework to further explore the impact of neural network inner

structure on performance and energy efficiency. Because of the time consuming of

disassembling a neural network, I only disassemble AlexNet in this Chapter. I analyze the

energy consumption distribution of all major layers and study the impact of batch size on

energy consumption.

5.1 Each Layer Energy Occupation

To split an integrated neural network into separate layers, the key point is

acknowledgment of each layers input and output data size. For example, the previous

layers output size should perfectly match the next layer’s input size.

It is difficult to disassemble the layers of a neural network. Fortunately, AlexNet has

relatively simpler structure and I select it to perform the studies of this Chapter . The

primary difference of an integrated neural network and separate layers collections are

data. For neural network, I need to input data in one time, then data will transmit between

layers and generate output. However, separate layers need execute respectively with

unrelated data. Since different data will not affect the energy consumption of each layer,

 33

only data input size matters. As a result, I do not need to use actual data calculated by

previous layer as the next layer’s input data. Rather, I can use benchmark data with

specified input size each time when I target only on one layer.

If this break-down approach succeeds, the total breakdown time and accumulated energy

consumption of each layer should be equal or similar to the time and energy consumption

of the integrated neural network. Since some layers run faster, in order to collect

sufficient number of power samples for accurate energy calculation, I use benchmark

data with 100 iterations to train each layer as well as the whole AlexNet.

 34

Table 5-1: Separate Layer Time and Energy Consumption
Layer Time (Second) Energy Consumption

(Joules)

Conv1 7.325 1307.073
Conv2 14.291 2626.11416
Conv3 6.988 1336.87428
Conv4 9.583 1769.50095
Conv5 6.468 1149.81636

conv1-relu 0.154 20.41424
conv2-relu 0.113 15.18833
conv3-relu 0.064 7.6608
conv4-relu 0.047 5.20995
conv5-relu 0.046 5.21318
pooling 1 0.761 124.85727
pooling 2 0.497 79.31126
pooling 5 0.181 25.53729

Fully connected 6 2.111 332.35584

Fully connected 7 1.022 153.69858

Fully connected 8 2.642 411.25372
Accumulations 52.293 9370.079

Integrated AlexNet 52.28 9409.35

From the last two rows in Table 5-1, the accumulation of each layers time is 52.293

seconds, and the total energy is 9370.079 Joules. These two data are very close to the

whole AlexNet training time and energy consumption, which means our break-down

approach is acceptable. To analyze which layer consumes more energy, I present each

 35

layer’s percentage of total energy in Figure 5-1 and Figure 5-2.

Figure 5-1: Time Occupation percentage of layers

Figure 5-2: Energy Occupation percentage of layers

Figures 5-1 and 5-2 demonstrate that convolutional layer uses 85% of total time and 87%

 36

of the total energy. The fully connected layer accounts for 11% of total time and 10% of

total energy. The pooling layer is responsible for 3% of time and 2% of energy

consumption.

Based on the break-down approach of AlexNet and the energy distribution of each layer,

researchers will be able to get more knowledge about which layer should put more

concentration in order to reduce the overall energy consumption of neural networks.

5.2 Batch Size Factor of Neural Network

Batch size is an important setting of neural network but unrelated to neural network

structure. A bigger batch size indicates that the data can better represent the full data sets'

feature. However, loading in a bigger batch requires more GPU memory thereby may

consume more energy.

 Table 5-2: AlexNet Energy Consumption with different batch size

Batch Size Time (s) CPU
average

Power (W)

GPU
average

Power(W)

CPU
energy (J)

GPU
energy(J)

GPU and
CPU

energy(J)

16 1.935 55.76 80.672 107.9 156.1 264

32 2.603 61.93 90.745 161.2 236.21 397.41

64 3.976 61.52 101.5 244.6 403.56 648.16

96 5.319 62.386 106.23 331.8 565.04 896.87

128 6.641 63.455 111.22 421.4 738.61 1160.01

In this section, I evaluate integrated AlexNet and OverFeat with batch size ranging from

16 to 128 to in terms of training time and energy consumption.

Table 5-2 shows that the training time increases proportionally with batch size. In

 37

addition, I find that the average power of both CPU and GPU goes up as batch size

increases. Figures 5-3 and 5-4 reveal the linear growth of training time and energy

consumption with batch size.

Figure 5-3: Batch size parameter influence of performance

Figure 5-4: Batch size parameter influence of energy

 38

In addition, I use the same strategy to analyze the batch size effect on OverFeat, Table

5-3 shows that OverFeat’s performance and energy consumption both grow linearly with

the batch size.

Table 5-3：OverFeat Energy Consumption with different batch size

Batch
Size

Time (s) CPU
average
Power
(W)

GPU
average

Power(W)

CPU
energy (J)

GPU
energy(J)

GPU and
CPU

energy(J)

16 4.262 61.2 97.48 260.83 415.46 676.29

32 6.44 62.81 108.36 404.49 697.83 1102.33

64 10.76 64.13 118.98 690.04 1280.22 1970.26

96 15.217 64.62 123.12 983.32 1873.52 2856.84

128 19.46 64.71 125.22 1259.26 2436.78 3696.04

 39

6. LAYER WISE ENERGY CONSUMPTION ANALYSIS

In this chapter, I focus on analyzing power and energy behaviors in each layer. Based on

our analysis in previous sections, there are main types of layers to a neural network: 1)

Convolutional Layer, 2) Fully-Connected Layer; and 3) Pooling Layer. I use these three

layers to analyze layer wise power / energy consumption. Since I already conclude that

GPU is more energy-efficient than CPU, I only concentrate on GPU energy analysis in

this chapter.

6.1 Convolutional Layer

6.1.1 Common Convolutional Layers

In our AlexNet analysis, I find that convolutional layer consume over 85% of total energy

in training. This is important to understand which factors contribute to the energy

consumption most for convolutional layers. First of all, I conduct the measurement on six

most commonly seen convolutional layers adapted from [Convent Benchmark, 2015].

These layers are frequently used in these championship neural network of ILSVRC in

recent years. The following table shows the configuration of six layers.

 40

Table 6-1: Convolution Layer Specification
Convolution

Layer #
Input Size Batch Size Feature Map

(Channel->Kernel
number)

Kernel Size Stride

L1 128 x 128 128 3 -> 96 11 x 11 1 x 1

L2 64 x 64 128 64 -> 128 9 x 9 1 x 1

L3 32 x 32 128 128 -> 128 9 x 9 1 x 1

L4 16 x 16 128 128 -> 128 7 x 7 1 x 1

L5 13 x 13 128 384 -> 384 3 x 3 1 x 1

L6 27 x 27 128 192 -> 192 5 x 5 1 x 1

In this experiment, I run each layer with 100 iterations with the same benchmark settings

to collect results.

Table 6-2: The performance comparison of six convolutional layers
Convolution Layer # Performance (Second)

L1 40.802

L2 114.82

L3 43.07

L4 5.518

L5 8.021

L6 30.75

 41

Table 6-3: The GPU energy comparison of six convolutional layers
Convolution Layer # GPU Average Power(Watt) GPU energy (Joules)

L1 111.11 4534

L2 121.78 13983

L3 119.10 5130

L4 118.4 653.33

L5 120.04 962.8

L6 114.69 3527

Based on Table 6-2, 6-3, I can conclude that L1-L6 lead to similar average GPU power

regardless the various kernel sizes and input sizes. Compare the layer with the largest

power (L2, 12q.78 Watt) with the layer with the smallest power (L1, 111.11 Watt), L2

only leads to 9% more power.

Since each layer has more or less similar average power, the differences in total energy

consumption are determined by the processing time. It is intuitive that layers with larger

kernels and larger inputs would requires longer processing time, thus would consume

more energy. Our initialized thinking is that the total number of kernels parameters and

total size of input data determine the processing time and energy. For convolutional layer,

numbers of kernels parameters are calculated using the following formula:

Kernel parameter = (kernel width x kernel height + 1) x channel x output feature map

number

Total size of input data is quantified using following rule:

Total size of input data = input width x input height x batch size x output feature map

 42

number

Based on above formulas, I calculate numbers in Table 6-4.

Table 6-4: Kernel and input size parameter of six convolutional layer
Convolution Layer # Kernel Parameter Input Size Parameter

L1 35136 201326592

L2 671744 67108864

L3 1343488 16777216

L4 819200 4194304

L5 1474560 8306688

L6 958464 17915904

At the first glance, it seems that there is not any obvious pattern for the energy

consumption for each layer if we only consider single factor between number of kernel

parameter and the size of input data. L2 consumes the most energy, but its total number

of kernel parameters is smaller than L3 and L5. But if we take both factors into

consideration, we can easily see that why L2 consumes more power. Although L2’s

number of kernel parameters is roughly half of those in L3 and L5, its input has roughly 4

times compared to L3 and L5. So the total energy consumption of L2 is more than L3 and

L5.

From Table 6-4, L1 has the smallest kernel parameter, but L1 isn’t the fastest one. Also

L1 has similar performance with L3, but L3’s kernel parameter is 38 times of L1’s

parameter. So it’s clear the kernel parameter can’t determine a convolutional layer’s

performance and energy consumption.

 43

Although all six layers with the same batch size and stride, with the integrated influence

of input size, kernel number, and kernel size, it’s hard to find obvious principles to

explain how one layer has better performance and energy saving than a another one.

Because the data input size, kernel size, and kernel quantity, all play an important role in

determining workload of each layer, they all affect performance and energy consumption

on GPU. Thus, it’s hard to figure out any patterns based on these commonly used

convolutional layers unless I conduct a serial of controlled experiments. So in the

following subsections, I only change one factor while fix all the other factors, which

decouple these factors and is much easier to find the rules of energy consumption.

6.1.2 Data Input Size

In this subsection, I keep the kernel size and kernel quantity, but vary the size of input

feature map. To best model power behavior of real-world neural network, I carefully

select the layer configurations and input data size. The kernel size I use is 3 x 3, which is

the most commonly seen kernel size among all ImageNet winner models; The number of

input feature map is 96 and the number of output feature map is also set to 96.

 44

Table 6-5: Convolutional layer with different data input size
Input Size Performance

(second)
GPU Average
Power(Watt)

GPU energy
(Joules)

13 x 13 0.937 105.59 98.94
16 x 16 1.433 108.31 155.21
27 x 27 3.939 112.01 441.21
56 x 56 17.964 115.58 2076.28

128 x 128 107.141 112.21 12022.29
224 x 224 GPU out of memory

In the current setting, the input data size is the only changing factor. From Table 6-5, we

can see that when the input data size is small, increasing input data size will increase both

the GPU average power and total energy consumption. However, when the input data

size is bigger than 56 x 56, the power will be stable while the energy consumption

continues to increase. Figure 6-1 shows how the energy changes with input data size. The

x-axis is the input size and the y-axis is the energy. I can conclude that with the data input

size increased, the energy of training growing

 45

linearly.

Figure 6-1: Convolutional layer GPU energy with varied data input size

6.1.3 Kernel Size

In this section, I want to analyze the influence of kernel size on energy. I configure the

input data in the size of 64 x 64. The number of input feature map is set to 128 and the

number of output feature map is also set to 128. So the total number of kernel for each

covolutional layer is 128 x 128.

 46

Table 6-6: Convolutional layer with different kernel size
Kernel Size Performance (second) GPU Average

Power(Watt)
GPU energy

(Joules)

3 x 3 33.38 119.2 3979.56

5 x 5 84.93 122.51 10404.77

7 x 7 149.71 124.31 18610.45

9 x 9 228.34 124.53 28435.18

11 x 11 317.76 124.55 39577.01

Kernel size is extremely important to reduce the quantity of parameters. The larger kernel

size means one nerve cell can learn more features in bigger region of pictures. But too big

kernel size will affect neural network’s accuracy. From the Table 6-6 we can clearly see

that for small kernels, increasing kernel size will lead to increase of both power and

energy consumption. However, once the kernel size is relative big (e.g. 7x7), increasing

kernel size will not affect power while the energy consumption always increases.

6.1.4 Kernel Number

In the last experiment, I want to see the effect on energy when total number of kernels in

a convolutional layer is changing. To achieve this goal, I keep the input feature map size

to 64x64, and use kernels in the size of 3x3.

 47

Table 6-7: Convolutional layer with different kernel number
Kernel Number
(input -> output)

Performance
(second)

GPU Average
Power(Watt)

GPU energy
(Joules)

3 -> 96 (288) 1.97 114.45 225.12

64 -> 128(8192) 17.34 117.49 2037.16

128 -> 128(16384) 33.37 117.58 3923.53

128 -> 384(49152) 90.79 117.21 10640.9

384 ->384(147456) 265.7 120.62 32048.5

From Table 6-7, we can see that the performance and energy consumption of one

convolutional layer is strongly related to the multiplication of input and output kernel

number, except of the 3->96 layer, start from 64->128 to 384->384 these four layers, the

training time consuming increase in the same speed of the multiplication of kernel

number. For example, 128 -> 128 is two times of 64->128, the time also increased near

two times. This phenomenon also reflects in GPU energy increment.

6.1.5 Conclusion

From the previous three sections analysis of convolution layer’s performance and energy

consumption in input size, kernel size, and kernel number three aspects. I summarize the

impact of each factor of one convolution in Table 6-8 based on the gap between

minimum and maximum performance and energy consumption with three factors’

increasing.

 48

Table 6-8: The variety impact of performance and energy of convolutional layer
 Time Increment Energy Increment

Input Size increase 297 x 100 x 121 x

Kernel Size increase 13 x 100 x 10 x

Kernel number increase
512 x

132 x 142 x

From Table 6-8, the setting of these three factors has different influence of performance

and energy increment. First of all, all three factors increasing will result in both

performance and energy go up. Secondly, input size and kernel number has relatively

weak affect of time and energy. Thirdly, kernel size has lower affect of energy increment

but stronger impact of performance.

6.2 Fully Connected Layer

In this subsection, based on the number of the layer’s parameter, I choose three fully

connected layer (large, median, and small) to test their energy consumption. The quantity

of parameter of one fully connected layer is calculated by following formula:

Fully connected parameter = (feature map number × input × input + 1) x output.

I want to see how the parameter quantity affect fully connected layer’s performance and

energy consumption.

 49

Table 6-9: The configuration setting of three fully connected layers
 Input Size Feature Map

(Kernel Size)
Output Size Parameter

Quantity

Large 6×6 256 4096 37,752,832

Median 4096×1 1 4096 16,781,312

Small 4096×1 1 1000 4,100,096

The following table shows the performance of three fully connected layers. From Small

to Median, the parameter quantity increase 4.09 times, which is similar to the 3.89 times

performance drop. In the same manner, Large has 2.25 times parameter number than

Median, and also 2.06 times slower than Median.

Table 6-10: The performance of three fully connected layer
 Performance (Second)

Large 2.107

Median 1.022

Small 0.263

Table 6-11: The energy consumption of three fully connected layer

 GPU Average Power (Watt) GPU Energy (Joules)

Large 103.51 218.1
Median 93.73 95.79
Small 83.95 22.16

Table 6-11 shows, the GPU average power increase with the parameter becomes bigger.

The GPU energy also shows linearly increasing with parameter.

Therefore, based on the analysis of this subsection, both performance and energy

 50

consumption has linear relation with fully connected layer parameters.

6.3 Pooling Layer

The pooling layer is used to progressively reduce the spatial size of the representation to

reduce the amount of parameters and computation in the network.

Figure 6-2: One pooling method: max pooling

For example, the figure 6-2 shows how the pooling layer with max method works. With

the 2 × 2 size of filter kernel, the max-valued pixel is picked up to represent the 4 pixels

area. After this process, 75% area was discarded and the depth dimension remains

unchanged.

Besides max pooling, there are another popular pooling methods is average pooling,

which calculate average of all pixel value inside filter as the activation in each pooling

region, but not the biggest one.

In this subsection, I analyze the variables of pooling layer, I find the variables can be

 51

from: (1) input size, (2) filter kernel size, (3) pooling method. Based on these three

portions, I modify one variable while keeping other two fixed.

6.3.1 Input Size

In the first experiment, I choose three different sizes of input and keep filter kernel size as

3 × 3, and also keep pooling method as max pooling. These three pooling layers come

from AlexNet, but I set the feature map all the same to maintain the impartiality of

experiments.

Table 6-12: Different input size of pooling layer
 Input Size Feature Map Kernel Size Pooling

Method

Pooling 1 55 × 55 128 3 × 3 Max
Pooling 2 27 × 27 128 3 × 3 Max

Pooling 3 13 × 13 128 3 × 3 Max

Table 6-13: Different input size of pooling layer performance and energy

 Performance
(Second)

GPU Average
Power
(Watt)

GPU Energy
(Joules)

Pooling 1 1.504 111.43 167.6
Pooling 2 0.338 95.33 32.22
Pooling 3 0.096 66.92 6.424

From Table 6-12, 6-13, they directly show input size is positively correlated to

performance, GPU average power, and energy. Based on previous chapter data, pooling

layer only occupy 2% of total training time and energy of neural network, so the base

energy is relatively small. Compared with the input size affect energy exponentially, the

input size in pooling layer has linear relation with energy.

 52

6.3.2 Filter Kernel Size

In this subsection, I reset the feature map as the original number of AlexNet to reflect real

world neural network. Since recent imageNet winners commonly choose 3×3 or 2×2

kernel size, I design the experiments with these two size. Noted I only compare the kernel

size influence between each pooling layer, so the difference of feature map will not affect

experiment result.

Table 6-14: Configuration setting of three pooling layers
 Input Size Feature Map Kernel Size Pooling

Method
Pooling 1 55 × 55 64 3×3 / 2×2 Max
Pooling 2 27 × 27 192 3×3 / 2×2 Max
Pooling 3 13 × 13 256 3×3 / 2×2 Max

For the performance I can see in Table 6-15, the kernel size does not has big impact of
performance. Although I average the time of 5 runs, the difference already in millisecond

Table 6-15: Different kernel size of pooling layer performance
Performance (second)

 3×3 Kernel 2×2 Kernel
Pooling 1 0.759 0.629
Pooling 2 0.491 0.464
Pooling 3 0.178 0.184

level. So I bet there is not big influence of performance between these two sizes of
kernels.

Table 6-16: Different kernel size of pooling layer GPU energy
GPU Energy (Joules)

 3×3 Kernel 2×2 Kernel
Pooling 1 81.32 64.15
Pooling 2 49.96 46.05
Pooling 3 14.83 14.64

Both performance and energy difference between two kinds of kernel becomes bigger,

 53

For small input size, choosing 3×3 kernel size has not much difference of choosing 2×2

from energy aspect. For larger input size, 2 × 2 can save more time and energy.

From this subsection experiment we know, although small kernel size means the kernel

sliding window need to move more time than bigger kernel to traverse the whole input

data, small kernel also save time to do every down sampling than big kernel size and

finally save energy.

6.3.3 Pooling Method

In this subsection, I keep input size and kernel size, and change pooling method to

compare how energy efficient of these two methods in poling layer.

Table 6-17: The pooling method configuration of pooling layers
 Input Size Feature Map Kernel Size Pooling

Method

Pooling 1 55 × 55 64 3×3 Max/Average

Pooling 2 27 × 27 192 3×3 Max/ Average

Pooling 3 13 × 13 256 3×3 Max/ Average

Table 6-18: Pooling layers performance with various pooling method

Performance(second)

 Max Pooling Average Pooling

Pooling 1 0.759 1.275

Pooling 2 0.491 0.953

Pooling 3 0.178 0.346

 54

Table 6-19: Pooling layers energy consumption with various pooling method

GPU energy (Joules)

 Max Pooling Average Pooling

Pooling 1 81.32 112.57

Pooling 2 49.96 81.79

Pooling 3 14.83 26.3

From table 6-18, 6-19, max pooling have better performance and also more energy

efficiency than average pooling in each layer. Since Max pooling only pick the max value

of sliding window, which need less calculation than calculating average of all the pixel

value that helping to reduce the workload of GPU, then save more energy. In here, with

the input size increasing, the ratio of average pooling energy and max pooling becomes

smaller from 1.77 to 1.38.

6.4 Conclusion

In this chapter, I systematically analysis the major layers. Then I discuss main factors of

each layers influence of layer performance and energy consumption. In convolutional

layer, I discuss three different factor’s contribution of layer. For fully connected layer,

one factor used to modify to see how it affect the layer. In pooling layer, I visualize three

kinds of setting ’s effect of pooling. Based on all the results, we can see how single

factors affect one layer, then affect the whole neural network in both performance and

energy consumption field.

 55

7. HARDWARE TUNING

In previous chapters, I analyze how the frameworks and neural network itself will affect

energy consumption of training process. But I also want to save more energy by tuning

hardware. Because most of the training job is responsible for GPU, so this tuning mainly

focus on GPU tuning. In our work, I experimentally study the impacts of DVFS about

neural network training performance and energy efficiency in Nvidia K20m GPU.

Besides, I compare the K20m and Titan X GPU performance and energy consumption

difference with the same benchmark.

7.1 DVFS

Dynamic Voltage and Frequency Scaling (DVFS) is an advanced power-saving

technology whose aim is to lower a component’s power state while still meeting the

performance requirement of the running workload [Ge, 2013]. The K20m GPU I used is

Nvidia Kepler architecture. It includes total 2496 CUDA cores, six 64-bit memory

controllers, and 5 GB global memory. The GPU cores and memory are capable of DVFS

and support the clock frequency shown in Table 7-1.

 56

Table 7-1: Support memory frequency and core frequency options in K20m GPU
Memory Frequency (MHz) GPU Core Frequency(MHz)

2600 758
705
666
640
614

324 324

To control the clock frequency of the K20m GPU, I used nvidia-smi utility or Nvidia

System Management Interface. This interface is a command line utility that uses the

Nvidia Management Library (NVML) for management and control of Nvidia devices

[Price, 2014].

With the help of GPU boost commands on k20m GPU, I test six experiments which

include all the pair combinations from table 7-1. The benchmark for this experiment is

based on previous Convent Benchmark but with 100 iteration. The experiment

performance results shows in Figure 7-1 with 100 times forward and backward

propagation.

 57

Figure 7-1: Performance impact of DVFS in K20m

Figure 7-1 shows how big influence of GPU frequency affect the performance. The best

performance is 48.95 second with core speed with combination of 758 MHz and memory

with 2600 MHz, which is 3 times faster than GPU with 324 MHz core speed and 324

MHz memory speed.

In addition, when the memory frequency is fixed in 2600 MHz, the performance going

better with the increasing of GPU core frequency. But this increase is limited. When

core speed from 614 MHz to Max 758 MHz, the time saving is 10.57 second. The

average time saving prompted 2.6 second each change when memory fixed in 2600 MHz.

 58

Figure 7-2: Total system energy impact of DVFS

The Figure 7-2 shows the system energy of the whole training process. The system

energy in here includes CPU and GPU energy consumption. From our data, CPU portion

of average power doesn’t affected too much during GPU tuning and keep in 63 ~ 67

Watt. So that means when GPU can run faster with higher frequency, CPU energy

portion will drop certainly. Figure7-3 shows the average power of GPU under different

frequency pair.

 59

Figure 7-3: GPU Average Power with the impact of DVFS

In Figure 7-3, both memory and core frequency with 324 MHz has 46.75 Watt average

power, which slightly higher than 46-watt idle power of K20m. It means the utilization of

GPU is very low under this frequency pair. Then the GPU power go up with the core

frequency increased and arrives the top when core speed is 758 MHz with 134.5 Watt.

 60

Figure 7-4: GPU energy portion with the impact of DVFS

Compared with Figure 7-2 (total energy) with Figure 7-4 (GPU energy), I find that the

most energy saving comes from CPU but not GPU. Even though GPU run faster with

DVFS tuning, the average power goes high, so the energy of GPU doesn’t improve much.

From Figure 7-4, when K20m GPU is in 614/2600 pair, it achieves the best GPU energy

efficiency with 6206 Joules, then with the faster core speed, K20m consume more energy

generally. When K20m GPU with 758/2600 frequency, the second highest GPU energy

consumption can not stop this pair becomes the best system energy efficiency option

because of the saving in CPU make up the extra lost in GPU.

To sum up, DVFS has pros (better performance) and cons (higher average power) of

GPU running in neural network training, but DVFS helps GPU runs faster, CPU can save

more energy to make up the shortage of DVFS, the total energy can drop slightly.

 61

7.2 K20m and Titan X GPU Comparison

When my work going to the end, I got Titan X GPU from Nvidia’s donation, so I add this

subsection to make a brief comparison of Titan X and K20m GPU’s performance and

energy efficiency with the same benchmark. Titan X is the newest and strongest GPU in

current market. From table 7-2, Titan X has 3072 CUDA cores, and a total 12 GB global

memory. Also, Titan X is MaxWell architecture that each CUDA core is stronger than

cores with Kepler architecture of K20m. Based on such specifications, I can assume that

Titan X has better performance than K20m, but I want to quantify the result and I also

interested in whether Titan X can be more energy efficient than K20m GPU.

Table 7-2: Titan X and K20m hardware comparison [Nvidia, 2012; Nvidia 2014]
 Chip CUDA Core single-precision

floating point
performance

Max Power

Titan X GM200
(MaxWell)

3072 7 TFLOPS 250 W

K20m GK100
(Kepler)

2496 3.52 TFLOPS 225 W

I used the Convent Benchmark with 100 iterations and AlexNet running in Caffe

framework to compare two GPUs.

Table 7-3: Titan X GPU and K20m GPU comparison
 Time CPU Average

Power
GPU Average

Power
Total Energy

Titan X 13.283 63.14 213.3 3671.95

K20m 52.28 59.61 120.07 9409.35

From Table 7-3, Titan X has 3.9 times faster than K20m. With almost two time higher

 62

average GPU power then K20m, Titan X still can achieve 2.56 times energy efficiency.

Figure 7-5: K20m energy curve of Caffe with AlexNet

Figure 7-6: Titan X energy curve of Caffe with AlexNet

 63

From Figure 7-5, 7-6, compared with K20m, Titan X shows more stable power

fluctuation when doing recurrent iteration training. In addition, Titan X doesn’t drop the

power too much between iterations to keep in high power level during the whole training

process, which save plenty of time to cool down and warm up hardware.

7.3 Conclusion

In this chapter, I compare the DVFS tuning influence of neural network training in K20m

and also compare energy consumption between two GPUs. DVFS with high core and

memory frequency can help current GPU have better performance with more cost of

GPU energy, and lower total energy. This strategy can be used in other GPU heavy

workload but CPU low workload application. Titan X achieved both performance and

energy saving goals has been verified in neural network training. With the comparison of

both Titan X and K20m energy curve, Titan x has more stable curve and maintain in high

power stage under the same neural network, benchmark, and training framework of

K20m.

 64

8. CONCLUSION

In this paper, I analyze many aspects related to neural network training from performance

and energy efficiency, includes hardware, framework, library, neural network level, layer

level, even data input size. Following this analysis strategy can cover all potential factors

of neural network. With massive comparison in various conditions, I find the most energy

efficient training framework and library, also based on this framework, Caffe, I expand

more details about neural network, how each factor affect one specific layer, and finally

affect the whole neural network. Since now researcher plan to implement deeper neural

network models with more complicated layers, I think my research can help them to

avoid high energy consuming and low performance factors and provide them ideas to

design energy efficient layers, energy efficient framework, and finally green neural

network.

 65

9. FUTURE WORK

In the future, I will expand our experiments in Titan X with bigger memory to handle

deeper neural network like GoolgeNet and Oxford Net. In addition, since some advanced

frameworks didn’t support Kepler Architecture, Titan X with new Maxwell architecture

will support more frameworks such as Nirvana. With wider range of experiments, I will

find the energy consumption model of neural network and design a green networks based

on the best energy saving principles from network wise and layer wise.

 66

REFERENCES
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6), 386.

Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The" wake-sleep" algorithm
for unsupervised neural networks. Science, 268(5214), 1158-1161.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02), 107-116.

Deep Learning Concept in Wiki https://en.wikipedia.org/wiki/Deep_learning

CNN wiki, 2016: https://en.wikipedia.org/wiki/Convolutional_neural_network

Convent-Benchmark (2015) Github Repository:

https://github.com/soumith/convnet-benchmarks

Model Zoo, 2015: https://github.com/BVLC/caffe/wiki/Model-Zoo

cuDNN 2013 : https://developer.nvidia.com/cudnn

MXNet 2015, Github Repository: https://github.com/dmlc/mxnet

Intel RAPL:https://01.org/rapl-power-meter

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., ... & Zhang, Z. (2015). MXNet: A
Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
arXiv preprint arXiv:1512.01274.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. InProceedings of the IEEE
International Conference on Computer Vision (pp. 1026-1034).

Caffe Deep Learning Framework: http://caffe.berkeleyvision.org

Ge, R., Vogt, R., Majumder, J., Alam, A., Burtscher, M., & Zong, Z. (2013, October).
Effects of dynamic voltage and frequency scaling on a k20 gpu. In Parallel Processing
(ICPP), 2013 42nd International Conference on (pp. 826-833). IEEE.

https://en.wikipedia.org/wiki/Deep_learning
https://github.com/soumith/convnet-benchmarks
https://developer.nvidia.com/cudnn
https://github.com/dmlc/mxnet

 67

Price, D. C., Clark, M. A., Barsdell, B. R., Babich, R., & Greenhill, L. J. (2015).
Optimizing performance-per-watt on GPUs in high performance computing. Computer
Science-Research and Development, 1-9.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(pp. 1097-1105).

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013).
Overfeat: Integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229.

NVIDIA (2011). Nvidia management library.
http://developer.nvidia.com/nvidia-management-library-nvml.

NVIDIA (2012). Fermi compute architecture whitepaper.

NVIDIA(2013). K20m Accelerator,
http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf

NVIDIA (2014). Titan X User Guide
http://www.nvidia.com/content/geforce-gtx/GTX_TITAN_X_User_Guide.pdf

http://www.nvidia.com/content/PDF/fermi white papers/ NVIDIA Fermi Compute
Architecture Whitepaper.pdf.

CUDA (2013). Cuda SDK. https://developer.nvidia.com/cuda-toolkit.

Bahrampour, S., Ramakrishnan, N., Schot. Lukas., Shah, & Mohak.(2016). Comparative
Study of Deep Learning Software Frameworks arXiv preprint arXiv: 1511.06435

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S.
(2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. arXiv preprint arXiv:1603.04467.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Berg, A. C.
(2015). Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3), 211-252.

 68

Mei, X., Yung, L. S., Zhao, K., & Chu, X. (2013, November). A measurement study of
GPU DVFS on energy conservation. In Proceedings of the Workshop on Power-Aware
Computing and Systems (p. 10). ACM.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, november 1998

Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to
human-level performance in face verification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 1701-1708).

Tompson, J. J., Jain, A., LeCun, Y., & Bregler, C. (2014). Joint training of a
convolutional network and a graphical model for human pose estimation. InAdvances in
neural information processing systems (pp. 1799-1807).

Lebret, R., Pinheiro, P. O., & Collobert, R. (2015). Phrase-based image captioning. arXiv
preprint arXiv:1502.03671.

Li, D., & Becchi, M. (2012, November). Multiple Pairwise Sequence Alignments with
the Needleman-Wunsch Algorithm on GPU. In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion: (pp. 1471-1472). IEEE.

Truong, H., Li, D., Sajjapongse, K., Conant, G., & Becchi, M. (2014). Large-scale
pairwise alignments on GPU clusters: exploring the implementation space. Journal of
Signal Processing Systems, 77(1-2), 131-149.

Wu, H, Li, D., & Becchi, M. (2016, May). Deploying graph algorithms on gpus: An
adaptive solution. In Parallel & Distributed Processing (IPDPS), 2016 IEEE 30th
International Symposium on. IEEE.

Li, D., & Becchi, M. (2013, May). Deploying graph algorithms on gpus: An adaptive
solution. In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on (pp. 1013-1024). IEEE.

Li, D., Wu, H., & Becchi, M. (2015, February). Exploiting Dynamic Parallelism to
Efficiently Support Irregular Nested Loops on GPUs. In Proceedings of the 2015
International Workshop on Code Optimisation for Multi and Many Cores (p. 5). ACM.

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. BACKGROUND
	3. RELATED WORK
	4. ENERGY CONSUMPTION ANALYSIS OF NEURAL NETWORKS IN DIFFERENT LEARNING FRAMEWORKS
	4.1 Introduction of Training Framework
	4.1.1 Caffe
	4.1.2 Torch
	4.1.3 TensorFlow
	4.1.4 MXNet

	4.2 Benchmark Setup
	4.2.1 Data Benchmark
	4.2.2 Neural Network Benchmark
	4.2.3 System Setup

	4.3 GPU Mode Results and Discussions
	4.3.1 Native GPU v.s. GPU with cuDNN Library
	4.3.2 Overall Framework Energy Consumption and Performance Comparison

	4.4 CPU Mode Results and Discussions
	4.4.1 Math Libraries for CPU
	4.4.2 Caffe - CPU Mode Energy Efficiency Analysis with BLAS

	4.5 Conclusion

	1159.01
	742.61
	416.4
	111.67
	62.99
	6.61
	2643.98
	1616.31
	1027.67
	87.51
	55.64
	18.47
	950.22
	621.27
	328.95
	122.78
	65.01
	5.06
	518.65
	350.62
	168.04
	135.9
	65.13
	2.58
	5. NETWORK WISE ENERGY CONSUMPTION ANALYSIS
	5.1 Each Layer Energy Occupation
	5.2 Batch Size Factor of Neural Network

	6. LAYER WISE ENERGY CONSUMPTION ANALYSIS
	6.1 Convolutional Layer
	6.1.1 Common Convolutional Layers
	6.1.2 Data Input Size
	6.1.3 Kernel Size
	6.1.4 Kernel Number
	6.1.5 Conclusion

	6.2 Fully Connected Layer
	6.3 Pooling Layer
	6.3.1 Input Size
	6.3.2 Filter Kernel Size
	6.3.3 Pooling Method

	6.4 Conclusion

	7. HARDWARE TUNING
	7.1 DVFS
	7.2 K20m and Titan X GPU Comparison
	7.3 Conclusion

	8. CONCLUSION
	9. FUTURE WORK
	REFERENCES

