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ABSTRACT 

 

 People are becoming increasingly dependent on their mobile devices day after day. 

As a result, mobile developers strive to introduce innovative applications (or simply apps) 

with new functionalities and features. To keep up with this need; Android Application 

Programing Interfaces (APIs) are updated frequently, which can affect the functionality of 

the Android apps that are built upon them. Developers therefore need to test their apps 

between each update to ensure high reliability. However, running the entire test suite can 

be costly and time-consuming. Previous research has focused on how Android API change 

impacts the app code, but no research has extended this finding to further analyze the API 

change impact on app tests to help increase the efficiency of API change driven regression 

testing. This paper introduces a novel approach which leverages the results from app code 

impact analysis and coverage information to identify the tests that are impacted by the API 

changes. The results of experiments on real-world android mobile apps show that this 

approach increases the efficiency of android app testing by reducing the number of tests 

selected for re-execution and thus reducing the time needed for regression testing.
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I. INTRODUCTION 
 

The mobile apps market is one of the fastest growing areas in the information 

technology [2] and statistically, the Android OS is the most widely used mobile operating 

systems. In 2017, it achieved a major milestone of having over two billion monthly active 

devices [3]. To keep up with this achievement, developers are required to ensure high 

quality Android mobile apps. 

Regression testing is an expensive maintenance activity aimed at showing that an 

application has not been adversely affected by changes, estimates indicate that software 

maintenance activities account for as much as two-thirds of the cost of software 

production [6]. However, regression testing is necessary after any kind of change that 

may potentially affect an application. In addition, Application Programming Interfaces 

(APIs) are frequently updated for Android OS, which from the first commercial release of 

Android 1.0 with API level 1 on September 23rd, 2008 [20] to the current API level at 

29. With these frequent updates, it is essential to keep the app version updated to match 

the current API version; otherwise the interaction between the apps and the underlying 

OS may cause some unexpected errors. 

Given the complexity of regression testing, the frequency of Android API 

updates, and the need of developers to keep the apps up-to-date with the current API 

version; we believe that impact analysis, a process to identify and analyze the effect a 

change or an update can have on a program [21], plays an important role in achieving 

high reliability for Android apps. It includes effectively locating the impacted portions of 

code and determining how much impact the update has. 
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Multiple testing techniques have been proposed in the recent to improve the 

reliability of Android apps. However, none of them are specifically targeting on testing 

the impact of API updates. Moreover, without knowing the impact of API updates, 

developers must execute all tests on mobile apps with the new API version, which can be 

very expensive. 

In this paper, we introduce a novel tests impact analysis for Android API updates. 

This approach leverages the results from app code impact analysis introduced by Yang et 

al. [1] and coverage information for each test in the existing test set to identify the tests 

that are impacted by the changes in an Android operating system. Only the impacted 

tests, instead of the whole set of existing tests, need to be re-executed for testing the app 

after the API changes. As a result, developers could save time in revealing all potential 

faults caused by an API update that could be revealed with the whole test suite. 

To evaluate the effectiveness of our approach, we conducted experiment on 14 

real-world Android apps with tests. The results show that the test impact varies widely 

across different apps and that our approach can effectively improve the efficiency of 

testing for API updates with reasonable overhead. 

III. APPROACH 
A. Overview 

Given two consecutive API versions Vold and Vnew , and an Android app developed 

with API Vold, our approach aims to identify the subset of tests of the original test suite 

that were impacted by the API changes. This subset represents the set of tests that cover 

the impacted app code and that may reveal potential bugs caused by the API changes. 

Running only these tests will yield the same results as if the whole test suite is executed.  
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First, our approach analyzes the impact of API changes between API Vold and Vnew on 

the app; the two API versions need to be consecutive. Second, our approach collects 

coverage information for each test. Leveraging the impacted app code and test coverage, 

our approach can identify and select the impacted tests that cover (or execute) the 

impacted app code. 

B. Framework and its implementation  
 

The framework of our approach, as shown in Fig. 1, consists of three major components: 

App Code Impact Analysis, Coverage Generator, and Test Impact Analysis: 

1) App Code Impact Analysis:  

The goal of the App Code Impact Analysis is to identify the portion of the app 

code impacted by the API changes. It takes as input the two consecutive API versions 

and an Android app’s source code. Previous work by Yang et al. [1] introduced an 

algorithm that automatically locates the part of the app affected by API update. Using 

this work, we were able to extract a list of affected user methods. First, from the two 

API versions; the impact analyzer identifies the name of the library methods that were 

either deleted or modified moving from an API version to a newer one. Then, from 
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Coverage 
 

 
 
 

 
 

 Figure 1 Framework of the approach. 
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the app’s source code, it checks to see if the app’s source code methods are using any 

of the impacted library methods. If a user method is calling any of the impacted 

library methods, then that user method is marked as impacted.  

2) Coverage Generator:  

The purpose of the Coverage Generator is to generate a list of covered user 

methods for each test. For this, it takes as input the app existing tests. First, the 

coverage generator extracts a list of the names of the test classes and their methods. 

Then, it uses this list to run each test separately and get its coverage, or the list of user 

methods that are to be tested by this test. 

To extract the list of the names of the test classes and their corresponding 

methods, we implemented a custom test names generator for Android App using a 

self-built miniature lexer and parser for Android grammar using Python and regular 

expression, and then saved the tests Classes and methods names in a file as a 

dictionary. 

Now that we have a list of test names in form of <class>.<method>, we can run 

each test individually and get its coverage using JaCoCo, a free and easy to use Java 

code coverage library distributed under the Eclipse Public License [4]. JaCoCo 

generates a coverage report in several formats including HTML, XML, and CSV. We 

chose to generate our report in HTML because HTML is more visual which makes it 

easier for us to scrape the data we need. To extract the covered methods from the 

coverage report, we used Beautiful Soup, a Python library for pulling data out of 

HTML and XML files [5].  The covered methods for each test are stored in a 
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dictionary, with the test being the key and the list of its covered user methods being 

its value. 

3) Test Impact Analysis:  

The Test Impact Analysis works to combine the output of the two other 

components to be able to select the impacted tests. That is, it takes as input the list of 

the impacted user methods (as determined by the App Code Impact Analysis) and the 

covered method for each test (as generated by the Coverage Generator).  

The Test Impact Analysis loops through each test and checks if any of its covered 

methods is also in the list of affected methods. If so, the test is considered impacted 

and selected for re-execution.  

In all parts of our framework, we ignore the package level and class level analysis and 

we only consider method level analysis. The more coarse-grained the analysis is, the less 

accurate the results will be. This will lead to a greater number of tests being unnecessarily 

selected. 

IV. EVALUATION 
A. Research Questions 
 We will evaluate the effectiveness of our technique by answering our following 

research questions: 

• RQ1: How does an API update impact the app’s existing tests? 

• RQ2: How does our technique perform in identifying impacted code that is not being 

covered by any tests? 

• RQ3: How does the cost of selecting and executing impacted tests compared to 

executing all tests? 



6 
 

B. Experimental Setup 
 For the purpose of this evaluation, we selected 14 real-world Android apps, 12 

different apps and 3 different versions of one of the apps, based on some specific criteria 

as shown in Table 1 and explained as follow: 

• Apps are open-source and are available via F-droid (an open-source platform) or 

GitHub, to be able to get the source code of the app and the original test suite. 

• Apps are available on Google Play Store to obtain their statistics. 

• Number of downloads are greater than 5000. 

• Apps of various categories were chosen to not to be biased against a specific category. 

• Apps are recently updated, to make sure that they are regularly maintained. 

• Apps written in different and various underlying API to best portray the effectiveness 

of our approach. 

Table 1 Some of the Applications' criteria 

App Name Downloads Category Date Last 
Updated 

Kouchat 5,000+ Communication August 7, 
2018 

AnkiDroid 5,000,000+ Education October 15, 
2019 

gnucash 100,000+ Finance June 27, 2018 
Materialistic 100,000+ News and 

Magazines 
March 30, 

2019 
AmazeFileManager 1,000,000+ Tools September 

13, 2019 
Wikipedia 10,000,000+ Books and 

Reference 
October 11, 

2019 
NewPipe 10,000+ Health and Fitness August 27, 

2017 
Connectbot 1,000,000+ Communication November 9, 

2018 
Kdeconnect 500,000+ Productivity September 

23, 2019 
Telecine 800,000+ Tools December 18, 

2018 
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Our experiments are performed on a PC with a i5 Quad-Core 2.50 GHz processor, 8 GB 

of RAM, and running Windows 10 64-bit operating system.  

To build the Android apps and run tests for the apps, we used the following tools: 

• Java SE Development Kit 8 

• Android Software Development Kit 29.0.1 

• Android Studio 3.5 

• Gradle 5.6 

C. Results 
Table 2 Experimental Results 

App Name API 
Update 

Tests Time (s) 

Total Impacted % 
Impacted 

Re-run 
All Tests 

Re-run 
Selected 
Tests 

Saved Overhead 

Materialistic 26 → 27 444 302 68.02 9,886.31 7,200.79 2,685.52 537.85 
Materialistic 27 → 28 436 257 58.94 10,189.13 6,813.90 3,375.23 563.58 
Materialistic 28 → 29 312 283 90.71 8,755.22 8,155.65 599.57 451.71 
Kouchat 27 → 28 550 291 52.91 4,997.63 2,804.03 2,193.60 394.59 
AnkiDroid 27 → 28 28 18 64.29 864.50 623.29 241.21 40.72 
Gnucash 27 → 28 141 117 82.98 4,637.27 4,086.25 551.02 241.69 
Telecine 25 → 26 18 0 0 775.65 0 775.65 42.71 
NewPipe 26 → 27 29 11 37.93 765.14 397.34 367.8 42.87 
AmazeFileManager 27 → 28 153 57 37.25 5,846.13 2,405.97 3,440.16 395.74 
Connectbot 26 → 27 36 24 66.67 1,030.91 710.63 320.28 45.17 
Wikipedia 28 → 29 396 326 82.32 15,212.69 13,168.60 2,044.09 1034.71 
Kdeconnect 28 → 29 9 9 100 397.6 397.6 0 48.19 
FileManager 28 → 29 20 1 5 869.06 43.56 825.5 52.83 
CineLog 25 → 26 145 10 6.90 2,664.82 286.71 2,378.11 102.23 

 

 Table 2 shows the results of our experiment. It contains the two API versions Vold 

→ Vnew, total number of tests (Total), the number and the percentage of impacted tests 

(Impacted and % Impacted, respectively), total time needed to re-run all the unit tests 

after the API update (Re-run All Tests), time to run the tests our framework selected (Re-

run Selected Tests), time we saved by running only the selected tests (Saved), and the 

overhead introduced by running our framework (overhead). 
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D. Analysis 

 Based on analyzing the results of our experiment, we can answer the three 

research questions as follow:  

RQ1: How does an API update impact the app’s existing tests? 

  Our results show that every app’s test suite is affected differently. The percentage 

of impacted tests varies from an app to another. Some apps, like Telecine, may not be 

affected at all; others, like Kdeconnect, can be 100% affected; and other apps can be 

partially affected. Investigating this further reveals few factors that can affect how the 

API update impacts the app’s tests. One factor is the amount of impacted methods being 

covered by the tests. If only rarely covered methods are impacted, then the number of the 

impacted test will be low. On the other hand, the number of impacted tests becomes high 

if some of the mostly covered methods are impacted by the API update. Materialistic (28 

→29), for example, has an impacted utility function called isOnWifi() which is covered 

by most of the tests which makes the percentage of the affected tests high (90.71%). 

Telecine has no impacted tests while Kdeconnect tests were all impacted. Both apps have 

a very small number of tests which cover either impacted methods (like in Kdeconnect 

case) or unimpacted methods (like on Telecine case) only. 

RQ2: How does our technique perform in identifying impacted code that is not 

being covered by any tests? 

According to Table 2, Telecine has 0% impacted tests and Kdeconnect has 100%. 

As mentioned before, both apps have a very small number of tests; Telecine has 18 and 

Kdeconnect has only 9. Kdeconnect has 1166 methods 391 of which are impacted. It is 
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not feasible that only these 9 tests can cover all the impacted methods. Also, Telecine has 

95 methods; 19 of which are impacted, but none of them are covered by any of the 18 

tests. For both cases, most impacted methods are not covered by any test and thus will 

remain untested. However, our approach can easily identify the impacted methods that 

are not covered by the existing tests. We can find the impacted methods that are not 

covered by any existing test by subtracting covered methods (generated by our Coverage 

generator) from the set of impacted methods (outputted by the App Code Impact 

Analysis.) These results can further help developers augment tests to cover these uncover 

impacted methods. 

RQ3: How does the cost of selecting and executing impacted tests compared to 

executing all tests? 

Results from Table 2 show that our approach was successful in saving time in 

retesting the apps after an API update. For almost all the apps we use for our experiment, 

our approach saved a considerable amount of time compared to re-executing all tests. Our 

approach saved 3,449.16s, for retesting AmazeFileManager, 3,375.23s for Materialistic 

(API update 27→28), and 2,685.52s for Materialistic (API update 26→27).  

The only case where the Overhead time is greater than the Saved time is Kdeconnect. As 

mentioned before, Kdeconnect’s tests were not well designed, and coverage of the tests is 

only 2% (according to JaCoCo test report).  

The time saved is also different from one app to another. Tracing the percentage 

of the time saved by our approach and the percentage of the API test impact in one graph, 
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as shown in figure 2, shows that these two metrics are related. As the API test impact 

increases, the time saved decreases; and vice versa.  

 

Figure 2: % API test impact vs. % time saved 

V. RELATED WORK 
 

Regression testing has been an ongoing research area in software engineering 

field. Traditionally, the entire test suite has been reused for retesting an app after a 

change, which can be computationally expensive. Therefore, different techniques have 

been developed to increase the efficiency of this testing by reducing the number of test 

cases, which are known as regression test selection [11], [12], [13] and test case 

prioritization [14], [15], [16]. Do et al. [17] proposed a Regression Test Selection 

approach for Android apps, Redroid. Redroid leverages the combination of static impact 

analysis and dynamic code coverage, and identifies a subset of test cases for re-execution 

on the modified version of Android apps. Li et al. [18] proposed ATOM, for automatic 

maintenance of GUI test scripts for evolving mobile apps. ATOM uses an event sequence 

model (ESM) to abstract possible event sequences in a GUI and a delta ESM to abstract 

the changes made to a GUI, and updates the test scripts that were written for the base 
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version app, based on the ESM for the base version and the delta ESM for the changes 

introduced by the new version. Aggarwal et al. [19] proposed GreenAdvisor, a software 

evolution impact analyzer on energy consumption. It compares the system call logs two 

consecutive versions of Android apps and predicts how the energy-consumption profile 

of the new version will compare to that of the previous version. 

Impact analysis has also been studied in the past few years. Ryder et al. [7] and 

Xiao-Bo et al. [8] focused on change impact analysis for object-oriented programs. Based 

on this work, Ren et al. [9] proposed a tool called Chianti for java programs. Chianti 

analyzes two versions of a java program and decomposes their difference into a set of 

atomic changes. Zhang et al. [10] introduced a change impact and regression fault 

analysis tool for evolving java programs. While these works focus on the impact of 

changes in Android apps functionality and energy consumption of android application, 

our work is different as it focuses on the impact of changes in Android operating system 

on Android apps tests and how this helps us increase the efficiency of selection testing. 

VI. CONCLUSION 

Regression testing is a complex and expensive part of the application maintenance 

process. In addition, Android APIs are updated frequently which leads to a more frequent 

need for retesting applications. In this paper, we introduced a novel approach to analyzing 

API change impact analysis on application tests. We introduced a framework that is 

capable of identifying the application tests that are impacted by API changes and 

selecting these tests for re-execution when APIs get changed. We performed experiments 

on 14 real-world Android apps to demonstrate the usefulness and the effectiveness of our 

approach. The experimental results showed that our approach can effectively select tests 
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that are impacted by API changes and reduce the number of tests for many apps, which 

improves the efficiency of testing apps with changed APIs.  
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