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BIFURCATION FROM THE FIRST EIGENVALUE OF THE
p-LAPLACIAN WITH NONLINEAR BOUNDARY CONDITION

MABEL CUESTA, LIAMIDI A. LEADI, PASCALINE NSHIMIRIMANA

ABSTRACT. We consider the problem
Apu = [ulP72u in Q,

p—20u

Vu = AulP"2u+ g(X\, z,u) on O,
g
v

where Q is a bounded domain of RN with smooth boundary, N > 2, and
A, denotes the p-Laplacian operator. We give sufficient conditions for the
existence of continua of solutions bifurcating from both zero and infinity at
the principal eigenvalue of p-Laplacian with nonlinear boundary conditions.
We also prove that those continua split on two, one containing strictly positive
and the other containing strictly negative solutions. As an application we
deduce results on anti-maximum and maximum principles for the p-Laplacian
operator with nonlinear boundary conditions.

1. INTRODUCTION

We consider the following nonlinear boundary value problem for a bounded do-
main Q C RV, N > 2, with smooth boundary

Apu = [ufP?u in Q,

(1.1)
O NP2t g(h ) on 90,
ou

where Apu = div(|Vu[P7?Vu) is the p-Laplacian operator, 1 < p < +o0, e
represents the exterior normal derivative of u and g is a given function satisfying
some conditions to be specified. We are mainly concerned with the bifurcation from
the first eigenvalue \; of the eigenvalue problem associated with given by

Apu = |[ulP7?u in Q,

|Vul~

b (1.2)
|Vu|p72—u = MulP"2u  on 09,
v
and its application to maximum and anti-maximum principles for
Apu = |[ulP"?u  in Q,
(1.3)

|Vu|p_2% = MuP2u 4+ h(z) on 99,
v
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It is well known that the properties of eigenvalues play an important role in the
study of the bifurcation problem, the maximum principle and the antimaximum
principle for quasilinear equations. The eigenvalue problem has been studied,
for instance, in Fernandez Bonder and Rossi [12] [TT] and Martinez and Rossi [16].
In [I2] the authors proved that if N > 2 then admits an infinite sequence
of positive eigenvalues A, such that A\, — +oo as n — +oo although in [I6] it
was proved that the first eigenvalue is simple, isolated and principal i.e. every
eigenfunction associated with A; has a constant sign. Results related to those in
[12] and [16] were proved in [T1] where the authors have considered a generalization
of with an indefinite weight function given on 0.

Bifurcation problems for the p-Laplacian operator with Dirichlet boundary con-
ditions received extensive attention in the 1990’s. The reader is referred to [8) [I3]
18, [19] for problems on bounded domains and to [10] for problems in unbounded
domains. In 2001, D. Arcoya and J. Gdmez [3] gave sufficient conditions for sub-
critical and supercritical bifurcations and gave a new approach to prove old and
new results on anti-maximum and local maximum principles for the p-Laplacian
when ) is close to A;. The case p = 2, was studied by Arrieta, Pardo and
Rodriguez-Bernal in [4] and by Pardo [I7]. In [4], the authors proved that every
eigenvalue of odd multiplicity is a bifurcation point of solutions from infinity and
also presented some results on the maximum and anti-maximum principles.

The main purpose of this work is to extend the results proved in [4] for the
semilinear case, i.e. (1.1)) with p = 2, or those of [8, [13] for the p-Laplacian operator
with Dirichlet boundary conditions.

In Section 2 we introduce basic notations and recall properties of the generalized
topological degree of Browder-Petryshyn for non linear mappings. In Sections[3|and
[ we prove that, under suitable assumptions on the function g, the first eigenvalue
A1 of (Py) is a bifurcation point respectively from zero and from infinity of the
solutions of using basic tools of topological degree. In Section |5| we prove the
existence of unbounded positive and negative continua of solutions of splitting
from ;. We give in Section [ conditions to have sub- and super-critical bifurcations
and also give as application a non-variational proof of the anti-maximum and local
maximum principles for problem . We show for instance a maximum principle
for A € (A — 6, A1) and h satisfying [, ho1 > 0 instead of h > 0,h # 0. Finally,
in Section [7} we focus our attention on the constants appearing on the regularity
results of weak solutions for the general problem given by

Apu = lulP~%u + f(\ z,u) in Q,
0

8—3 =h(\,z,u) on 99,

with f and h functions having subcritical growth.

1.4
| VP2 (14)

2. NOTATION AND PRELIMINARIES

We study the bifurcation of solutions for the quasilinear elliptic problem
Apu = [ulP?u in Q,
0 (2.1)
a—u = MulP~2u + g(\, z,u) on 9.
v

Throughout this article,  will be a smooth bounded domain in RN, N > 1, with a
boundary 99 of class C%#, 0 < 8 < 1; v its outer normal vector defined everywhere

|Vl
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and 1 < p < +00. We will denote by do the surface measure (which is a (N — 1)-
dimensional Hausdorff measure). The set W!P(Q) denotes the Sobolev space with
its usual norm given by

1/p
v = ([ 9P+ 1up)

and (W1P(Q))* its topological dual. The critical Sobolev’s exponent for the trace
inclusion W1P(Q) < L7(99) will be denoted by p.

(N-1)p .
b {N_p if 1<p<N,

400 if p> N.

The weak convergence will be denoted by — and the strong one by — . In the
following, W1P(Q) will be denoted by X and (WP(Q2))* by X*.
Throughout this work the function g will satisfy the following condition:
(Al) g : R x 92 xR — R is a Carathéodory function, that is, g is measurable
in z € 09 for all (A\,s) € R x R and continuous in (A,s) € R x R a.e.
x € 0. Moreover, there exists a € [1,p.) (a > 1 if p > N) such that for
any bounded set B C R there exist C, D € L*°(99) such that

lg(\,z,8)| < C+ D|s|*! ae. x€dN YNEB, Vs €R. (2.2)

Solutions to (2.1) are understood in the weak sense, i.e., a function u € X is a
weak solution of (2.1)) if and only if

/ |Vu|p_2Vqudx+/ |u|P~2uvdr = )\/ |ulP~%uv da—l—/ g\, z,u)vdo (2.3)
Q Q o0 o9

for all v € X. Notice that (A1) assures the integrability of the integrands in (2.3]).
Let us define the functionals

<J(u),v):/ |Vu|p_2Vquda:+/ |ulP~?uv d,
Q Q
(F(u),v>:/ |ulP~%uv do,
[2]9]

(Ga(u),v)y = /{m g\, z,u)vdo,

where (-, -) is the usual duality map defined on X* x X. Thus (2.3)) is equivalent to
Ax(u) := J(u) — AF(u) — Gx(u) = 0. (2.4)

It is well known that J is continuous, (p — 1)-homogeneous, odd, coercive, strictly
monotonous and continuously invertible. The function F' is continuous, odd, (p—1)-
homogeneous and compact and for any fixed A\, G is continuous and compact. The
compactness of those maps is a consequence of the compact embedding of the trace
map
X — LY(09N).

Let us briefly recall some properties of the spectrum of A, with nonlinear boundary
conditions for the problem

Apu = |[ulP?u in Q,

(2.5)
20 _ MuP~™2u  on 09,

14

[Vl
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see [22] T2, [T6]. A real number A is said to be an eigenvalue of (2.5)) if and only if
there exists u € X \ {0} such that

/(|Vu\p72Vqu + ulP~2uv)dx = )\/ |u|P~2uv do

Q aQ

holds for all v € X. The function w is called eigenfunction associated with the
eigenvalue A. It is well known that admits an infinite sequence of positive
eigenvalues \, such that A\, — 400 as n — 4oo. Its first eigenvalue A\; > 0 is
characterized by

VulP P
A= inf{f9| ul? + Jo fu € X,/ |ul? #0} (2.6)
o9

faQ |ulP

It is also well know that A; is simple and admits a normalized positive eigenfunction
1 > 0 in Q. Furthermore any eigenfunction associated with eigenvalue different
from A; changes sign. We will denote by o, the set of all eigenvalues of
and we call it spectrum of p-Laplacian with nonlinear boundary condition. It is
also known that A; is isolated in the spectrum, which allows to define the second
positive eigenvalue Ao of as

A2 :=min{\ € R : X eigenvalue and A > A\ }.

In the next two sections, we will prove some bifurcation results at the first
eigenvalue \; from both zero and infinity. The main tool to prove our bifurcation
results is the generalized topological degree of Browder-Petryshyn for non linear
mappings of [5] (see also [21]) that we will apply for the operator A, defined in (2.4).
Let us recall here some properties of this degree. Let V be a real separable reflexive
Banach space, V* its topological dual and A : V' — V* be a demi-continuous
operator, that is, A satisfies that whenever u,, € V converges to some u € V' then
Au, — Au. We also assume that A satisfies the condition a(V'), that is, for any
sequence u, € V satisfying u, — ug in V and

lim sup(A(uy), tyn — ug) <0,

n—-—+oo
then u,, — ug € V. Trivially every continuous map A : V — V* is also demi-
continuous. Note also that if A satisfies the condition (V) then A + K satisfies
the condition a(V) for any compact operator K : V — V*.

Let {wz}:;of be an arbitrary complete subset of the space V' and let us assume
that for every n the elements w; ...w, are linearly independent. Denote W,, the
linear hull of the elements w; ... w,. We set

n
Ap(u) = Z(A(u),w»wl
i=1
For any arbitrary bounded open set D C V such that A(u) # 0 for any u € 9D,
the degree of the mapping A at 0 with respect to D C V is defined as follows:

deg(A, D,0) := liT deg, (An, DN Wy,0), (2.7)

where deg . denotes here the Browder degree. It is shown in [2I][Chapter 2] that
deg, (An, DN Wy,0) is constant for n > ng for some ng € N and that the value in
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the limit (2.7) is independent of the choice of the system of functions {w;}. One
can also define the indez of an isolated solution wug of the equation A(u) =0 as
Ind(A,ug) := liH(l) deg(A, B (uo),0).
£—
Finally the usual properties of a degree as the additivity, excision and invariance

under homotopy, hold for this generalisation of the degree of Browder. The following
properties will be used.

Lemma 2.1. Let A:V — V* be a demi-continuous operator satisfying the (V)
condition.

(i) 21, Chap. 2, Theorem 4.4] Assume that there exists r > 0 such that
(A(u),u) >0 for allu € V, ||ully =r. Then

deg(A4, B,(0),0) = 1.

(ii) [9) Lemma 14.7] Assume that A is a potential operator, i.e., there exists a
continuous differentiable functional B : V. — R such that B’ = A. Let ug
be a local minimum of B and an isolated solution of A(u) =0. Then

Ind(A4, ug) = 1.

Now let us now finally take V = WP(€), denoted by X, the operator A, defined
in (2.4) and check that Ay satisfies the a(X) condition.

Lemma 2.2. Operators J and Ay satisfy the condition o(X) for any A € R.

Proof. Since F and G are compact maps, it is sufficient to check that J satisfies the
a(X) condition. Assume that u, — ug in X and limsup,, , . (J(un), un —uo) < 0.
Then u,, converges strongly to up in LP(Q2) and we have

0 > limsup(J(un) = J(uo), un — uo)

n—-+oo

= lim sup/ (IVun P>V, — [Vuo|[P~*Vug) (Vu, — V)
Q

n—+00
+/ (|un\p72un — Jug P~ o) (uy, — up) -
Q
For Vu, Vv € LP(Q)N, we observe that

/ (|VulP2Vu — V[P 2Vo) V(u — v)
Q

= / (IVul? + |Vo|P — [VulP">VuVo — |VoP2VoVu)
Q

- [ e ()
— (/Qlwlp)l/p(/ﬂ|vv|p)”p/

(o)™ - (L) L) (L) 2o

From this two previous inequalities we deduce that [, |[Vu,|[? — [ |Vuel? and
consequently u, — ug in X. (I
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3. BIFURCATION FROM ZERO AT THE FIRST EIGENVALUE

In this section we prove that there exists a bifurcation of solutions of problem
at A = A; using the previous generalization of the topological degree. Let us
recall the standard definition of a bifurcation point for a generic family of nonlinear
continuous maps Ay : V — V*:

Definition 3.1. Let £ = R x V be equipped with the norm
1/2
IOy )l == (AP + flall) (3.1)

A value A € R is said to be a bifurcation point from zero of solutions of the problem
Ax(u) = 0 if there exists a sequence of solutions (A, u,) of Ax(u) = 0 such that
(Ansun) — (X, 0) in E.

Lemma 3.2. Assume that
g\ z,5) = of|s|P71) (3.2)

holds for s near s = 0 uniformly a.e. with respect to x € 9Q and uniformly with
respect to A\ in any bounded subset of R. Then

G ()|l x-

1 =0
fullx o Jrull
uniformly for X in a bounded subset of R.

Proof. Condition (3.2)) implies that for any A in a bounded set and for any ¢ > 0
there is a real number § = d(¢) > 0 such that, for a.e. z € 99, we have

lg(\, z,8)| < e|s[P~! for |s| < 4.
Consider the subset of 99 given by
005 = {x € 00 : |u(z)| < 6}.
By definition we have

G)\ U || x* 1
%: sup p_1|/ g()\,x,u)w’
[Jull lwlix<t [lull " Joa

A A
S sup / |g( v‘:a_lll')w|+ sup / |g( a*:a_ﬁ")w|
lwlx<tJoos  [lul% lwlx<tJoog  [lul%

Set v := u/||lu||x. Then we have

A
/m|ﬁ4@?wsf/ | o] =)
o9 |lullk 09
sE/|me*>
a0 (3.3)

<o) (L)

—1
< cpellvllx llwllx < cpe

where we have denoted, for any 1 < ¢ < p., ¢; = ¢(gq, N, ) the best constant of the
trace embedding of X into L2(9€). In the following, d will always denote a positive
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constant independent of €, §, and the functions u, v, w, ... appearing on the proof.
We have
/ VRIS / (C + DJul*)lw]
1 = -1
o0 lully oog  lullk
1 Dlul* Y w
[ullx ™ Joog o0s  lullx
We estimate I and I as follows:
C ’ 1/1’*
< 7” loo 819 meas () 1/ Px (/ |w p*)
[Jull% 09
C ’ 1/p«
< [Cll00 meas(aﬁg)l/p*(/ fwl? )
[Jull% o9
C /
<o, I ”O;iafl meas(905) /7" |
[Jull

Using Tchevichev’s inequality we have , for any 1 < g < p,,
d?meas(005) < / |u|?,
208

and therefore, choosing ¢ = p., it follows that

I<c [Clloe.00 1 (/ |u|p*>1/p;
= Lps — ’
lullit 6P=/P+ \ Jaqg

[Clloc,00 1 (/ "
T ulBt ore /P N g

*”CHoo,aﬂ 1 P+ /Dl —p. /D
< G g Il = s

On the other hand,

IT < || D0 / =P o o]
o0N¢

5

2 ) Ve (3.4)

P«—Pp
Ul|x .

< D]l 008" / PP P[]
095 (3.5)

@ Px—DP
< 1Dleand ([ w) " (
oQ o0

*>1/P*</ |u‘p*> Pk
o0
< B D|loo,000 7P

RP < sl

-1
ol lwllxJu

1
Thus, if [Jul x <7 with n = (5557 5.5;) " " by adding (.3), (3.4) and (3.5),

we obtain
[Ga @l _

—1 —
lull

O

The following proposition is standard but we prove it here by the sake of com-
pleteness.

Proposition 3.3. Assume (3.2). If (X, 0) € E is a bifurcation point of solutions
of problem (2.1)) then X is an eigenvalue of (2.5).



8 M. CUESTA, L. A. LEADI, P. NSHIMIRIMANA EJDE-2019/32

Proof. Since (),0) is a bifurcation point from zero of solutions of (2.1 there is
a sequence (A,,u,) of nontrivial solutions of such that A\,, — X in R and
lunllx — 0in X as n — +oo. Let @y, := up/|un|x. Since the sequence (i) is
bounded in X, there exists a function %y € X and a subsequence, still denoted by
(Uy), such that @, — g, strongly in LP(Q), in LP(9) and such that Gy(u,) —
G (@ig) in X*. Hence, using Lemma [3.2] we obtain

lim sup(J (@), v) — Ap(F(Uy),v) = limsup #<G>\" (un),v) =0 (3.6)

n—-+00 n—+0oo ||u7l||§(_1
for all v € X. By taking v = 4,, — Go in (3.6) it follows that

lim sup(J (@i, ), Gy, — 1) = 0
n—-+4oo

and, using that J satisfies the condition a(X), we conclude that @, — g strongly
in X. In particular ||tug||x = 1 and @ # 0. Passing to the limit in (3.6) it comes

(J(a0), v) = MF(ao), v),
for all v € X. Thus A is an eigenvalue of (2.5) and g an eigenfunction associated
with A. 0

The following theorem is the main result of this section. We prove that the first
eigenvalue is a bifurcation point from zero of nontrivial solutions of (2.1).

Theorem 3.4. Assume (3.2). Then there exists a mazimal connected set C of
nontrivial weak solutions of problem (2.1)) which
(i) contains the point (A1,0) in its closure,

(i) either C is unbounded in E or it contains in its closure a point (X,0), where
A is an eigenvalue of problem (2.5) different from A;.

Proof. The proof consists in three steps:
Step 1. We claim that

deg(Ax, B-(0),0) =1 VYA€ (0,\), ¥r > 0 sufficiently small. (3.7)
The proof of this claim is the following. First consider the operator /Ab\(u) =
J(u) — AF(u). It follows from the variational characterization (2.6) of A; that for
all A € (0, A1) and for all v € X with |lul]|x # 0 we have (A (u),u) > 0. Then by
Lemma i),

deg(Ay, B-(0),0) = Ind(Ay,0) =1, YA€ (0,)\), ¥r > 0. (3.8)
For any fixed A € (0, A1) we claim that, if r is sufficiently small, the equation
J(u) — AF(u) — sGx(u) =0

has no solution u with |ju||x = r for all s € [0,1]. Assume by contradiction that
for all n > 0 there exists u,, of norm + and there exists s, € [0, 1] such that

(J(un,), v) = MEF (un),v) — $n(Gr(un),v) = 0. (3.9
Taking w, := Iqu:ﬁ we infer that there exists wq, sg such that, for a subsequence,

wy, — wp, strongly in LP(Q), in LP(9Q), such that Gy(w,) — Gx(wg) in X* and
S, — So. Using (3.9) we deduce that

(J(wo),v) — MF (wp),v) < lim —-2— (G (), v) (3.10)
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for all v € X. If wg = 0 then we will deduce, by taking v = w,, in (3.9) and going
to +oo, that J(w,) — 0. Thus w, — wy = 0, a contradiction with |w,|x = 1.
In particular for v = wg # 0 in (3.10) we have, using that A < Ay on the left hand
side, that

s 1
0 < (J(wp),wo) — A F(wp),wp) < %(G)\(un),w@ < ﬁ«?}\(un),wo).
[[unx [[unx
Since [lwollx <1 and [lu,||x — 0, we have from Lemma [3.2] that
G(un) |l x~
0 = lim HHA(lTp)HlX > (J(wo), wo) — AMF (wo), wo) >0
n un X

which is a contradiction. Finally the claim (3.7)) follows from (3.8]) and the homo-
topy invariance of the degree.

Step 2. First, from the definition of Ay we have (A, A2) N o, = 0. We claim that
deg(Ax, B-(0),0) = =1 VA € (A1, A2), ¥r > 0 small enough . (3.11)

We start by evaluating Ind(flA,O) for any A € (A1, \2) by using the procedure of
[10]. Let us denote § := Ay — A1 and define, for a fixed number K >0, & : R — R,
a twice continuously differentiable function ® as follows

B(t) 0 ift < K, (312
| EB(t-2K) ift>3K, '

and ®(t) is positive and strictly convex in (K, 3K). Define the functional ¥y : X —
R by

1 A 1
() = (), ) = S (P, ) + @ (). ). (3.13)

It follows from Lemma below that +fp; are the global minima of ¥y, where
¢ > 0 is the unique positive constant such that @'(%(J(&pl)lgol)) = ’\;—1’\1 and

1 is the (unique) positive eigenfunction associated with A; satisfying ||p1]|x = 1.
Hence by Lemma [2.1](ii),

Ind(¥), —lp1) = Ind(¥), bpy) = 1. (3.14)

On the other hand, let us show that for any v € X satisfying |lul|x = o with
o > (3Kp)'/?, one has (¥} (u),u) > 0. Indeed

(W () ) = {7 (0) ) = AP () ) + (), ) ( (), )

p
> (1+ )< (), u) = MF(u), u)
> (M /\+25)< (u), u)

> 0(F(u),u) > 0.
Hence, by Lemma [2.1f(i), we have
deg(\W}, B,(0),0) = 1. (3.15)

Thus, if we choose o large enough in order to have +lp; € B, (0), by the additivity
property of the degree and the results (3.14) and (3.15)) we deduce that

Ind(¥),0) = —1.
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Furthermore since ® = 0 near 0 we have
Ind(Ay,0) = —1, VA€ (A, A2).
Next we claim that for any r sufficiently small the equation
(J(u),v) = MF(u),v) — s{Gx(u),v) =0 Yve X

has no solution w with |lu||x = r for all s € [0,1]. As in step 1, assume by
contradiction that for all n > 0 there exists a solution u, of norm 1/n and there
exists s, € [0, 1] such that

J(upn) — AF (uy) — $p,Ga(un) = 0. (3.16)

Taking w,, := MW there exists wy, sg such that, up to a subsequence, w,, — wy,

strongly in LP(Q), in LP(99), Gx(wy) — Ga(wp) in X* and s, — s¢. If wg =0
then we will deduce, by taking v = —“2— as test function in (3.16)) and going

||un||§(_1
to 400, that J(w,) — 0. That is, w, — wy = 0 which is a contradiction with
|lwn|lx = 1. Hence wg # 0 and using again (3.16) for the test function w, — wo,

we obtain, after dividing by |lu,|/% ' and going to +oo, that

(J(wy), wy, —wp) — 0.

We have just proved that w,, — wq strongly in X. On the other hand we will have,
passing to the limit in (3.16]) after normalization, that

) S
(J(wo),v) = MF (wp),v) = lim —— (G (un),v) = 0
" fJunlx
for all v € X. We have used here Lemma Notice that is a contradiction since
A is not an eigenvalue. We have just prove the claim. Finally (3.11]) follows from
the homotopy invariance of the degree for r > 0 sufficiently small.

Step 3. Having proved (3.7) and (3.11)) we can proceed step by step as in the
original proof of Rabinowitz [19, Theorem 1.3, pp. 490-491], cf. also Drabek [9]

Theorem 14.9, pp. 178-183] to get the desired result. (I

Lemma 3.5. Let ® be defined in and the functional Uy be defined in
for A € (A1, A2). Then Uy is lower semicontinuous and coercive. The critical points
of Uy are 0, £lpy, where £ > 0 is such that @’(%(J(&pl),ﬁgm)) = )‘;1”\1 and @1 the
positive eigenfunction associated with Ay with ||p1||x = 1. Moreover

II}}H Uy, = \I/)\(:tf(pl) < 0.

Proof. Clearly ¥ is weakly lower semicontinuous. Indeed, assume u,, — ug € X.
Then by the compact embedding of X in LP(952), we have

(F(un); un) — (F(uo), uo)

and from the weak lower semicontinuity of the norm and the monotony of ®, we
have

lim inf {%(J(un), un) + @(%(J(un), un))} = %(J(uo), uo) + CI)(]%<J(Uo), o).

and the result follows. Let us denote as before § := Ay — A1 and let us now show
that Wy is coercive. Indeed, if ||u||x — o0, two cases can occur. First if (F(u), u)
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is bounded, it follows immediately that Uy (u) — 400 as ||u]|x — +oo. If not, that
is, if (F(u),u) — 400 as ||u||x — +00, we obtain

1 A 1
() = (T(),u) = 2P (), u) + @ (), w)

A1 — A
DPA1

>

(w0 + (), )

-0 1
—(J(u),u Jrf(f J(u),u 72K)
U@+ 5 (5w
) 40K
= —(J(u),u) — — — 400
meUONEE.
as |Jul|x — +4oc. In both cases we conclude that limy, | oo ¥a(u) = 400. Hence
Wy is bounded from below and the minimum of Wy is achieved. Now we claim that
the minimum is achieved at some eigenfunction associated with A\;. First notice

that

>

(B4, 0) = (), 0) = AP (), 0) + (), o) (5 (T (0). )

for all v € X. A critical point ug € X of W) satisfies
1
(WA (o), v) = (o), v) = A(F (o), v) + (T (), ) (- (o), o) ) = 0
for all v € X. This implies

<J(’U,Q),’U> - M<F(u0>7v> =0 Ve X7

with
B A
1+ @ (£(J(uo), uo))
Since A € (A1, A2) and ®’(¢) > 0 for all t € R then u < A < Ay. As 1 is an eigenvalue
then it must be p = Ay which implies

I

A A=A, 26

0¢¢(%”W@“®):XI_1: A

Consequently %(J(uo),u@ € (K,3K). Also, since u = A1, ug = =Ly or ug = 1.
So, for A € (A1, A2), ¥y has precisely three isolated critical points —fp1, 0, fp;.
In following, we show that the minimum of ¥, is achieved in —fp; and ¢p;. We
claim that ¥y (+lp1) < 0. Indeed one has

U(bpr) = Al /\<J(€<P1)7£<P1> + <I>(%<J(f¢1)75901>)-

A1p
Since %(J(&pl), lp1) € (K,3K), the convexity of ® implies that for all ¢ < 3K,

Wi (bor)

A=A 1 1
< _ - _
< ST, o) +0(0) — ¥ (L), o)) (1= (L) o))

>\1 - A A — )\1 1
= O(t) — _z

), ) +8(0) = S (1 (Tt o))

:Mﬂ—A_Mt

A
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In particular for t = K, one deduces that

A=A A—2A
U (lp1) < B(K) — LK =— LK <o0.
A1 A1
Since ¥y is even then we have ¥y(£lyp1) < 0 = ¥,(0) and the minima of ¥y are
then achieved in —fp; and fy;. O

4. BIFURCATION FROM INFINITY AT THE FIRST EIGENVALUE

In this section we study the bifurcation from infinity. Let us first recall its
definition.

Definition 4.1. We say that (), +00) is a bifurcation point of solutions of problem
(2.1) from infinity if every neighbourhood of (A, +-00) contains a solution of problem
(2.1), i.e. there exists a sequence (A,,u,) of solutions of problem such that
A — A and [|un||x — +oo.

Lemma 4.2. Assume that
g\ z,s) = o(|s|P~) (4.1)

holds for s large, uniformly a.e. with respect to x € 9Q and uniformly for A in any
bounded set. Then
[GA(w)llx- _

lullx oo [|uf|% !

uniformly for X in a bounded subset of R.
Proof. By condition we mean that for any A in a bounded set and for any
e > 0, there is a real R = R(e) > 0 with R large enough such that for a.e. z € 99,
we have

lg(\, z,8)| < e|s|P~  for |s| > R.
Consider now the subset of 99 given by Qg := {z € 90 : |u(z)| > R} and let us
compute separately

A A
sup / |g(’7;c’ff)w| and sup / |g(,7:£,711t)w|.
lwlix<1/oaq  [lull lwlix<1 /oo [lull

By setting v := u/||u||x, we have for any ||w|x <1,
g()\,%U) g()\,a:,u) - -1
|1l = [ ] < cefull ol < es
oar  |lullx oar Ul

for some constant ¢ > 0 independent of u,v,w, or A\. On the other hand, using

22).

/ 9Oz, w)u] < / (C+ Dlu* Yw| < e(1 + R*Y) / | < d(1+ ROV,
095, 0905, 095,

Combining this two inequalities we obtain that for all e > 0 if ||ul|x > By :=
1
(%d(l + Ra_l) =1 then we have M < e. The proof is complete. O

lull%
Proposition 4.3. Assume (4.1) and the condition
g(A,-,0) Z0 VAeR. (4.2)

If (X, 00) is a bifurcation point of solutions of problem ([R.1)) then X is an eigenvalue
of @3).
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Proof. Consider the following transformation: for u # 0 set v := uHuH;{%, and
then u = v.|jv||*. If w € X is a solution of the problem with u # 0 then we
have
J(v) = AF(v) — G\(v) = 0, (4.3)
where
Grlo) = {||7f||§<(p_1)GA(U-||U||}p) if v £0, 4)
0 ifv=0.

It is clear that Gy is continuous with respect to v. From assumptions (4.1) and
Lemma [4.2] we infer that

IGA@lx- _ G @lx-

ol a5

as ||[v||x — 0. Tt follows immediately from this transformation that the pair (X, +00)
is bifurcation point of solutions of if and only (X, 0) is a bifurcation point of
solutions for problem . Notice that the assumption (go) implies that can
not have a trivial solution (A\,u) = (A,0) in E. Finally, the result comes from
Proposition [3.3] O

The main result of this section reads as follows.

Theorem 4.4. Assume that the function g satisfies and . Then there
exists a mazimal connected set C of nontrivial weak solutions of problem which
contains the point (A1, +00) in its closure and it is either unbounded in E or it
contains in its closure a point (5\, +00) with A> A\ an eigenvalue of problem ,

Proof. Let C C E be m@ximal connected set of solutions of (4.3)) given by Theorem
and define the set C to be the set of all pairs (A, u) € E such that v # 0 and
(A, —%—) €C. O

flull 2T
5. EXISTENCE OF CONTINUA OF POSITIVE AND NEGATIVE SOLUTIONS

In this section we prove the existence of a continua of solutions of that
bifurcate from (A1,0) in the positive and negative directions ¢; and —1, respec-
tively. By this we mean that in a sufficiently small neighbourhood of (A1,0) these
continua contain only solutions (A, u) of problem satisfying u = ty1 + v with
<Ua 901>L2(Q) =0, and

u—t
| t%Hc*l(ﬁ) =0
ast — 0. Hence u > 0 in Q (u < 0 in € respectively) if and only if ¢t > 0 (t < 0),
provided [¢| > 0 is small enough.

Following the work by Dancer [7, Theorem 2], for the linear case with Dirichlet
boundary conditions, we will prove similar results about the bifurcation branches
obtained in Theorem [3.4] and Theorem [.4] Similar results for the p-laplacian with
Dirichlet boundary conditions can be found in [I3 Theorem 3.7], [9] and [10] among
others.

The following notation will be used.

S={nuw) €E: A(u) =0,uZ0} .

An easy consequence of this definition is the following result.
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Lemma 5.1. Let us assume (3.2)). For all (A\,u) € § with A € (—o00,\2) and
A # A1 we have u # 0 on 0N).

Proof. First we claim that if u = 0 on 9, then v = 0 in Q. Indeed, assume that
there exists a sequence (A, u,) of solutions for (2.1)) such that u, — w in X and
An — A. First we have
—Aptiy, + [un|P"u, =0 in Q,
(5.1)
2%&_>‘ ‘un| un+g()‘7xaun) on BQ,

and, since up to a subsequence, u,(r) — u(x) = 0 a.e. in 912, we deduce that

lim g(An,z,u,) =g\, 2,0) =0.

n—-—+o0o
Passing to the limit (in the weak sense) in (5.1]) we have
—Apu+ |[ulfPu=0 in Q,

|Vu, [P~

|Vu|p72% = liff g,z uy) =0 on 0.

Hence u = 0 in Q. We now set v, := p4—. Since [lvnllx = 1 there exists a
function v in X such that v, — v in X and strongly in LP(Q) and in L?(09Q).
Dividing (5.1) by [lun|/% " and testing against v, and using Lemma we have

v [P [l = [ o+ o @atu) o = [ P
0 funl o

In particular v # 0. Dividing (5.1) by ||un|% = and using Lemma it follows that
~Apu+oP2u =0 inQ,
0
|VolP~ 2 ! = Mv/P%v  on 0Q.
Since v # 0 then A is an elgenvalue, which gives a contradiction. O

Given a real number s > 0, let us denote an open neighbourhood of (A1,0) in E
by

BE :={(A\u) € E: |u|x + |X = \1| < s}.
Our aim is to prove the following result.

Theorem 5.2. Let g(\,-,-) € C7 for some v > 0, uniformly for \ in a bounded
set, satisfy hypothesis (3.2)). Assume that there exists 6 > 0 such that

Yue X, 0<|ullx <= Ay, (u) #0.

Then there are two mazimal connected subsets CT and C~ of C (with C provided by

Theorem containing (A1,0) in their closures satisfying C = CTUC™ and
(i) there exists s > 0 small enough such that, if (A\,u) € C*NBE, we can write
u = *to; +v, with v € CH*(Q) satisfying (v, e1)r200) = 0 and t > 0 such
that

A=X|—0 and ||Jv/t|siee — 0 ast— 0;
Cla ()

(i) C* are both unbounded. Moreover every solution u € C* (resp. C~) is
strictly positive (resp. strictly negative) in €.
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As in the classical semilinear case, the proof of the existence of C* and part (i)
of this theorem is based on the following 3 lemmas First, let us fix
€ X* = (WLP(Q))* such that 1(p1) = 1. We can take, as in [13], for example

0(0) = leilom, [ derde Voex.

Finally for any 7 > 0, we define
KE = {(\u) € E: £¢(u) > 7l|ul|x }.
In particular KY, v = =+, are open convex cones, K; = —K and vtp; € KY for

any number ¢ > 0. Finally we set K, := I UK.

Lemma 5.3. For every 0 < 7 < 1 there exists a number 0 < sg = so(7) such that
S\{(\1,0)} N B, C K.

Moreover, if (A, u) € S\{(A1,0)} HFSEO and we write u = tp1 +v, with v € CH*(Q)
satisfying ¥(v) = 0 and |t| > 7||lul|x then

A= A1 =0 and ||v/t]|lcra@ — 0 ast—0.

Lemma 5.4. Let 7 be sufficiently small. Suppose d1,09 > 0 are such that 0 <
91+ 02 < sg and Ax(u) # 0 if |lul|x = 61 and |A — A\1| < d2. We have
(1) if 0 < o < d2 and B = B(o) > 0 is sufficiently small, then 0 < ||lu|lx < B
imply Ax,+o0(u) # 0;
(2) deg(Ax,+0, WH,0) —deg(Ax, o, WH,0) = 1, where
WH:={ueX: INeR: (\u) e K* and § < |Ju|lx < d1}.

Lemma 5.5. Let 7 be sufficiently small. For any 0 < € < so we define T, to be
the component of C \ (BE N KCF) containing (A1,0). If T is bounded in E then

OB nKfnT= #0.

Proof of Lemma[5.3 Suppose that for some 7 > 0 such a number sy does not

exist. Then we can find a decreasing sequence 0 < s,, < 1 with s,, — 0 and another

sequence (An,un) € S\ (A1,0) ﬂ?i such that |¢(uy,)| < 7||un||x for all n. Notice

that we must have u,, # 0 in 99 for all n large enough because of Lemmal5.1] Since
Un

Sn, — 0 then ||uy||x — 0 and A, — A\1. Set w,, := Tads We have that w, — £¢

because w,, — w for some w € X that will be a solution of
—Apw+ [wP2w =0 in Q,

|Vw\p_2(2—w = Mw[P~2w on O0.
v

Furthermore w # 0 because

1:/ |an|P+/ o [P
Q Q

1
o [l s [ g, = [l
o0 el Jon o0

Consequently, 9 (w,) — %1 and therefore 1 < [¢p(w,,)| < 7. We have just proved
that the first statement of the lemma is true for all 0 < 7 < 1.
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To prove the second statement let (\,,u,) be a sequence such that (\,,u,) €
S ﬂ?i C K, and write u,, = t,¢1 + v,. Here t, is defined by ¢, := Jagunier o

oa #1
we have that |t,| > T|ju,||x. Then, if ¢, — 0, it follows that |ju,|x — 0 and we

can prove as previously that W — 47 in X. Consequently,
Un, _ lnp1 Un
lunllx  llunllx * [lunllx

which tends to ;. In particular, we have

Uu v
/ t— 1 -I-/ t e — i/ 03
o0 |lunllx o0 llunllx 9

On another hand, we have |, 50 Huqin\/lx o1 =

tn— and therefore —t2— — +1. Hence
. llun [l x llunllx
W — 0 in X and consequently
Up Up Un lunlx
¥, =

Using Lemma and more precisely, using ([7.8)), we have HWHCLQ(Q) < C.
Thus

— 0 strongly in X.

ltnllgney < Clunllx
Hence for some o’ < a, that we still denote a, we have u, /t, — @1 in C1*(Q) and
also |7l cra ) — 0. O

Proof of Lemma[54) (1) is trivially true. The proof of (2) is the same as the one
of [7], we outlined it for completeness. We define

G (u) if ¢ (u) < —llull|x,
Gi(u) == { —5—G(u) if 0> v(u) > —nlull|x,
~Gh(u) if ¢ (u) > 0,

fi=J—AF -G

It is clear that A} satisfies the o(X) condition. By our hypothesis, the equation
Ay, +6(u) = 0 has no solution on 9Bs,,dBg, or in Bs, \ W UW ™ U Bg by lemma
(5.3l Hence

deg(A3, 1o, Bs,,0) = deg(A3, 5 B, 0) +deg(A3, ., W,0) +deg(A5, ., W, 0).
Since A} is odd we also have deg(A}, ,, W™,0) = deg(43 ., W+.0) so
2deg(A}, 1, W™,0) = deg(A}, 15, Bs,,0) — deg(A3, 4., B3s,0).
Similarly,
2deg(A3, _,,W™,0) = deg(A3, _,,Bs,,0) — deg(A}, ,,Bs,0).
On the one hand one can prove as in step 2 of the proof of Theorem that
deg(A}, 5, Bg,0) = —deg(A3,,,,B5,0) =1

On the other hand, for |lul|x = d§; and |A — A1| < d2 we have Ax(u) # 0 by our
assumptions, so the homotopy o € (—01,01) — Ax, 4o is admissible on Bs, and
whence

deg(A)\l—U; B51 ’ 0) = deg(A)\a B51 ’ 0) = deg(A)\1+Ua B51 ) 0)
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holds for all A € (A1 — 01, A1 + 91). Then we conclude, using that A} = Ay along
W=,
deg(Ax, 40, W,0) —deg(Ax,—o, W,0) = 1.
O

Proof of Lemma[5.5 Since we are assuming that zero is an isolated solution of
Ay, (u) = 0 then one can use Lemma 2 of [7] without no changes. O

Proof Theorem[5.4 One follows step by step the proof of Theorem 2 of [7] [13]
Theorem 3.7]. First one defines the sets

DY := component of (A1,0) U (SN Ef N KY) containing (A1, 0),

€
CY component of C\ D", C” = Upcecs,CY

It is proved in [I9][Lemma 6.1] that the definition of C* is independent of 7, that
those sets are connected and that C =C*T UC™.

(i) We will only prove the result for v = +. First, let us prove that C c K
if 0 < 7 < 1. Assume by contradiction that there exists a sequence of solutions
(Any un) with (Ap,upn) € CF, Ay — A1, |Junl|x — 0 and such that (A, u,) & K.
Since (A, u,) € CF it follows that (A, u,) € D. and we have ¥(u,,) > —7|lun || x
and since (Ap,uy) € K we will get

= Tllunllx < P(un) < 7llunllx (5:2)

Set iy, = 4, then |l@n || x =1 and we can prove that i, — +p; in C1*(Q) as
in the proof of Lemma [5.3] From the definition of 1, we have

Plin) = (1) = £1. (5-3)

Consequently we obtain from and that 7 > 1 in contradiction with the
hypothesis 7 € (0,1). We have proved that C+ € K} if 0 < 7 < 1. To complete the
proof of (i) let (A, u) € CF for 0 < € < sg and write u = tp; + v with v € C1*(Q)
and (v, ¢1)r2(90) = 0. Thus ¢(u) = Y(te1 +v) =t and, since CF C K, we have
that ¥ (u) > 7|lu||x and in particular ¢ > 0. The asymptotic behaviour as t — 0
has been already proved in Lemma [5.3

(ii) Let us first show that solutions C are either positive or negative. Indeed it
follows from (i) and the fact that ¢ > 0 on Q that u > 0 in Q if t = ¢(u) is small.
We claim now that u > 0 in Q for all u € C*. Indeed, if not, there would exist
(A, @) € C* such that @(z) < 0 at some point z € €. Since C* is connected and the
solutions are positive if the norm is small, we conclude the existence of some (;\, @)
in C such that @ # 0, @ > 0 and (z¢) = 0 for some zg € Q. If 79 € Q then we have
a contradiction with the Harnack’s inequality, see [20]; if zp € 02 then it follows
from the boundary condition of and g(\,2,0) = 0 that 2%(z¢) = 0, which
contradicts the maximum principle of Vazquez, see [23]. As the consequence of the
definitive sign of the solutions the case CT™ NC~ # {(\1,0)} can not occur. Hence it
follows from Theorem 2 of Dancer in [7] that CT and C~ must be unbounded. [

Corollary 5.6. Let g(\,-,-) € C7 for some v > 0, uniformly for X in a bounded
set, satisfy the hypothesis (3.2). Moreover assume that the function g satisfies the
hypothesis: There exists 6 > 0 such that for all s €] — §,0[, s # 0 we have

g(A1,z,8)s <0 a.e x e (5.4)
Then the conclusions of Theorem[5.3 hold.
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Proof. If uw 2 0 in Q, it follows from (2.1)) that « Z 0 on Q. Let us take u € X,
u #Z 0, a solution of problem (2.1). We take v = u in its weak form to get

/ Vul? + / uf? — Ay / P = / 9O ), (5.5)
Q Q oN oN

Then it follows from variational characterization of the first eigenvalue A\; of
that the term of the left hand of is positive. On another hand, from Lemma
there exists 6’ > 0 such that if ||ul|x < ¢’ implies ||u|/c,00 < 6. Then we have
ﬁ g(A, z,u)u < 0, a contradiction with . a
Remark 5.7. The results on existence of positive and negative continua of solutions
are proved by Girg-Taka¢ in [13] for the Dirichlet problem under more restrictive

conditions on g, including the restriction that g does not depend of A.

To obtain similar results for the bifurcation from infinity, we consider the stan-
D
dard transformation u — v := w.||ul|” »=T as in Theorem Thus we obtain the
following result.

Theorem 5.8. Assume that the function g satisfies (4.1) and (4.2) for every A € R.
Assume that g € C7 for some vy > 0, uniformly for X in a bounded set. Furthermore,
assume that there exists § > 0 such that

J(v) = M F(v) + Gy, (v)

has no nontrivial solution v € X, 0 < |jv||x < &, where G is given by ,
Then there are two mazimal connected subsets such that C = Ct NC~ of S (with C
provided from Theorem containing (A1, +00) in their closure. Moreover
(i) there exists s > 0 such that, if (\,u) € C* satisfying |\ — 1| < s, |julx > s
we can write u = +tp + v, with v € CH*(Q) satisfying (v, 01)12(00) = 0
and t > 0 such that

A= Xi| =0 and [[v/t][cr.a@ — 0 as t — +o0;
(ii) C* are both unbounded. Moreover every solution u € Ct (resp. C) is
positive (resp. negative) in ).
The proof of the above theorem is straight forward and we omit it.

Corollary 5.9. Let g € C7 for some v > 0, uniformly for X in a bounded set,
satisfy the hypothesis (4.1) and (4.2). Assume further that
g(A1,2,8)s <0 a.e. x €9Q, V|s| > 3§ for some § > 0. (5.6)

Then the conclusions of Theorem [5.8 hold.

6. SUB AND SUPER CRITICAL BIFURCATION

In this section we study whether the previous bifurcation are placed to the right
or to the left of \;.

Definition 6.1. (1) If X is a bifurcation point from zero of solutions (A, u) € R x X
of Ax(u) = 0, we say that such bifurcation is subcritical (respectively supercritical)
if there exists a neighbourhood V of (),0) in R x X, such that every nontrivial
solution (\,u) € V satisfies A\ < A (respectively A > \).

(2) Similarly, we say that a bifurcation point at X = X from infinity of solutions
(A u) € Rx X of Ay(u) = 0 is subcritical (respectively supercritical) if there exists
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e,M >0, W =[A—e,A\+¢| x (X \ Bx(0,M)), such that every solution (\,u) € W
satisfies A < A (respectively A > X). Here Bx (0, M) denotes the open ball of X of
center 0 and radius M.

The following lemma will be used to get the conditions of subcritical or super-
critical bifurcation.

Lemma 6.2. Let u € X NC(Q) be a solution of ([2.1)) strictly positive in Q. Then
P
faQ g(>\a Z, Z’) upil <A A< faQ 9(>\, xz, u)u'

Joa 1 Joq u?
Proof. By taking v = u in weak form of problem (2.1]) we obtain

/ g()\,x,u)u:/ |Vu|p+/up—)\ uf > (/\1—)\)/ uP.
o9 Q Q o9 X9)

On the other hand if v = uﬁl we obtain

o p
/{;Qg()\7x7U)up_1 - ()\1 7>\)/(’}Q<pl
p p
_ p—2 Y1 p—1(_F1 1\ _ P _ D
/Q|Vu| V“V<up—1)+/9“ (-2) /Q|wl| /Q%
2! ¢t
_ P—2%1 Gy, — N p_ p
| v 2909 - [ o= nE vy - [ (90
:—/L(Q01,U) §O7
Q

where L(p1,u) is the expression of Picone’s identity (see [II).
Let w > 0,v > 0 be two continuous functions in ) differentiable a.e. Denote

(6.1)

wP wP~1 9
L(w,v) = |VwP + (p — 1)U—p|Vfu|p P |VolP™*VoVuw,
wP
R(w,v) = |Vul? - [VoP V(=) V.

Then (i) L(w,v) = R(w,v), (ii) L(w,v) > 0 a.e., and (iii) Assume that w/v belongs
to VV&;(Q) Then L(w,v) =0 a.e. in Q if and only if w = kv for some k € R.
Therefore we obtain

AT, U f?l
faﬂg(f (pp)“ < (- ).
oQ vl

O

The following theorem give sufficient conditions to have subcritical and super-
critical bifurcation from infinity of positive solutions of ([2.1)).

Theorem 6.3. Assume (4.1)), (4.2) and that g € C? for some v > 0 uniformly
for X in a bounded set. Assume that there exist so > 0, a € R and B € L*(99Q)
(respectively B € L*(9S2)) such that
(1) g(\ z,5)s* > B(x) (respectively g(\, x,5)s* < B(x)) for all s > sg, and
for X\ in neighbourhood of A1, a.e. x € 08);
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(2) for A, (x) :=lminfy o (xn, +00) 9(A, 2, 5)5%, one has [, Aol >0 (re-
spectively Ay (x) := lim SUD (A ) (A1, +00) I(As T, 8)8%, one has [, A7 <
0).
Then the bifurcation from infinity at A = A1 of positive solutions of (2.1)) is sub-
critical (respectively supercritical).

Proof. Let (A, u,) be a sequence of strictly positive solutions (2.1)) converging to
(A1, 4+00) and assume by contradiction that A, > A;. Using the inequality (6.1),
we have

p
/ g()\n,x,un)% < (A1 — /\n)/ o < 0.
0 un a0

and therefore

-1+«
899( n7x’un)un(p1 up71+a <Uu. ( . )
We know from Theorem that v, = 8- — @1 > 0 in C1(Q). Hence

p—1l4a
o % > C > 0 for n large and C independent of n and we can use hypothesis

(1) to estimate

p—1+a
g(An,x,un)uggog’% > OB € L' (09).

By Fatou’s Lemma and hypothesis (2) we obtain

—1+
A ol=% < limi a o lunllx ™
70‘@1 < hm lnf Q(Amfﬂ,un)un@l p—1l4a )

o0 oQ Un

SO

. o pllun5

lim inf g()\n,:z:,un)ungalﬁ > A pi "> 0.
o0 Un o0

This inequality implies that for n large enough

S
g(/\n’wvun)un(pl p—1+a > Oa
oN u

n

in contradiction with (6.2). O

We can prove similarly the following theorem about the bifurcation from zero.

Theorem 6.4. Assume and that g(\,-,-) € C7(0Q x R) for some v > 0 and
all X in a bounded set. Assume that there exist s > 0, a € R and B € L*(9Q)
(respectively B € L'(09)) such that
(1) g(\ z,5)s* > B(x) (respectively g(\, x,s)s* < B(z)) for all 0 < s < s,
and for A in neighbourhood of A1, a.e. x € 08);
(2) for Ay(z) == lminf(y 5 (x,,0+) 9(N, 2, 8)s%, one has [, Ay ® >0 (re-
spectively A, () := limsupy —(x, 0+) 9(A, @, 8)8%, one has [, A ™ <
0).
Then the bifurcation from zero at X = Ay of positive solutions of is subcritical
(respectively supercritical).
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6.1. Application to the anti-maximum principle. In this paragraph we will
give a new proof of the well known anti-maximum principle of problem (6.3]), we
also obtain the local maximum principle of (6.3)). These results were proved by [2]
using variational method, and by [3] (for Dirichlet boundary conditions) and by [4]
(linear problem with Steklov boundary condition). We have borrowed some ideas
from those papers. We consider the simple problem

Apu = |[ulP~?u in Q,

(6.3)
|Vu|p72? = Mu|P~%u + h(x) on 99,

v
Let us denote here by S the set of h € L (9f2) such that the problem (6.3) with
A = A1 has solution in X. Notice that 0 € S and that S # L*°(02) as a result of
the following lemma.

Lemma 6.5. If h > 0 or h <0 and h # 0 then there exists no solution of (6.3)
with A = Aq.

Proof. The proof is standard: if for instance i > 0 and such a solution exists, take
as test function v = u~ to obtain

/(|Vu_|p+|u_|p):)\1/ |u—\P—/ - g)\l/ =P
Q oN oN oN

which implies u™ = cp1 = u = —cp1 = h = 0, a contradiction. We have used here
that ¢1 > 0 in Q. ]

In the next theorem we assume that h € C7(9Q) which seems a quite strong
hypothesis. The reason is that we need some estimates of the C'*-norm of the
solutions. Since, to our knowledge, there is not a LP- regularity theory for the
p—laplacian operator neither with Dirichlet or Steklov (or Newmann) boundary
conditions that would ensure C® regularity on €, we use instead the well established
Cl“-regularity results of Lieberman [15].

Theorem 6.6. For every h € C(9Q)\ S with [, ho1 > 0 there exists § = §(h) >
0 such that for any solution u of (6.3) we have

(i) A€ (M, A1 +6) implies u < 0 in 9,

(ii) A€ (A1 — 3, A1) implies u > 0 in Q.

A similar result can be stated for functions h € C(9Q) \ S with [, hep1 <0
using that u is a solution of (6.3)) if and only if —u is a solution of (6.3) with —h

instead of h.

Proof. (i) Assume by contradiction that for some h € C7(99)\ S with [, her >0
there is a sequence (A, u,) of solutions of with A = A\, A > A, Ay — A\
and uy,(z,) > 0 for some z,, € Q. First we claim that ||u,|x — +oo. Indeed
assume by contradiction that |u,|x < C for some constant C' > 0. Then there

exists a function v € X and a subsequence (u,) such that u, — w in X, strongly
in LP(Q), LP(99) and a.e. Since (Ap,uy) solves (6.3)) with A = \,,, we have

(J(un), w) = An (F(un), w) — (H(un), w) =0 (6.4)

for allw € X, where (H(u),v) := [, hv. Testing against w = u,, —u and using that
the operator J — AF — H satisfies the a(X)-condition we conclude that w, — u in
X. Hence passing to the limit in (6.4)) we obtain that u satisfies (6.3)) with A = Ay,
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in contradiction with the fact that h € L>(9Q) \ S. Thus we have proved that
|lun|lx — +oo. Dividing now by |[un|/% " we obtain

(B (un),w) =0

[Jn I
for all w € X, where v,, := Huuﬁ Passing again to the limit this last identity we
will get that v,, — 1 or v, — —¢; in X. Using that

<J(Un)aw> - )‘n<F(Un)7w> -

[Anfvn [P~ 200 + ﬁ”p* <

[[n |

we infer from Proposition that ||vn|leo + ||vnllc.00 < C, for some C' > 0 inde-
pendent of . Then, noticing that h(X,z,s) := An|s|P~2s + —22_ is of class C”

1
flun %

with v = inf{p — 1,70} and that ||h|[c+ < C for some constant independent of 7,
if follows by Theorem that [|vp[| i@ < C for some 0 < o < 1 and C >0
independent of n. Hence, up to a subsequence, the sequence v,, converges strongly
to either ¢; or —g; in C*(Q) for any fixed 0 < o/ < o < 1. Since uy(z,) > 0
then it must be that v, — ;. Then, for n large enough, we have u,, > 0 in Q and

it follows from Lemma [6.2] that

/ E < (- M) I (6.5)
0N un o0

p—1
s ([ -2y =san ([ ngplnli),
o un 89 ul,
—1

— [0 hep1 and [ htpl >0 by hypothesis, then for n large

Observe that

p\lun\l
Since [, hel o

enough f@Q u%i > 0 and we obtain from ) that A\, < Ay for n large, a
contradiction.

(ii) Assume now by contradiction that for some h € C7(9Q)\ S with [, he1 > 0,
there is a sequence (A, u,,) of solutions of (6.3]) with A = A\, and A, < A1, A\, — g
and there exists some x, € Q) with un(xn) S 0. Arguing as above, we prove that
the sequence v, := 22— — —¢; in C1*(Q) so u,, < 0 for n large. Since from one

lunllx
hand we have from the equation (taking w = u,) that

O — An) /BQ funl? < /m Bt (6.6)

and, from the other hand [, hiti— — — [5 hpr < 0 then [y, hu, < 0 for n
large enough, and we obtain a contradiction with . (]

7. APPENDIX: REGULARITY RESULTS ON WEAK SOLUTION

In this part, we focus our attention on the regularity of weak solutions of the
problem
Apu = |[ulP2u+ f(\ 2,u) in Q,
50U (7.1)
[Vu|P~ % = h(A,z,u) on 09,
In [6] and [I4] the authors studied the boundedness of weak solutions of a problem
similar to ([2.1). We want to extend here the results on boundedness use for a more
general non linearity f and h. We will assume that
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(A2) f:Rx QxR — Risa Carathéodory function and for a given bounded set
A C R there exists 1 < b < p* and By € L3(Q), By € L(Q) with 5 > ﬁ,
s> such that

o
p*—b
lfOsz,u)| < By + Bolul’™!, VA€A, ae 2€Q, YueR.

(A3) h: R x 90 xR — R is a Carathéodory function and for a given bounded
set A C R there exists 1 < a < p. , and 4; € L"(00Q), Ay € L"(0N) with
7> pp* r=s P=— such that

|h(\, z,u)| < A1 + Aslult, VA €A, ae. xe€d, YueR.

These estimates will allow us to get the C1*()-regularity of the weak solutions in
the case that g(},.,.) € C7, for some v > 0 uniformly for X in a bounded set (see
Theorem [7.2| below).

Proposition 7.1. Assume (A2), (A3) are satisfied. Let A be in bounded set A C R.
Then every weak solution u of lies in L>(0Q) N L>(Q) and, if ||ullq, +
lullgp,00 < Co, there exists a constant C' > 0 that depends on sup|A|, ||Bi]s,
| Bz2lls. [|A1ll700, l|A2llro0: P, a1, G2, o, b, Q, and Cy; where g1 = p* if p < N and
G =2pifp=N; @ =pif p< N and g2 = 2p if p = N; such that

lulloo + [Jt]|oc,00 < C.

Proof. If p > N, the answer follows from the classical Sobolev embedding X —
L*>(Q) and from the trace embedding X < L*°(9€). Thus it suffices to consider
the case p < N.

Let us first assume that the solution w is non-negative. Define the function
vp () := min{u(z), M} for M > 0. For k > 0 define ¢(z) = vﬁf“( ) then one has
Vo(x) = (kp+ 1)v]]ff[’VvM(x). It is clear that ¢ € X N L>(Q) N L>(9N) so we can
use ¢ as test function in to get

(kp+1)/ |Vu|p’2VquMv§ff’+/Qup’lvﬁ’H

/ FO z,u) vka / h()\,x,u)vf\fJr1
o9

which implies

(k’p—i—l)/ k+1|p / p(k+1)
it 1) Q|VUM [P+ QUM

1/5 / 1/s'
k —
< HB1||§(/ M( pH)d:E) + ||Bz\|s</(|u\b 11)];}[)“)8 da:) (7.2)
Q Q
7 (kp+1) ur a1 kpt1yr \ 7
+lAlron( [ vp ™ do) T+ Aallon( [ (Tt
o0 o0

By the trace and Sobolev’s embedding there exists C; > 0 such that
k k k k
37 g0 < CEllvag Hlixs a7 llar < CFlloag lix

Thus, letting M — +o0, using Fatou’s Lemma and Holder’s inequality we obtain

% pk;zl;rll) p]fﬁi%
||u||(k+1)q1 + Hu||(7€+1)q2,89 < (dliey) PO <||u||(kp+a)7",8ﬂ + ||UH(kp+b)s/
kptl kpt1

T o+ D +1))
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-1 ._ (kp+1)
where ¢~ = kD)7

constant(coming from Holder’s inequality). Let us set

< 1, d > 0 is some constant independent of k£ and ¢ > 0Ois a

—bs" qgg—ar’ q -5 qg—F’}
ps’ 1 pr s’ pr

€0 = llullgz.00 + llullg, &1 = llullgari+1).00 + l[ullg (e +1)-

k1 := min { @

Using Holder’s inequality and that
max{(kip +b)s’, (kip +1)5'} < qu,
max{(kip + a)r’, (kip + )7} < g2 < a1 -
It follows from that

€1 < (dbyy g, ) 7D (g + 1) 715D

Define ky = 1 and successively

k. := min { (kpn—1+1)q1 = bs" (kn—1+ 1)1 =8 (kn—1+1)g2 —ar’
n ps’ ’ ps’ ’ pr’ ’
(knfl + 1)Q2 — 7
pr )
Cp 1= Cknfk,,,y En 1= ||u||q2(kn+1)1aﬂ + ”u”‘h(k"—’_l)'

By iteration we obtain

€ < (dey) TniDs (Eu_y + 1) TntDs .

Observe that lim,,_, 4 k, = +00 and therefore u € L™(2) N L™(9N) for all n > 1.
To obtain an uniform bound for u, we define a new sequence

(I l)
n+1 = ql(tp + 7

where ¢ is any fixed number satisfying 1 <t < %. Let us show the new estimate

p
qn Tpp1 \ /P anqi/tp
(s + Tl 0) ™ < C ()™ (ullgn + el 00)™ " (74)

n

for some constant C > 0. Indeed, since we know that u € L*(Q) N L*(99, o) for all
i > 1, we can use u?/? as a test function to get from the right hand side of the

equation (7.1
R:/f()\,x,u)uq"/t—F/ g\, @, w)udn/t
Q 90

< /[31 + Boul Y ut/t +/ [A; 4 Apus Y udn/t
Q o0
’VL/t

S Dl(Hqu” + Hu||Qn7aQ)q

with Dy = || By + Bou’" Y|y + [|A1 + Asu® |y g0. We stress here that the con-
stant D; can be estimated from above by a constant depending on ||B1]|s, || Ba2ls,
lA1ll7 00, |Az|lre0 and on Cy; thanks to (7.4). Consequently C depends on the
aforementioned data. From the left hand side (the gradient term) of (7.1)) we obtain,
after using Sobolev’s embedding,

qn 1

q - dnt1o-
Cl%(% + ]?) p(Hu”(In-H + ||u||qﬂ,+1,39) o S L7
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where
L:/ \vuv’*zvuwu%/tw/ ulP~2u(ui/t).
Q Q

The equality R = L gives the estimate (7.4]). For simplicity we denote

Gpy1\ @
91’7, ‘= dn ln(HuHQn + ||qu",OQ)7 Bn = ln(C(T) )

By induction we obtain from (7.4) that 0,11 < By, + (q1/tp)6,,. Then

On < (a1/tp)"00 + Y (q1/tp) Bns. (7.5)
=1

A simple estimate gives
do < Z(fh/tp)iani < di(q1/tp)"
i=1

for some dy, d; > 0, and also we have ¢,, > da2(q1/tp)™ for some dy > 0. Then from

(7.5)

On < (00 + di)(q1/tp) < 0o + di
dn dn do

and hence
f0+d1
||u||Qn + HUHanaQ S e %

We conclude by letting n — 4o00. If u changes sign we can proceed in the same
way as in the previous case to show that u* € L>(Q). O

With Proposition [7.1} we can now use the Lieberman’s theorem on regularity in
[15] to get the Ct*—regularity on Q. We need here that both f(X,-,-) is bounded
in  and A(\,-,-) is bounded and Lipschitz continuous.

Theorem 7.2. Assume that f and h satisfy (A2), (A3) with By, Bs € L*(Q) and
Ay, Ay € L®(09). Assume further that h()\,-,-) € C7Y for some v > 0 uniformly for
X in a bounded set. Then, if u is a solution of problem with ||ullg, +1ul| .00 <
Cy then there exists a constant C > 0, depending on sup|A|, ||Billse, || B2l
lA1lloo,00, [[A2]lcc.00, P, @1, g2, a, b, 2, and Cy; and there exists 0 < a < 1
depending on the previous data, such that

||u|\cl,a(§) <C.
7.1. A priori estimates. In the following, we will prove that each of these three
norms, ||ul|ee,00, [|ullx and [Jul|o1,q () can be used to distinguish between solutions
(An, up,) with u,, having arbitrary small or large norm and A in bounded set of R.
Lemma 7.3. Assume (3.2)). Let {(An,un)}S2 be a sequence of solutions of (2.1))

with Ap in bounded subset of R. Then the following three statements are equivalent,
as n — +o00,
(1) [lunllsc,00 — 0;
(if) [Jun|[x — 0;
(iii) if g(A,-,-) € C7, for some v > 0 uniformly for A in a bounded set, then
Huanl,a(ﬁ) — 0.
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Proof. Clearly, it follows from the definitions of the different norms that (iii) implies
(i) and (ii).

We now prove that (i) implies (ii). In fact let (A, u,) be a sequence of solutions
for such that ||up|lco,00 — 0. Then it follows from the weak form of
with v = u,, that

Junlly = [ (Funl+ [ Junl
Q Q

— / funl? + / 92, )t (7.6)
o0 o0
< Cllunl®, g + ltnlloo 00 / (A1 + Asfun|*)
o0

which tends to zero. Hence the result follows. We notice that inequality (7.6]) does

not use condition ({3.2)).
We now prove that (ii) implies (i). In fact, let us @, := Tacfrs and from (12.1) we
obtain that

/|van|P*2vanw+/ | [P~ 200
Q Q

1
= >\/ | [Pt 0 + ﬁ/ g(A, @, tn)v,
o9 lunllx ™ Joo

for all v € X. This implies

A,I,Z Uu v
/\Vz|p72Vsz+/ |Z|p72zv:/\/ 2P 220 + Joa 9( !1n||x) 7
’ o o0 Jual%

for all v € X. It follows from conditions (A1) and that
lg(\, 2, 2)| < ar]z|P~ 4+ by |2/t VzeER
Indeed if a < p, then
g\, x,2) <C|z|P~t VzeR
if @ > p, then
g\ 2, zl|un | x)|

i 1 s o Y E Rl (7
[[unllx

<ay)z|P7t by < ey +diblz|*T!

for some constants ci,d; independent of n.
It follows from Proposition that @, € L®°(J9) and there exists a constant
£ > 0, k which does not depend on n, such that ||4,||c,00 < . Then

[tnlloo,00 < Kllunlx, (7.7)

and the result follows.
To show that (i) implies (iii), let us set y, := Ta5o Which implies that
lynlloco.00 = 1. Since (A, up) solves problem (2.1f), then we have

_Apyn + ‘yn|p_2yn =0 in Qa

% _ g<>\na$7un)

ov p—1

|vyn|p_2
||U"ﬂ Hoo,aﬂ

)\n|yn|p_2yn + n 09,
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Set

g(>\n7 Z, Un)

—1
||UnH§o,aQ

hy, 1= )\n|yn|p72yn + n 0f)

then we have

_ A, T, U Up [P71 Ay T, U
||hnHoo,BQ S sup |>\n||yn|p 1 + |g( U ’_171)| | n|p,1 S c1 + dlg( = ,_1n)
|un|? unl%5 50 |un|P

for some constant C4,d; > 0 independent of n. We deduce from that || ||leo,00
is uniformly bounded and then from Theorem we conclude that y,, € C1*(Q)
and there exists a constant C' > 0 such that ||y, /1.0 @) < C and the result follows.

The case (ii) implies (iii). Indeed, using (2) we have that @, := ”UUTTHX is bounded
in L*°(99Q) by a constant independent of n. Therefore it follows from Theorem
that i, € C*(Q) and there exists a constant C' independent of n such that

||ﬂn|‘cl,a(§) <C (7.8)
and we obtain the desired result. O

As in the previous lemma, we prove, in the following, similar results when
[[ullx — o0

Lemma 7.4. Assume that g satisfies {4.1). Let {(An,un)}2; be a sequence of
solutions of problem (2.1)) such that A, is a bounded subset of R. Then the following
three statements are equivalent, as n — +oo

(i) HunHooaQ — +00;
(i) [unllx — +oo;
(iii) if g(A,-,-) € C7 for some v > 0 uniformly for X in a bounded set then
HuanLa(ﬁ) — +00.

Proof. That (i) and (ii) imply (iii) follows directly from the definition of these
norms.

To prove that (i) implies (ii), assume, by contradiction, that the sequence {u,}22 ;
contains a bounded subsequence, still denoted in the same way, which is bounded
in X. Then it follows from Sobolev’s embedding that ||uy,| a1 (o) and [[un||Le(60)
are bounded by some constant independent on n. From results on regularity (see
Proposition we have that u, € L*°(09Q) and there exists a constant C > 0
independent of n such that ||u,||c,00 < C in contradiction with (i).

Now we prove that (iii) implies (i). As in previous case, assume, by contradic-
tion, that the sequence {u,}52 ; contains a bounded subsequence in L (9€2), still
denoted in the same way. Then it follows from that u, is bounded in X. From
Theorem there exists a constant C' such that [[un | c1.e@) < C from where we
obtain a contradiction. O
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