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SYMMETRY ANALYSIS, BIFURCATION AND EXACT
SOLUTIONS OF NONLINEAR WAVE EQUATION IN

SEMICONDUCTORS WITH STRONG SPATIAL DISPERSION

BEN GAO, CHUNFANG HE

Abstract. Based on Lie symmetry analysis and steady bifurcation method,

we study the nonlinear wave equation in semiconductors with strong spatial

dispersion. The similarity reductions and exact solutions are obtained based
on the optimal system and power series method. Then, steady bifurcation

and solitary waves are presented. Especially, the existence and solvability of

solitary or period wave are discussed, and all kinds of the solitary and period
wave solutions are given by direct integration.

1. Introduction

The celebrated nonlinear wave model called Korteweg de-Vries (KdV) equation
[12] is

ut + uux + uxxx = 0. (1.1)
This equation can be used in shallow water waves models, and a lot of other fields
such as fluid mechanics, optical fibers, electromagnetic waves, acoustic waves in
plasmas and so on [5]. Several noticeable attempts to improve the KdV model
were taken over the years. In 2008, Al’shin et al [1] give the following nonlinear
wave equation, known as the improved KdV equation, and is based on the theory
of electromagnetism.

(u− uxx)t + uux + uxxx = 0, (1.2)
which describes waves in semiconductors with strong spatial dispersion. This equa-
tion can be derived from the nonstationary processes in semiconductors that are
described by systems consisting of stationary field equation, continuity equation
and constitutive equation. 1-soliton solution and conservation laws of (1.2) are
given by Anjan Biswas and Kara[3].

The main purpose of this work is to study the symmetry analysis, bifurcation and
exact solutions of (1.2). The similarity reductions and exact solutions are obtained
based on the optimal system and power series method. Steady bifurcation and
solitary waves are presented based on the ideas in [6, 7, 8, 9, 10, 11, 13]. Our result
may be of great interest for both mathematician and physicist.

The rest of this article is organized as follows. In Section 2, the vector fields and
the optimal systems are obtained by employing Lie symmetry analysis method. In
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Section 3, the similarity reductions and exact solutions are obtained. In Section 4,
steady bifurcation are analyzed by selecting the integration constant as the bifurca-
tion control parameter, then the existence and solvability of solitary or period wave
are discussed. Conclusions and remarks are presented at the end of the paper.

2. Lie symmetry analysis of (1.2)

In this section, we perform Lie symmetry analysis of (1.2). Lie symmetry analysis
method is described in many books, e.g. [14, 4]. First of all, let us consider a one-
parameter group of infinitesimal transformation:

t = t+ ετ(x, t, u) +O(ε2),

x = x+ εξ(x, t, u) +O(ε2),

u = u+ εη(x, t, u) +O(ε2),

(2.1)

where ε is a group parameter. The vector field associated with the above group of
transformations can be written as

V = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
. (2.2)

Applying the third prolongation Pr(3)V to (1.2), we find that the coefficient
functions τ(x, t, u), ξ(x, t, u) and η(x, t, u) must satisfy the invariant condition

ηt + uηx + uxη + ηxxx − ηxxt = 0, (2.3)

where
ηt = Dt(η)− utDt(τ)− uxDt(ξ),

ηx = Dx(η)− utDx(τ)− uxDx(ξ),

ηxxx = Dx(ηxx)− uxxtDx(τ)− uxxxDx(ξ),

ηxxt = Dt(ηxx)− uxttDt(τ)− uxxtDt(ξ).

(2.4)

Here, Dx, Dt denote the total derivative operators with respect to x and t, respec-
tively.

Substituting (2.4) in the invariant condition (2.3), one can get

ξ = −c1t+ c3, τ = c1t+ c2, η = −c1 − c1u, (2.5)

where c1, c2 and c3 are arbitrary constants.
Hence the Lie algebra of infinitesimal symmetries of (1.2) is spanned by the

vector fields

V1 = −t ∂
∂x

+ t
∂

∂t
− (1 + u)

∂

∂u
, V2 =

∂

∂t
, V3 =

∂

∂x
. (2.6)

Then, all of the infinitesimal generators of (1.2) can be expressed as

V = c1V1 + c2V2 + c3V3. (2.7)

The commutation relations of Lie algebra determined by V1, V2, V3, are shown in
Table 1. It is obvious that {V1, V2, V3} is commute under the Lie bracket.

To compute the adjoint representation, we use the commutation Table 1 and
following Lie series

Ad(exp(εVi))Vj = Vj − ε[Vi, Vj ] +
1
2
ε2[Vi, [Vi, Vj ]] + · · · , (2.8)
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Table 1. Commutation table of Lie algebra

[Vi, Vj ] V1 V2 V3

V1 0 V3 − V2 0
V2 V2 − V3 0 0
V3 0 0 0

we have the following results

Ad(exp(εVi))Vi = Vi, i = 1, 2, 3

Ad(exp(εV1))V2 = (1 + ε)V2 − εV3, Ad(exp(εV1))V3 = V3,

Ad(exp(εV2))V1 = V1 − ε(V2 − V3), Ad(exp(εV2))V3 = V3,

Ad(exp(εV3))V1 = V1, Ad(exp(εV3))V2 = V2.

(2.9)

Based on the adjoint representations of the vector fields, we obtain the optimal
systems of the (1.2) as follows:

{V1 + V2, V1 + V3} (2.10)

3. Symmetry reductions and power series solutions

In the previous section, we obtained the vector fields and the optimal system of
(1.2). In this section, we will deal with the symmetry reductions and exact solutions
based on the optimal system and power series method.

3.1. Generator V1 + V2. The similarity variables are ξ = (t + 1)e−t−x, f(ξ) =
(t+1)u+ t, and the group-invariant solution is u = f(ξ)−t

t+1 . Substituting the group-
invariant solution in (1.2), we obtain the following reduction equation

1− f − ξff ′ − ξ3f ′′′ − 2ξ2f ′′ = 0, (3.1)

where f ′ = df
dξ . we can not get exact solutions of reduction equation (3.1) by

using the elementary functions or some already well known mathematical func-
tions, but we know that the power series can be used to deal with differential
equations, including many complicated nonlinear differential equations with non-
constant coefficients[2]. Next, we will consider the exact analytic solution of the
reduction equation (3.1) by using the power series method.

We seek a solution of (3.1) in the power series of the form

f(ξ) =
∞∑
n=0

cnξ
n. (3.2)

Substituting (3.2) in (3.1), we have

1− c0 − (c1 + c0c1)ξ − (c2 + 2c0 + c21 + 4c1)ξ2 −
∞∑
n=0

cn+3ξ
n+3

−
∞∑
n=0

( n+2∑
k=0

(n+ 3− k)ckcn−k+3

)
ξn+3 −

∞∑
n=0

(n+ 1)(n+ 2)(n+ 3)cn+3ξ
n+3

− 2
∞∑
n=0

(n+ 2)(n+ 3)cn+3ξ
n+3 = 0.

(3.3)
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Through comparing coefficients of ξ, ξ2 and a constant, we have

c0 = 1, c1 = 0, c2 = −2. (3.4)

When n ≥ 0, we have

cn+3 =
−1

1 + 2(n+ 2)(n+ 3) + (n+ 1)(n+ 2)(n+ 3)

[ n+2∑
k=0

(n+ 3− k)ckcn−k+3

]
.

Therefore, the power series solution for (3.1) can be written as

f(ξ) = 1− 2ξ2 −
∞∑
n=0

1
1 + 2(n+ 2)(n+ 3) + (n+ 1)(n+ 2)(n+ 3)

×
( n+2∑
k=0

(n+ 3− k)ckcn−k+3

)
ξn+3.

(3.5)

3.2. Generator V1 + V3. The similarity variables are ξ = ln(t) − x − t, f(ξ) =
(1 + u)t, and the group-invariant solution is u = f(ξ)

t − 1. Substituting the group-
invariant solution in (1.2), we obtain the reduction equation

f − f ′ + ff ′ − f ′′ + f ′′′ = 0. (3.6)

where f ′ = df
dξ . Similarly, we will consider the exact analytic solutions of the

reduction equation (3.6) by using the power series method.
We seek a solution of (3.6) in the power series of the form

f(ξ) =
∞∑
n=0

cnξ
n. (3.7)

Substituting (3.7) into (3.6), we have
∞∑
n=0

cnξ
n −

∞∑
n=0

(n+ 1)cn+1ξ
n +

∞∑
n=0

( n∑
k=0

(n− k + 1)ckcn−k+1

)
ξn

−
∞∑
n=0

(n+ 1)(n+ 2)cn+2ξ
n +

∞∑
n=0

(n+ 1)(n+ 2)(n+ 3)cn+3ξ
n = 0.

(3.8)

Through comparing the coefficients of ξi(i = 0, 1, 2, . . . ), we have

cn+3 =
1

(n+ 1)(n+ 2)(n+ 3)

(
(n+ 1)cn+1 + (n+ 1)(n+ 2)cn+2 − cn

−
n∑
k=0

(n− k + 1)ckcn−k+1

)
.

(3.9)

Therefore, the power series solution for Eq.(3.6) can be written as follows

f(ξ) =
∞∑
n=0

1
(n+ 1)(n+ 2)(n+ 3)

(
(n+ 1)cn+1 + (n+ 1)(n+ 2)cn+2 − cn

−
n∑
k=0

(n− k + 1)ckcn−k+1

)
ξn.

(3.10)



EJDE-2017/42 SEMICONDUCTORS WITH STRONG SPATIAL DISPERSION 5

4. Bifurcation and solitary waves of (1.2)

In this section, we consider the linear combination of generators V2 + cV3, gives
rise to the traveling wave solutions, and study the bifurcation of the two-dimensional
dynamic system which satisfied the traveling wave transformation, then existence
and solvability of solitary or period wave of Eq.(1.2) by analyzing the homoclinic
orbits or period orbits of two-dimensional dynamic system based on the bifurcation
diagram.

The linear combination of generators V2 + cV3 leads to the group-invariant so-
lution u(x, t) = u(ξ), where ξ = x − ct is the similarity variables of V2 + cV3.
Substituting the group-invariant solution u(x, t) = u(ξ) into (1.2), then (1.2) re-
duces to an ordinary differential equation as follows

− cU ′ + UU ′ + (1 + c)U ′′′ = 0, (4.1)

where U ′ = dU/dξ. Integrating (4.1) once with respect to ξ, and taking integration
constant equal to h, one obtains

− cU +
U2

2
+ (1 + c)U ′′ = h, (4.2)

or equivalent to the following two-dimensional dynamic system
dU

dξ
=

1
1 + c

V

dV

dξ
= h+ cU − U2

2
,

(4.3)

which has the energy integral

E =
1

2(1 + c)
V 2 + P (U), (4.4)

where P (U) = U3

6 −
cU2

2 − hU .
We select the integration constant h as the bifurcation control parameter. Sys-

tem (4.3) has equilibrium points (U1, 0) and (U2, 0), and the bifurcation point is
(Ub,− c

2

2 ), where U1 = c−
√
c2 + 2h, U2 = c+

√
c2 + 2h and Ub = c . Since the char-

acteristic equation for the equilibrium points (Ui, 0)(i = 1, 2) is λ2− 1
1+c (c−Ui) = 0,

we know that the point (U1, 0) is unstable saddle , and the points (U2, 0) is stable
center. According to the above analysis, we see that the bifurcation diagram of
system (4.3) is the parabolic shape curve in Figure 1.

Next, we discuss the existence and solvability of solitary waves of (1.2). The
solitary wave of (1.2) fact correspond to the homoclinic orbits of two-dimensional
dynamic system (4.3) passing through the saddle (U1, 0). The period wave of (1.2)
are in fact corresponding to the period orbits of two-dimensional dynamic system
(4.3) passing through the center (U2, 0). We should discuss two cases:

Case 1. h > −c2/2. When E = P (U1), from (4.3) and (4.4), we obtain

dU

dξ
= ±

√
2

1 + c
G1(U), (4.5)

where G1(U) = P (U1)−P (U) ≥ 0 in some range of U , which depends on the values
of the bifurcation control parameter, and we have

G′1(U1) = −P ′(U) = −1
2

(U − U1)(U − U2), (4.6)
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Figure 1. Steady bifurcation diagram of system (4.3)

According to the existence theorem of zero points of the elementary continuous
function on the closed interval, it is obvious that the following results:

(i) G1(U1) = 0, G′1(U1) = 0, i.e., G1(U) has the double root U1;
(ii) limU→−∞G1(U) = +∞ and limU→+∞G1(U) = −∞ i.e., G1(U) has a

single root U∗1 > U2 .

Therefore, G1(U) = 1
6 (U − U1)2(U∗1 − U), and substituting it into (4.5), we have

dU

dξ
= ±|U − U1|

√
1

3(1 + c)
(U∗1 − U). (4.7)

Integrating (4.7), we obtain the solitary wave solution

u(x, t) = (U1 − U∗1 ) tanh
(1

6

√
3(U∗1 − U1)

1 + c
(x− ct− ξ0)

)2

+ U∗1 (4.8)

where ξ0 is determined by the initial value u0 = u(x0, 0). It holds that u → U1 as
x→ ±∞.

When E = P (U2), from (4.3) and (4.4), we obtain

dU

dξ
= ±

√
2

1 + c
G2(U), (4.9)

where G2(U) = P (U2)−P (U) ≥ 0 in some range of U , which depends on the values
of the bifurcation control parameter, and we have

G′2(U2) = −P ′(U) = −1
2

(U − U1)(U − U2), (4.10)

According to the existence theorem of zero points of the elementary continuous
function on the closed interval, it is obvious that the following results:

(i) G2(U2) = 0, G′2(U2) = 0, i.e., G2(U) has the double root U2;
(ii) limU→−∞G2(U) = +∞ and limU→+∞G2(U) = −∞, i.e., G2(U) has a

single root U∗2 < U1.
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Therefore, G2(U) = − 1
6 (U − U2)2(U − U∗2 ), and substituting it into (4.9), we have

dU

dξ
= ±|U − U2|

√
1

3(1 + c)
(U∗2 − U). (4.11)

Integrating (4.11), we obtain the periodic wave solution

u(x, t) = (U∗2 − U2) tan
(1

6

√
3(U2 − U∗2 )

1 + c
(x− ct− ξ0)

)2

+ U∗2 (4.12)

Case 2. h = −c2/2. In this case, the energy E = P (Ub) = c3/6, from (4.3) and
(4.4), we obtain

dU

dξ
= ±

√
2

1 + c
Gb(U), (4.13)

where Gb(U) = P (Ub)− P (U) ≥ 0 in some range of U , and we have

Gb(U) = Gb(U) =
1
6

(c− U)3 (4.14)

and substituting it in (4.13), we have

dU

dξ
= ±

√
1

3(1 + c)
(c− U)3. (4.15)

Integrating (4.15), we obtain the breaking wave solution

u(x, t) =
c(x− ct)2 − 12c− 12

(x− ct)2
. (4.16)

Conclusions. In this article, we studied the symmetry analysis, bifurcation and
exact solutions of nonlinear wave equation (1.2) based on Lie symmetry analysis and
steady bifurcation method. First, Lie symmetry and optimal systems of (1.2) are
well presented. Then, exact analytic solutions of reduction equation are obtained by
employing the power series method. Finally, we consider the influence of integration
constant on the solitary or period wave, and selected the integration constant as the
bifurcation control parameter. The existence and solvability of solitary or period
wave are discussed based on bifurcation diagram. The result is shown that the
existence condition of solitary or period wave is h > − c

2

2 , and there exist a breaking
wave solution if h = −c2/2. It means that there is no solitary or period wave if
h < −c2/2.

We remark that the convergence of the power series solution (3.5) and (3.10)
can be easily proved[2], thus power series solution is an exact analytic solution of
reduction equation.

Also we remark that integration constant influence the existence of solitary or
period wave, so we can control the phenomenon of solitary or period wave by
controlling the value of the integral constant.
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