

API CHANGE DRIVEN TEST SELECTION FOR ANDROID APPLICATIONS

HONORS THESIS

Presented to the Honors College of
Texas State University
in Partial Fulfillment
of the Requirements

for Graduation in the Honors College

by

Jihan Rouijel

San Marcos, Texas
December 2019

API CHANGE DRIVEN TEST SELECTION FOR ANDROID APPLICATIONS

by

Jihan Rouijel

Thesis Supervisor:

Guowei Yang, Ph.D.
Department of Computer Science

Approved:

Heather C. Galloway, Ph.D.
Dean, Honors College

iii

ABSTRACT

 People are becoming increasingly dependent on their mobile devices day after day.

As a result, mobile developers strive to introduce innovative applications (or simply apps)

with new functionalities and features. To keep up with this need; Android Application

Programing Interfaces (APIs) are updated frequently, which can affect the functionality of

the Android apps that are built upon them. Developers therefore need to test their apps

between each update to ensure high reliability. However, running the entire test suite can

be costly and time-consuming. Previous research has focused on how Android API change

impacts the app code, but no research has extended this finding to further analyze the API

change impact on app tests to help increase the efficiency of API change driven regression

testing. This paper introduces a novel approach which leverages the results from app code

impact analysis and coverage information to identify the tests that are impacted by the API

changes. The results of experiments on real-world android mobile apps show that this

approach increases the efficiency of android app testing by reducing the number of tests

selected for re-execution and thus reducing the time needed for regression testing.

1

I. INTRODUCTION

The mobile apps market is one of the fastest growing areas in the information

technology [2] and statistically, the Android OS is the most widely used mobile operating

systems. In 2017, it achieved a major milestone of having over two billion monthly active

devices [3]. To keep up with this achievement, developers are required to ensure high

quality Android mobile apps.

Regression testing is an expensive maintenance activity aimed at showing that an

application has not been adversely affected by changes, estimates indicate that software

maintenance activities account for as much as two-thirds of the cost of software

production [6]. However, regression testing is necessary after any kind of change that

may potentially affect an application. In addition, Application Programming Interfaces

(APIs) are frequently updated for Android OS, which from the first commercial release of

Android 1.0 with API level 1 on September 23rd, 2008 [20] to the current API level at

29. With these frequent updates, it is essential to keep the app version updated to match

the current API version; otherwise the interaction between the apps and the underlying

OS may cause some unexpected errors.

Given the complexity of regression testing, the frequency of Android API

updates, and the need of developers to keep the apps up-to-date with the current API

version; we believe that impact analysis, a process to identify and analyze the effect a

change or an update can have on a program [21], plays an important role in achieving

high reliability for Android apps. It includes effectively locating the impacted portions of

code and determining how much impact the update has.

2

Multiple testing techniques have been proposed in the recent to improve the

reliability of Android apps. However, none of them are specifically targeting on testing

the impact of API updates. Moreover, without knowing the impact of API updates,

developers must execute all tests on mobile apps with the new API version, which can be

very expensive.

In this paper, we introduce a novel tests impact analysis for Android API updates.

This approach leverages the results from app code impact analysis introduced by Yang et

al. [1] and coverage information for each test in the existing test set to identify the tests

that are impacted by the changes in an Android operating system. Only the impacted

tests, instead of the whole set of existing tests, need to be re-executed for testing the app

after the API changes. As a result, developers could save time in revealing all potential

faults caused by an API update that could be revealed with the whole test suite.

To evaluate the effectiveness of our approach, we conducted experiment on 14

real-world Android apps with tests. The results show that the test impact varies widely

across different apps and that our approach can effectively improve the efficiency of

testing for API updates with reasonable overhead.

III. APPROACH
A. Overview

Given two consecutive API versions Vold and Vnew , and an Android app developed

with API Vold, our approach aims to identify the subset of tests of the original test suite

that were impacted by the API changes. This subset represents the set of tests that cover

the impacted app code and that may reveal potential bugs caused by the API changes.

Running only these tests will yield the same results as if the whole test suite is executed.

3

First, our approach analyzes the impact of API changes between API Vold and Vnew on

the app; the two API versions need to be consecutive. Second, our approach collects

coverage information for each test. Leveraging the impacted app code and test coverage,

our approach can identify and select the impacted tests that cover (or execute) the

impacted app code.

B. Framework and its implementation

The framework of our approach, as shown in Fig. 1, consists of three major components:

App Code Impact Analysis, Coverage Generator, and Test Impact Analysis:

1) App Code Impact Analysis:

The goal of the App Code Impact Analysis is to identify the portion of the app

code impacted by the API changes. It takes as input the two consecutive API versions

and an Android app’s source code. Previous work by Yang et al. [1] introduced an

algorithm that automatically locates the part of the app affected by API update. Using

this work, we were able to extract a list of affected user methods. First, from the two

API versions; the impact analyzer identifies the name of the library methods that were

either deleted or modified moving from an API version to a newer one. Then, from

Version

Version

Coverage

Coverage

 Figure 1 Framework of the approach.

4

the app’s source code, it checks to see if the app’s source code methods are using any

of the impacted library methods. If a user method is calling any of the impacted

library methods, then that user method is marked as impacted.

2) Coverage Generator:

The purpose of the Coverage Generator is to generate a list of covered user

methods for each test. For this, it takes as input the app existing tests. First, the

coverage generator extracts a list of the names of the test classes and their methods.

Then, it uses this list to run each test separately and get its coverage, or the list of user

methods that are to be tested by this test.

To extract the list of the names of the test classes and their corresponding

methods, we implemented a custom test names generator for Android App using a

self-built miniature lexer and parser for Android grammar using Python and regular

expression, and then saved the tests Classes and methods names in a file as a

dictionary.

Now that we have a list of test names in form of <class>.<method>, we can run

each test individually and get its coverage using JaCoCo, a free and easy to use Java

code coverage library distributed under the Eclipse Public License [4]. JaCoCo

generates a coverage report in several formats including HTML, XML, and CSV. We

chose to generate our report in HTML because HTML is more visual which makes it

easier for us to scrape the data we need. To extract the covered methods from the

coverage report, we used Beautiful Soup, a Python library for pulling data out of

HTML and XML files [5]. The covered methods for each test are stored in a

5

dictionary, with the test being the key and the list of its covered user methods being

its value.

3) Test Impact Analysis:

The Test Impact Analysis works to combine the output of the two other

components to be able to select the impacted tests. That is, it takes as input the list of

the impacted user methods (as determined by the App Code Impact Analysis) and the

covered method for each test (as generated by the Coverage Generator).

The Test Impact Analysis loops through each test and checks if any of its covered

methods is also in the list of affected methods. If so, the test is considered impacted

and selected for re-execution.

In all parts of our framework, we ignore the package level and class level analysis and

we only consider method level analysis. The more coarse-grained the analysis is, the less

accurate the results will be. This will lead to a greater number of tests being unnecessarily

selected.

IV. EVALUATION
A. Research Questions
 We will evaluate the effectiveness of our technique by answering our following

research questions:

• RQ1: How does an API update impact the app’s existing tests?

• RQ2: How does our technique perform in identifying impacted code that is not being

covered by any tests?

• RQ3: How does the cost of selecting and executing impacted tests compared to

executing all tests?

6

B. Experimental Setup
 For the purpose of this evaluation, we selected 14 real-world Android apps, 12

different apps and 3 different versions of one of the apps, based on some specific criteria

as shown in Table 1 and explained as follow:

• Apps are open-source and are available via F-droid (an open-source platform) or

GitHub, to be able to get the source code of the app and the original test suite.

• Apps are available on Google Play Store to obtain their statistics.

• Number of downloads are greater than 5000.

• Apps of various categories were chosen to not to be biased against a specific category.

• Apps are recently updated, to make sure that they are regularly maintained.

• Apps written in different and various underlying API to best portray the effectiveness

of our approach.

Table 1 Some of the Applications' criteria

App Name Downloads Category Date Last
Updated

Kouchat 5,000+ Communication August 7,
2018

AnkiDroid 5,000,000+ Education October 15,
2019

gnucash 100,000+ Finance June 27, 2018
Materialistic 100,000+ News and

Magazines
March 30,

2019
AmazeFileManager 1,000,000+ Tools September

13, 2019
Wikipedia 10,000,000+ Books and

Reference
October 11,

2019
NewPipe 10,000+ Health and Fitness August 27,

2017
Connectbot 1,000,000+ Communication November 9,

2018
Kdeconnect 500,000+ Productivity September

23, 2019
Telecine 800,000+ Tools December 18,

2018

7

Our experiments are performed on a PC with a i5 Quad-Core 2.50 GHz processor, 8 GB

of RAM, and running Windows 10 64-bit operating system.

To build the Android apps and run tests for the apps, we used the following tools:

• Java SE Development Kit 8

• Android Software Development Kit 29.0.1

• Android Studio 3.5

• Gradle 5.6

C. Results
Table 2 Experimental Results

App Name API
Update

Tests Time (s)

Total Impacted %
Impacted

Re-run
All Tests

Re-run
Selected
Tests

Saved Overhead

Materialistic 26 → 27 444 302 68.02 9,886.31 7,200.79 2,685.52 537.85
Materialistic 27 → 28 436 257 58.94 10,189.13 6,813.90 3,375.23 563.58
Materialistic 28 → 29 312 283 90.71 8,755.22 8,155.65 599.57 451.71
Kouchat 27 → 28 550 291 52.91 4,997.63 2,804.03 2,193.60 394.59
AnkiDroid 27 → 28 28 18 64.29 864.50 623.29 241.21 40.72
Gnucash 27 → 28 141 117 82.98 4,637.27 4,086.25 551.02 241.69
Telecine 25 → 26 18 0 0 775.65 0 775.65 42.71
NewPipe 26 → 27 29 11 37.93 765.14 397.34 367.8 42.87
AmazeFileManager 27 → 28 153 57 37.25 5,846.13 2,405.97 3,440.16 395.74
Connectbot 26 → 27 36 24 66.67 1,030.91 710.63 320.28 45.17
Wikipedia 28 → 29 396 326 82.32 15,212.69 13,168.60 2,044.09 1034.71
Kdeconnect 28 → 29 9 9 100 397.6 397.6 0 48.19
FileManager 28 → 29 20 1 5 869.06 43.56 825.5 52.83
CineLog 25 → 26 145 10 6.90 2,664.82 286.71 2,378.11 102.23

 Table 2 shows the results of our experiment. It contains the two API versions Vold

→ Vnew, total number of tests (Total), the number and the percentage of impacted tests

(Impacted and % Impacted, respectively), total time needed to re-run all the unit tests

after the API update (Re-run All Tests), time to run the tests our framework selected (Re-

run Selected Tests), time we saved by running only the selected tests (Saved), and the

overhead introduced by running our framework (overhead).

8

D. Analysis

 Based on analyzing the results of our experiment, we can answer the three

research questions as follow:

RQ1: How does an API update impact the app’s existing tests?

 Our results show that every app’s test suite is affected differently. The percentage

of impacted tests varies from an app to another. Some apps, like Telecine, may not be

affected at all; others, like Kdeconnect, can be 100% affected; and other apps can be

partially affected. Investigating this further reveals few factors that can affect how the

API update impacts the app’s tests. One factor is the amount of impacted methods being

covered by the tests. If only rarely covered methods are impacted, then the number of the

impacted test will be low. On the other hand, the number of impacted tests becomes high

if some of the mostly covered methods are impacted by the API update. Materialistic (28

→29), for example, has an impacted utility function called isOnWifi() which is covered

by most of the tests which makes the percentage of the affected tests high (90.71%).

Telecine has no impacted tests while Kdeconnect tests were all impacted. Both apps have

a very small number of tests which cover either impacted methods (like in Kdeconnect

case) or unimpacted methods (like on Telecine case) only.

RQ2: How does our technique perform in identifying impacted code that is not

being covered by any tests?

According to Table 2, Telecine has 0% impacted tests and Kdeconnect has 100%.

As mentioned before, both apps have a very small number of tests; Telecine has 18 and

Kdeconnect has only 9. Kdeconnect has 1166 methods 391 of which are impacted. It is

9

not feasible that only these 9 tests can cover all the impacted methods. Also, Telecine has

95 methods; 19 of which are impacted, but none of them are covered by any of the 18

tests. For both cases, most impacted methods are not covered by any test and thus will

remain untested. However, our approach can easily identify the impacted methods that

are not covered by the existing tests. We can find the impacted methods that are not

covered by any existing test by subtracting covered methods (generated by our Coverage

generator) from the set of impacted methods (outputted by the App Code Impact

Analysis.) These results can further help developers augment tests to cover these uncover

impacted methods.

RQ3: How does the cost of selecting and executing impacted tests compared to

executing all tests?

Results from Table 2 show that our approach was successful in saving time in

retesting the apps after an API update. For almost all the apps we use for our experiment,

our approach saved a considerable amount of time compared to re-executing all tests. Our

approach saved 3,449.16s, for retesting AmazeFileManager, 3,375.23s for Materialistic

(API update 27→28), and 2,685.52s for Materialistic (API update 26→27).

The only case where the Overhead time is greater than the Saved time is Kdeconnect. As

mentioned before, Kdeconnect’s tests were not well designed, and coverage of the tests is

only 2% (according to JaCoCo test report).

The time saved is also different from one app to another. Tracing the percentage

of the time saved by our approach and the percentage of the API test impact in one graph,

10

as shown in figure 2, shows that these two metrics are related. As the API test impact

increases, the time saved decreases; and vice versa.

Figure 2: % API test impact vs. % time saved

V. RELATED WORK

Regression testing has been an ongoing research area in software engineering

field. Traditionally, the entire test suite has been reused for retesting an app after a

change, which can be computationally expensive. Therefore, different techniques have

been developed to increase the efficiency of this testing by reducing the number of test

cases, which are known as regression test selection [11], [12], [13] and test case

prioritization [14], [15], [16]. Do et al. [17] proposed a Regression Test Selection

approach for Android apps, Redroid. Redroid leverages the combination of static impact

analysis and dynamic code coverage, and identifies a subset of test cases for re-execution

on the modified version of Android apps. Li et al. [18] proposed ATOM, for automatic

maintenance of GUI test scripts for evolving mobile apps. ATOM uses an event sequence

model (ESM) to abstract possible event sequences in a GUI and a delta ESM to abstract

the changes made to a GUI, and updates the test scripts that were written for the base

0%
20%
40%
60%
80%

100%
120%

Mate
ria

list
ic

Mate
ria

list
ic

Mate
ria

list
ic

Kouch
at

Anki
Android

Gnuca
sh

Te
lec

ine

NewPipe

Amaze
Fil

eM
an

a…

Connectb
ot

Wiki
pedia

Kdeco
nnect

Fil
eMan

ag
er

CineLo
g

% API Test Impact vs. % Time Saved

% Time Saved % affected tests

11

version app, based on the ESM for the base version and the delta ESM for the changes

introduced by the new version. Aggarwal et al. [19] proposed GreenAdvisor, a software

evolution impact analyzer on energy consumption. It compares the system call logs two

consecutive versions of Android apps and predicts how the energy-consumption profile

of the new version will compare to that of the previous version.

Impact analysis has also been studied in the past few years. Ryder et al. [7] and

Xiao-Bo et al. [8] focused on change impact analysis for object-oriented programs. Based

on this work, Ren et al. [9] proposed a tool called Chianti for java programs. Chianti

analyzes two versions of a java program and decomposes their difference into a set of

atomic changes. Zhang et al. [10] introduced a change impact and regression fault

analysis tool for evolving java programs. While these works focus on the impact of

changes in Android apps functionality and energy consumption of android application,

our work is different as it focuses on the impact of changes in Android operating system

on Android apps tests and how this helps us increase the efficiency of selection testing.

VI. CONCLUSION

Regression testing is a complex and expensive part of the application maintenance

process. In addition, Android APIs are updated frequently which leads to a more frequent

need for retesting applications. In this paper, we introduced a novel approach to analyzing

API change impact analysis on application tests. We introduced a framework that is

capable of identifying the application tests that are impacted by API changes and

selecting these tests for re-execution when APIs get changed. We performed experiments

on 14 real-world Android apps to demonstrate the usefulness and the effectiveness of our

approach. The experimental results showed that our approach can effectively select tests

12

that are impacted by API changes and reduce the number of tests for many apps, which

improves the efficiency of testing apps with changed APIs.

13

REFERENCES

[1] G. Yang, J. Jones, A. Moninger, and M. Che. How do android operatingsystem updates

impact apps? InProceedings of the 5th InternationalConference on Mobile Software

Engineering and Systems, MOBILESoft’18, pages 156–160, New York, NY, USA,

2018. ACM.

[2] G. Bavota, M. Linares-Vasquez, C. Bernal-C ´ ardenas, M. Di Penta, ´ R. Oliveto, and

D. Poshyvanyk. The impact of api change and fault-proneness on the user ratings of

android apps. IEEE Transactions on Software Engineering (TSE), 2015.

[3] B. Popper. Google announces over 2 billion monthly active devices on android, 2017.

[4] JaCoCo. https://www.eclemma.org/jacoco/

[5] BeautifulSoup. https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[6] G. Rothermel, M.Harrold. Analyzing regression test selection techniques.IEEE

Transactions on Software Engineering, 22(8):529–551, August 1996.

[7] B. G. Ryder and F. Tip. Change impact analysis for object-oriented programs. In

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop

[8] Z. Xiao-Bo, J. Ying, and W. Hai-Tao. Method on change impact analysis for object-

oriented program. In 2011 4th International Conference on Intelligent Networks and

Intelligent Systems, pages 161–164, Nov 2011.

[9] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool for change impact

analysis of java programs. In Proceedings of the 19th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications,

OOPSLA ’04, pages 432–448, New York, NY, USA, 2004. ACM.

14

[10] L. Zhang, M. Kim, and S. Khurshid. Faulttracer: A change impact and regression fault

analysis tool for evolving java programs. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering, FSE ’12, pages

40:1–40:4, New York, NY, USA, 2012. ACM.

[11] Q. Do, G. Yang, M. Che, D. Hui, and J. Ridgeway. Regression test selection for android

applications. In Proceedings of the International Conference on Mobile Software

Engineering and Systems, MOBILESoft ’16, pages 27–28, New York, NY, USA, 2016.

ACM.

[12] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon,

and A. Gujarathi. Regression test selection for java software. In Proceedings of the

16th ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, OOPSLA ’01, pages 312–326, New York, NY, USA,

2001. ACM.

[13] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique.

ACM Trans. Softw. Eng. Methodol., 6(2):173–210, Apr. 1997.

[14] Hyunsook Do and G. Rothermel. On the use of mutation faults in empirical assessments

of test case prioritization techniques. IEEE Transactions on Software Engineering,

32(9):733–752, Sep. 2006.

[15] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying test costs and

fault severities into test case prioritization. In Proceedings of the 23rd International

Conference on Software Engineering. ICSE 2001, pages 329–338, May 2001.

[16] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective

and scalable prioritisation incorporating expert knowledge. In Proceedings of the

15

Eighteenth International Symposium on Software Testing and Analysis, ISSTA ’09,

pages 201–212, New York, NY, USA, 2009. ACM.

[17] Q. C. D. Do, G. Yang, M. Che, D. Hui, and J. Ridgeway. Redroid: A regression test

selection approach for android applications. In The 28th International Conference on

Software Engineering and Knowledge Engineering, SEKE 2016, Redwood City, San

Francisco Bay, USA, July 1-3, 2016., pages 486–491, 2016.

[18] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li. ATOM: automatic

maintenance of GUI test scripts for evolving mobile applications. In 2017 IEEE

International Conference on Software Testing, Verification and Validation, ICST 2017,

Tokyo, Japan, March 13-17, 2017, pages 161–171, 2017.

[19] K. Aggarwal, A. Hindle, and E. Stroulia. Greenadvisor: A tool for analyzing the impact

of software evolution on energy consumption. In 2015 IEEE International Conference

on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany, September

29 - October 1, 2015, pages 311–320, 2015.

[20] Wikipedia. Android version history, 2018.

[21] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool for change impact

analysis of java programs. In Proceedings of the 19th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications,

OOPSLA ’04, pages 432–448, New York, NY, USA, 2004. ACM.

