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ABSTRACT 

In recent years, convolutional neural network (CNN) has been widely used to 

improve the training time and accuracy of image recognition applications. These CNNs 

are based on deep learning algorithms, which simulate the learning process of human’s 

brain. After sufficient number of images being used to train the neural networks, high 

recognition accuracy of images can be achieved. In the past few years, especially after 

GPUs are utilized to carry heavy-duty computation, the accuracy and training time of 

machine learning algorithms have been significantly improved (e.g. the error rate has 

dropped from 28.2% in 2010 to 6.66% in 2014). The newest neural network developed 

by Microsoft in 2015 has already surpassed human’s recognition ability with the error 

rate less than 5%. This is an exciting achievement but also indicates that the room for 

accuracy improvement is narrowing. On the other hand, due to the massive volume of 

training data sets, the increasing complexity of neural network structure, and the 

significant amount of computation, the training process consumes more and more time 

and energy. In this thesis, we conduct a comprehensive study on analyzing the 

performance and energy impact of a variety of outer and inner factors in popular CNN 

algorithms, which provides detailed workload characterization to facilitate the design of 

more energy efficient CNN algorithms and training frameworks.   
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1. INTRODUCTION 

In 1958, Frank Rosenblatt proposed the Perceptron concepts and a theory on how do 

neurons in human brains operate [Rosenblatt, 1958]. This theory created a new field of 

artificial intelligence, called neural network. In 1989, Yann LeCun et al. applied neural 

network algorithms to recognize handwritten ZIP codes with the training time to be 

approximately 3 days. After that, numerous interesting practices such as the wake-sleep 

algorithm [Hinton, 1995] and vanishing gradient problem [Hochreiter, 1998] appeared. 

However, the slow speed of training continues to be a key factor to impede the 

advancement of neural network’s algorithms and applications. This situation started to 

change after 2010 with the high speed GPGPU’s being utilized to speedup the training 

time. For example, a single K20 GPU can achieve 1.17 trillion floating-point operations 

per second [NVIDIA, 2013] and the new Maxwell GPU Titan X is even faster, which 

makes it feasible to train complex neural networks with large data sets in reasonable time. 

In the past few years, we have witnessed the rapid growth of deep learning algorithms (i.e. 

Learning algorithms with more than one stage of non-linear feature transformation), 

which have been successfully used to solve challenging problems such as image 

recognition, speech recognition, and natural language processing. This thesis focus on the 

image recognition field. 

To evaluate a variety of deep learning algorithms for object detection and image 

classification at large scale, the ImageNet Large Scale Visual Recognition Challenge 
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(ILSVRC) has been held annually since 2010. The imageNet benchmark with 15 million 

manual-labeled high-resolution images belonging to roughly 22,000 categories is used to 

train and evaluate the accuracy of state of art neural network algorithms [Russakovsky, 

2015]. This challenge uses the percent of top 5 error rate (i.e. If correct class is not int the 

top 5 classification recommended by the algorithm, it is counted as an error) as the 

evaluation metric for accuracy. Table 1-1 shows the error rate of winner algorithms in the 

past six years, which clearly demonstrates the significant improvement in accuracy 

[Russakovsky, 2015]. 

Table 1-1: Recent Year CNNs Top 5 Error 

Year Percent of Top 5 Error 

2015 3.57 (Microsoft) 

2014 6.66 (GoogLeNet) 

2013 13.8 (OverFeat) 

2012 16.42 (AlexNet) 

2011 25.8 

2010 28.2 

After Microsoft’s algorithm already surpassed human recognition ability (~5%) [He, 

2015], neural network research has achieved the goal of matching or beating human’s 

capability on image recognition in terms of accuracy. However, human consumes 

extremely less amount of energy to recognize a picture. One new direction of neural 
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network research is to design more energy-efficient deep learning algorithms without 

compromising accuracy. This is a challenging task because there are too many factors 

(e.g. hardware configurations, different learning framework, external matrix calculation 

libraries, neural network structure, configuration setting of each layer inside a network, 

etc) that can affect the training time, the energy consumption and the accuracy. All such 

factors have unknown contribution to the total energy consumption. To the best of my 

knowledge, there is no existing study that comprehensively investigates the energy 

behavior of neural network, especially CNN based deep learning algorithms. 

The major contributions of this thesis are summarized below: 

1) It describes a strategy to analyze neural network energy consumption from the high 

level to the detailed level. 

2) It presents a comparative study of performance and energy efficiency of four popular 

neural network training frameworks and finds the most energy efficient framework. 

3) It studies the impact of a variety of external math libraries (for both GPUs and CPUs) 

on the performance and energy consumption of deep learning algorithms. 

4) It presents the decomposed energy consumption of each layer in AlexNet and studies 

how do different factors affect energy behaviors of each layer. 

5) It studies the impact of DVFS on the energy consumption of deep learning algorithms 

when running them on K20 and Titan X GPUs.  



 4 

This thesis is organized as follows. In Chapter 4, I discuss the energy efficiency of 

several popular deep learning frameworks. Since neural network training mostly in GPU, 

I mainly focus on GPU mode of those frameworks. In Chapter 5, I analyze the network 

wise energy consumption of neural networks. Particularly, I show the energy percentage 

of each layer consumes during the total network training time. In Chapter 6, major energy 

consuming layers are broken down from neural network and analyzed separately. In 

Chapter 7, I use GPU tuning technology to optimize the energy consumption of neural 

network training and also compare different hardware. 
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2. BACKGROUND 

In this Chapter, I present the background information and terminologies that help to 

understand how do deep learning algorithms work and the experimental results shown in 

later chapters.  

The convolutional neural network simulates the way human process and recognize images. 

It consists of multiple layers. The classic CNNs have three kinds of layers: the 

convolutional layer, the pooling layer and the fully connected layer. For example, Figure 

2-1 shows a simple CNN include all these three layers [LeCun, 1998]. Each layer 

contains thousands or millions of neurons. A single neuron takes some input, computes the 

weighted sum of inputs, and sends output to the neurons in the next layer. 

 
Figure 2-1: LeNet: an algorithm to recognize hand write letter 

The following example briefly illustrates how convolution neural network works.  

CNNs take images as input, for gray image, the channel is 1, for RGB image, the channel 

is 3. Most current CNNs accept fixed size RGB image as input. If there is a 5 x 5 size 

gray (channel = 1) image pixel matrix and a 3 x 3 size kernel (or filter). We assume this 

kernel is used to capture border feature of this image. 
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With the setting of stride = 1, and bias = 1, kernel does inner production with picture 

matrix, and move one stride, continuing inner production to traverse the whole image 

matrix, the result is 
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with ( 5 - 3 +1) width and (5 - 3 +1) height. This process called convolution and the result 

called feature map is the following matrix. The kernel is used to detect a specified feature 

from an image. Each inner production needs to add a bias, so the final feature map matrix 

is  
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If we want to capture as many features as possible from this image, we need more 

different kernels. If there are 100 kernels, then we have 100 feature maps as output after 

this convolutional layer. 

We can use the following two formula to measure the workload of one convolutional layer,  

(1) Parameter = (Kernel width x Kernel height + 1) x feature map quantity x channel 
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(2) Connection = Parameter x Feature map width x Feature map height 

Based on the formula, the parameter of this convolutional layer is (3 x 3 +1) x 100 x 1= 

1000. The connection quantity is 1000 x 3 x 3 = 9000. 

Typically, a threshold function (or activation function) will follow a convolution layer. For 

example, in AlexNet, the activation function is called a Rectified Linear Unit, or ReLu 

layer. Its formula is f(x) = max (0, x). The x is the input of a neuron. If x >0, the neuron will 

be activated and pass value to the next layer (not activated otherwise).  

The pooling layers, or down sampling layer, are usually placed between two convolutional 

layers. It partitions the input feature map into a set of non-overlapping rectangles (the stride 

size is equal to the filter size). There are mainly two methods of pooling: max pooling and 

average pooling which will be explained in section 6.3. The pooling layer progressively 

reduces the amount of parameters as well as controls overfitting. Overfitting means that the 

training model has higher accuracy in recognizing images of pre-trained data sets, but has 

lower accuracy in recognizing unseen images. This is usually caused by data noises or 

limited training data sets. 

Finally, after several convolutional and pooling layers, the CNN algorithms finalize the 

results via fully connected layers. Neurons in a fully connected layer have full connections 

to all neurons in the previous layer. The output can hence be computed with an 

one-dimensional matrix multiplication followed by a bias offset. Each value of this 
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one-dimensional matrix is the classification probability of this image.  

Forward propagation refers to the learning process from convolution layers to fully 

connected layers. Classifying an image only needs forward propagation. Backward 

propagation is needed to adjust deviation when the training algorithms leverage the 

temporary training results to verify whether or not the temporary recognition results have 

a big offset. 
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3. RELATED WORK 

Over the last decade, graphics processing units (GPUs) have been widely used in many 

fields for application accelerations (e.g. Bioinformatics [Truong, 2014], Graph [Li, 2013], 

Nested Parallelism [Wu, 2016], Irregular Loops [Li, 2015]). Nowadays, the peak 

double-precision performance of high-end GPUs from Nvidia is well above 1 teraFLOPS 

[NVIDIA, 2013]. With the emergence of high speed GPUs and the availability of large 

data sets for training, we have witnessed the significant improvement of deep learning 

algorithms in terms of training time and accuracy and the boom of deep learning 

applications. The Visual Geometry Group (VGG) of University of Oxford has designed a 

16 layers model with 7.4% top 5 error and a 19-layer model with 7.3% top 5 error rate 

[Simonyan, 2014]. In 2015, Microsoft implemented a model with 152 layers - 8x deeper 

then VGG nets with 3.57 % error [Zhang, 2015]. The fast development not only 

represents in the structure of neural network, but also reflects in wider scope. For 

example, The Deep Face deployed at Facebook for Auto tagging [Taigman, 2014]; 

Estimation of person pose [Tompson, 2014]; Generating a descriptive sentence [Lebret, 

2015] etc. In spite of the advancement in developing deeper and more complicated neural 

network structures, the research on investigating the energy consumption behavior of 

different neural network and training framework is still in its infancy. To the best of my 

knowledge, there are no comprehensive studies on analyzing the energy-aware deep 

learning algorithms. With the size of data sets increase exponentially and the ever 
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increased energy consumption for training such data sets, it is desirable to design more 

energy efficient deep learning algorithms. This thesis contributes to this field by 

presenting the energy behaviors of numerous well-known deep learning algorithms and 

exploring the impact of various factors on the energy consumption of these algorithms. 

Although other accelerators like Xeon Phi and FPGA can provide high throughput and 

are widely used in high performance computing domains including tree/graph traversal 

[Li, 2014], information fusion [Song, 2011] and deep learning [Lacey, 2016], this thesis 

focuses on quantifying and studying power and energy behaviors on GPU platforms. 
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4. ENERGY CONSUMPTION ANALYSIS OF NEURAL NETWORKS IN 
DIFFERENT LEARNING FRAMEWORKS 

In this chapter, I present a comparative study of four popular deep learning frameworks, 

namely Caffe, Torch, TensorFlow, and MXNet, in terms of performance and energy 

efficiency. I evaluate these two aspects for both CPU and GPU settings. 

4.1 Introduction of Training Framework  

In this section, I first briefly introduce each framework and their features. 

Table 4-1 shows the number of users in Google groups and the number of open source 

contributors for each framework in their Github repositories. It is clear that these four 

frameworks are widely used and supported by the deep learning community. 

 
Table 4-1: Community involvements of four deep learning frameworks as of 03/18/2016 

Measures Caffe Torch7 TensorFlow MXNet 
Number of 
members in 

Google groups 

4589 2062 780 N/A 

Number of 
contributors in 

Github 

182 84 153 107 

4.1.1 Caffe 

Caffe, an abbreviation of Convolutional Architecture for Fast Feature Embedding, is a 

well-known and widely used open source framework that was originally designed by the 

U.C. Berkeley Vision and Learning Center (BVLC) then co-designed by community 

contributors. Caffe is written in C++, and supports CUDA for GPU computation. It is 

designed with expressive architecture and supports open source math libraries to ensure 
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high performance. In addition, Caffe emphasizes usability by allowing users to configure 

each layer of a neural network easily without complicated coding [Jia, 2014]. 

4.1.2 Torch 

Torch is a computational framework written in Lua, which is a multi-paradigm scripting 

language. Compared with C, Lua is more readable and easy to learn. In addition, rich 

interfaces to C keeps Lua’s high performance for large scale applications. Torch currently 

is used by large tech companies such as Google DeepMind and Facebook, which devote 

in-house teams to customize their deep learning platforms. In our experiments, we used 

the newest version Torch 7 to train neural networks. 

4.1.3 TensorFlow 

TensorFlow is another open source framework which derives from the Google Brain 

project. It is an interface for expressing machine learning algorithms, and an 

implementation for executing neural network training algorithms [Abadi, 2016]. 

TensorFlow is famous for its flexibility to express a wide variety of algorithms, including 

computer vision, robotics, and natural language processing etc. It also has strong 

portability to run on desktop, server, or even mobile computing platforms. 

4.1.4 MXNet 

MXNet is a lightweight, portable and flexible mobile deep learning framework. It 

supports Python, R, Julia, Go, and JavaScript, which is the framework that supports most 

programming languages [Chen, 2015]. 
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4.2 Benchmark Setup 

There are two types of benchmark in this thesis. The first type of benchmark is the data 

benchmark, which includes the training data with training setting such as iteration 

quantity. The second type of benchmark is neural network algorithms. Due to numerous 

memory occupation during training, the K20 GPU can only fully support AlexNet 

[Krizhevsky, 2012], and partly support OverFeat [Sermanet, 2013] because some 

frameworks require more memory to run.  

4.2.1 Data Benchmark 

The benchmark I select comes from an open source project called Convent Benchmark, 

which supports most publicly accessible implementation of CNNs under the same data 

sets entry [Convent-Benchmark, 2015]. In this benchmark, the author, Soumith Chintala, 

a member of Facebook AI research team, picked popular ImageNet models and clock the 

time for full forward and backward pass in his machine. However, this benchmark does 

not measure the energy consumption of each learning framework. I provide valuable 

extension to this benchmark by comparing the energy consumption of the aforementioned 

four frameworks. The benchmark parameters are shown in Table 4-2.  
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Table 4-2: Convent Benchmark parameters setting for four deep learning frameworks 

Convent Benchmark Parameter 

Data Set Random generated data 
Training Iteration 10 times 

The data sets in Convent Benchmark is randomly generated and able to response to a 

variety of input size at different layers. The data will be fixed and reused during each 

iteration's training. I set the training iteration number as 10 to ensure sufficient number of 

power samples can be collected for energy consumption calculation.  

4.2.2 Neural Network Benchmark 

I select AlexNet and OverFeat as algorithm benchmarks. Both of them have 128 batch 

size for each iteration’s input. Other configurations are the same as the published 

configurations in BVLC’s model zoo [Model Zoo, 2015].   

4.2.3 System Setup 

All experiments are performed on a single machine running on CentOS 7 with Intel Xeon 

E5 - 2650 v2 @ 2.6GHz; Nvidia Tesla K20m with 5GB memory; 32GB DDR3 main 

memory; and 128 GB SSD hard drive. The drivers and libraries used in our experiments 

include CUDA 7.0, cuDNN v3, OPENBLAS 0.2.16, Caffe (commit ID be163be), Torch 

7 (commit ID eb8d7f2), and TensorFlow (commit ID fd464ca), MXNet (commit ID 

d25053). For the power measurement, the CPU and DRAM power data are collected via 

the Intel Running Average Power Limit (RAPL) interface [Intel, 2012] and the GPU 

power is obtained via the Nvidia’s System Management Interface. 
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4.3 GPU Mode Results and Discussions 

4.3.1 Native GPU v.s. GPU with cuDNN Library  

In this subsection, I define the GPU without cuDNN library as native GPU. The NVIDIA 

CUDA Deep Neural Network Library (cuDNN) is a GPU-accelerated library of 

primitives for deep neural networks. The cuDNN allows deep learning developers and 

researchers to focus on designing and training neural network models rather than 

spending their time to tune the low-level hardware performance counters for the best 

performance [cuDNN, 2013]. 

Since TensorFlow and MXNet are already embeded with cuDNN when released, Caffe 

and Torch7 are used to evaluate the impact of cuDNN on performance and energy 

consumption. 

Figure 4-1: Caffe’s power consumption with native GPU 
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Figure 4-1 shows the energy curve of Caffe during benchmark training. As shown in this 

figure, at the beginning the GPU power (red line) stays idle (< 50W) for around one 

second. Then after one fluctuation’s initialization, ten iterations of similar                

fluctuations are observed, which represent the ten training iterations. When GPU is idle, 

CPU is running the benchmark to load and locate the training data, read neural network 

configuration file, etc. When GPU is doing initialization, CPU goes back to the idle state, 

followed by CPU’s power burst to over 60Wto transfer the data GPU requested for 

training.  

 
Figure 4-2: Torch’s power consumption with native GPU 

As we can see from figure 4-2, GPU stays in idle over three seconds, which means there 

are three seconds of performance loss and energy waste for the CPU waiting for GPU 

finishing its work. During running, CPU has two power spikes. The first one appears 
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right after GPU initialization and the second one happens after Torch starts doing 

backward calculation.  

Table 4-3: Caffe and Torch energy and performance comparison in native GPU 
Native 
GPU 

Time (s) CPU 
average 
Power 
(W) 

GPU 
average 
Power 
(W) 

CPU 
energy (J) 

GPU 
energy 

(J) 

GPU and 
CPU 

energy 
(J) 

Caffe 9.64 63.55 98.47 612.62 949.25 1561.87 

Torch7 11.35 66.6 94.19 755.91 1069.06 1824.97 

Table 4-3 shows the performance and energy consumption of two frameworks on 

AlexNet with native GPU. Under these restrictions, Caffe results in the best performance 

and the lowest energy consumption. Note that in Figure 4-2 of Torch, the power of GPU 

keeps idle for 3.5 seconds, then GPU instantly goes up to over 120 W. The similar 

initialization (GPU stays idle) in Caffe only takes 0.9 second. If consider without 

initialization time, Torch and Caffe have very similar performance and energy 

consmpution. 

To compare whether caffe is always faster than Torch in native GPU, I also executed the 

same benchmark with the OverFeat neural network.  
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Table 4-4:Caffe and Torch 7 performance and energy with OverFeat 
Native 
GPU 

Time (s) CPU 
average 
Power 
(W) 

GPU 
average 
Power 
(W) 

CPU 
energy (J) 

GPU 
energy 

(J) 

GPU and 
CPU 

energy 
(J) 

Caffe 25.82 67.76 109.95 1752 2839 4591 

Torch7 28.55 62.96 114.09 1798 3257 5055 

Table 4-4 shows that Caffe saves 9% of time and 9.1% of energy when training the 

OverFeat algorithm than using Torch. Next, I evaluate how can cuDNN accelerate these 

two frameworks. 

Figure 4-3 demonstrates several interesting observations: 1) the total training time drops 

from 9.64 second to 6.61 second; 2) the average GPU power is much higher than native 

 

Figure 4-3: Caffe’s power consumption in GPU Mode with cuDNN 

GPU.  
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Since cuDNN has nothing to do with CPU acceleration, and its optimization does not 

affect Caffe’s architecture, the initialization and CPU power curve doesn’t change. 

However, this three seconds time saving saves energy for both GPU and CPU. 

Table 4-5: Caffe and Torch7 energy efficiency comparison in GPU with cuDNN 
GPU with 
cuDNN 

Time (s) CPU 
average 
Power 
(W) 

GPU 
average 

Power(W) 

CPU 
energy (J) 

GPU 
energy(J) 

GPU and 
CPU 

energy(J) 

Caffe 6.61 62.99 111.67 416.4 742.61 1159.01 
Torch7 18.47 55.64 87.51 1027.67 1616.31 2643.98 

In addition, there are huge difference in Torch diagram. From Figure 4-4, we can observe  
 

Figure 4-4: Torch’s AlexNet power consumption in GPU Mode with cuDNN 

a long straight power line (at 85 W) that lasts over ten seconds after GPU’s idle state and 
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before the training starts.   

On the contrary, based on the execution log of Torch, it finishes its training process in 

2.58 second, which is the same duration for forward and backward propagation in Figure 

4-4 (From the highest point to the end of the red line). However, the time recorded by our 

power meter reflects the true execution time of the entire benchmark script, which means 

that Torch starts its own timer right after the first forward propagation and ignored the 

time before training. To figure out this conflict, I check the source code of Torch’s 

benchmark. The crucial portion is marked in Figure 4-5. 

 
 23 print('Running on device: ' .. cutorch.getDeviceProperties(cutorch.getDevice    ()).name) 

 24 print('cuDNN version: ' .. cudnn.version) 

 25  

 26 steps = 10 -- nb of steps in loop to average perf 

 27 nDryRuns = 50 

 28  

 29 function makeInput(config, size) 

 30    local layout = config[4] 

 31    local osize 

 32    if layout == 'BDHW' then 

 33       osize = size 

 34    elseif layout == 'DHWB' then 

 35       osize = {size[2],size[3],size[4],size[1]} 

 36    elseif layout == 'BHWD' then 

 37       osize = {size[1], size[3], size[4], size[2]} 

 38    end 

 39    return torch.randn(torch.LongStorage(osize)) 

 40 end 

 41  

 42 for i=1,#nets do  

 43    for j=1,#libs do 

Figure 4-5: Torch benchmark script file source code 
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 44       collectgarbage() 

 45       local model,model_name,size = nets[i](libs[j]) 

 46       model=model:cuda() 

 47       local input = makeInput(libs[j],size):cuda() 

 48       local lib_name = libs[j][5] 

 49       print('ModelType: ' .. model_name, 'Kernels: ' .. lib_name, 

 50             'Input shape: ' .. input:size(1) .. 'x' .. input:size(2) .. 

 51                'x' .. input:size(3) .. 'x' .. input:size(4)) 

 52       -- dry-run 

 53       -- for i=1,nDryRuns do 

 54        --  model:zeroGradParameters() 

 55         -- local output = model:updateOutput(input) 

 56        --  local gradInput = model:updateGradInput(input, output) 

 57        --  model:accGradParameters(input, output) 

 58        --  cutorch.synchronize() 

 59        --  collectgarbage() 

 60      -- end 

 61  

 62       local tmf, tmbi, tmbg 

 63       sys.tic() 

 64       for t = 1,steps do 

 65          output = model:updateOutput(input) 

 66       end 

 67       cutorch.synchronize() 

 68       tmf = sys.toc()/steps 

 69       print(string.format("%-30s %25s %10.2f", lib_name, ':updateOutput():',     tmf*1000)) 

 70  

 71       collectgarbage() 

 72       sys.tic() 

 73       for t = 1,steps do 

 74          model:updateGradInput(input, output) 

 75       end 

 76       cutorch.synchronize() 

 77       tmbi = sys.toc()/steps 

 78       print(string.format("%-30s %25s %10.2f", lib_name, ':updateGradInput()    :', tmbi*1000)) 

 79  

 80       collectgarbage() 

 81       sys.tic() 

Figure 4-5: Continued 
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 82       local ok = 1 

 83       for t = 1,steps do 

 84          ok = pcall(function() model:accGradParameters(input, output) end) 

 85       end 

 
Figure 4-5: Continued 

In Figure 4-5, line 52 to line 60 is the Dry-run code, which is used to prepare for training. 

To verify whether the straight line is related to the Dry-run code, I first set up 

independent timer to measure duration of each portion of code. Initialization takes 4.2 

second, Dry-run portion takes near 12 seconds, forward and backward propagation takes 

2.58 second, which altogether represent the energy curve in Figure 4-4. Additionally, I 

change the value of nDryRuns from 1 to 50 and retrain again, the result shows in Figure 

4-5. The initialization time in Figure 4-5 stays the same (4.2 second), the Dry-run portion 

takes 25.1 second, and the forward and backward propagation remains the same (2.58 

second). Therefore, its clear that the straight line is related to the Dry-run code.  

Lua is known as one of the fastest scripting languages and very popular in game industry, 

which requires low latency [Lua Docuement, 2016]. This delay phenomenon in Torch 

should not relate to which programming language the framework choose.  
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Figure 4-6: Torch’s power consumption in GPU Mode with cuDNN in 50 Dry-run 

Then I decide to comment the whole Dry-run code and execute again. We surprisingly 

find that the forward and backward propagation time increases from 2.58 second to 14.67 

second, while Dry Run time becomes 0 second. It means the over ten seconds straight 

line still exists. Therefore the Dry-run is not meaningless and its the true initialization for 

forward and backward propagations. If such initialization time is included in the actual 

training time, Torch will be much slower and less energy efficient than Caffe. 

Note that Caffe also has near one second initialization time on GPU, I would like to see 

how much energy and time are actually used to train the neural network. I cut off both 
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Caffe and Torch’s initialization time. The results are shown in Figure 4-7 and Figure 4-8. 

 
Figure 4-7: The actual execution time and power consumption of Caffe 

 
Figure 4-8: The actual execution time and power consumption of Torch 
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Table 4-6: Caffe and Torch7 actual execution time and energy efficiency comparison in 

GPU with cuDNN 
GPU Time 

(s) 
CPU 

average 
Power 
(W) 

GPU 
average 

Power(W) 

CPU 
energy 

(J) 

GPU 
energy(J) 

GPU and CPU 
energy(J) 

Caffe-cudnn 5.06 65.01 122.78 328.95 621.27 950.22 
Caffe-native 7.99 65.13 103.04 520.39 823.29 1343.68 

Torch7-cudnn 2.58 65.13 135.9 168.04 350.62 518.65 
Torch7-native 7.35 67.2 112.89 493.92 829.74 1323.66 

Table 4-6 shows the energy consumption and performance caused by the training code. 

To analyze how cuDNN promote the training process and ensure the results are 

comparable, I also isolate the actual execution of Caffe and Torch with native GPU. With 

the help of cuDNN, Caffe trains the same data sets with 1.58 time faster and consumes 

1.41 time less energy. Torch achieves 2.85 times of speedup and saves 2.55 times of 

energy. 

4.3.2 Overall Framework Energy Consumption and Performance Comparison 

In this experiment, I only evaluate the impact of cuDNN on the TensorFlow and the 

MXNet (results are shown in Figure 4 -9, Figure 4 -10 and Table 4 – 7). 
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. 

 
 

Figure 4-9: TensorFlow’s power consumption in GPU Mode with cuDNN 

 

 

 

 

 

 

 

 

 
 

Figure 4-10: MXNet’s power consumption in GPU Mode with cuDNN 



 27 

 
Table 4-7: Four framework’s overall energy consumption and performance 

GPU Time (s) CPU 
average 
Power 
(W) 

GPU 
average 

Power(W) 

CPU 
energy (J) 

GPU 
energy(J) 

GPU and 
CPU 

energy(J) 

Caffe 6.61 62.99 111.67 416.4 742.61 1159.01 
Torch7 18.47 55.64 87.51 1027.67 1616.31 2643.98 

TensorFlow 15.21 68.26 130.41 1038.23 1983.54 3021.76 
MXNet 9.71 57.9 112.37 562.2 1091.11 1653.31 

Table 4-7 shows the total energy consumption and performance of four deep learning 

frameworks, which include their initialization and actual training process. Overall, Caffe 

has the best performance and energy efficiency among these four benchmarks. 

4.4 CPU Mode Results and Discussions 

4.4.1 Math Libraries for CPU 

The Basic Linear Algebra Subprograms, or BLAS libraries, are used to support CPU 

performing linear algebra operations such as matrix operations. Since Caffe provides 

flexible interfaces to incorporate different external libraries, I choose Caffe to compare 

three popular BLAS libraries: Atlas, OpenBLAS, and MKL. Atlas is the abbreviation of 

Automatically Tuned Linear Algebra Software, which provides C and Fortran interfaces 

to a portable and efficient BLAS implementation. OpenBLAS is an open source project 

of BLAS with many optimizations for specific processor type. MKL, or Math Kernel 

Library, is the commercialized BLAS of Intel Corporation, which has been specially 

optimized for Intel CPUs. All of these three BLAS libraries support multiple threads. 
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4.4.2 Caffe - CPU Mode Energy Efficiency Analysis with BLAS 

It’s predictable that CPU will train neural network much slower than GPU. Therefore, I 

only select AlexNet to reduce the time of generating experimental results. 

 

 

 

 

 

 

 

 

 

Figure 4-11: Caffe - CPU mode with Atlas energy consumption 
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Figure 4-12: Caffe - CPU mode with OpenBLAS energy consumption 

 
 

Figure 4-13: Caffe - CPU mode with MKL energy consumption 
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Table 4-8: BLAS library energy efficiency and performance comparison in Caffe 
Caffe -CPU Time (s) CPU average Power 

(W) 
CPU energy (J) 

Atlas 145.35 88.08 12802 

OpenBLAS 189.82 148.86 28257 

MKL 63.7 154.51 9842 

From Figure 4-11, 4-12, 4-13, and Table 4-8, we can observe that MKL helps CPU 

running in a high average power with less fluctuation. Fluctuated utilization of hardware 

is normal in deep learning training process because of its iterate characteristics. From the 

Atlas and OpenBLAS energy figures we can see that after each iteration’s training, power 

drops to the same or similar level of the idle state, which is the first point drawing in the 

blue curve. This means after every training iteration, the CPU takes a break and needs a 

short amount of time to warm up again before training next iteration. However, MKL 

keeps CPU in high power after one iteration, which helps CPU better utilize its resources 

during training time. Compared to Atlas, MKL achieves 2.28 times of speedup and 

saves1.3 times of energy. 

4.5 Conclusion 

In this chapter, I compare the performance and energy behavior of four learning 

frameworks in the GPU mode, and then discuss the impact of three math libraries on 

performance and energy in the CPU mode. For the overall training process, Caffe is the 

best choice because of its good training performance and short initialization time. For 
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only training portion, Torch 7 is the fastest one. Since the initialization step is 

unavoidable for each framework, so Caffe is the best choice both in performance and 

energy saving. In the CPU mode, MKL shows much better acceleration of Intel CPUs 

than other two libraries. Therefore, in the experiments shown in Chapters 5 and 6, I  

chose Caffe to train the neural network with the cuDNN and MKL acceleration libraries 

enabled for GPU and CPU respectively.    
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5. NETWORK WISE ENERGY CONSUMPTION ANALYSIS 

In Chapter 4, I investigate the energy efficiency of different training framework and 

conclude that Caffe shows good energy efficiency and performance cross two neural 

networks. This Chapter focuses on studying the energy efficiency of the neural network 

itself. Since Caffe is both user friendly and highly efficient, I choose Caffe in this 

Chapter as the training framework to further explore the impact of neural network inner 

structure on performance and energy efficiency. Because of the time consuming of 

disassembling a neural network, I only disassemble AlexNet in this Chapter. I analyze the 

energy consumption distribution of all major layers and study the impact of batch size on 

energy consumption. 

5.1 Each Layer Energy Occupation 

To split an integrated neural network into separate layers, the key point is 

acknowledgment of each layers input and output data size. For example, the previous 

layers output size should perfectly match the next layer’s input size.  

It is difficult to disassemble the layers of a neural network. Fortunately, AlexNet has 

relatively simpler structure and I select it to perform the studies of this Chapter . The 

primary difference of an integrated neural network and separate layers collections are 

data. For neural network, I need to input data in one time, then data will transmit between 

layers and generate output. However, separate layers need execute respectively with 

unrelated data. Since different data will not affect the energy consumption of each layer, 
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only data input size matters. As a result, I do not need to use actual data calculated by 

previous layer as the next layer’s input data. Rather, I can use benchmark data with 

specified input size each time when I target only on one layer.  

If this break-down approach succeeds, the total breakdown time and accumulated energy 

consumption of each layer should be equal or similar to the time and energy consumption 

of the integrated neural network. Since some layers run faster, in order to collect 

sufficient number of power samples for accurate energy calculation, I use benchmark 

data with 100 iterations to train each layer as well as the whole AlexNet. 
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Table 5-1: Separate Layer Time and Energy Consumption 
Layer Time (Second) Energy Consumption 

(Joules) 

Conv1 7.325 1307.073 
Conv2 14.291 2626.11416 
Conv3 6.988 1336.87428 
Conv4 9.583 1769.50095 
Conv5 6.468 1149.81636 

conv1-relu 0.154 20.41424 
conv2-relu 0.113 15.18833 
conv3-relu 0.064 7.6608 
conv4-relu 0.047 5.20995 
conv5-relu 0.046 5.21318 
pooling 1 0.761 124.85727 
pooling 2 0.497 79.31126 
pooling 5 0.181 25.53729 

Fully connected 6 2.111 332.35584 

Fully connected 7 1.022 153.69858 

Fully connected 8 2.642 411.25372 
Accumulations 52.293 9370.079 

Integrated AlexNet 52.28 9409.35 

From the last two rows in Table 5-1, the accumulation of each layers time is 52.293 

seconds, and the total energy is 9370.079 Joules. These two data are very close to the 

whole AlexNet training time and energy consumption, which means our break-down 

approach is acceptable. To analyze which layer consumes more energy, I present each 
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layer’s percentage of total energy in Figure 5-1 and Figure 5-2. 

 

 

Figure 5-1: Time Occupation percentage of layers 

 

 

 

 

 

 

 

 

Figure 5-2: Energy Occupation percentage of layers 

Figures 5-1 and 5-2 demonstrate that convolutional layer uses 85% of total time and 87% 
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of the total energy. The fully connected layer accounts for 11% of total time and 10% of 

total energy. The pooling layer is responsible for 3% of time and 2% of energy 

consumption.  

Based on the break-down approach of AlexNet and the energy distribution of each layer, 

researchers will be able to get more knowledge about which layer should put more 

concentration in order to reduce the overall energy consumption of neural networks. 

5.2 Batch Size Factor of Neural Network 

Batch size is an important setting of neural network but unrelated to neural network 

structure. A bigger batch size indicates that the data can better represent the full data sets' 

feature. However, loading in a bigger batch requires more GPU memory thereby may 

consume more energy.   

 
 Table 5-2: AlexNet Energy Consumption with different batch size 

Batch Size Time (s) CPU 
average 

Power (W) 

GPU 
average 

Power(W) 

CPU 
energy (J) 

GPU 
energy(J) 

GPU and 
CPU 

energy(J) 

16 1.935 55.76 80.672 107.9 156.1 264 

32 2.603 61.93 90.745 161.2 236.21 397.41 

64 3.976 61.52 101.5 244.6 403.56 648.16 

96 5.319 62.386 106.23 331.8 565.04 896.87 

128 6.641 63.455 111.22 421.4 738.61 1160.01 

In this section, I evaluate integrated AlexNet and OverFeat with batch size ranging from 

16 to 128 to in terms of training time and energy consumption.  

Table 5-2 shows that the training time increases proportionally with batch size. In 
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addition, I find that the average power of both CPU and GPU goes up as batch size 

increases. Figures 5-3 and 5-4 reveal the linear growth of training time and energy 

consumption with batch size. 

 
Figure 5-3: Batch size parameter influence of performance 

Figure 5-4: Batch size parameter influence of energy 
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In addition, I use the same strategy to analyze the batch size effect on OverFeat, Table 

5-3 shows that OverFeat’s performance and energy consumption both grow linearly with 

the batch size. 

Table 5-3：OverFeat Energy Consumption with different batch size 

Batch 
Size 

Time (s) CPU 
average 
Power 
(W) 

GPU 
average 

Power(W) 

CPU 
energy (J) 

GPU 
energy(J) 

GPU and 
CPU 

energy(J) 

16 4.262 61.2 97.48 260.83 415.46 676.29 

32 6.44 62.81 108.36 404.49 697.83 1102.33 

64 10.76 64.13 118.98 690.04 1280.22 1970.26 

96 15.217 64.62 123.12 983.32 1873.52 2856.84 

128 19.46 64.71 125.22 1259.26 2436.78 3696.04 
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6. LAYER WISE ENERGY CONSUMPTION ANALYSIS 

In this chapter, I focus on analyzing power and energy behaviors in each layer. Based on 

our analysis in previous sections, there are main types of layers to a neural network: 1) 

Convolutional Layer, 2) Fully-Connected Layer; and 3) Pooling Layer. I use these three 

layers to analyze layer wise power / energy consumption. Since I already conclude that 

GPU is more energy-efficient than CPU, I only concentrate on GPU energy analysis in 

this chapter. 

6.1 Convolutional Layer 

6.1.1 Common Convolutional Layers 

In our AlexNet analysis, I find that convolutional layer consume over 85% of total energy 

in training. This is important to understand which factors contribute to the energy 

consumption most for convolutional layers. First of all, I conduct the measurement on six 

most commonly seen convolutional layers adapted from [Convent Benchmark, 2015]. 

These layers are frequently used in these championship neural network of ILSVRC in 

recent years. The following table shows the configuration of six layers. 
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Table 6-1: Convolution Layer Specification 
Convolution 

Layer # 
Input Size Batch Size Feature Map 

(Channel->Kernel 
number) 

Kernel Size Stride 

L1 128 x 128 128 3 -> 96 11 x 11 1 x 1 

L2 64 x 64 128 64 -> 128 9 x 9 1 x 1 

L3 32 x 32 128 128 -> 128 9 x 9 1 x 1 

L4 16 x 16 128 128 -> 128 7 x 7 1 x 1 

L5 13 x 13 128 384 -> 384 3 x 3 1 x 1 

L6 27 x 27 128 192 -> 192 5 x 5 1 x 1 

In this experiment, I run each layer with 100 iterations with the same benchmark settings 

to collect results. 

Table 6-2: The performance comparison of six convolutional layers 
Convolution Layer # Performance (Second) 

L1 40.802 

L2 114.82 

L3 43.07 

L4 5.518 

L5 8.021 

L6 30.75 
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Table 6-3: The GPU energy comparison of six convolutional layers 
Convolution Layer # GPU Average Power(Watt) GPU energy (Joules) 

L1 111.11 4534 

L2 121.78 13983 

L3 119.10 5130 

L4 118.4 653.33 

L5 120.04 962.8 

L6 114.69 3527 

Based on Table 6-2, 6-3, I can conclude that L1-L6 lead to similar average GPU power 

regardless the various kernel sizes and input sizes. Compare the layer with the largest 

power (L2, 12q.78 Watt) with the layer with the smallest power (L1, 111.11 Watt), L2 

only leads to 9% more power. 

Since each layer has more or less similar average power, the differences in total energy 

consumption are determined by the processing time. It is intuitive that layers with larger 

kernels and larger inputs would requires longer processing time, thus would consume 

more energy. Our initialized thinking is that the total number of kernels parameters and 

total size of input data determine the processing time and energy. For convolutional layer, 

numbers of kernels parameters are calculated using the following formula: 

Kernel parameter = (kernel width x kernel height + 1) x channel x output feature map 

number 

Total size of input data is quantified using following rule: 

Total size of input data = input width x input height x batch size x output feature map 
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number 

Based on above formulas, I calculate numbers in Table 6-4. 

Table 6-4: Kernel and input size parameter of six convolutional layer 
Convolution Layer # Kernel Parameter Input Size Parameter 

L1 35136 201326592 

L2 671744 67108864 

L3 1343488 16777216 

L4 819200 4194304 

L5 1474560 8306688 

L6 958464 17915904 

At the first glance, it seems that there is not any obvious pattern for the energy 

consumption for each layer if we only consider single factor between number of kernel 

parameter and the size of input data. L2 consumes the most energy, but its total number 

of kernel parameters is smaller than L3 and L5. But if we take both factors into 

consideration, we can easily see that why L2 consumes more power. Although L2’s 

number of kernel parameters is roughly half of those in L3 and L5, its input has roughly 4 

times compared to L3 and L5. So the total energy consumption of L2 is more than L3 and 

L5. 

From Table 6-4, L1 has the smallest kernel parameter, but L1 isn’t the fastest one. Also 

L1 has similar performance with L3, but L3’s kernel parameter is 38 times of L1’s 

parameter. So it’s clear the kernel parameter can’t determine a convolutional layer’s 

performance and energy consumption. 
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Although all six layers with the same batch size and stride, with the integrated influence 

of input size, kernel number, and kernel size, it’s hard to find obvious principles to 

explain how one layer has better performance and energy saving than a another one. 

Because the data input size, kernel size, and kernel quantity, all play an important role in 

determining workload of each layer, they all affect performance and energy consumption 

on GPU. Thus, it’s hard to figure out any patterns based on these commonly used 

convolutional layers unless I conduct a serial of controlled experiments. So in the 

following subsections, I only change one factor while fix all the other factors, which 

decouple these factors and is much easier to find the rules of energy consumption.  

6.1.2 Data Input Size 

In this subsection, I keep the kernel size and kernel quantity, but vary the size of input 

feature map. To best model power behavior of real-world neural network, I carefully 

select the layer configurations and input data size. The kernel size I use is 3 x 3, which is 

the most commonly seen kernel size among all ImageNet winner models; The number of 

input feature map is 96 and the number of output feature map is also set to 96.   
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Table 6-5: Convolutional layer with different data input size 
Input Size Performance 

(second) 
GPU Average 
Power(Watt) 

GPU energy 
(Joules) 

13 x 13 0.937 105.59 98.94 
16 x 16 1.433 108.31 155.21 
27 x 27 3.939 112.01 441.21 
56 x 56 17.964 115.58 2076.28 

128 x 128 107.141 112.21 12022.29 
224 x 224 GPU out of memory   

In the current setting, the input data size is the only changing factor. From Table 6-5, we 

can see that when the input data size is small, increasing input data size will increase both 

the GPU average power and total energy consumption. However, when the input data 

size is bigger than 56 x 56, the power will be stable while the energy consumption 

continues to increase. Figure 6-1 shows how the energy changes with input data size. The 

x-axis is the input size and the y-axis is the energy. I can conclude that with the data input 

size increased, the energy of training growing 
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linearly.

 
Figure 6-1: Convolutional layer GPU energy with varied data input size 

6.1.3 Kernel Size 

In this section, I want to analyze the influence of kernel size on energy. I configure the 

input data in the size of 64 x 64. The number of input feature map is set to 128 and the 

number of output feature map is also set to 128. So the total number of kernel for each 

covolutional layer is 128 x 128.  
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Table 6-6: Convolutional layer with different kernel size 
Kernel Size Performance (second) GPU Average 

Power(Watt) 
GPU energy 

(Joules) 

3 x 3 33.38 119.2 3979.56 

5 x 5 84.93 122.51 10404.77 

7 x 7 149.71 124.31 18610.45 

9 x 9 228.34 124.53 28435.18 

11 x 11 317.76 124.55 39577.01 

Kernel size is extremely important to reduce the quantity of parameters. The larger kernel 

size means one nerve cell can learn more features in bigger region of pictures. But too big 

kernel size will affect neural network’s accuracy. From the Table 6-6 we can clearly see 

that for small kernels, increasing kernel size will lead to increase of both power and 

energy consumption. However, once the kernel size is relative big (e.g. 7x7), increasing 

kernel size will not affect power while the energy consumption always increases.   

6.1.4 Kernel Number 

In the last experiment, I want to see the effect on energy when total number of kernels in 

a convolutional layer is changing. To achieve this goal, I keep the input feature map size 

to 64x64, and use kernels in the size of 3x3. 
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Table 6-7: Convolutional layer with different kernel number 
Kernel Number 
(input -> output) 

Performance 
(second) 

GPU Average 
Power(Watt) 

GPU energy 
(Joules) 

3 -> 96 (288) 1.97 114.45 225.12 

64 -> 128(8192) 17.34 117.49 2037.16 

128 -> 128(16384) 33.37 117.58 3923.53 

128 -> 384(49152) 90.79 117.21 10640.9 

384 ->384(147456) 265.7 120.62 32048.5 

From Table 6-7, we can see that the performance and energy consumption of one 

convolutional layer is strongly related to the multiplication of input and output kernel 

number, except of the 3->96 layer, start from 64->128 to 384->384 these four layers, the 

training time consuming increase in the same speed of the multiplication of kernel 

number. For example, 128 -> 128 is two times of 64->128, the time also increased near 

two times. This phenomenon also reflects in GPU energy increment.   

6.1.5 Conclusion 

From the previous three sections analysis of convolution layer’s performance and energy 

consumption in input size, kernel size, and kernel number three aspects. I summarize the 

impact of each factor of one convolution in Table 6-8 based on the gap between 

minimum and maximum performance and energy consumption with three factors’ 

increasing.  
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Table 6-8: The variety impact of performance and energy of convolutional layer 
 Time Increment Energy Increment 

Input Size increase 297 x 100 x 121 x 

Kernel Size increase 13 x 100 x 10 x 

Kernel number increase 
512 x 

132 x 142 x 

From Table 6-8, the setting of these three factors has different influence of performance 

and energy increment. First of all, all three factors increasing will result in both 

performance and energy go up. Secondly, input size and kernel number has relatively 

weak affect of time and energy. Thirdly, kernel size has lower affect of energy increment 

but stronger impact of performance.  

6.2 Fully Connected Layer 

In this subsection, based on the number of the layer’s parameter, I choose three fully 

connected layer (large, median, and small) to test their energy consumption. The quantity 

of parameter of one fully connected layer is calculated by following formula: 

Fully connected parameter = (feature map number × input × input + 1) x output.  

I want to see how the parameter quantity affect fully connected layer’s performance and 

energy consumption. 
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Table 6-9: The configuration setting of three fully connected layers 
 Input Size Feature Map 

(Kernel Size) 
Output Size Parameter 

Quantity 

Large 6×6 256 4096 37,752,832 

Median 4096×1 1 4096 16,781,312 

Small 4096×1 1 1000 4,100,096 

The following table shows the performance of three fully connected layers. From Small 

to Median, the parameter quantity increase 4.09 times, which is similar to the 3.89 times 

performance drop. In the same manner, Large has 2.25 times parameter number than 

Median, and also 2.06 times slower than Median.  

Table 6-10: The performance of three fully connected layer 
 Performance (Second) 

Large 2.107 

Median 1.022 

Small 0.263 

 
Table 6-11: The energy consumption of three fully connected layer 

 GPU Average Power (Watt) GPU Energy (Joules) 

Large 103.51 218.1 
Median 93.73 95.79 
Small 83.95 22.16 

Table 6-11 shows, the GPU average power increase with the parameter becomes bigger. 

The GPU energy also shows linearly increasing with parameter. 

Therefore, based on the analysis of this subsection, both performance and energy 
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consumption has linear relation with fully connected layer parameters.   

6.3 Pooling Layer 

The pooling layer is used to progressively reduce the spatial size of the representation to 

reduce the amount of parameters and computation in the network. 

Figure 6-2: One pooling method: max pooling 

For example, the figure 6-2 shows how the pooling layer with max method works. With 

the 2 × 2 size of filter kernel, the max-valued pixel is picked up to represent the 4 pixels 

area. After this process, 75% area was discarded and the depth dimension remains 

unchanged.  

Besides max pooling, there are another popular pooling methods is average pooling, 

which calculate average of all pixel value inside filter as the activation in each pooling 

region, but not the biggest one.  

In this subsection, I analyze the variables of pooling layer, I find the variables can be 
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from: (1) input size, (2) filter kernel size, (3) pooling method. Based on these three 

portions, I modify one variable while keeping other two fixed.  

6.3.1 Input Size 

In the first experiment, I choose three different sizes of input and keep filter kernel size as 

3 × 3, and also keep pooling method as max pooling. These three pooling layers come 

from AlexNet, but I set the feature map all the same to maintain the impartiality of 

experiments. 

Table 6-12: Different input size of pooling layer 
 Input Size Feature Map Kernel Size Pooling 

Method 

Pooling 1 55 × 55 128 3 × 3 Max 
Pooling 2 27 × 27 128 3 × 3 Max 

Pooling 3 13 × 13 128 3 × 3 Max 

 
Table 6-13: Different input size of pooling layer performance and energy 

 Performance 
(Second) 

GPU Average 
Power 
(Watt) 

GPU Energy 
(Joules) 

Pooling 1 1.504 111.43 167.6 
Pooling 2 0.338 95.33 32.22 
Pooling 3 0.096 66.92 6.424 

From Table 6-12, 6-13, they directly show input size is positively correlated to 

performance, GPU average power, and energy. Based on previous chapter data, pooling 

layer only occupy 2% of total training time and energy of neural network, so the base 

energy is relatively small. Compared with the input size affect energy exponentially, the 

input size in pooling layer has linear relation with energy.  
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6.3.2 Filter Kernel Size 

In this subsection, I reset the feature map as the original number of AlexNet to reflect real 

world neural network. Since recent imageNet winners commonly choose 3×3 or 2×2 

kernel size, I design the experiments with these two size. Noted I only compare the kernel 

size influence between each pooling layer, so the difference of feature map will not affect 

experiment result. 

Table 6-14: Configuration setting of three pooling layers 
 Input Size Feature Map Kernel Size Pooling 

Method 
Pooling 1 55 × 55 64 3×3 / 2×2 Max 
Pooling 2 27 × 27 192 3×3 / 2×2 Max 
Pooling 3 13 × 13 256 3×3 / 2×2 Max 

 
For the performance I can see in Table 6-15, the kernel size does not has big impact of 
performance. Although I average the time of 5 runs, the difference already in millisecond  
 

Table 6-15: Different kernel size of pooling layer performance 
Performance (second) 

 3×3 Kernel 2×2 Kernel 
Pooling 1 0.759 0.629 
Pooling 2 0.491 0.464 
Pooling 3 0.178 0.184 

level. So I bet there is not big influence of performance between these two sizes of 
kernels. 

Table 6-16: Different kernel size of pooling layer GPU energy 
GPU Energy (Joules) 

 3×3 Kernel 2×2 Kernel 
Pooling 1 81.32 64.15 
Pooling 2 49.96 46.05 
Pooling 3 14.83 14.64 

Both performance and energy difference between two kinds of kernel becomes bigger, 
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For small input size, choosing 3×3 kernel size has not much difference of choosing 2×2 

from energy aspect. For larger input size, 2 × 2 can save more time and energy. 

From this subsection experiment we know, although small kernel size means the kernel 

sliding window need to move more time than bigger kernel to traverse the whole input 

data, small kernel also save time to do every down sampling than big kernel size and 

finally save energy.   

6.3.3 Pooling Method 

In this subsection, I keep input size and kernel size, and change pooling method to 

compare how energy efficient of these two methods in poling layer. 

Table 6-17: The pooling method configuration of pooling layers 
 Input Size Feature Map Kernel Size Pooling 

Method 

Pooling 1 55 × 55 64 3×3  Max/Average 

Pooling 2 27 × 27 192 3×3  Max/ Average 

Pooling 3 13 × 13 256 3×3  Max/ Average 

 
Table 6-18: Pooling layers performance with various pooling method 

 
Performance(second) 

 Max Pooling Average Pooling 

Pooling 1 0.759 1.275 

Pooling 2 0.491 0.953 

Pooling 3 0.178 0.346 
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Table 6-19: Pooling layers energy consumption with various pooling method 

GPU energy (Joules) 

 Max Pooling Average Pooling 

Pooling 1 81.32 112.57 

Pooling 2 49.96 81.79 

Pooling 3 14.83 26.3 

From table 6-18, 6-19, max pooling have better performance and also more energy 

efficiency than average pooling in each layer. Since Max pooling only pick the max value 

of sliding window, which need less calculation than calculating average of all the pixel 

value that helping to reduce the workload of GPU, then save more energy. In here, with 

the input size increasing, the ratio of average pooling energy and max pooling becomes 

smaller from 1.77 to 1.38.  

6.4 Conclusion 

In this chapter, I systematically analysis the major layers. Then I discuss main factors of 

each layers influence of layer performance and energy consumption. In convolutional 

layer, I discuss three different factor’s contribution of layer. For fully connected layer, 

one factor used to modify to see how it affect the layer. In pooling layer, I visualize three 

kinds of setting ’s effect of pooling. Based on all the results, we can see how single 

factors affect one layer, then affect the whole neural network in both performance and 

energy consumption field. 
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7. HARDWARE TUNING 

In previous chapters, I analyze how the frameworks and neural network itself will affect 

energy consumption of training process. But I also want to save more energy by tuning 

hardware. Because most of the training job is responsible for GPU, so this tuning mainly 

focus on GPU tuning. In our work, I experimentally study the impacts of DVFS about 

neural network training performance and energy efficiency in Nvidia K20m GPU. 

Besides, I compare the K20m and Titan X GPU performance and energy consumption 

difference with the same benchmark. 

7.1 DVFS 

Dynamic Voltage and Frequency Scaling (DVFS) is an advanced power-saving 

technology whose aim is to lower a component’s power state while still meeting the 

performance requirement of the running workload [Ge, 2013]. The K20m GPU I used is 

Nvidia Kepler architecture. It includes total 2496 CUDA cores, six 64-bit memory 

controllers, and 5 GB global memory. The GPU cores and memory are capable of DVFS 

and support the clock frequency shown in Table 7-1.  
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Table 7-1: Support memory frequency and core frequency options in K20m GPU 
Memory Frequency (MHz) GPU Core Frequency(MHz) 

2600 758 
705 
666 
640 
614 

324 324 

To control the clock frequency of the K20m GPU, I used nvidia-smi utility or Nvidia 

System Management Interface. This interface is a command line utility that uses the 

Nvidia Management Library (NVML) for management and control of Nvidia devices 

[Price, 2014].  

With the help of GPU boost commands on k20m GPU, I test six experiments which 

include all the pair combinations from table 7-1. The benchmark for this experiment is 

based on previous Convent Benchmark but with 100 iteration. The experiment 

performance results shows in Figure 7-1 with 100 times forward and backward 

propagation. 
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Figure 7-1: Performance impact of DVFS in K20m 

Figure 7-1 shows how big influence of GPU frequency affect the performance. The best 

performance is 48.95 second with core speed with combination of 758 MHz and memory 

with 2600 MHz, which is 3 times faster than GPU with 324 MHz core speed and 324 

MHz memory speed. 

In addition, when the memory frequency is fixed in 2600 MHz, the performance going 

better with the increasing of GPU core frequency. But this increase is limited.  When 

core speed from 614 MHz to Max 758 MHz, the time saving is 10.57 second. The 

average time saving prompted 2.6 second each change when memory fixed in 2600 MHz. 
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Figure 7-2: Total system energy impact of DVFS 

The Figure 7-2 shows the system energy of the whole training process. The system 

energy in here includes CPU and GPU energy consumption. From our data, CPU portion 

of average power doesn’t affected too much during GPU tuning and keep in 63 ~ 67 

Watt. So that means when GPU can run faster with higher frequency, CPU energy 

portion will drop certainly. Figure7-3 shows the average power of GPU under different 

frequency pair. 
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Figure 7-3: GPU Average Power with the impact of DVFS 

In Figure 7-3, both memory and core frequency with 324 MHz has 46.75 Watt average 

power, which slightly higher than 46-watt idle power of K20m. It means the utilization of 

GPU is very low under this frequency pair. Then the GPU power go up with the core 

frequency increased and arrives the top when core speed is 758 MHz with 134.5 Watt. 
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Figure 7-4: GPU energy portion with the impact of DVFS  

Compared with Figure 7-2 (total energy) with Figure 7-4 (GPU energy), I find that the 

most energy saving comes from CPU but not GPU. Even though GPU run faster with 

DVFS tuning, the average power goes high, so the energy of GPU doesn’t improve much. 

From Figure 7-4, when K20m GPU is in 614/2600 pair, it achieves the best GPU energy 

efficiency with 6206 Joules, then with the faster core speed, K20m consume more energy 

generally. When K20m GPU with 758/2600 frequency, the second highest GPU energy 

consumption can not stop this pair becomes the best system energy efficiency option 

because of the saving in CPU make up the extra lost in GPU.  

To sum up, DVFS has pros (better performance) and cons (higher average power) of 

GPU running in neural network training, but DVFS helps GPU runs faster, CPU can save 

more energy to make up the shortage of DVFS, the total energy can drop slightly. 
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7.2 K20m and Titan X GPU Comparison 

When my work going to the end, I got Titan X GPU from Nvidia’s donation, so I add this 

subsection to make a brief comparison of Titan X and K20m GPU’s performance and 

energy efficiency with the same benchmark. Titan X is the newest and strongest GPU in 

current market. From table 7-2, Titan X has 3072 CUDA cores, and a total 12 GB global 

memory. Also, Titan X is MaxWell architecture that each CUDA core is stronger than 

cores with Kepler architecture of K20m. Based on such specifications, I can assume that 

Titan X has better performance than K20m, but I want to quantify the result and I also 

interested in whether Titan X can be more energy efficient than K20m GPU. 

Table 7-2: Titan X and K20m hardware comparison [Nvidia, 2012; Nvidia 2014] 
 Chip CUDA Core single-precision 

floating point 
performance 

Max Power 

Titan X GM200 
(MaxWell) 

3072 7 TFLOPS 250 W 

K20m GK100 
(Kepler) 

2496 3.52 TFLOPS 225 W 

I used the Convent Benchmark with 100 iterations and AlexNet running in Caffe 

framework to compare two GPUs. 

Table 7-3: Titan X GPU and K20m GPU comparison 
 Time CPU Average 

Power 
GPU Average 

Power 
Total Energy 

Titan X 13.283 63.14 213.3 3671.95 

K20m 52.28 59.61 120.07 9409.35 

From Table 7-3, Titan X has 3.9 times faster than K20m. With almost two time higher 
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average GPU power then K20m, Titan X still can achieve 2.56 times energy efficiency. 

 
 

Figure 7-5: K20m energy curve of Caffe with AlexNet 

 

 

 

 

 

 

 

 
 

 
Figure 7-6: Titan X energy curve of Caffe with AlexNet 
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From Figure 7-5, 7-6, compared with K20m, Titan X shows more stable power 

fluctuation when doing recurrent iteration training. In addition, Titan X doesn’t drop the 

power too much between iterations to keep in high power level during the whole training 

process, which save plenty of time to cool down and warm up hardware. 

7.3 Conclusion 

In this chapter, I compare the DVFS tuning influence of neural network training in K20m 

and also compare energy consumption between two GPUs. DVFS with high core and 

memory frequency can help current GPU have better performance with more cost of 

GPU energy, and lower total energy. This strategy can be used in other GPU heavy 

workload but CPU low workload application. Titan X achieved both performance and 

energy saving goals has been verified in neural network training. With the comparison of 

both Titan X and K20m energy curve, Titan x has more stable curve and maintain in high 

power stage under the same neural network, benchmark, and training framework of 

K20m. 
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8. CONCLUSION 

In this paper, I analyze many aspects related to neural network training from performance 

and energy efficiency, includes hardware, framework, library, neural network level, layer 

level, even data input size. Following this analysis strategy can cover all potential factors 

of neural network. With massive comparison in various conditions, I find the most energy 

efficient training framework and library, also based on this framework, Caffe, I expand 

more details about neural network, how each factor affect one specific layer, and finally 

affect the whole neural network. Since now researcher plan to implement deeper neural 

network models with more complicated layers, I think my research can help them to 

avoid high energy consuming and low performance factors and provide them ideas to 

design energy efficient layers, energy efficient framework, and finally green neural 

network. 
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9. FUTURE WORK 

In the future, I will expand our experiments in Titan X with bigger memory to handle 

deeper neural network like GoolgeNet and Oxford Net. In addition, since some advanced 

frameworks didn’t support Kepler Architecture, Titan X with new Maxwell architecture 

will support more frameworks such as Nirvana. With wider range of experiments, I will 

find the energy consumption model of neural network and design a green networks based 

on the best energy saving principles from network wise and layer wise. 
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