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BIFURCATION FROM THE FIRST EIGENVALUE OF THE
p-LAPLACIAN WITH NONLINEAR BOUNDARY CONDITION

MABEL CUESTA, LIAMIDI A. LEADI, PASCALINE NSHIMIRIMANA

Abstract. We consider the problem

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u+ g(λ, x, u) on ∂Ω,

where Ω is a bounded domain of RN with smooth boundary, N ≥ 2, and

∆p denotes the p-Laplacian operator. We give sufficient conditions for the

existence of continua of solutions bifurcating from both zero and infinity at
the principal eigenvalue of p-Laplacian with nonlinear boundary conditions.

We also prove that those continua split on two, one containing strictly positive

and the other containing strictly negative solutions. As an application we
deduce results on anti-maximum and maximum principles for the p-Laplacian

operator with nonlinear boundary conditions.

1. Introduction

We consider the following nonlinear boundary value problem for a bounded do-
main Ω ⊂ RN , N ≥ 2, with smooth boundary

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u+ g(λ, x, u) on ∂Ω,

(1.1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator, 1 < p < +∞, ∂u
∂ν

represents the exterior normal derivative of u and g is a given function satisfying
some conditions to be specified. We are mainly concerned with the bifurcation from
the first eigenvalue λ1 of the eigenvalue problem associated with (1.1) given by

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω,

(1.2)

and its application to maximum and anti-maximum principles for

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u+ h(x) on ∂Ω,

(1.3)
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It is well known that the properties of eigenvalues play an important role in the
study of the bifurcation problem, the maximum principle and the antimaximum
principle for quasilinear equations. The eigenvalue problem (1.2) has been studied,
for instance, in Fernandez Bonder and Rossi [12, 11] and Martinez and Rossi [16].
In [12] the authors proved that if N ≥ 2 then (1.2) admits an infinite sequence
of positive eigenvalues λn such that λn → +∞ as n → +∞ although in [16] it
was proved that the first eigenvalue is simple, isolated and principal i.e. every
eigenfunction associated with λ1 has a constant sign. Results related to those in
[12] and [16] were proved in [11] where the authors have considered a generalization
of (1.2) with an indefinite weight function given on ∂Ω.

Bifurcation problems for the p-Laplacian operator with Dirichlet boundary con-
ditions received extensive attention in the 1990’s. The reader is referred to [8, 13,
18, 19] for problems on bounded domains and to [10] for problems in unbounded
domains. In 2001, D. Arcoya and J. Gámez [3] gave sufficient conditions for sub-
critical and supercritical bifurcations and gave a new approach to prove old and
new results on anti-maximum and local maximum principles for the p-Laplacian
when λ is close to λ1. The case p = 2, (1.1) was studied by Arrieta, Pardo and
Rodŕıguez-Bernal in [4] and by Pardo [17]. In [4], the authors proved that every
eigenvalue of odd multiplicity is a bifurcation point of solutions from infinity and
also presented some results on the maximum and anti-maximum principles.

The main purpose of this work is to extend the results proved in [4] for the
semilinear case, i.e. (1.1) with p = 2, or those of [8, 13] for the p-Laplacian operator
with Dirichlet boundary conditions.

In Section 2 we introduce basic notations and recall properties of the generalized
topological degree of Browder-Petryshyn for non linear mappings. In Sections 3 and
4, we prove that, under suitable assumptions on the function g, the first eigenvalue
λ1 of (Pλ) is a bifurcation point respectively from zero and from infinity of the
solutions of (1.1) using basic tools of topological degree. In Section 5 we prove the
existence of unbounded positive and negative continua of solutions of (1.1) splitting
from λ1. We give in Section 6 conditions to have sub- and super-critical bifurcations
and also give as application a non-variational proof of the anti-maximum and local
maximum principles for problem (1.3). We show for instance a maximum principle
for λ ∈ (λ1 − δ, λ1) and h satisfying

∫
∂Ω
hϕ1 > 0 instead of h ≥ 0, h 6≡ 0. Finally,

in Section 7, we focus our attention on the constants appearing on the regularity
results of weak solutions for the general problem given by

∆pu = |u|p−2u+ f(λ, x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= h(λ, x, u) on ∂Ω,

(1.4)

with f and h functions having subcritical growth.

2. Notation and preliminaries

We study the bifurcation of solutions for the quasilinear elliptic problem

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u+ g(λ, x, u) on ∂Ω.

(2.1)

Throughout this article, Ω will be a smooth bounded domain in RN , N > 1, with a
boundary ∂Ω of class C2,β , 0 < β < 1; ν its outer normal vector defined everywhere
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and 1 < p < +∞. We will denote by dσ the surface measure (which is a (N − 1)-
dimensional Hausdorff measure). The set W 1,p(Ω) denotes the Sobolev space with
its usual norm given by

‖u‖W 1,p(Ω) =
(∫

Ω

|∇u|p + |u|p
)1/p

and (W 1,p(Ω))∗ its topological dual. The critical Sobolev’s exponent for the trace
inclusion W 1,p(Ω) ↪→ Lq(∂Ω) will be denoted by p∗

p∗ :=

{
(N−1)p
N−p if 1 < p < N,

+∞ if p ≥ N.

The weak convergence will be denoted by ⇀ and the strong one by → . In the
following, W 1,p(Ω) will be denoted by X and (W 1,p(Ω))∗ by X∗.

Throughout this work the function g will satisfy the following condition:
(A1) g : R × ∂Ω × R → R is a Carathéodory function, that is, g is measurable

in x ∈ ∂Ω for all (λ, s) ∈ R × R and continuous in (λ, s) ∈ R × R a.e.
x ∈ ∂Ω. Moreover, there exists a ∈ [1, p∗) (a ≥ 1 if p ≥ N) such that for
any bounded set B ⊂ R there exist C,D ∈ L∞(∂Ω) such that

|g(λ, x, s)| ≤ C +D|s|a−1 a.e. x ∈ ∂Ω, ∀λ ∈ B, ∀s ∈ R. (2.2)

Solutions to (2.1) are understood in the weak sense, i.e., a function u ∈ X is a
weak solution of (2.1) if and only if∫

Ω

|∇u|p−2∇u∇vdx+
∫

Ω

|u|p−2uvdx = λ

∫
∂Ω

|u|p−2uv dσ+
∫
∂Ω

g(λ, x, u)v dσ (2.3)

for all v ∈ X. Notice that (A1) assures the integrability of the integrands in (2.3).
Let us define the functionals

〈J(u), v〉 =
∫

Ω

|∇u|p−2∇u∇v dx+
∫

Ω

|u|p−2uv dx,

〈F (u), v〉 =
∫
∂Ω

|u|p−2uv dσ,

〈Gλ(u), v〉 =
∫
∂Ω

g(λ, x, u)v dσ,

where 〈·, ·〉 is the usual duality map defined on X∗×X. Thus (2.3) is equivalent to

Aλ(u) := J(u)− λF (u)−Gλ(u) = 0. (2.4)

It is well known that J is continuous, (p− 1)-homogeneous, odd, coercive, strictly
monotonous and continuously invertible. The function F is continuous, odd, (p−1)-
homogeneous and compact and for any fixed λ, Gλ is continuous and compact. The
compactness of those maps is a consequence of the compact embedding of the trace
map

X ↪→ Lq(∂Ω).
Let us briefly recall some properties of the spectrum of ∆p with nonlinear boundary
conditions for the problem

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω,

(2.5)
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see [22, 12, 16]. A real number λ is said to be an eigenvalue of (2.5) if and only if
there exists u ∈ X \ {0} such that∫

Ω

(|∇u|p−2∇u∇v + |u|p−2uv)dx = λ

∫
∂Ω

|u|p−2uv dσ

holds for all v ∈ X. The function u is called eigenfunction associated with the
eigenvalue λ. It is well known that (2.5) admits an infinite sequence of positive
eigenvalues λn such that λn → +∞ as n → +∞. Its first eigenvalue λ1 > 0 is
characterized by

λ1 := inf
{∫

Ω
|∇u|p +

∫
Ω
|u|p∫

∂Ω
|u|p

: u ∈ X,
∫
∂Ω

|u|p 6= 0
}
. (2.6)

It is also well know that λ1 is simple and admits a normalized positive eigenfunction
ϕ1 > 0 in Ω. Furthermore any eigenfunction associated with eigenvalue different
from λ1 changes sign. We will denote by σp the set of all eigenvalues of (2.5)
and we call it spectrum of p-Laplacian with nonlinear boundary condition. It is
also known that λ1 is isolated in the spectrum, which allows to define the second
positive eigenvalue λ2 of (2.5) as

λ2 := min{λ ∈ R : λ eigenvalue and λ > λ1}.

In the next two sections, we will prove some bifurcation results at the first
eigenvalue λ1 from both zero and infinity. The main tool to prove our bifurcation
results is the generalized topological degree of Browder-Petryshyn for non linear
mappings of [5] (see also [21]) that we will apply for the operator Aλ defined in (2.4).
Let us recall here some properties of this degree. Let V be a real separable reflexive
Banach space, V ∗ its topological dual and A : V → V ∗ be a demi-continuous
operator, that is, A satisfies that whenever un ∈ V converges to some u ∈ V then
Aun ⇀ Au. We also assume that A satisfies the condition α(V ), that is, for any
sequence un ∈ V satisfying un ⇀ u0 in V and

lim sup
n→+∞

〈A(un), un − u0〉 ≤ 0,

then un → u0 ∈ V . Trivially every continuous map A : V → V ∗ is also demi-
continuous. Note also that if A satisfies the condition α(V ) then A + K satisfies
the condition α(V ) for any compact operator K : V → V ∗.

Let {wi}+∞i=1 be an arbitrary complete subset of the space V and let us assume
that for every n the elements w1 . . . wn are linearly independent. Denote Wn the
linear hull of the elements w1 . . . wn. We set

An(u) :=
n∑
i=1

〈A(u), wi〉wi.

For any arbitrary bounded open set D ⊂ V such that A(u) 6= 0 for any u ∈ ∂D,
the degree of the mapping A at 0 with respect to D ⊂ V is defined as follows:

deg(A,D, 0) := lim
n→+∞

deg
B

(An, D ∩Wn, 0), (2.7)

where deg
B

denotes here the Browder degree. It is shown in [21][Chapter 2] that
deg

B
(An, D ∩Wn, 0) is constant for n ≥ n0 for some n0 ∈ N and that the value in
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the limit (2.7) is independent of the choice of the system of functions {wi}. One
can also define the index of an isolated solution u0 of the equation A(u) = 0 as

Ind(A, u0) := lim
ε→0

deg(A,Bε(u0), 0).

Finally the usual properties of a degree as the additivity, excision and invariance
under homotopy, hold for this generalisation of the degree of Browder. The following
properties will be used.

Lemma 2.1. Let A : V → V ∗ be a demi-continuous operator satisfying the α(V )
condition.

(i) [21, Chap. 2, Theorem 4.4] Assume that there exists r > 0 such that
〈A(u), u〉 > 0 for all u ∈ V , ‖u‖V = r. Then

deg(A,Br(0), 0) = 1.

(ii) [9, Lemma 14.7] Assume that A is a potential operator, i.e., there exists a
continuous differentiable functional B : V → R such that B′ = A. Let u0

be a local minimum of B and an isolated solution of A(u) = 0. Then

Ind(A, u0) = 1.

Now let us now finally take V = W 1,p(Ω), denoted by X, the operator Aλ defined
in (2.4) and check that Aλ satisfies the α(X) condition.

Lemma 2.2. Operators J and Aλ satisfy the condition α(X) for any λ ∈ R.

Proof. Since F and Gλ are compact maps, it is sufficient to check that J satisfies the
α(X) condition. Assume that un ⇀ u0 in X and lim supn→+∞〈J(un), un−u0〉 ≤ 0.
Then un converges strongly to u0 in Lp(Ω) and we have

0 ≥ lim sup
n→+∞

〈J(un)− J(u0), un − u0〉

= lim sup
n→+∞

∫
Ω

(
|∇un|p−2∇un − |∇u0|p−2∇u0

)
(∇un −∇u0)

+
∫

Ω

(
|un|p−2un − |u0|p−2u0)(un − u0

)
.

For ∇u,∇v ∈ Lp(Ω)N , we observe that∫
Ω

(
|∇u|p−2∇u− |∇v|p−2∇v

)
∇(u− v)

=
∫

Ω

(
|∇u|p + |∇v|p − |∇u|p−2∇u∇v − |∇v|p−2∇v∇u

)
≥
∫

Ω

(|∇u|p + |∇v|p)−
(∫

Ω

|∇u|p
)1/p′(∫

Ω

|∇v|p
)1/p

−
(∫

Ω

|∇u|p
)1/p(∫

Ω

|∇v|p
)1/p′

=
[( ∫

Ω

|∇u|p
) p−1

p −
(∫

Ω

|∇v|p
) p−1

p
][( ∫

Ω

|∇u|p
)1/p

−
(∫

Ω

|∇v|p
)1/p]

≥ 0.

From this two previous inequalities we deduce that
∫

Ω
|∇un|p →

∫
Ω
|∇u0|p and

consequently un → u0 in X. �
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3. Bifurcation from zero at the first eigenvalue

In this section we prove that there exists a bifurcation of solutions of problem
(2.1) at λ = λ1 using the previous generalization of the topological degree. Let us
recall the standard definition of a bifurcation point for a generic family of nonlinear
continuous maps Aλ : V → V ∗:

Definition 3.1. Let E = R× V be equipped with the norm

‖(λ, u)‖ :=
(
|λ|2 + ‖u‖2V

)1/2
. (3.1)

A value λ̄ ∈ R is said to be a bifurcation point from zero of solutions of the problem
Aλ(u) = 0 if there exists a sequence of solutions (λn, un) of Aλ(u) = 0 such that
(λn, un)→ (λ̄, 0) in E.

Lemma 3.2. Assume that

g(λ, x, s) = o(|s|p−1) (3.2)

holds for s near s = 0 uniformly a.e. with respect to x ∈ ∂Ω and uniformly with
respect to λ in any bounded subset of R. Then

lim
‖u‖X→0

‖Gλ(u)‖X∗
‖u‖p−1

X

= 0

uniformly for λ in a bounded subset of R.

Proof. Condition (3.2) implies that for any λ in a bounded set and for any ε > 0
there is a real number δ = δ(ε) > 0 such that, for a.e. x ∈ ∂Ω, we have

|g(λ, x, s)| ≤ ε|s|p−1 for |s| ≤ δ.

Consider the subset of ∂Ω given by

∂Ωδ = {x ∈ ∂Ω : |u(x)| ≤ δ}.

By definition we have

‖Gλ(u)‖X∗
‖u‖p−1

X

= sup
‖w‖X≤1

1
‖u‖p−1

X

∣∣ ∫
∂Ω

g(λ, x, u)w
∣∣

≤ sup
‖w‖X≤1

∫
∂Ωδ

∣∣g(λ, x, u)
‖u‖p−1

X

w
∣∣+ sup
‖w‖X≤1

∫
∂Ωcδ

∣∣g(λ, x, u)
‖u‖p−1

X

w
∣∣.

Set v := u/‖u‖X . Then we have∫
∂Ωδ

∣∣g(λ, x, u)
‖u‖p−1

X

w
∣∣ ≤ ε ∫

∂Ωδ

|w||v|(p−1)

≤ ε
∫
∂Ω

|w||v|(p−1)

≤ ε
(∫

∂Ω

|w|p
)1/p(∫

∂Ω

|v|p
)1/p′

≤ cppε‖v‖
p−1
X ‖w‖X ≤ cppε

(3.3)

where we have denoted, for any 1 ≤ q ≤ p∗, cq = c(q,N,Ω) the best constant of the
trace embedding of X into Lq(∂Ω). In the following, d will always denote a positive
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constant independent of ε, δ, and the functions u, v, w, . . . appearing on the proof.
We have∫

∂Ωcδ

∣∣g(λ, x, u)
‖u‖p−1

X

w
∣∣ ≤ ∫

∂Ωcδ

(C +D|u|a)|w|
‖u‖p−1

X

=
1

‖u‖p−1
X

∫
∂Ωcδ

C|w|+
∫
∂Ωcδ

D|u|a−1|w|
‖u‖p−1

X

= I + II .

We estimate I and II as follows:

I ≤ ‖C‖∞,∂Ω

‖u‖p−1
X

meas(∂Ωcδ)
1/p′∗

(∫
∂Ωcδ

|w|p∗
)1/p∗

≤ ‖C‖∞,∂Ω

‖u‖p−1
X

meas(∂Ωcδ)
1/p′∗

(∫
∂Ω

|w|p∗
)1/p∗

≤ cp∗
‖C‖∞,∂Ω

‖u‖p−1
X

meas(∂Ωcδ)
1/p′∗ .

Using Tchevichev’s inequality we have , for any 1 < q ≤ p∗,

δq meas(∂Ωcδ) ≤
∫
∂Ωcδ

|u|q,

and therefore, choosing q = p∗, it follows that

I ≤ cp∗
‖C‖∞,∂Ω

‖u‖p−1
X

1
δp∗/p

′
∗

(∫
∂Ωcδ

|u|p∗
)1/p′∗

≤ cp∗
‖C‖∞,∂Ω

‖u‖p−1
X

1
δp∗/p

′
∗

(∫
∂Ω

|u|p∗
)1/p′∗

≤ cp∗p∗
‖C‖∞,∂Ω

‖u‖p−1
X

1
δp∗/p

′
∗
‖u‖p∗/p

′
∗

X = dδ−p∗/p
′
∗‖u‖p∗−pX .

(3.4)

On the other hand,

II ≤ ‖D‖∞,∂Ω

∫
∂Ωcδ

|u|a−p|v|p−1|w|

≤ ‖D‖∞,∂Ωδ
a−p∗

∫
∂Ωcδ

|u|p∗−p|v|p−1|w|

≤ ‖D‖∞,∂Ωδ
a−p∗

(∫
∂Ω

|v|p∗
) p−1

p∗
(∫

∂Ω

|w|p∗
)1/p∗(∫

∂Ω

|u|p∗
) p∗−p

p∗

≤ cp∗p∗‖D‖∞,∂Ωδ
a−p∗‖v‖p−1

X ‖w‖X‖u‖p∗−pX ≤ dδa−p∗‖u‖p∗−pX .

(3.5)

Thus, if ‖u‖X ≤ η with η =
(

ε

δ−p∗/p
′
∗+δa−p∗

) 1
p∗−p , by adding (3.3), (3.4) and (3.5),

we obtain
‖Gλ(u)‖X∗
‖u‖p−1

X

≤ dε.

�

The following proposition is standard but we prove it here by the sake of com-
pleteness.

Proposition 3.3. Assume (3.2). If (λ̄, 0) ∈ E is a bifurcation point of solutions
of problem (2.1) then λ̄ is an eigenvalue of (2.5).
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Proof. Since (λ̄, 0) is a bifurcation point from zero of solutions of (2.1) there is
a sequence (λn, un) of nontrivial solutions of (2.1) such that λn → λ̄ in R and
‖un‖X → 0 in X as n → +∞. Let ũn := un/‖un‖X . Since the sequence (ũn) is
bounded in X, there exists a function ũ0 ∈ X and a subsequence, still denoted by
(ũn), such that ũn ⇀ ũ0, strongly in Lp(Ω), in Lp(∂Ω) and such that Gλ(ũn) →
Gλ(ũ0) in X∗. Hence, using Lemma 3.2 we obtain

lim sup
n→+∞

〈J(ũn), v〉 − λn〈F (ũn), v〉 = lim sup
n→+∞

1
‖un‖p−1

X

〈Gλn(un), v〉 = 0 (3.6)

for all v ∈ X. By taking v = ũn − ũ0 in (3.6) it follows that

lim sup
n→+∞

〈J(ũn), ũn − ũ0〉 = 0

and, using that J satisfies the condition α(X), we conclude that ũn → ũ0 strongly
in X. In particular ‖ũ0‖X = 1 and ũ0 6= 0. Passing to the limit in (3.6) it comes

〈J(ũ0), v〉 = λ̄〈F (ũ0), v〉,
for all v ∈ X. Thus λ̄ is an eigenvalue of (2.5) and ũ0 an eigenfunction associated
with λ̄. �

The following theorem is the main result of this section. We prove that the first
eigenvalue is a bifurcation point from zero of nontrivial solutions of (2.1).

Theorem 3.4. Assume (3.2). Then there exists a maximal connected set C of
nontrivial weak solutions of problem (2.1) which

(i) contains the point (λ1, 0) in its closure,
(ii) either C is unbounded in E or it contains in its closure a point (λ̃, 0), where

λ̃ is an eigenvalue of problem (2.5) different from λ1.

Proof. The proof consists in three steps:
Step 1. We claim that

deg(Aλ, Br(0), 0) = 1 ∀λ ∈ (0, λ1), ∀r > 0 sufficiently small. (3.7)

The proof of this claim is the following. First consider the operator Âλ(u) =
J(u) − λF (u). It follows from the variational characterization (2.6) of λ1 that for
all λ ∈ (0, λ1) and for all u ∈ X with ‖u‖X 6= 0 we have 〈Âλ(u), u〉 > 0. Then by
Lemma 2.1(i),

deg(Âλ, Br(0), 0) = Ind(Âλ, 0) = 1, ∀λ ∈ (0, λ1), ∀r > 0. (3.8)

For any fixed λ ∈ (0, λ1) we claim that, if r is sufficiently small, the equation

J(u)− λF (u)− sGλ(u) = 0

has no solution u with ‖u‖X = r for all s ∈ [0, 1]. Assume by contradiction that
for all n > 0 there exists un of norm 1

n and there exists sn ∈ [0, 1] such that

〈J(un), v〉 − λ〈F (un), v〉 − sn〈Gλ(un), v〉 = 0. (3.9)

Taking wn := un
‖un‖X we infer that there exists w0, s0 such that, for a subsequence,

wn ⇀ w0, strongly in Lp(Ω), in Lp(∂Ω), such that Gλ(wn) → Gλ(w0) in X∗ and
sn → s0. Using (3.9) we deduce that

〈J(w0), v〉 − λ〈F (w0), v〉 ≤ lim
n

s0

‖un‖p−1
X

〈Gλ(un), v〉 (3.10)
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for all v ∈ X. If w0 = 0 then we will deduce, by taking v = wn in (3.9) and going
to +∞, that J(wn) → 0. Thus wn → w0 = 0, a contradiction with ‖wn‖X = 1.
In particular for v = w0 6= 0 in (3.10) we have, using that λ < λ1 on the left hand
side, that

0 < 〈J(w0), w0〉 − λ〈F (w0), w0〉 ≤
s0

‖un‖p−1
X

〈Gλ(un), w0〉 ≤
1

‖un‖p−1
X

〈Gλ(un), w0〉.

Since ‖w0‖X ≤ 1 and ‖un‖X → 0, we have from Lemma 3.2 that

0 = lim
n

‖Gλ(un)‖X∗
‖un‖p−1

X

≥ 〈J(w0), w0〉 − λ〈F (w0), w0〉 > 0

which is a contradiction. Finally the claim (3.7) follows from (3.8) and the homo-
topy invariance of the degree.
Step 2. First, from the definition of λ2 we have (λ1, λ2) ∩ σp = ∅. We claim that

deg(Aλ, Br(0), 0) = −1 ∀λ ∈ (λ1, λ2), ∀r > 0 small enough . (3.11)

We start by evaluating Ind(Âλ, 0) for any λ ∈ (λ1, λ2) by using the procedure of
[10]. Let us denote δ := λ2 − λ1 and define, for a fixed number K > 0, Φ : R→ R,
a twice continuously differentiable function Φ as follows

Φ(t) =

{
0 if t ≤ K,
2δ
λ1

(t− 2K) if t ≥ 3K,
(3.12)

and Φ(t) is positive and strictly convex in (K, 3K). Define the functional Ψλ : X →
R by

Ψλ(u) =
1
p
〈J(u), u〉 − λ

p
〈F (u), u〉+ Φ

(1
p
〈J(u), u〉

)
. (3.13)

It follows from Lemma 3.5 below that ±`ϕ1 are the global minima of Ψλ, where
` > 0 is the unique positive constant such that Φ′

(
1
p 〈J(`ϕ1), `ϕ1〉

)
= λ−λ1

λ1
and

ϕ1 is the (unique) positive eigenfunction associated with λ1 satisfying ‖ϕ1‖X = 1.
Hence by Lemma 2.1(ii),

Ind(Ψ′λ,−`ϕ1) = Ind(Ψ′λ, `ϕ1) = 1. (3.14)

On the other hand, let us show that for any u ∈ X satisfying ‖u‖X = σ with
σ > (3Kp)1/p, one has 〈Ψ′λ(u), u〉 > 0. Indeed

〈Ψ′λ(u), u〉 = 〈J(u), u〉 − λ〈F (u), u〉+ 〈J(u), u〉Φ′
(1
p
〈J(u), u〉

)
≥ (1 +

2δ
λ1

)〈J(u), u〉 − λ〈F (u), u〉

≥ (λ1 − λ+ 2δ)〈F (u), u〉
≥ δ〈F (u), u〉 > 0.

Hence, by Lemma 2.1(i), we have

deg(Ψ′λ, Bσ(0), 0) = 1. (3.15)

Thus, if we choose σ large enough in order to have ±`ϕ1 ∈ Bσ(0), by the additivity
property of the degree and the results (3.14) and (3.15) we deduce that

Ind(Ψ′λ, 0) = −1.
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Furthermore since Φ = 0 near 0 we have

Ind(Âλ, 0) = −1, ∀λ ∈ (λ1, λ2).

Next we claim that for any r sufficiently small the equation

〈J(u), v〉 − λ〈F (u), v〉 − s〈Gλ(u), v〉 = 0 ∀v ∈ X

has no solution u with ‖u‖X = r for all s ∈ [0, 1]. As in step 1, assume by
contradiction that for all n > 0 there exists a solution un of norm 1/n and there
exists sn ∈ [0, 1] such that

J(un)− λF (un)− snGλ(un) = 0. (3.16)

Taking wn := un
‖un‖X there exists w0, s0 such that, up to a subsequence, wn ⇀ w0,

strongly in Lp(Ω), in Lp(∂Ω), Gλ(wn) → Gλ(w0) in X∗ and sn → s0. If w0 = 0
then we will deduce, by taking v = wn

‖un‖p−1
X

as test function in (3.16) and going

to +∞, that J(wn) → 0. That is, wn → w0 = 0 which is a contradiction with
‖wn‖X = 1. Hence w0 6= 0 and using again (3.16) for the test function wn − w0,
we obtain, after dividing by ‖un‖p−1

X and going to +∞, that

〈J(wn), wn − w0〉 → 0.

We have just proved that wn → w0 strongly in X. On the other hand we will have,
passing to the limit in (3.16) after normalization, that

〈J(w0), v〉 − λ〈F (w0), v〉 = lim
n

s0

‖un‖p−1
X

〈Gλ(un), v〉 = 0

for all v ∈ X. We have used here Lemma 3.2. Notice that is a contradiction since
λ is not an eigenvalue. We have just prove the claim. Finally (3.11) follows from
the homotopy invariance of the degree for r > 0 sufficiently small.
Step 3. Having proved (3.7) and (3.11) we can proceed step by step as in the
original proof of Rabinowitz [19, Theorem 1.3, pp. 490-491], cf. also Drábek [9,
Theorem 14.9, pp. 178-183] to get the desired result. �

Lemma 3.5. Let Φ be defined in (3.12) and the functional Ψλ be defined in (3.13)
for λ ∈ (λ1, λ2). Then Ψλ is lower semicontinuous and coercive. The critical points
of Ψλ are 0,±`ϕ1, where ` > 0 is such that Φ′

(
1
p 〈J(`ϕ1), `ϕ1〉

)
= λ−λ1

λ1
and ϕ1 the

positive eigenfunction associated with λ1 with ‖ϕ1‖X = 1. Moreover

min
X

Ψλ = Ψλ(±`ϕ1) < 0.

Proof. Clearly Ψλ is weakly lower semicontinuous. Indeed, assume un ⇀ u0 ∈ X.
Then by the compact embedding of X in Lp(∂Ω), we have

〈F (un), un〉 → 〈F (u0), u0〉

and from the weak lower semicontinuity of the norm and the monotony of Φ, we
have

lim inf
n→+∞

{1
p
〈J(un), un〉+ Φ

(1
p
〈J(un), un〉

)}
≥ 1
p
〈J(u0), u0〉+ Φ

(1
p
〈J(u0), u0〉

)
.

and the result follows. Let us denote as before δ := λ2 − λ1 and let us now show
that Ψλ is coercive. Indeed, if ‖u‖X → +∞, two cases can occur. First if 〈F (u), u〉
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is bounded, it follows immediately that Ψλ(u)→ +∞ as ‖u‖X → +∞. If not, that
is, if 〈F (u), u〉 → +∞ as ‖u‖X → +∞, we obtain

Ψλ(u) =
1
p
〈J(u), u〉 − λ

p
〈F (u), u〉+ Φ

(1
p
〈J(u), u〉

)
≥ λ1 − λ

pλ1
〈J(u), u〉+ Φ

(1
p
〈J(u), u〉

)
≥ −δ
pλ1
〈J(u), u〉+

2δ
λ1

(1
p
〈J(u), u〉 − 2K

)
=

δ

pλ1
〈J(u), u〉 − 4δK

λ1
→ +∞

as ‖u‖X → +∞. In both cases we conclude that lim‖u‖X→+∞Ψλ(u) = +∞. Hence
Ψλ is bounded from below and the minimum of Ψλ is achieved. Now we claim that
the minimum is achieved at some eigenfunction associated with λ1. First notice
that

〈Ψ′λ(u), v〉 = 〈J(u), v〉 − λ〈F (u), v〉+ 〈J(u), v〉Φ′
(1
p
〈J(u), u〉

)
for all v ∈ X. A critical point u0 ∈ X of Ψλ satisfies

〈Ψ′λ(u0), v〉 = 〈J(u0), v〉 − λ〈F (u0), v〉+ 〈J(u0), v〉Φ′
(1
p
〈J(u0), u0〉

)
= 0

for all v ∈ X. This implies

〈J(u0), v〉 − µ〈F (u0), v〉 = 0 ∀v ∈ X,

with

µ =
λ

1 + Φ′
(

1
p 〈J(u0), u0〉

) .
Since λ ∈ (λ1, λ2) and Φ′(t) ≥ 0 for all t ∈ R then µ ≤ λ ≤ λ2. As µ is an eigenvalue
then it must be µ = λ1 which implies

0 6= Φ′
(1
p
〈J(u0), u0〉

)
=

λ

λ1
− 1 =

λ− λ1

λ1
6= 2δ
λ1
.

Consequently 1
p 〈J(u0), u0〉 ∈ (K, 3K). Also, since µ = λ1, u0 = −`ϕ1 or u0 = `ϕ1.

So, for λ ∈ (λ1, λ2), Ψλ has precisely three isolated critical points −`ϕ1, 0, `ϕ1.
In following, we show that the minimum of Ψλ is achieved in −`ϕ1 and `ϕ1. We
claim that Ψλ(±`ϕ1) < 0. Indeed one has

Ψλ(`ϕ1) =
λ1 − λ
λ1p

〈J(`ϕ1), `ϕ1〉+ Φ
(1
p
〈J(`ϕ1), `ϕ1〉

)
.

Since 1
p 〈J(`ϕ1), `ϕ1〉 ∈ (K, 3K), the convexity of Φ implies that for all t < 3K,

Ψλ(`ϕ1)

≤ λ1 − λ
pλ1

〈J(`ϕ1), `ϕ1〉+ Φ(t)− Φ′
(1
p
〈J(`ϕ1), `ϕ1〉

)(
t− 1

p
〈J(`ϕ1), `ϕ1〉

)
=
λ1 − λ
pλ1

〈J(`ϕ1), `ϕ1〉+ Φ(t)− λ− λ1

λ1

(
t− 1

p
〈J(`ϕ1), `ϕ1〉

)
= Φ(t)− λ− λ1

λ1
t.
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In particular for t = K, one deduces that

Ψλ(`ϕ1) ≤ Φ(K)− λ− λ1

λ1
K = −λ− λ1

λ1
K < 0.

Since Ψλ is even then we have Ψλ(±`ϕ1) < 0 = Ψλ(0) and the minima of Ψλ are
then achieved in −`ϕ1 and `ϕ1. �

4. Bifurcation from infinity at the first eigenvalue

In this section we study the bifurcation from infinity. Let us first recall its
definition.

Definition 4.1. We say that (λ̄,+∞) is a bifurcation point of solutions of problem
(2.1) from infinity if every neighbourhood of (λ̄,+∞) contains a solution of problem
(2.1), i.e. there exists a sequence (λn, un) of solutions of problem (2.1) such that
λn → λ̄ and ‖un‖X → +∞.

Lemma 4.2. Assume that

g(λ, x, s) = o(|s|p−1) (4.1)

holds for s large, uniformly a.e. with respect to x ∈ ∂Ω and uniformly for λ in any
bounded set. Then

lim
‖u‖X→∞

‖Gλ(u)‖X∗
‖u‖p−1

X

= 0

uniformly for λ in a bounded subset of R.

Proof. By condition (4.1) we mean that for any λ in a bounded set and for any
ε > 0, there is a real R = R(ε) > 0 with R large enough such that for a.e. x ∈ ∂Ω,
we have

|g(λ, x, s)| ≤ ε|s|p−1 for |s| ≥ R.
Consider now the subset of ∂Ω given by ∂ΩR := {x ∈ ∂Ω : |u(x)| ≥ R} and let us
compute separately

sup
‖w‖X≤1

∫
∂ΩR

∣∣g(λ, x, u)
‖u‖p−1

X

w
∣∣ and sup

‖w‖X≤1

∫
∂ΩcR

∣∣g(λ, x, u)
‖u‖p−1

X

w
∣∣.

By setting v := u/‖u‖X , we have for any ‖w‖X ≤ 1,∫
∂ΩR

∣∣g(λ, x, u)
‖u‖p−1

X

w
∣∣ =

∫
∂ΩR

∣∣g(λ, x, u)
|u|p−1

|v|p−1w
∣∣ ≤ cε‖v‖p−1

X ‖w‖X ≤ cε;

for some constant c > 0 independent of u, v, w, or λ. On the other hand, using
(2.2),∫
∂ΩcR

|g(λ, x, u)w| ≤
∫
∂ΩcR

(C +D|u|a−1)|w| ≤ c(1 +Ra−1)
∫
∂ΩcR

|w| ≤ d(1 +Ra−1).

Combining this two inequalities we obtain that for all ε > 0 if ‖u‖X ≥ B0 :=(
1
εd(1 +Ra−1

) 1
p−1 then we have ‖Gλ(u)‖X∗

‖u‖p−1
X

≤ ε. The proof is complete. �

Proposition 4.3. Assume (4.1) and the condition

g(λ, ·, 0) 6≡ 0 ∀λ ∈ R. (4.2)

If (λ̄,∞) is a bifurcation point of solutions of problem (2.1) then λ̄ is an eigenvalue
of (2.5).
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Proof. Consider the following transformation: for u 6= 0 set v := u.‖u‖−
p
p−1

X , and
then u = v.‖v‖−pX . If u ∈ X is a solution of the problem (2.1) with u 6= 0 then we
have

J(v)− λF (v)− G̃λ(v) = 0, (4.3)
where

G̃λ(v) :=

{
‖v‖p(p−1)

X Gλ(v.‖v‖−pX ) if v 6= 0,
0 if v = 0.

(4.4)

It is clear that G̃λ is continuous with respect to v. From assumptions (4.1) and
Lemma 4.2 we infer that

‖G̃λ(v)‖X∗
‖v‖p−1

X

=
‖Gλ(u)‖X∗
‖u‖p−1

X

→ 0

as ‖v‖X → 0. It follows immediately from this transformation that the pair (λ̄,+∞)
is bifurcation point of solutions of (2.1) if and only (λ̄, 0) is a bifurcation point of
solutions for problem (4.3). Notice that the assumption (g0) implies that (2.1) can
not have a trivial solution (λ, u) = (λ, 0) in E. Finally, the result comes from
Proposition 3.3. �

The main result of this section reads as follows.

Theorem 4.4. Assume that the function g satisfies (4.1) and (4.2). Then there
exists a maximal connected set C̃ of nontrivial weak solutions of problem (2.1) which
contains the point (λ1,+∞) in its closure and it is either unbounded in E or it
contains in its closure a point (λ̃,+∞) with λ̃ > λ1 an eigenvalue of problem (2.5).

Proof. Let C ⊂ E be maximal connected set of solutions of (4.3) given by Theorem
3.4 and define the set C̃ to be the set of all pairs (λ, u) ∈ E such that u 6= 0 and(
λ, u

‖u‖
p
p−1
X

)
∈ C. �

5. Existence of continua of positive and negative solutions

In this section we prove the existence of a continua of solutions of (2.1) that
bifurcate from (λ1, 0) in the positive and negative directions ϕ1 and −ϕ1, respec-
tively. By this we mean that in a sufficiently small neighbourhood of (λ1, 0) these
continua contain only solutions (λ, u) of problem (2.1) satisfying u = tϕ1 + v with
〈v, ϕ1〉L2(Ω) = 0, and

‖u− tϕ1

t
‖C1(Ω) → 0

as t → 0. Hence u > 0 in Ω (u < 0 in Ω respectively) if and only if t > 0 (t < 0),
provided |t| > 0 is small enough.

Following the work by Dancer [7, Theorem 2], for the linear case with Dirichlet
boundary conditions, we will prove similar results about the bifurcation branches
obtained in Theorem 3.4 and Theorem 4.4. Similar results for the p-laplacian with
Dirichlet boundary conditions can be found in [13, Theorem 3.7], [9] and [10] among
others.

The following notation will be used.

S := {(λ, u) ∈ E : Aλ(u) = 0, u 6= 0}
E
.

An easy consequence of this definition is the following result.
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Lemma 5.1. Let us assume (3.2). For all (λ, u) ∈ S with λ ∈ (−∞, λ2) and
λ 6= λ1 we have u 6≡ 0 on ∂Ω.

Proof. First we claim that if u ≡ 0 on ∂Ω, then u ≡ 0 in Ω. Indeed, assume that
there exists a sequence (λn, un) of solutions for (2.1) such that un → u in X and
λn → λ. First we have

−∆pun + |un|p−2un = 0 in Ω,

|∇un|p−2 ∂un
∂ν

= λn|un|p−2un + g(λ, x, un) on ∂Ω,
(5.1)

and, since up to a subsequence, un(x)→ u(x) = 0 a.e. in ∂Ω, we deduce that

lim
n→+∞

g(λn, x, un) = g(λ, x, 0) = 0.

Passing to the limit (in the weak sense) in (5.1) we have

−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u

∂ν
= lim
n→+∞

g(λn, x, un) = 0 on ∂Ω.

Hence u ≡ 0 in Ω. We now set vn := un
‖un‖X . Since ‖vn‖X = 1 there exists a

function v in X such that vn ⇀ v in X and strongly in Lp(Ω) and in Lp(∂Ω).
Dividing (5.1) by ‖un‖p−1

X and testing against vn and using Lemma 3.2 we have

1 =
∫

Ω

|∇vn|p +
∫

Ω

|vn|p = λn

∫
∂Ω

|vn|p +
1

‖un‖p−1
X

〈Gλ(un), vn〉 → λ

∫
∂Ω

|v|p.

In particular v 6≡ 0. Dividing (5.1) by ‖un‖p−1
X and using Lemma 3.2 it follows that

−∆pv + |v|p−2v = 0 in Ω,

|∇v|p−2 ∂v

∂ν
= λ|v|p−2v on ∂Ω.

Since v 6≡ 0 then λ is an eigenvalue, which gives a contradiction. �

Given a real number s > 0, let us denote an open neighbourhood of (λ1, 0) in E
by

BEs := {(λ, u) ∈ E : ‖u‖X + |λ− λ1| < s}.

Our aim is to prove the following result.

Theorem 5.2. Let g(λ, ·, ·) ∈ Cγ for some γ > 0, uniformly for λ in a bounded
set, satisfy hypothesis (3.2). Assume that there exists δ > 0 such that

∀u ∈ X, 0 < ‖u‖X < δ =⇒ Aλ1(u) 6= 0.

Then there are two maximal connected subsets C+ and C− of C (with C provided by
Theorem 3.4) containing (λ1, 0) in their closures satisfying C = C+ ∪ C− and

(i) there exists s > 0 small enough such that, if (λ, u) ∈ C±∩BEs , we can write
u = ±tϕ1 + v, with v ∈ C1,α(Ω) satisfying 〈v, ϕ1〉L2(∂Ω) = 0 and t > 0 such
that

|λ− λ1| → 0 and ‖v/t‖C1,α(Ω) → 0 as t→ 0;

(ii) C± are both unbounded. Moreover every solution u ∈ C+ (resp. C−) is
strictly positive (resp. strictly negative) in Ω.
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As in the classical semilinear case, the proof of the existence of C± and part (i)
of this theorem is based on the following 3 lemmas 5.3, 5.4, 5.5. First, let us fix
ψ ∈ X∗ = (W 1,p(Ω))∗ such that ψ(ϕ1) = 1. We can take, as in [13], for example

ψ(φ) = ‖ϕ1‖−2
L2(∂Ω)

∫
∂Ω

φϕ1 dσ ∀φ ∈ X.

Finally for any τ > 0, we define

K±τ := {(λ, u) ∈ E : ±ψ(u) > τ‖u‖X}.

In particular Kντ , ν = ±, are open convex cones, K−τ = −K+
τ and νtϕ1 ∈ Kντ for

any number t > 0. Finally we set Kτ := K+
τ ∪ K−τ .

Lemma 5.3. For every 0 < τ < 1 there exists a number 0 < s0 = s0(τ) such that

S \ {(λ1, 0)} ∩BEs0 ⊂ Kτ .

Moreover, if (λ, u) ∈ S \{(λ1, 0)}∩BEs0 and we write u = tϕ1 +v, with v ∈ C1,α(Ω)
satisfying ψ(v) = 0 and |t| > τ‖u‖X then

|λ− λ1| → 0 and ‖v/t‖C1,α(Ω) → 0 as t→ 0.

Lemma 5.4. Let τ be sufficiently small. Suppose δ1, δ2 > 0 are such that 0 <
δ1 + δ2 < s0 and Aλ(u) 6= 0 if ‖u‖X = δ1 and |λ− λ1| ≤ δ2. We have

(1) if 0 < σ < δ2 and β = β(σ) > 0 is sufficiently small, then 0 < ‖u‖X < β
imply Aλ1±σ(u) 6= 0;

(2) deg(Aλ1+σ,W
µ, 0)− deg(Aλ1−σ,W

µ, 0) = 1, where

Wµ := {u ∈ X : ∃λ ∈ R : (λ, u) ∈ Kµ
τ and β < ‖u‖X < δ1}.

Lemma 5.5. Let τ be sufficiently small. For any 0 < ε < s0 we define T−ε to be
the component of C \ (BEε ∩ K+

τ ) containing (λ1, 0). If T−ε is bounded in E then

∂BEε ∩ K+
τ ∩ T−ε 6= ∅.

Proof of Lemma 5.3. Suppose that for some τ > 0 such a number s0 does not
exist. Then we can find a decreasing sequence 0 < sn ≤ 1 with sn → 0 and another
sequence (λn, un) ∈ S \ (λ1, 0) ∩BEsn such that |ψ(un)| ≤ τ‖un‖X for all n. Notice
that we must have un 6≡ 0 in ∂Ω for all n large enough because of Lemma 5.1. Since
sn → 0 then ‖un‖X → 0 and λn → λ1. Set wn := un

‖un‖X . We have that wn ⇀ ±ϕ1

because wn ⇀ w for some w ∈ X that will be a solution of

−∆pw + |w|p−2w = 0 in Ω,

|∇w|p−2 ∂w

∂ν
= λ|w|p−2w on ∂Ω.

Furthermore w 6≡ 0 because

1 =
∫

Ω

|∇wn|p +
∫

Ω

|wn|p

= λn

∫
∂Ω

|wn|p +
1

‖un‖p−1
X

∫
∂Ω

g(λ, x, un)wn → λ1

∫
∂Ω

|w|p.

Consequently, ψ(wn) → ±1 and therefore 1 ≤ |ψ(wn)| ≤ τ . We have just proved
that the first statement of the lemma is true for all 0 < τ < 1.
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To prove the second statement let (λn, un) be a sequence such that (λn, un) ∈
S ∩ BEs0 ⊂ Kτ and write un = tnϕ1 + vn. Here tn is defined by tn :=

R
∂Ω unϕ1R
∂Ω ϕ

2
1

so
we have that |tn| > τ‖un‖X . Then, if tn → 0, it follows that ‖un‖X → 0 and we
can prove as previously that un

‖un‖X → ±ϕ1 in X. Consequently,

un
‖un‖X

=
tnϕ1

‖un‖X
+

vn
‖un‖X

which tends to ±ϕ1. In particular, we have∫
∂Ω

un
‖un‖X

ϕ1 +
∫
∂Ω

vn
‖un‖X

ϕ1 → ±
∫
∂Ω

ϕ2
1.

On another hand, we have
∫
∂Ω

un
‖un‖X ϕ1 = tn

‖un‖X and therefore tn
‖un‖X → ±1. Hence

vn
‖un‖X → 0 in X and consequently

un
tn
→ ϕ1,

vn
tn

=
vn
‖un‖X

‖un‖X
tn

→ 0 strongly in X.

Using Lemma 7.3, and more precisely, using (7.8), we have ‖ un
‖un‖X ‖C1,α(Ω) ≤ C.

Thus
‖un‖C1,α(Ω) ≤ C‖un‖X .

Hence for some α′ < α, that we still denote α, we have un/tn → ϕ1 in C1,α(Ω) and
also ‖ vntn ‖C1,α(Ω) → 0. �

Proof of Lemma 5.4. (1) is trivially true. The proof of (2) is the same as the one
of [7], we outlined it for completeness. We define

G∗λ(u) :=


Gλ(u) if ψ(u) < −η‖u|‖X ,
ψ(u)
−η‖u‖XGλ(u) if 0 > ψ(u) > −η‖u|‖X ,
−Gλ(u) if ψ(u) > 0,

A∗λ := J − λF −G∗λ.

It is clear that A∗λ satisfies the α(X) condition. By our hypothesis, the equation
Aλ1+δ(u) = 0 has no solution on ∂Bδ1 , ∂Bβ , or in Bδ1 \W+ ∪W− ∪Bβ by lemma
5.3. Hence

deg(A∗λ1+σ, Bδ1 , 0) = deg(A∗λ1+σ;Bβ , 0) + deg(A∗λ1+σ,W
−, 0) + deg(A∗λ1+σ,W

+, 0).

Since A∗λ is odd we also have deg(A∗λ1+σ,W
−, 0) = deg(A∗λ1+σ,W

+, 0) so

2 deg(A∗λ1+σ,W
−, 0) = deg(A∗λ1+σ, Bδ1 , 0)− deg(A∗λ1+σ, Bβ , 0).

Similarly,

2 deg(A∗λ1−σ,W
−, 0) = deg(A∗λ1−σ, Bδ1 , 0)− deg(A∗λ1−σ, Bβ , 0).

On the one hand one can prove as in step 2 of the proof of Theorem 3.4 that

deg(A∗λ1−σ, Bβ , 0) = −deg(A∗λ1+σ, Bβ , 0) = 1

On the other hand, for ‖u‖X = δ1 and |λ − λ1| < δ2 we have Aλ(u) 6= 0 by our
assumptions, so the homotopy σ ∈ (−δ1, δ1) → Aλ1+σ is admissible on Bδ1 and
whence

deg(Aλ1−σ, Bδ1 , 0) = deg(Aλ, Bδ1 , 0) = deg(Aλ1+σ, Bδ1 , 0)
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holds for all λ ∈ (λ1 − δ1, λ1 + δ1). Then we conclude, using that A∗λ = Aλ along
W−,

deg(Aλ1+σ,W
−, 0)− deg(Aλ1−σ,W

−, 0) = 1.
�

Proof of Lemma 5.5. Since we are assuming that zero is an isolated solution of
Aλ1(u) = 0 then one can use Lemma 2 of [7] without no changes. �

Proof Theorem 5.2. One follows step by step the proof of Theorem 2 of [7] [13,
Theorem 3.7]. First one defines the sets

Dν
ε := component of (λ1, 0) ∪ (S ∩BEε ∩Kν

τ ) containing (λ1, 0),

Cνε component of C \D−νε , Cν = ∪0<ε<s0C
ν
ε

It is proved in [19][Lemma 6.1] that the definition of Cν is independent of τ , that
those sets are connected and that C = C+ ∪ C−.

(i) We will only prove the result for ν = +. First, let us prove that C+
ε ⊂ K+

τ

if 0 < τ < 1. Assume by contradiction that there exists a sequence of solutions
(λn, un) with (λn, un) ∈ C+

ε , λn → λ1, ‖un‖X → 0 and such that (λn, un) 6∈ K+
τ .

Since (λn, un) ∈ C+
ε it follows that (λn, un) 6∈ D−ε and we have ψ(un) ≥ −τ‖un‖X

and since (λn, un) 6∈ K+
τ we will get

− τ‖un‖X ≤ ψ(un) ≤ τ‖un‖X (5.2)

Set ũn := un
‖un‖X , then ‖ũn‖X = 1 and we can prove that ũn → ±ϕ1 in C1,α(Ω) as

in the proof of Lemma 5.3. From the definition of ψ, we have

ψ(ũn)→ ψ(±ϕ1) = ±1. (5.3)

Consequently we obtain from (5.2) and (5.3) that τ ≥ 1 in contradiction with the
hypothesis τ ∈ (0, 1). We have proved that C+

ε ⊂ K+
τ if 0 < τ < 1. To complete the

proof of (i) let (λ, u) ∈ C+
ε for 0 < ε < s0 and write u = tϕ1 + v with v ∈ C1,α(Ω)

and 〈v, ϕ1〉L2(∂Ω) = 0. Thus ψ(u) = ψ(tϕ1 + v) = t and, since C+
ε ⊂ K+

τ , we have
that ψ(u) > τ‖u‖X and in particular t > 0. The asymptotic behaviour as t → 0
has been already proved in Lemma 5.3.

(ii) Let us first show that solutions C are either positive or negative. Indeed it
follows from (i) and the fact that ϕ1 > 0 on Ω that u > 0 in Ω if t = ψ(u) is small.
We claim now that u > 0 in Ω for all u ∈ C+. Indeed, if not, there would exist
(λ̂, û) ∈ C+ such that û(x) ≤ 0 at some point x ∈ Ω. Since C+ is connected and the
solutions are positive if the norm is small, we conclude the existence of some (λ̃, ũ)
in C such that ũ 6≡ 0, ũ ≥ 0 and ũ(x0) = 0 for some x0 ∈ Ω. If x0 ∈ Ω then we have
a contradiction with the Harnack’s inequality, see [20]; if x0 ∈ ∂Ω then it follows
from the boundary condition of (2.1) and g(λ, x, 0) = 0 that ∂u

∂ν (x0) = 0, which
contradicts the maximum principle of Vazquez, see [23]. As the consequence of the
definitive sign of the solutions the case C+∩C− 6= {(λ1, 0)} can not occur. Hence it
follows from Theorem 2 of Dancer in [7] that C+ and C− must be unbounded. �

Corollary 5.6. Let g(λ, ·, ·) ∈ Cγ for some γ > 0, uniformly for λ in a bounded
set, satisfy the hypothesis (3.2). Moreover assume that the function g satisfies the
hypothesis: There exists δ > 0 such that for all s ∈]− δ, δ[, s 6= 0 we have

g(λ1, x, s)s < 0 a.e. x ∈ ∂Ω. (5.4)

Then the conclusions of Theorem 5.2 hold.
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Proof. If u 6≡ 0 in Ω, it follows from (2.1) that u 6≡ 0 on ∂Ω. Let us take u ∈ X,
u 6≡ 0, a solution of problem (2.1). We take v = u in its weak form to get∫

Ω

|∇u|p +
∫

Ω

|u|p − λ1

∫
∂Ω

|u|p =
∫
∂Ω

g(λ1, x, u)u. (5.5)

Then it follows from variational characterization of the first eigenvalue λ1 of (2.5)
that the term of the left hand of (5.5) is positive. On another hand, from Lemma
7.3, there exists δ′ > 0 such that if ‖u‖X < δ′ implies ‖u‖∞,∂Ω < δ. Then we have∫
∂Ω
g(λ, x, u)u < 0, a contradiction with (5.5). �

Remark 5.7. The results on existence of positive and negative continua of solutions
are proved by Girg-Takáč in [13] for the Dirichlet problem under more restrictive
conditions on g, including the restriction that g does not depend of λ.

To obtain similar results for the bifurcation from infinity, we consider the stan-
dard transformation u 7→ v := u.‖u‖−

p
p−1 as in Theorem 4.4. Thus we obtain the

following result.

Theorem 5.8. Assume that the function g satisfies (4.1) and (4.2) for every λ ∈ R.
Assume that g ∈ Cγ for some γ > 0, uniformly for λ in a bounded set. Furthermore,
assume that there exists δ > 0 such that

J(v) = λ1F (v) + G̃λ1(v)

has no nontrivial solution v ∈ X, 0 < ‖v‖X < δ, where G̃λ is given by (4.4).
Then there are two maximal connected subsets such that C̃ = C̃+ ∩ C̃− of S (with C̃
provided from Theorem 4.4) containing (λ1,+∞) in their closure. Moreover

(i) there exists s > 0 such that, if (λ, u) ∈ C̃± satisfying |λ−λ1| < s, ‖u‖X > s
we can write u = ±tϕ1 + v, with v ∈ C1,α(Ω) satisfying 〈v, ϕ1〉L2(∂Ω) = 0
and t > 0 such that

|λ− λ1| → 0 and ‖v/t‖C1,α(Ω) → 0 as t→ +∞;

(ii) C̃± are both unbounded. Moreover every solution u ∈ C̃+ (resp. C̃−) is
positive (resp. negative) in Ω.

The proof of the above theorem is straight forward and we omit it.

Corollary 5.9. Let g ∈ Cγ for some γ > 0, uniformly for λ in a bounded set,
satisfy the hypothesis (4.1) and (4.2). Assume further that

g(λ1, x, s)s < 0 a.e. x ∈ ∂Ω, ∀|s| > δ for some δ > 0. (5.6)

Then the conclusions of Theorem 5.8 hold.

6. Sub and super critical bifurcation

In this section we study whether the previous bifurcation are placed to the right
or to the left of λ1.

Definition 6.1. (1) If λ̄ is a bifurcation point from zero of solutions (λ, u) ∈ R×X
of Aλ(u) = 0, we say that such bifurcation is subcritical (respectively supercritical)
if there exists a neighbourhood V of (λ̄, 0) in R × X, such that every nontrivial
solution (λ, u) ∈ V satisfies λ < λ̄ (respectively λ > λ̄).

(2) Similarly, we say that a bifurcation point at λ = λ̄ from infinity of solutions
(λ, u) ∈ R×X of Aλ(u) = 0 is subcritical (respectively supercritical) if there exists
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ε,M > 0, W = [λ̄− ε, λ̄+ ε]× (X \BX(0,M)), such that every solution (λ, u) ∈W
satisfies λ < λ̄ (respectively λ > λ̄). Here BX(0,M) denotes the open ball of X of
center 0 and radius M .

The following lemma will be used to get the conditions of subcritical or super-
critical bifurcation.

Lemma 6.2. Let u ∈ X ∩C (Ω) be a solution of (2.1) strictly positive in Ω. Then∫
∂Ω
g(λ, x, u) ϕp1

up−1∫
∂Ω
ϕp1

≤ λ1 − λ ≤
∫
∂Ω
g(λ, x, u)u∫
∂Ω
up

. (6.1)

Proof. By taking v = u in weak form of problem (2.1) we obtain∫
∂Ω

g(λ, x, u)u =
∫

Ω

|∇u|p +
∫

Ω

up − λ
∫
∂Ω

up ≥ (λ1 − λ)
∫
∂Ω

up.

On the other hand if v = ϕp1
up−1 we obtain∫

∂Ω

g(λ, x, u)
ϕp1
up−1

− (λ1 − λ)
∫
∂Ω

ϕp1

=
∫

Ω

|∇u|p−2∇u∇
( ϕp1
up−1

)
+
∫

Ω

up−1
( ϕp1
up−1

)
−
∫

Ω

|∇ϕ1|p −
∫

Ω

ϕp1

=
∫

Ω

p|∇u|p−2ϕ
p−1
1

up−1
∇u∇ϕ1 −

∫
Ω

(p− 1)
ϕp1
up
|∇u|p −

∫
Ω

|∇ϕ1|p

= −
∫

Ω

L(ϕ1, u) ≤ 0,

where L(ϕ1, u) is the expression of Picone’s identity (see [1]).
Let w ≥ 0, v > 0 be two continuous functions in Ω differentiable a.e. Denote

L(w, v) = |∇w|p + (p− 1)
wp

vp
|∇v|p − pw

p−1

vp−1
|∇v|p−2∇v∇w ,

R(w, v) = |∇w|p − |∇v|p−2∇(
wp

vp−1
)∇v.

Then (i) L(w, v) = R(w, v), (ii) L(w, v) ≥ 0 a.e., and (iii) Assume that w/v belongs
to W 1,1

loc (Ω). Then L(w, v) = 0 a.e. in Ω if and only if w = kv for some k ∈ R.
Therefore we obtain ∫

∂Ω
g(λ, x, u) ϕp1

up−1∫
∂Ω
ϕp1

≤ (λ1 − λ).

�

The following theorem give sufficient conditions to have subcritical and super-
critical bifurcation from infinity of positive solutions of (2.1).

Theorem 6.3. Assume (4.1), (4.2) and that g ∈ Cγ for some γ > 0 uniformly
for λ in a bounded set. Assume that there exist s0 > 0, α ∈ R and B ∈ L1(∂Ω)
(respectively B ∈ L1(∂Ω)) such that

(1) g(λ, x, s)sα ≥ B(x) (respectively g(λ, x, s)sα ≤ B(x)) for all s > s0, and
for λ in neighbourhood of λ1, a.e. x ∈ ∂Ω;
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(2) for Aα(x) := lim inf(λ,s)→(λ1,+∞) g(λ, x, s)sα, one has
∫
∂Ω

Aαϕ
1−α
1 > 0 (re-

spectively Aα(x) := lim sup(λ,s)→(λ1,+∞) g(λ, x, s)sα, one has
∫
∂Ω
Aαϕ

1−α
1 <

0).

Then the bifurcation from infinity at λ = λ1 of positive solutions of (2.1) is sub-
critical (respectively supercritical).

Proof. Let (λn, un) be a sequence of strictly positive solutions (2.1) converging to
(λ1,+∞) and assume by contradiction that λn > λ1. Using the inequality (6.1),
we have ∫

∂Ω

g(λn, x, un)
ϕp1
up−1
n

≤ (λ1 − λn)
∫
∂Ω

ϕp1 < 0.

and therefore ∫
∂Ω

g(λn, x, un)uαnϕ
p
1

‖un‖p−1+α
X

up−1+α
n

< 0. (6.2)

We know from Theorem 5.2 that vn := un
‖un‖X → ϕ1 > 0 in C1,α(Ω). Hence

ϕp1
‖un‖p−1+α

X

up−1+α
n

≥ C > 0 for n large and C independent of n and we can use hypothesis
(1) to estimate

g(λn, x, un)uαnϕ
p
1

‖un‖p−1+α
X

up−1+α
n

≥ CB ∈ L1(∂Ω).

By Fatou’s Lemma and hypothesis (2) we obtain∫
∂Ω

Aαϕ
1−α
1 ≤ lim inf

∫
∂Ω

g(λn, x, un)uαnϕ
p
1

‖un‖p−1+α
X

up−1+α
n

,

so

lim inf
∫
∂Ω

g(λn, x, un)uαnϕ
p
1

‖un‖p−1+α
X

up−1+α
n

≥
∫
∂Ω

Aαϕ
1−α
1 > 0.

This inequality implies that for n large enough∫
∂Ω

g(λn, x, un)uαnϕ
p
1

‖un‖p−1+α
X

up−1+α
n

> 0,

in contradiction with (6.2). �

We can prove similarly the following theorem about the bifurcation from zero.

Theorem 6.4. Assume (3.2) and that g(λ, ·, ·) ∈ Cγ(∂Ω×R) for some γ > 0 and
all λ in a bounded set. Assume that there exist s0 > 0, α ∈ R and B ∈ L1(∂Ω)
(respectively B ∈ L1(∂Ω)) such that

(1) g(λ, x, s)sα ≥ B(x) (respectively g(λ, x, s)sα ≤ B(x)) for all 0 < s < s0,
and for λ in neighbourhood of λ1, a.e. x ∈ ∂Ω;

(2) for Aα(x) := lim inf(λ,s)→(λ1,0+) g(λ, x, s)sα, one has
∫
∂Ω

Aαϕ
1−α
1 > 0 (re-

spectively Aα(x) := lim sup(λ,s)→(λ1,0+) g(λ, x, s)sα, one has
∫
∂Ω
Aαϕ

1−α
1 <

0).

Then the bifurcation from zero at λ = λ1 of positive solutions of (2.1) is subcritical
(respectively supercritical).
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6.1. Application to the anti-maximum principle. In this paragraph we will
give a new proof of the well known anti-maximum principle of problem (6.3), we
also obtain the local maximum principle of (6.3). These results were proved by [2]
using variational method, and by [3] (for Dirichlet boundary conditions) and by [4]
(linear problem with Steklov boundary condition). We have borrowed some ideas
from those papers. We consider the simple problem

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u+ h(x) on ∂Ω,

(6.3)

Let us denote here by S the set of h ∈ L∞(∂Ω) such that the problem (6.3) with
λ = λ1 has solution in X. Notice that 0 ∈ S and that S 6= L∞(∂Ω) as a result of
the following lemma.

Lemma 6.5. If h ≥ 0 or h ≤ 0 and h 6= 0 then there exists no solution of (6.3)
with λ = λ1.

Proof. The proof is standard: if for instance h ≥ 0 and such a solution exists, take
as test function v = u− to obtain∫

Ω

(|∇u−|p + |u−|p) = λ1

∫
∂Ω

|u−|p −
∫
∂Ω

hu− ≤ λ1

∫
∂Ω

|u−|p

which implies u− = cϕ1 ⇒ u = −cϕ1 ⇒ h = 0, a contradiction. We have used here
that ϕ1 > 0 in Ω. �

In the next theorem we assume that h ∈ Cγ0(∂Ω) which seems a quite strong
hypothesis. The reason is that we need some estimates of the Cα-norm of the
solutions. Since, to our knowledge, there is not a Lp- regularity theory for the
p−laplacian operator neither with Dirichlet or Steklov (or Newmann) boundary
conditions that would ensure Cα regularity on Ω, we use instead the well established
C1,α-regularity results of Lieberman [15].

Theorem 6.6. For every h ∈ Cγ0(∂Ω)\S with
∫
∂Ω
hϕ1 > 0 there exists δ = δ(h) >

0 such that for any solution u of (6.3) we have
(i) λ ∈ (λ1, λ1 + δ) implies u < 0 in Ω,

(ii) λ ∈ (λ1 − δ, λ1) implies u > 0 in Ω.

A similar result can be stated for functions h ∈ Cγ0(∂Ω) \ S with
∫
∂Ω
hϕ1 < 0

using that u is a solution of (6.3) if and only if −u is a solution of (6.3) with −h
instead of h.

Proof. (i) Assume by contradiction that for some h ∈ Cγ(∂Ω)\S with
∫
∂Ω
hϕ1 > 0

there is a sequence (λn, un) of solutions of (6.3) with λ = λn, λn > λ1, λn → λ1

and un(xn) ≥ 0 for some xn ∈ Ω. First we claim that ‖un‖X → +∞. Indeed
assume by contradiction that ‖un‖X < C for some constant C > 0. Then there
exists a function u ∈ X and a subsequence (un) such that un ⇀ u in X, strongly
in Lp(Ω), Lp(∂Ω) and a.e. Since (λn, un) solves (6.3) with λ = λn, we have

〈J(un), w〉 − λn〈F (un), w〉 − 〈H(un), w〉 = 0 (6.4)

for all w ∈ X, where 〈H(u), v〉 :=
∫
∂Ω
hv. Testing against w = un−u and using that

the operator J − λF −H satisfies the α(X)-condition we conclude that un → u in
X. Hence passing to the limit in (6.4) we obtain that u satisfies (6.3) with λ = λ1,
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in contradiction with the fact that h ∈ L∞(∂Ω) \ S. Thus we have proved that
‖un‖X → +∞. Dividing now (6.4) by ‖un‖p−1

X we obtain

〈J(vn), w〉 − λn〈F (vn), w〉 − 1
‖un‖p−1

X

〈H(un), w〉 = 0

for all w ∈ X, where vn := un
‖un‖X . Passing again to the limit this last identity we

will get that vn → ϕ1 or vn → −ϕ1 in X. Using that

‖λn|vn|p−2vn +
h

‖un‖p−1
X

‖p∗ ≤ C

we infer from Proposition 7.1 that ‖vn‖∞ + ‖vn‖∞,∂Ω ≤ C, for some C > 0 inde-
pendent of n. Then, noticing that h̃(λ, x, s) := λn|s|p−2s + h(x)

‖un‖p−1
X

is of class Cγ

with γ = inf{p − 1, γ0} and that ‖h̃‖Cγ ≤ C̃ for some constant independent of n,
if follows by Theorem 7.2 that ‖vn‖C1,α(Ω) ≤ C for some 0 < α < 1 and C > 0
independent of n. Hence, up to a subsequence, the sequence vn converges strongly
to either ϕ1 or −ϕ1 in C1,α′(Ω) for any fixed 0 < α′ < α < 1. Since un(xn) > 0
then it must be that vn → ϕ1. Then, for n large enough, we have un > 0 in Ω and
it follows from Lemma 6.2 that∫

∂Ω

h
ϕp1
up−1
n

≤ (λ1 − λn)
∫
∂Ω

ϕp1. (6.5)

Observe that

sgn
(∫

∂Ω

h
ϕp1
up−1
n

)
= sgn

(∫
∂Ω

hϕp1
‖un‖p−1

X

up−1
n

)
.

Since
∫
∂Ω
hϕp1

‖un‖p−1
X

up−1
n

→
∫
∂Ω
hϕ1 and

∫
∂Ω
hϕ1 > 0 by hypothesis, then for n large

enough
∫
∂Ω
h

ϕp1
up−1
n

> 0 and we obtain from (6.5) that λn < λ1 for n large, a
contradiction.

(ii) Assume now by contradiction that for some h ∈ Cγ(∂Ω)\S with
∫
∂Ω
hϕ1 > 0,

there is a sequence (λn, un) of solutions of (6.3) with λ = λn and λn < λ1, λn → λ1

and there exists some xn ∈ Ω with un(xn) ≤ 0. Arguing as above, we prove that
the sequence vn := un

‖un‖X → −ϕ1 in C1,α(Ω) so un < 0 for n large. Since from one
hand we have from the equation (taking w = un) that

(λ1 − λn)
∫
∂Ω

|un|p ≤
∫
∂Ω

hun (6.6)

and, from the other hand
∫
∂Ω
h un
‖un‖X → −

∫
∂Ω
hϕ1 < 0 then

∫
∂Ω
hun < 0 for n

large enough, and we obtain a contradiction with (6.6). �

7. Appendix: Regularity results on weak solution

In this part, we focus our attention on the regularity of weak solutions of the
problem

∆pu = |u|p−2u+ f(λ, x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= h(λ, x, u) on ∂Ω,

(7.1)

In [6] and [14] the authors studied the boundedness of weak solutions of a problem
similar to (2.1). We want to extend here the results on boundedness use for a more
general non linearity f and h. We will assume that



EJDE-2019/32 BIFURCATION FROM THE FIRST EIGENVALUE 23

(A2) f : R×Ω×R→ R is a Carathéodory function and for a given bounded set
Λ ⊂ R there exists 1 ≤ b ≤ p∗ and B1 ∈ Ls̄(Ω), B2 ∈ Ls(Ω) with s̄ ≥ p∗

p∗−1 ,

s ≥ p∗

p∗−b such that

|f(λ, x, u)| ≤ B1 +B2|u|b−1, ∀λ ∈ Λ, a.e. x ∈ Ω, ∀u ∈ R.
(A3) h : R × ∂Ω × R → R is a Carathéodory function and for a given bounded

set Λ ⊂ R there exists 1 ≤ a ≤ p∗ , and A1 ∈ Lr̄(∂Ω), A2 ∈ Lr(∂Ω) with
r̄ ≥ p∗

p∗−1 , r ≥ p∗
p∗−a such that

|h(λ, x, u)| ≤ A1 +A2|u|a−1, ∀λ ∈ Λ, a.e. x ∈ ∂Ω, ∀u ∈ R.
These estimates will allow us to get the C1,α(Ω̄)-regularity of the weak solutions in
the case that g(λ, ., .) ∈ Cγ , for some γ > 0 uniformly for λ in a bounded set (see
Theorem 7.2 below).

Proposition 7.1. Assume (A2), (A3) are satisfied. Let λ be in bounded set Λ ⊂ R.
Then every weak solution u of (7.1) lies in L∞(∂Ω) ∩ L∞(Ω) and, if ‖u‖q1 +
‖u‖q2,∂Ω ≤ C0, there exists a constant C > 0 that depends on sup |Λ|, ‖B1‖s̄,
‖B2‖s, ‖A1‖r̄,∂Ω, ‖A2‖r,∂Ω, p, q1, q2, α, b, Ω, and C0; where q1 = p∗ if p < N and
q1 = 2p if p = N ; q2 = p∗ if p < N and q2 = 2p if p = N ; such that

‖u‖∞ + ‖u‖∞,∂Ω ≤ C.

Proof. If p > N , the answer follows from the classical Sobolev embedding X ↪→
L∞(Ω) and from the trace embedding X ↪→ L∞(∂Ω). Thus it suffices to consider
the case p ≤ N .

Let us first assume that the solution u is non-negative. Define the function
vM (x) := min{u(x),M} for M > 0. For k > 0 define φ(x) = vkp+1

M (x) then one has
∇φ(x) = (kp+ 1)vkpM∇vM (x). It is clear that φ ∈ X ∩ L∞(Ω) ∩ L∞(∂Ω) so we can
use φ as test function in (7.1) to get

(kp+ 1)
∫

Ω

|∇u|p−2∇u∇vMvkpM +
∫

Ω

up−1vkp+1
M

=
∫

Ω

f(λ, x, u)vkp+1
M +

∫
∂Ω

h(λ, x, u)vkp+1
M

which implies
(kp+ 1)
(k + 1)p

∫
Ω

|∇vk+1
M |p +

∫
Ω

v
p(k+1)
M

≤ ‖B1‖s̄
(∫

Ω

v
s̄′(kp+1)
M dx

)1/s̄′

+ ‖B2‖s
(∫

Ω

(|u|b−1vkp+1
M )s

′
dx
)1/s′

+ ‖A1‖r̄,∂Ω

(∫
∂Ω

v
r̄′(kp+1)
M dσ

)1/r̄′

+ ‖A2‖r,∂Ω

(∫
∂Ω

(
ua−1vkp+1

M

)r′)1/r′

(7.2)

By the trace and Sobolev’s embedding there exists C1 > 0 such that

‖vk+1
M ‖q2,∂Ω ≤ Cp1‖v

k+1
M ‖X , ‖vk+1

M ‖q1 ≤ C
p
1‖v

k+1
M ‖X

Thus, letting M → +∞, using Fatou’s Lemma and Holder’s inequality we obtain

‖u‖(k+1)q1 + ‖u‖(k+1)q2,∂Ω ≤ (d`kck)
1

p(k+1)

(
‖u‖

kp+a
p(k+1)

(kp+a)r′,∂Ω + ‖u‖
kp+b
p(k+1)

(kp+b)s′

+ ‖u‖
kp+1
p(k+1)

(kp+1)r̄′,∂Ω + ‖u‖
kp+1
p(k+1)

(kp+1)s̄′,
+ 1
)
.

(7.3)
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where c−1
k := (kp+1)

(k+1)p < 1, d > 0 is some constant independent of k and `k > 0is a
constant(coming from Holder’s inequality). Let us set

k1 := min
{q1 − bs′

ps′
,
q2 − ar′

pr′
,
q1 − s̄′

ps̄′
,
q2 − r̄′

pr̄′
}
,

ξ0 := ‖u‖q2,∂Ω + ‖u‖q1 , ξ1 := ‖u‖q2(k1+1),∂Ω + ‖u‖q1(k1+1).

Using Holder’s inequality and that

max{(k1p+ b)s′, (k1p+ 1)s̄′} ≤ q1,

max{(k1p+ a)r′, (k1p+ 1)r̄′} ≤ q2 ≤ q1 .

It follows from (7.3) that

ξ1 ≤ (d`k1ck1)
1

p(k1+1)
(
ξ0 + 1

) q1
p(k1+1)

Define k0 = 1 and successively

kn := min
{ (kn−1 + 1)q1 − bs′

ps′
,

(kn−1 + 1)q1 − s̄′

ps̄′
,

(kn−1 + 1)q2 − ar′

pr′
,

(kn−1 + 1)q2 − r̄′

pr̄′

}
,

cn := ckn`kn , ξn := ‖u‖q2(kn+1),∂Ω + ‖u‖q1(kn+1).

By iteration we obtain

ξn ≤ (dcn)
1

(kn+1)p (ξn−1 + 1)
q1

(kn+1)p .

Observe that limn→+∞ kn = +∞ and therefore u ∈ Ln(Ω) ∩ Ln(∂Ω) for all n > 1.
To obtain an uniform bound for u, we define a new sequence

qn+1 := q1

(qn
tp

+
1
p′

)
where t is any fixed number satisfying 1 < t < q1

p . Let us show the new estimate(
‖u‖qn+1 + ‖u‖qn+1,∂Ω

)qn+1 ≤ C
(qpn+1

qn

)q1/p(
‖u‖qn + ‖u‖qn,∂Ω

)qnq1/tp (7.4)

for some constant C > 0. Indeed, since we know that u ∈ Li(Ω) ∩ Li(∂Ω, σ) for all
i > 1, we can use uqn/t as a test function to get from the right hand side of the
equation (7.1)

R =
∫

Ω

f(λ, x, u)uqn/t +
∫
∂Ω

g(λ, x, u)uqn/t

≤
∫

Ω

[B1 +B2u
b−1]uqn/t +

∫
∂Ω

[A1 +A2u
a−1]uqn/t

≤ D1

(
‖u‖qn + ‖u‖qn,∂Ω

)qn/t
with D1 = ‖B1 + B2u

b−1‖t′ + ‖A1 + A2u
a−1‖t′,∂Ω. We stress here that the con-

stant D1 can be estimated from above by a constant depending on ‖B1‖s̄, ‖B2‖s,
‖A1‖r̄,∂Ω, ‖A2‖r,∂Ω and on C0; thanks to (7.4). Consequently C depends on the
aforementioned data. From the left hand side (the gradient term) of (7.1) we obtain,
after using Sobolev’s embedding,

C1
qn
t

(
qn
tp

+
1
p′

)−p
(
‖u‖qn+1 + ‖u‖qn+1,∂Ω

)qn+1
p
q1 ≤ L,
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where

L =
∫

Ω

|∇u|p−2∇u∇(uqn/t) +
∫

Ω

|u|p−2u(uqn/t) .

The equality R = L gives the estimate (7.4). For simplicity we denote

θn := qn ln(‖u‖qn + ‖u‖qn,∂Ω), Bn := ln(C
(qpn+1

qn

)q1
).

By induction we obtain from (7.4) that θn+1 ≤ Bn + (q1/tp)θn. Then

θn ≤ (q1/tp)nθ0 +
n∑
i=1

(q1/tp)iBn−i. (7.5)

A simple estimate gives

d0 ≤
n∑
i=1

(q1/tp)iBn−i ≤ d1(q1/tp)n

for some d0, d1 > 0, and also we have qn ≥ d2(q1/tp)n for some d2 > 0. Then from
(7.5)

θn
qn
≤ (θ0 + d1)(q1/tp)n

qn
≤ θ0 + d1

d2

and hence
‖u‖qn + ‖u‖qn,∂Ω ≤ e

θ0+d1
d2 .

We conclude by letting n → +∞. If u changes sign we can proceed in the same
way as in the previous case to show that u± ∈ L∞(Ω). �

With Proposition 7.1, we can now use the Lieberman’s theorem on regularity in
[15] to get the C1,α−regularity on Ω. We need here that both f(λ, ·, ·) is bounded
in Ω and h(λ, ·, ·) is bounded and Lipschitz continuous.

Theorem 7.2. Assume that f and h satisfy (A2), (A3) with B1, B2 ∈ L∞(Ω) and
A1, A2 ∈ L∞(∂Ω). Assume further that h(λ, ·, ·) ∈ Cγ for some γ > 0 uniformly for
λ in a bounded set. Then, if u is a solution of problem (7.1) with ‖u‖q1 +‖u‖q2,∂Ω ≤
C0 then there exists a constant C̃ > 0, depending on sup |Λ|, ‖B1‖∞, ‖B2‖∞,
‖A1‖∞,∂Ω, ‖A2‖∞,∂Ω, p, q1, q2, a, b, Ω, and C0; and there exists 0 < α < 1
depending on the previous data, such that

‖u‖C1,α(Ω) ≤ C̃.

7.1. A priori estimates. In the following, we will prove that each of these three
norms, ‖u‖∞,∂Ω, ‖u‖X and ‖u‖C1,α(Ω), can be used to distinguish between solutions
(λn, un) with un having arbitrary small or large norm and λ in bounded set of R.

Lemma 7.3. Assume (3.2). Let {(λn, un)}∞n=1 be a sequence of solutions of (2.1)
with λn in bounded subset of R. Then the following three statements are equivalent,
as n→ +∞,

(i) ‖un‖∞,∂Ω → 0;
(ii) ‖un‖X → 0;
(iii) if g(λ, ·, ·) ∈ Cγ , for some γ > 0 uniformly for λ in a bounded set, then

‖un‖C1,α(Ω) → 0.
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Proof. Clearly, it follows from the definitions of the different norms that (iii) implies
(i) and (ii).

We now prove that (i) implies (ii). In fact let (λn, un) be a sequence of solutions
for (2.1) such that ‖un‖∞,∂Ω → 0. Then it follows from the weak form of (2.1)
with v = un that

‖un‖pX =
∫

Ω

|∇un|p +
∫

Ω

|un|p

= λn

∫
∂Ω

|un|p +
∫
∂Ω

g(λ, x, un)un

≤ C‖un‖p∞,∂Ω + ‖un‖∞,∂Ω

∫
∂Ω

(A1 +A2|un|a−1)

(7.6)

which tends to zero. Hence the result follows. We notice that inequality (7.6) does
not use condition (3.2).

We now prove that (ii) implies (i). In fact, let us ũn := un
‖un‖X and from (2.1) we

obtain that ∫
Ω

|∇ũn|p−2∇ũn∇v +
∫

Ω

|ũn|p−2ũnv

= λ

∫
∂Ω

|ũn|p−2ũnv +
1

‖un‖p−1
X

∫
∂Ω

g(λ, x, ũn)v,

for all v ∈ X. This implies∫
Ω

|∇z|p−2∇z∇v +
∫

Ω

|z|p−2zv = λ

∫
∂Ω

|z|p−2zv +

∫
∂Ω
g(λ, x, z‖un‖X)v

‖un‖p−1
X

,

for all v ∈ X. It follows from conditions (A1) and (3.2) that

|g(λ, x, z)| ≤ a1|z|p−1 + b1|z|a−1 ∀z ∈ R

Indeed if a ≤ p, then
g(λ, x, z) ≤ C|z|p−1 ∀z ∈ R

if a > p, then

|g(λ, x, z‖un‖X)|
‖un‖p−1

X

≤ a1|z|p−1 + b1|z|a−1‖un‖a−pX

≤ a1|z|p−1 + b1|z|a−1 ≤ c1 + d1b|z|a−1

for some constants c1, d1 independent of n.
It follows from Proposition 7.1 that ũn ∈ L∞(∂Ω) and there exists a constant

κ > 0, κ which does not depend on n, such that ‖ũn‖∞,∂Ω ≤ κ. Then

‖un‖∞,∂Ω ≤ κ‖un‖X , (7.7)

and the result follows.
To show that (i) implies (iii), let us set yn := un

‖un‖∞,∂Ω
which implies that

‖yn‖∞,∂Ω = 1. Since (λn, un) solves problem (2.1), then we have

−∆pyn + |yn|p−2yn = 0 in Ω,

|∇yn|p−2 ∂yn
∂ν

= λn|yn|p−2yn +
g(λn, x, un)
‖un‖p−1

∞,∂Ω

on ∂Ω,
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Set

hn := λn|yn|p−2yn +
g(λn, x, un)
‖un‖p−1

∞,∂Ω

on ∂Ω

then we have

‖hn‖∞,∂Ω ≤ sup |λn||yn|p−1 +
|g(λn, x, un)|
|un|p−1

|un|p−1

‖un‖p−1
∞,∂Ω

≤ c1 + d1
g(λn, x, un)
|un|p−1

for some constant C1, d1 > 0 independent of n. We deduce from (3.2) that ‖hn‖∞,∂Ω

is uniformly bounded and then from Theorem 7.2 we conclude that yn ∈ C1,α(Ω)
and there exists a constant C > 0 such that ‖yn‖C1,α(Ω) ≤ C and the result follows.

The case (ii) implies (iii). Indeed, using (2) we have that ũn := un
‖un‖X is bounded

in L∞(∂Ω) by a constant independent of n. Therefore it follows from Theorem 7.2
that ũn ∈ C1,α(Ω) and there exists a constant C independent of n such that

‖ũn‖C1,α(Ω) ≤ C (7.8)

and we obtain the desired result. �

As in the previous lemma, we prove, in the following, similar results when
‖u‖X → +∞.

Lemma 7.4. Assume that g satisfies (4.1). Let {(λn, un)}∞n=1 be a sequence of
solutions of problem (2.1) such that λn is a bounded subset of R. Then the following
three statements are equivalent, as n→ +∞

(i) ‖un‖∞,∂Ω → +∞;
(ii) ‖un‖X → +∞;

(iii) if g(λ, ·, ·) ∈ Cγ for some γ > 0 uniformly for λ in a bounded set then
‖un‖C1,α(Ω) → +∞.

Proof. That (i) and (ii) imply (iii) follows directly from the definition of these
norms.

To prove that (i) implies (ii), assume, by contradiction, that the sequence {un}∞n=1

contains a bounded subsequence, still denoted in the same way, which is bounded
in X. Then it follows from Sobolev’s embedding that ‖un‖Lq1 (Ω) and ‖un‖Lq2 (∂Ω)

are bounded by some constant independent on n. From results on regularity (see
Proposition 7.1) we have that un ∈ L∞(∂Ω) and there exists a constant C > 0
independent of n such that ‖un‖∞,∂Ω ≤ C in contradiction with (i).

Now we prove that (iii) implies (i). As in previous case, assume, by contradic-
tion, that the sequence {un}∞n=1 contains a bounded subsequence in L∞(∂Ω), still
denoted in the same way. Then it follows from (7.6) that un is bounded in X. From
Theorem 7.2 there exists a constant C such that ‖un‖C1,α(Ω) ≤ C from where we
obtain a contradiction. �
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