
PERSONALIZED AND COLLABORATIVE CLUSTERING OF SEARCH

RESULTS

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Dragos Anastasiu, B.A.

San Marcos, Texas
August 2011

CO PYRIG H T

by

Dragos Anastasiu

2011

FAIR USE AN D A U T H O R ’S PERMISSION STATEM ENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgment. Use of
this material for financial gain without the author’s express written permission is
not allowed.

Duplication Permission

As the copyright holder of this work I, Dragos Anastasiu, authorize duplication of
this work, in whole or in part, for educational or scholarly purposes only.

\

ACKN O W LED G EM EN TS

Many thanks go to Dr. Byron J. Gao, without whose guidance and inspiration

I would not be involved in research. I would like to thank Dr. Anne H.H. Ngu and

Dr. Yijuan Lu for their constant support and encouragement during the thesis

process. I would also like to thank Dr. David Buttler from Lawrence Livermore

National Laboratory, who gave me invaluable conceptual and implementation

insight and feedback. Finally, I wish to thank my family for their patience and

understanding during my many late nights at the office the past year or two.

This manuscript was submitted on June 22, 2011.

v

ACKNOWLEDGEMENTS .. v

LIST OF T A B L E S .. viii

LIST OF F IG U R E S ... ix

ABSTRACT .. x

CHAPTER

I. INTRODUCTION.. 1

IL B ACK G RO U N D .. 7

2.1 Web Search................................. .. 8

2.2 Improving Search Through Personalization 10

2.3 Why Personalized and Collaborative Clustering.............................. 16

2.4 Improving Search Through Presentation... 20

III. CLU STERIN G W IK I... 26

3.1 O verv iew ... 26

3.2 Fram ework.. 31

3.2.1 Query Processing... 31

3.2.2 Cluster E diting................. .. 38

IV. IMPLEMENTATION... 45

4.1 Query Processing... 45

4.2 Cluster E diting.. 55

V. EVALUATION... 59

5.1 Methodology and M etr ics .. 59

TAB LE OF C O N T E N T S

Page

vi

5.2 System Evaluation Results .. 67

5.3 Utility Evaluation R esults... 72

VI. CLUSTERINGWIKI2... 77

6.1 O verv iew ... 78

6.2 Fram ework.. 83

6.2.1 Query Processing... 84

6.2.2 Cluster and Result Editing .. 89

6.3 Cluster Aggregation Discussion... 100

VII. CONCLUSION.. 104

vii

LIST OF TABLES

5.1 Efficiency evaluation using Yahoo! data s o u r c e .. 69

5.2 Efficiency evaluation using New York Times data so u rce 70

Table Page

viii

LIST OF FIG U R ES

1.1 Snapshot of ClusteringWiki.. 6

3.1 Main architecture of ClusteringWiki... 27

3.2 Example cluster tree.. 39

4.1 ClusteringWiki database schema... 51

5.1 Efficiency evaluation.. 71

5.2 Utility evaluation on Google and New York Times data sou rces................ 73

6.1 Snapshot of ClusteringWiki2.. 79

6.2 ClusteringWiki2 database schema... 81

6.3 Example cluster tree.. 90

Figure Page

IX

AB STR ACT

PERSONALIZED AND COLLABORATIVE CLUSTERING OF SEARCH

RESULTS

by

Dragos Anastasiu, B.A.

Texas State University-San Marcos

August 2011

SUPERVISING PROFESSOR: BYRON J. GAO

Organizing and presenting search results plays a critical role in the utility of

search engines. Due to the unprecedented scale of the Web and diversity of search

results, the common strategy of ranked lists has become increasingly inadequate,

and clustering has been considered as a promising alternative. Clustering divides a

long list of disparate search results into a few topic-coherent clusters, allowing the

user to quickly locate relevant results by topic navigation. While many clustering

algorithms have been proposed that innovate on the automatic clustering procedure,

I introduce Clustering Wiki, the first prototype and framework for personalized

clustering that allows direct user editing of the clustering results. Through a Wiki

x

XI

interface, the user can edit and annotate the membership, structure and labels of

clusters for a personalized presentation. In addition, the edits and annotations can

be shared among users as a mass-collaborative way of improving search result

organization and search engine utility.

CH APTER I

INTRODUCTION

We live in the information age. Billions of documents on all topics imaginable are

connected and accessible on the Web through the simple concept of the hyperlink.

Yet the sheer size of the Web makes browsing to locate desired information a

daunting task. Web search attempts to alleviate this problem by connecting short

phrase queries to relevant documents on the Web, which are generally displayed in a

flat ranked list.

Every day millions of people search the Web, unaware of the complexity

involved in matching their query with the information they seek. They hope that

the exact search results they are looking for will be displayed as soon as they

execute their query. However, queries are inherently ambiguous and search results

are often diverse with multiple senses. With a list presentation, the results on

different sub-topics of a query will be mixed together. The user has to sift through

many irrelevant results to locate those relevant ones.

With the rapid growth in the scale of the Web, queries have become more

ambiguous than ever. For example, there are more than 20 entries in Wikipedia for

different renown individuals under the name of Jim Gray, including a computer

1

2

scientist, a diplomat, a linguist, a poet, a turbine design engineer, a filmmaker, and

so on. Suppose we intend to find information about Jim Gray, the Turing Award

winner, we can issue a query of “Jim Gray” in Yahoo!1. For this extremely famous

name in computer science, only 2 are relevant in the top 10 results.

The way search results are organized and presented has a direct and significant

impact on the utility of search engines. While the flat ranked list presentation is

acceptable for homogeneous search results, the diversity of search results for most

queries has increased to the point that we must consider alternative presentations

by providing additional structure to flat lists so as to effectively minimize browsing

effort and alleviate information overload [Carpineto et al., 2009; Hearst and

Pedersen, 1996; Pirolli et al., 1996; Zamir and Etzioni, 1998]. Over the years

clustering has been accepted as the most promising alternative.

Clustering is the process of organizing objects into groups or clusters that

exhibit internal cohesion and external isolation. Based on the common observation

that it is much easier to scan a few topic-coherent groups than many individual

documents, clustering can be used to categorize a long list of disparate search

results into a few clusters such that each cluster represents a homogeneous sub-topic

of the query. Meaningfully labeled, these clusters form a topic-wise non-predefined,

1 Other choices of search engine in this example would not change the validity of the observations.

Also note that search results and their ranks may change over time.

3

faceted search interface, allowing the user to quickly locate relevant and interesting

results. Evidence shows that clustering improves user experience and search result

quality [Manning et ah, 2008].

Given the significant potential benefits, search result clustering has received

increasing attention in recent years from the communities of information retrieval

(IR), Web search, and data mining. Many clustering algorithms have been proposed

[Hearst and Pedersen, 1996; Kummamuru et al., 2004; Lee et ah, 2009; Pirolli et ah,

1996; Wang and Zhai, 2007; Zamir and Etzioni, 1998, 1999; Zeng et al., 2004]. In

the industry, well-known cluster-based commercial search engines include Clusty

(www.clusty.com), iBoogie (www.iboogie.com) and CarrotSearch

(carrotsearch.com). Carrot2 (www.carrot2.org) is an open source clustering engine

distributed under the BSD license.

Despite the high promise of the approach and a decade of endeavor,

cluster-based search engines have not gained prominent popularity, evident by

Clusty’s Alexa rank [Iskold, 2007]. This is because clustering is known to be a hard

problem, and search result clustering is particularly hard due to its high

dimensionality, complex semantics and unique additional requirements beyond

traditional clustering.

As emphasized in [Wang and Zhai, 2007] and [Carpineto et al., 2009], the

primary focus of search result clustering is NOT to produce optimal clusters, an

http://www.clusty.com
http://www.iboogie.com
http://www.carrot2.org

objective that has been pursued for decades for traditional clustering with many

successful automatic algorithms. Search result clustering is a highly user-centric

task with two unique additional requirements. First, clusters must form interesting

sub-topics or facets from the user’s perspective. Second, clusters must be assigned

informative, expressive, meaningful and concise labels. Automatic algorithms often

fail to fulfill the human factors in the objectives of search result clustering,

generating meaningless, awkward or nonsense cluster labels [Carpineto et al., 2009],

In this thesis, I explore a completely different direction in tackling the problem

of clustering search results, utilizing the power of direct user intervention and

mass-collaboration. I introduce ClusteringWiki, the first prototype and framework

for personalized clustering that allows direct user editing of the clustering results.

This is in sharp contrast with existing approaches that innovate on the automatic

algorithmic clustering procedure.

In ClusteringWiki [Anastasiu et al., 2011], the user can edit and annotate the

membership, structure and labels of clusters through a Wiki interface to personalize

their search result presentation. Personalization provides direct and immediate

benefit to the user by reducing user effort spent locating desired results. Edits and

annotations can be implicitly shared among users as a mass-collaborative way of

improving search result organization and search engine utility. This approach is in

the same spirit as other current trends in the Web, like Web 2.0, semantic web,

5

personalization, social tagging and mass collaboration.

In social tagging, or collaborative tagging, users annotate Web objects, and

such personal annotations can be used to collectively classify and find information.

Clustering Wiki extends conventional tagging by allowing tagging of structured

objects, which are clusters of search results organized in a hierarchy.

Clustering algorithms fall into two categories: partitioning and hierarchical.

Regarding clustering results, however, a hierarchical presentation generalizes a flat

partition. Based on this observation, Clustering Wiki handles both clustering

methods smoothly by providing editing facilities for cluster hierarchies and treating

partitions as a special case. In practice, hierarchical methods are advantageous in

clustering search results because they construct a topic hierarchy that allows the

user to easily navigate search results at different levels of granularity.

Figure 1.1 shows a snapshot of ClusteringWiki2. The left-hand label panel

presents a hierarchy of cluster labels. The right-hand result panel presents search

results for a chosen cluster label. A logged-in user can edit the current clusters by

creating, deleting, modifying, moving or copying nodes in the cluster tree. Each edit

will be validated against a set of predefined consistency constraints before being

stored.

Designing and implementing ClusteringWiki pose non-trivial technical

2 dmlab. cs. txst ate. edu /ClusteringWiki /.

6

' & OustcrmgWiki - Windows Internet Explora’

V J * 5 'kr.-^b t > twtate.edu \ u?r.e«n^V fci'mde» htmi’endTent s i M Googïe p -

W dorrte * & ClusteringWiki

Search About Welcome. David Logout Help *

Clustering
W iki Sergey Brin

Top 50 of 53500 rwuiti
Source: Goo®*

Show duster edits

[▼ ; Results: 5-0 [7] Algorithm: frequent phrase Iswa

Show execution times Ö

-0

511/50)
s *zà Biography (13}*

Profile (4) *
j -E d uc a t i on (4} *
: - 3 rntemel entiepreneur (3) *

■3 Other (2) *
Ï x3 Google co-founder ̂18'
; ■ # Larry Page (13} "

:• -<J Stanford (S) *
■■■■■& Other (1)

s= Ö Media (13) *
■M Papers (2> *
3 News (7)*
-M Talks (4)*
3 Photos (5)*

ì Google decisions (0) *
i - 3 global impact (3)A

S Google s China (3) *
3 Other (2) *

; Other:!)

1 Sergey B rin - Wikipedia, the free encyclopedia*
Sergey Mikhaylovich Brin (Russian:; born August 21,1973} is a Russian American computer scientist and
industrialist who: ...
http ://en wikipadia org/wiki/Sergey 9nn

14 Sergey B rin: Executive Profile & Biography • BusinessWeek*
Read the full executive profile of Sergey Brin. Find Sergey Brin’s salary, education, stock options, career
history & more biography.
http//Investing businessweek com/bustnessweek/research/stocks/people/pftrsori asp?
personiG=534604&ticker=GOOG US

31. Sergey Brin: Biography from Answers com *
Sergey Brin . Computer Scientist/Business Personality Born 21 August 1973 Birthplace Moscow. Russia
Best Known As: Co-founder of Google Sergey.
http hwvsrw answers com/tOjKcrsnrgey-bnn

37 Sergey Brin - News. Articles. Biography, Photos - WSJ com *
Profile & bio for Sergey Brin - All WSJ coverage on Sergey Brin, induding the latest news, aitides, quotes,
otog posts, photos, video and more.
http //topics wsi.com/pers(m/B/sergey-brin/584

Figure 1.1: Snapshot of ClusteringWiki.

challenges. User edits represent user preferences or constraints that should be

respected and enforced when the same query is next issued. Query processing is

time-critical, thus efficiency must be given high priority in maintaining and

enforcing user preferences. Moreover, complications also come from the dynamic

nature of search results that constantly change over time.

Cluster editing takes user effort. It is essential that such user effort can be

properly reused. ClusteringWiki considers two kinds of reuse scenarios, preference

transfer and preference sharing. The former transfers user preferences from one

query to similar ones, e.g., from “David J. Dewitt” to “David Dewitt.” The latter

aggregates and shares clustering preferences among users. Proper aggregation allows

users to collaborate at a mass scale and “vote” for the best clustering presentation.

C H A P T E R II

B A C K G R O U N D

The World Wide Web was created in 1990 as a result on Sir Tim Barners-Lee’s

vision for a decentralized system for information dissemination [Zimmerman, 2000].

Since then it has grown exponentially both in terms of number of users and linked

documents. Today there are over 17.47 billion estimated pages1 on the Web, not

including documents hidden behind web forms or ftp servers (hidden web

documents). This explosion in both the size and depth of the Web makes

“browsing” as the main means of finding Web information obsolete.

The research community has been active over the past several decades,

investigating new methods of analyzing, organizing, and presenting Web documents,

with the goal of minimizing the time spent between executing the user query and

filling the information need. Below I present some of the related research which

either influences or enables the work in this thesis.

Retrieved from www.worldwidewebsize.com on Tuesday, 14 June, 2011

7

http://www.worldwidewebsize.com

8

2.1 Web Search

Information retrieval (IR) aims to retrieve, from a large collection, those materials

(usually documents) that satisfy an information need [Manning et al., 2008]. When

applied to the Web, IR focuses on free-text documents and multimedia files, and is

better known as Web search.

Vector Space Model. The vector space model (VSM), an algebraic model for text

document representation coined by Gerard M Salton [Salton et al., 1975], was first

used in the SMART [Salton, 1971] information retrieval system. In the vector space

model the query and each indexed document are represented by vectors of term

weights,

A = C

where wl:) represents the weight of the jth term in document i.

Initially, document term frequency (tf) was recommended as a good term

weighting scheme. In 1972, Karen Sparck Jones introduced a weighting scheme

based on collection term specificity, the inverse document frequency (idf). [Salton

et al., 1975] used a combination of the two schemes, defining the term

frequency-inverse document frequency (tf-idf) weighting scheme, in which

w,hj tfi,j x log P I
\ {i'£ D \ j £ d'}\'

where t fhJ is the number of times term j appears in document i, \D\ is the number

of documents in the collection, and \{d! G D | j G d'}\ represents the number of

collection documents containing the term j.

Various functions have been developed for computing the similarity of two

documents defined by their document vectors d\ and d2, including the Jaccard index

and the Tanimoto coefficient. [Salton et al., 1975] suggested using an inverse

function of the angle between the two document vectors, after normalizing all vector

lengths to one. The cosine similarity he defined, which is also often used in

document clustering algorithms [Tan et al., 2005], can be derived from the

Euclidean dot product formula,

9

di ■ d2 = ||di|| ||d2|| cos(0),

where 6 is the angle between the normalized term vectors of documents d\ and d2.

Therefore,

similarity = cos (9)
d\ • d2 S ?= i dij x d2,:

ii* ii ii*n x

ClusteringWiki relies on external search engines and on Apache Lucene2 to

retrieve and rank appropriate results for user queries. The process followed by

Google or Yahoo! is unknown. Lucene, however, indexes documents locally and

uses, among others, the vector space model and cosine similarity to rank a retrieved

set of results. In addition to their use in retrieving initial search results,

2http: / /lucene.apache.org/

10

ClusteringWiki uses the vector space model and cosine similarity to compute cluster

cohesion in two of its implemented k-means-based clustering algorithms.

2.2 Improving Search Through Personalization

User queries are short [Jansen et al., 2000] and generally ambiguous [Krovetz and

Croft, 1992], causing many of the retrieved results to be irrelevant for a given search

intent. [Lawrence, 2000] suggested that searcher and query context could be used to

better direct search, producing more relevant results or raking those relevant results

higher in the returned list.

Personalized search. Personalized search algorithms use additional searcher

information to return a personalized list of results in response to a query. For

example, if an entomologist searches for “fly southwest” , he would rather find

species of diptera found in the south-west, whereas someone else may wish to find

the web site for Southwest Airlines3.

Algorithms that focus on the searcher context generally build a long-term or

short-term user profile for the searcher. The user profile is built either explicitly, by

asking users to provide preferences [Chirita et al., 2005], or implicitly [Pretschner

and Gauch, 1999]. Since most users do not provide explicit preference information

[Carroll and Rosson, 1987], most research has been focused on implicit user profile

3 www. southwest. com

11

generation.

Some personalized search algorithms build user profiles as ontology-based

concept hierarchies [Chaffee and Gauch, 2000; Chirita et al., 2005; Gauch et al.,

2003]. Others use lists of terms extracted from previous search contexts [Sugiyama

et ah, 2004; Tan et ah, 2006]. Once built, user profiles can be used to refine the

executed query (e.g. using relevance feedback) [Chirita et ah, 2007; Joachims et ah,

2005; Kelly and Teevan, 2003; Ruthven and Laimas, 2003; Teevan et ah, 2005], to

guide the result gathering process via a personalized version of the PageRank

algorithm [Haveliwala, 2002; Jeh and Widom, 2003; Qiu and Cho, 2006; Sarlos
v

et ah, 2006], or to re-rank non-personalized retrieved results [Speretta and Gauch,

2005]. [Dou et ah, 2009] pose that personalized search is only effective for some

queries and propose an algorithm for identifying those personalization-prone

queries. [Wen et ah, 2009] provides an extensive survey of personalized Web search.

Similar to personalized search algorithms that re-rank results, ClusteringWiki

personalizes the view to the results list. However, the personalization is applied to

the clustering of search results, not altering the order or make-up of the result set.

Through selecting a personalized cluster label, the searcher is able to quickly review

only those results of interest to them.

In general, personalization in ClusteringWiki is explicit. The user edits the

labels and membership of the clustering of search results formed in response to a

12

query. The user “profile” is made up of cluster edits performed by the user in

response to one or more queries. When a similar enough query whose search result

cluster has been personalized can be found, the present query is implicitly

personalized by applying the similar query’s edits (preference transfer).

Collaborative search. Personalized Web search algorithms cannot always be

implemented efficiently for large number of users, due to the space requirements for

off-line storage of user profiles or Personalized PageRank Vectors (PPV). Some

algorithms, which fall under the umbrella of (implicit) Collaborative Search,

personalize Web search using representative user profiles for groups of like-minded

users. This approach also alleviates the “cold-start” problem of new users without

well-defined profiles. Collaborative Filtering (CF) algorithms, made popular by

their use in recommendation systems, are applied in [tao Sun et al., 2005; Xue

et al., 2009] to match an individual user with a group profile. [Dalai, 2007] extends

community context based personalization with explicit social search and cooperative

search methods.

Research has shown that people value information provided by family, friends

and other collaborators [Wilson, 2006]. A survey conducted in [Morris, 2008]

highlights the fact that users often engage in cooperative search behaviors. This

type of (explicit) collaborative search can either be distributed [Morris and Horvitz,

2007], where users interact through electronic means, or co-located [Amershi and

13

Morris, 2008]. [Twidale et al., 1997] describes a remote asynchronous collaborative

search model in which both the search process and product are captured and

communicated.

Collaboration in ClusteringWiki is a result of implicit aggregation of

community preferences for a given search result cluster tree. Unlike collaborative

search approaches that apply personalization of a community profile,

ClusteringWiki uses preferences from any user that has edited the cluster tree for

the executed query, irrespective of that user profile’s similarity to the searcher. In

fact, community preferences are applied for logged-out searchers, whose profiles are

not known. However, the mass-collaboration editing effort of logged-in users is

utilized “free of charge” by logged-out users.

Social search. Search is often a social collaborative experience. Social search

extends personalized and collaborative search by giving special consideration to

content created or touched by users in the searcher’s social graph. Example forms of

user contributions include shared bookmarks, tagging of content with descriptive

labels, and even explicit assistance through chat or email. Currently there are more

than 40 such people-powered or community-powered social search engines, including

Eurekster Swiki4, Mahalo5, Wikia6, and Google social search7. [Evans and Chi,

2008] model social search behavior through a survey of 150 users on Amazon’s

Mechanical Turk.

In ClusteringWiki statistically significant paths are chosen from community

preferences without special consideration for a searcher’s social network. Therefore,

the ClusteringWiki collaboration strategy is distinct from that employed in social

search.

Tagging / Social Annotations. Tagging allows users to associate objects with

tags, generally keywords or short phrases, as a means of annotating and categorizing

them. While users are primarily interested in tagging for their personal use, tags in

a community collection tend to stabilize into power law distributions [Halpin et al.,

2007]. Collaborative tagging systems leverage this property to derive folksonomies

and improve search [Xu et al., 2008]. [Sigurbjornsson and van Zwol, 2008] and [Song

et al., 2008] have studied tag suggestion as a means to minimize user tagging effort.

[Zollers, 2007] has shown that most user tags are phrases rather than single words.

In ClusteringWiki, users tag clusters to organize search results, and the tags

can be shared and utilized in a similar way as in collaborative tagging. Since

4www.eurekster.com
5www.mahalo.com
6answers. wikia.com/wiki /Wikianswers
7googleblog.blogspot.com/2009/10/introducing-google-social-search-i.html

14

http://www.eurekster.com
http://www.mahalo.com

15

clusters are organized in a hierarchy, ClusteringWiki extends conventional tagging

by allowing tagging of structured objects. Similar to tag suggestion in social

tagging, the base clustering algorithm in ClusteringWiki provides suggested phrases

for tagging clusters. While social tagging is leveraged to build a concept hierarchy

(folksonomy) from the bottom up, ClusteringWiki automatically generates

top-down concept hierarchy sections editable by the searcher.

Prototypes that allow user editing and annotation of search results exist, e.g.

U Rank by Microsoft8 and Searchwiki by Google9. Rants [Gao and Jan, 2010]

implemented a prototype with additional interesting features including the

incorporation of both absolute and relative user preferences. Similar to

ClusteringWiki, these works pursue personalization as well as a mass-collaborative

way of improving search engine utility. The difference is that they use the

traditional flat list, instead of cluster-based, search interface.

Semantic Web. Another popular use of annotations is to assign machine readable

meaning to words and phrases in free-text. Semantic annotations, as they are called,

are metadata attached to parts of text which assign them formal semantics

(knowledge), often though ontology references [Horrocks, 2008]. As first envisioned

by Sir Tim Barners-Lee in 2001 [Berners-Lee et al., 2001], semantic annotations

8research.microsoft.com/ en-us/ projects/urank
9googleblog.blogspot.com/2008/ll/searchwiki-make- search- your-own.html

16

would allow the creation of intelligent Web search agents capable of automatically

interacting with data and other agents to provide complex and specific answers to

our queries. This futuristic concept of the Web has been dubbed the Semantic Web.

The task of on-demand integration of data, without participation by humans,

cannot be completed without semantic annotation of the current Web content. As a

result, mass-collaborative projects have been started, such as Web Ontology

Language (OWL), to create ontologies which span the Web and to semantically

annotate Web content.

The scope of ClusteringWiki and the Semantic Web are the same: to improve

search performance. However, ClusteringWiki provides direct answers to the query

given, without intelligently deducing and retrieving answers to subsequent follow-up

questions, as a Semantic Web agent would do. The mass-collaborative effort to

build semantic Web ontologies is similar to the ClusteringWiki collaborative effort

which builds annotation hierarchies.

2.3 W hy Personalized and Collaborative Clustering

The initial goal of the World Wide Web was to make information readily available

to whomever wished and was authorized to retrieve it [Zimmerman, 2000]. Two

decades later, the Web is so much more: a place for social gathering, self-expression,

entertainment, business, etc.

17

Web 2.0. Web 2.0 ushered in a new era in Internet publishing. It changed the web

from a medium where information was made available for users to consume to one

where users work together to create and share information. Two themes stand out

at the core of Web 2.0: the Web as Platform, and users control data. Web as

platform means applications are built with Web community authorship in mind.

Powerful platforms like Amazon, Wikipedia, eBay, YouTube, Twitter, and Facebook

harness the collective intelligence of the masses to build services [O’Reilly and

Battelle, 2009]. While their actions benefit all in the community, individual authors

are in charge of and responsible for their own content.

ClusteringWiki is built on the same Web 2.0 principles. It works to improve

search for the Web community through the efforts of many individual authors who

manage their own search result cluster edits.

Mass collaboration. One of the effects of the Web 2.0 movement has been mass

collaboration. A mass collaboration system uses a large number of people to help

solve a problem. User collaboration can be either implicit, e.g. playing an online

game which collaboratively is used for optical character recognition [von Ahn and

Dabbish, 2004], or explicit. As defined by [Doan et al., pear], users of explicit mass

collaboration systems expressly provide data or services by:

-• Evaluating. Users evaluate products, services, or other users. (Netflix,

Amazon)

• Sharing. Users share knowledge, products, services, etc. (Wikinews,

Technorati, [Bernardo, 2007])

• Networking. Users form connections with other users, building a graph which

is exploited to provide services. (Twitter, Facebook)

• Building artifacts. Users coordinate efforts to build a product. (Linux,

Hadoop)

• Executing tasks. Users execute sub-tasks, providing a community solution for

a larger task. (Mechanical Turk)

Mass collaboration has been applied to many aspects of the Web search

problem. Wikia Search10 11 Alpha, launched January 7, 2008, used the power of

mass-collaboration to develop and popularize open-source search engine software.

The site has been replaced by WikiAnswers11, a Wikia site allowing users to ask

questions, in lieu of traditional Web search, which are then answered by the

community. The Eurekster swicki12 is a customized, community-driven social search

portal. Swiki owners can customize sites the search engine should crawl (whitelist),

sites it should ignore (blocklist), and can even manually add new search results or

comment on existing ones. Google SearchWiki13 allows users to customize their

10http: / /search, wikia.com
11 ht tp: / / wiki. answers .com/
12 http: / / www .eurekster.com
13http://googleblog.blogspot.com/2008/ll/sear chwiki-make-search-your-own.html

18

http://googleblog.blogspot.com/2008/ll/sear

Google search results by ranking, removing, or adding comments to them.

Comments are public and thus shared with the community. [Gao and Jan, 2010]

describes the first academic system for search result rank editing and provides

capabilities for sharing edits within the searcher’s social network. Freebase14 is an

open, searchable, community-driven repository of structured data. Mass

collaboration roles in the Freebase project include data contributors and curators,

schema builders, and application developers.

Search is a problem that cannot be perfectly solved by machines.

ClusteringWiki enables users to author new creative content by editing cluster

hierarchies, and the efforts of individual users are shared with the community as a

collaborative effort to improve search performance. It can thus be categorized as a

sharing explicit mass collaboration system. A challenging task when designing a

mass collaboration system is identifying portions of the final task that can be

performed by a crowd and finding ways to combine the individual user results.

ClusteringWiki treats cluster edits independently and uses a novel root-to-leaf node

path approach to aggregate significant edits from multiple users.

19

14 http: / / www. freebase. com /

20

2.4 Improving Search Through Presentation

Given its exponential growth, the Web likely contains documents on many

sub-topics within any given topic. Additionally, user’s queries are often short and

ambiguous, vulnerable to the problem of polysemy. Given multiple senses associated

with the query, how can we know which one the searcher has in mind? While some

have attempted to answer this question through analyzing the searcher’s context

(e.g. Personalized Search), diversification and search result clustering employ

alternate presentations of the search results to let the user quickly choose thier

intended meaning.

Diversification. Diversification works under the premise that the user’s search

intent cannot be fully known and instead spreads results with different

characteristics throughout the search result list. This approach aids users exploring

different themes within a topic. Results can be diversified based on their similarity

to each other [Zhai et al., 2003; Zhang and Hurley, 2008], by following the maximal

marginal relevance (MMR) paradigm [Carbonell and Goldstein, 1998], based on

novelty [Clarke et ah, 2008], or based on topic coverage [Agrawal et al., 2009;

Carterette and Chandar, 2009]. Personalized Web search approaches are also

applied to the diversification problem in [Radlinski and Dumais, 2006; Rafiei et ah,

2010]. While most diversification methods focus on re-ranking results, [Santos et ah,

2010] explores query reformulations to retrieve diverse results for a given topic.

[Drosou and Pitoura, 2010] surveys the field of search result diversification.

While diversification tries to provide users with results from many query

senses in the same page, ClusteringWiki takes a different approach, providing label

hierarchies for these senses and allowing the user to filter results pertaining to a

chosen sense. Diversification can be detrimental for informational queries, as users

may have to chase sub-topic results through many result pages before finding what

they are looking for. ClusteringWiki combats this problem by “gathering” sub-topic

results and allowing the user to find them easily.

Clustering. Clustering is the process of organizing objects into groups or clusters

so that objects in the same cluster are as similar as possible, and objects in different

clusters are as dissimilar as possible. Clustering algorithms fall into two main

categories, partitioning and hierarchical. Partitioning algorithms, such as fc-means

[MacQueen, 1967], produce a flat partition of objects without any explicit structure

that relate clusters to each other. Hierarchical algorithms, on the other hand,

produce a more informative hierarchy of clusters called a dendrogram. Hierarchical

algorithms are agglomerative (bottom-up) such as AGNES [Kaufman and

Rousseeuw, 1990], divisive (top-down) such as DIANA [Kaufman and Rousseeuw,

1990], or use hybrid clustering approaches [Zhao and Karypis, 2002].

21

Clustering in IR. As a common data analysis technique, clustering has a wide

22

array of applications in machine learning, data mining, pattern recognition,

information retrieval, image analysis and bioinformatics [Everitt et al., 2001; Jain

and Dubes, 1988]. In information retrieval and Web search, document clustering

was initially proposed to improve search performance by validating the cluster

hypothesis, which states that documents in the same cluster behave similarly with
o

respect to relevance to information needs [Rijsbergen, 1979].

In recent years, clustering has been used to organize search results, creating a

cluster-based search interface as an alternative presentation to the ranked list

interface. The list interface works fine for most navigational queries, but is less

effective for informational queries, which account for the majority of Web queries

[Broder, 2002; Rose and Levinson, 2004]. In addition, the growing scale of the Web

and diversity of search results have rendered the list interface increasingly

inadequate. Research has shown that the cluster interface improves user experience

and search result quality [Hearst and Pedersen, 1996; Kaki, 2005; Tombros et al.,

2002; Zamir and Etzioni, 1999].

Search result clustering. One way of creating a cluster interface is to construct a

static, off-line, pre-retrieval clustering of the entire document collection. However,

this approach is ineffective because it is based on features that are frequent in the

entire collection but irrelevant to the particular query [Carpineto et al., 2009;

Griffiths et al., 1986; Salton, 1971]. It has been shown that query-specific, on-line,

23

post-retrieval clustering, i.e., clustering search results, produces much superior

results [Hearst and Pedersen, 1996].

Scatter/Gather [Hearst and Pedersen, 1996; Pirolli et al., 1996] was an early

cluster-based document browsing method that performs post-retrieval clustering on

top-ranked documents returned from a traditional information retrieval system. The

Grouper system [Zamir and Etzioni, 1998, 1999] (retired in 2000) introduced the

well-known Suffix Tree Clustering (STC) algorithm that groups Web search results

into clusters which are labeled by phrases extracted from snippets. It was also

shown that using snippets is as effective as using whole documents. Carrot2

(www.carrot2 .org) is an open source search result clustering engine that utilizes

STC as well as Lingo [Osinski and Weiss, 2005], a clustering algorithm based on

singular value decomposition.

Other related work from the Web, IR and data mining communities exists.

[Zeng et ah, 2004] explored supervised learning for extracting meaningful phrases

from snippets, which axe then used to group search results. [Kummamuru et ah,

2004] proposed a monothetic algorithm, where a single feature is used to assign

documents to clusters and generate cluster labels. [Wang and Zhai, 2007]

investigated the use of past query history in order to better organize search results

for future queries. [Lee et al., 2009] studied search result clustering for object-level

search engines that automatically extract and integrate information on Web objects.

http://www.carrot2.org

24

[Carpineto et al., 2009] surveyed Web clustering engines and algorithms.

Methods of organizing search results based on text categorization are studied

in [Chen and Dumais, 2000; Dumais et al., 2 0 0 1]. In this work, a text classifier is

trained using a Web directory, and search results are then classified into the

predefined categories. The authors designed and studied different category

interfaces and they found that category interfaces are more effective than list

interfaces. However predefined categories are often too general to reflect the finer

granularity aspects of a query.

While all these methods focus on improvement in the automatic algorithmic

procedure of clustering, ClusteringWiki employs a Wiki interface that allows direct

user editing of the clustering results.

Clustering with user intervention. In machine learning, clustering is referred to

as unsupervised learning. However, similar to ClusteringWiki, there are a few

clustering frameworks that involve an active user role, in particular, semi-supervised

clustering [Basu et al., 2004; Cohn et al., 2009] and interactive clustering [Balcan

and Blum, 2008; Bekkerman et al., 2007; Ji and Xu, 2006; Raghavan et al., 2005;

Wagstaff et al., 2001] These frameworks are also motivated by the fact that

clustering is too complex, and it is necessary to open the “black box” of the

clustering procedure for easy understanding, steering and focusing. However, they

differ from ClusteringWiki in that their focus is still on the clustering procedure,

where they adopt a constraint clustering approach by transforming user feedback

and domain knowledge into constraints (e.g., must-links and cannot-links) that are

incorporated into the clustering procedure.

Clustering aggregation. The problem of clustering aggregation tries to find,

among a set of clusterings, one that agrees the most with the entire set of

clusterings. Often, when the clusterings are produced by different clustering

algorithms, the problem is known as ensemble clustering, and has been studied

extensively [Fern and Lin, 2008; Gionis et al., 2007; Li et al., 2010; Singh et al.,

2008],

Similar to clustering aggregation, ClusteringWiki aggregates multiple user

clusterings to form a final community-edited cluster tree. However, unlike ensemble

clustering, it does so without regard to the membership of each cluster or its

agreement with the set of initial clusterings. Instead, significant edited root-to-leaf

paths are chosen and applied to the community clustering.

25

C H A P T E R III

CLUSTERINGW IKI

In this chapter I will present ClusteringWiki, including its main architecture and

the design principles of the clustering and editing frameworks.

3.1 Overview

Hierarchical clustering forms a tree structure. A root cluster exists and each cluster

can have 0 or more sub-clusters or results. There are different ways to represent a

cluster hierarchy in a Web application. One way is to use the concept of “file

folders” to represent clusters. As extension of this concept, executing cluster edits

through copy/paste and drag and drop type functionality is instantly familiar to

most users. Additionally, it allows users complete control, with few restrictions, to

reshape the clusters as they see fit.

Architecture. Figure 3.1 shows the two ClusteringWiki key modules. The query

processing module takes a query q and a set of stored user preferences as input to

produce a cluster tree T that respects the preferences. The cluster editing module

takes a cluster tree T and a user edit e as input to create/update a set of stored

26

27

query q Query cluster
 ̂ tree T ^ Cluster

Processing Editing
Module edit e — > Module

stored user
preferences

Figure 3.1: Main architecture of ClusteringWiki.

user preferences. Each user editing session usually involves a series of edits. The

processing-editing cycle recurs over time.

Query processing. ClusteringWiki takes a query q from a user u and retrieves the

search results R from a data source (e.g., Google). Then, it clusters R with a

default clustering algorithm (e.g., frequent phrase hierarchical) to produce an initial

cluster tree Tmit. Then, it applies P, an applicable set of stored user preferences, to

Timt and presents a modified cluster tree T that respects P.

Note that ClusteringWiki performs clustering. The modification should not

alter R, the input data.

If the user u is logged-in, P will be set to Pq>u, a set of preferences for q

previously specified by u. In case Pg>u = 0, Pq>jU will be used on condition that q' is

sufficiently close to q. If the user u is not logged-in, P will be set to Pqy , a set of

aggregated preferences for q previously specified by all users. In case Pqy = 0, Pq\u

will be used on condition that q' is sufficiently close to q.

28

In the cluster tree T, the internal nodes, i.e., non-leaf nodes, contain cluster

labels and are presented on the left-hand label panel. Each label is a set of

keywords. The leaf nodes contain search results, and the leaf nodes for a selected

label are presented on the right-hand result panel. A search result can appear

multiple times in T . The root of T represents the query q itself and is always

labeled with All. When it is chosen, all search results will be presented on the result

panel. Labels other than A ll represent the various, possibly overlapping, sub-topics

of q. When there is no ambiguity, internal node, label node, cluster label and label

are used interchangeably in the thesis. Similarly, leaf node, result node, search result

and result are used interchangeably.

Cluster editing. If logged-in, a user u can edit the cluster tree T for query q by

creating, deleting, modifying, moving or copying nodes. User edits will be validated

against a set C of consistency constraints before being written to PqjU.

The set C contains predefined constraints that are specified on, for example,

the size of clusters, the height of the tree and the length of labels. These constraints

exist to maintain a favorable user interface for fast and intuitive navigation. The

cluster tree T is consistent if it satisfies all the constraints in C .

By combining preferences in Pq̂u for all users who have edited the cluster tree

T for query q, I obtain Pq,u, a set of aggregated preferences for query q. I use Pu to

denote the collection of clustering preferences by user u for all queries, which is a set

29

of sets of preferences such that Vg, PqjU E Pu- I also use Pu to denote the collection

of aggregated preferences by all users for all queries, which is a set of sets of

aggregated preferences such that Vg, Pqy E Pu- Pu and Pu are maintained over time

and used by ClusteringWiki in processing queries for the user u.

Design principles. In a search result clustering engine, there are significant

uncertainties, from the data to the clustering algorithm. Wiki-facilitated

personalization further adds substantial complications. Simplicity should be a key

principle in designing such a complex system. ClusteringWiki adopts a simple yet

powerful path approach.

With this approach, a cluster tree T is decomposed into a set of root-to-leaf

paths that serve as independent editing components. A path always starts with All

(root) and ends with some search result (leaf). In ClusteringWiki, maintenance,

aggregation and enforcement of user preferences are based on simple path

arithmetic. Moreover, the path approach is sufficiently powerful, being able to

handle the finest user preference for a cluster tree.

In particular, each edit of T can be interpreted as operations on one or more

paths. There are two primitive operations on a path p, insertion of p and deletion of

p. A modification of p to p' is simply a deletion of p followed by an insertion of p'.

For each user u and each query g, ClusteringWiki maintains a set of paths PQ:U

that represents the user edits from u for query q. Each path p E Pq>u can be either

30

positive or negative. A positive path p represents an insertion of p, meaning that the

user prefers to have p in T. A negative path —p represents a deletion of p, meaning

that the user prefers not to have p in T. Two opposite paths p and —p will cancel

each other out. The paths in PqtU may be added from multiple editing sessions at

different times.

To aggregate user preferences for query g, ClusteringWiki first combines the

paths in all PqtU) u £ U, where U is the set of users who have edited the cluster tree

of q. Then, certain statistically significant paths are selected and stored in Pq,u-

Suppose in processing query q, P is identified as the applicable set of paths to

enforce. ClusteringWiki first combines the paths in P and the paths in Tmit, where

Tmit is the initial cluster tree. Then, it presents the combined paths as a tree, which

is the cluster tree T. The combination is straightforward. For each positive p G P, if

P £ Timt, add p to Timt. For each negative p G P, if p G T„aU remove p from Timt.

Reproducibility. It is easy to verify that ClusteringWiki has the property of

reproducing edited cluster trees. In particular, after a series of user edits on Timt to

produce T, if Tmit remains the same in a subsequent query, exactly the same T will

be produced after enforcing the stored user preferences generated from the user

edits on Timt.

31

3.2 Framework

This section introduces the ClusteringWiki framework in detail. In particular, I

present the algorithms for the query processing and cluster editing modules and

explain their main components.

3.2.1 Query Processing

Algorithm 1 presents the pseudocode for the query processing algorithm in

ClusteringWiki. In the input, Pu and Pu are used instead of PqjU and Pqjj for

preference transfer purposes. In processing query q, it is likely that Pq)U — 0 or

Pq,u = 0; then some applicable Pq>tU £ Pu or Pq/tU £ Pu can be used. The creation

and maintenance of such user preferences will be discussed in Section 3 .2 .2 . The

output of the algorithm is a consistent cluster tree T.

Retrieving search results. Line 1 retrieves a set R of search results for query q

from a chosen data source. The size of R is set to 50 by default and adjustable to

up to 500. The available data sources include Google and Yahoo! Search APIs

among others (see Section 5 for details). ClusteringWiki retrieves the results via

multi-threaded parallel requests, which are much faster than sequential requests.

The combined titles and snippets of search results retrieved from the sources

are preprocessed. In order to extract phrases, I implement a custom tokenizer that

identifies whether a token is a word, numeric, punctuation mark, capitalized, all

32

Algorithm 1 Query processing *
Input: q, u , C, Pu and Pu- q is a query, u is a user. C is a set of consistency

constraints. Pu is a collection of preferences by user u for all queries, where
V(?, Pq)U 6 Fu, Pu is a collection of aggregated preferences for all queries, where
V?, Pq,u £ P /-

Output: T: a consistent cluster tree for the search results of query q.
1 : retrieve a set R of search results for query q\
2 : cluster R to obtain an initial cluster tree Timt;
3: P 4— 0; //P is the set of paths to be enforced on TlJllt
4: if (u is logged-in) then
5: q' <— Trans(q,u);
6: if (q1 ± NULL) then
7: P i - Pq',u'i //u se applicable personal preferences
8: end if
9: else

10: q' i— Trans(q, U)\
11: if {q' ± NULL) then
1 2 : P <— Pqitu ; //u se applicable aggregated preferences
13: end if
14: end if
15: T i— Ttmt; //initialize T, the cluster tree to present
16: clean P ; / /remove p G P if its result node is not in R
17: for each p 6 P
18: if (p is positive) then
19: T f - T U {p}; / /add a preferred path
20: else
2 1 : T i— T — {p }; / /remove a non-preferred path
22: end if
23: end for
24: trim (T ,C); //m ake T consistent
25: present{T)\ //present the set of paths in T as a tree

33

caps, etc. I then remove non-textual tokens and stop words, using the stop word list

from the Apache Snowball package (www.docjar.com/html/api/org/apache/

lucene/analysis/ snowball/SnowballAnalyzer.java.html). The tokens are then

stemmed using the Porter (tartarus.org/martin/PorterStemmer/) algorithm and

indexed as terms. For each term, document frequency and collection frequency are

computed and stored. A numeric id is also assigned to each term in the document

collection in order to efficiently calculate document similarity, identify frequent

phrases, etc.

Building initial tree. Line 2 builds an initial cluster tree Tmit with a built-in

clustering algorithm. ClusteringWiki provides 4 such algorithms: /c-means flat,

/c-means hierarchical, frequent phrase flat and frequent phrase hierarchical. The

hierarchical algorithms recursively apply their flat counterparts in a top-down

manner to large clusters.

The /c-means algorithms follow a strategy that generates clusters before labels.

They use a simple approach to generate cluster labels from titles of search results

that are the closest to cluster centers. In order to produce stable clusters, the typical

randomness in /c-means, due to the random selection of initial cluster centers, is

removed. The parameter k is heuristically determined based on the size of the input.

The frequent phrase algorithms follow a strategy that generates labels before

clusters. They first identify frequent phrases using a suffix tree built in linear time

http://www.docjar.com/html/api/org/apache/

34

by Ukkonen’s algorithm [Ukkonen, 1995]. Then they select labels from the frequent

phrases using a greedy set cover heuristic, where at each step a frequent phrase

covering the most uncovered search results is selected until the whole cluster is

covered or no frequent phrases remain. Then they assign each search result r to a

label L if r contains the keywords in L. Uncovered search results are added to a

special cluster labeled Other. These algorithms are able to generate very meaningful

cluster labels with a couple of heuristics. For example, a sublabel cannot be a

subset of a superlabel, in which case the sublabel is redundant.

ClusteringWiki smoothly handles flat clustering by treating partitions as a

special case of trees. The built-in clustering algorithms are meant to serve their

basic functions. The focus of the thesis is not the production, but rather the

modification, of the initial cluster trees.

Determining applicable preferences. Lines 3 ~ 14 determine P, a set of

applicable paths to be enforced on Timt. Two cases are considered. If the user u is

logged-in, P will use some set from Pu representing personal preferences of u (lines 4

~ 8). Otherwise, P will use some set from Pu representing aggregated preferences

(lines 9 ~ 14). The subroutine TransQ determines the actual set to use, if any.

The pseudocode of Trans(q,u) is presented in Algorithm 2 . Given a user u

and a query q, it returns a query q', whose preferences stored in Pq>tU are applicable

to query q. In the subroutine, two similarity measures are used. Term similarity,

35

termSim(q,q'), is the Jaccard coefficient that compares the terms of q and q'.

Result similarity, resultSim{q,q')1 is the Jaccard coefficient that compares the

URLs of the top k (e.g., k = 10) results of q and q'. This calculation requires that

the URLs of the top k results for q' be stored.

Algorithm 2 Trans(q, u)

Input: g, u and Pu: q is a query, u is a user. Pu is a collection of preferences by user
u for all queries, where Vg, PqiU G Pu.

Output: q': a query such that Pq'iU is applicable for q.
1: if {Pq,u exists) then
2 : return g; / /u has edited the cluster tree of g
3: else
4: find q1 s.t. Pq>tU G Pu A term S im (q , q') is the largest;
5: if term S im (q , q') > Sts then / /Sts is a threshold
6 : if resu ltS im (q ,q ') > 5rs then / / S r3 is a threshold
7 : PqtU <— Pq/jU; / /copy preferences from q' to q
8 : return q';
9: end if

10: end if
11: end if
1 2 : return NULL ; *

To validate g', both similarity values need to pass their respective thresholds

8ts and 5rs. Obviously, the bigger the thresholds, the more conservative the transfer.

Setting the thresholds to 1 shuts down preference transfer. Instead of thresholding,

another reasonable way of validation is to provide a ranked list of similar queries

and ask the user for confirmation.

The subroutine in Algorithm 2 first checks if PqtU exists (line 1). If it does,

preference transfer is not needed and q is returned (line 2). In this case, u has

36

already edited the cluster tree for query q and stored the preferences in PqtU.

Otherwise, the subroutine tries to find q' such that Pq>)U is applicable (lines 4

~ 1 1). To do so, it first finds q' such that Pq̂ u exists and term S im (q , q') is the

largest (line 4). Then, it continues to validate the applicability of q1 by checking if

term S im (q , qr) and resu ltS im (q , q') have passed their respective thresholds (lines 5

sim 6). If so, user preferences for q' will be copied to q (line 7), and q' will be

returned (line 8). Otherwise, N U L L will be returned (line 1 1), indicating no

applicable preferences exist for query q.

The preference copying (line 7) is important for the correctness of

ClusteringWiki. Otherwise, suppose there is a preference transfer from q' to q,

where Pq>u = 0 and Pq>)U has been applied on Tlnlt to produce T . Then, after some

editing from u, T becomes T ' and the corresponding edits are stored in PqiU. Then,

this Pq>u will be used the next time the same query q is issued by u. However, PQtU

will not be able to bring an identical Tlmt to the expected T 1. It is easy to verify

that line 7 fixes the problem and ensures reproducibility.

T ra n s(q , U) works in the same way. Preference transfer is an important

component of ClusteringWiki. Cluster editing takes user effort and there are an

infinite number of queries. It is essential that such user effort can be properly reused.

Enforcing applicable preferences. Back to Algorithm 1 , lines 15 ~ 23 enforce

the paths of P on Tmit to produce the cluster tree T . The enforcement is

37

straightforward. First P is cleaned by removing those paths whose result nodes are

not in the search result set R (line 16). Recall that Clustering Wiki performs

clustering. It should not alter the input data R. Then, the positive paths in P are

the ones u prefers to see in T, thus they are added to T (lines 18 ~ 19). The ■

negative paths in P are the ones u prefers not to see in T, thus they are removed

from T (lines 20 ~ 21). If P = 0, there are no applicable preferences and Timt will

not be modified.

Trimming and Presenting T. The cluster tree T must satisfy a set C of

predefined constraints. Some constraints may be violated after applying P to Tmit.

For example, adding or removing paths may result in small clusters that violate

constraints on the size of clusters. In line 24, subroutine trim(T, C) is responsible

for making T consistent, e.g., by re-distributing the paths in the small clusters. I

will discuss the constraint set C in detail in Section 3.2.2.

In line 25, subroutine present(T) presents the set of paths in T as a cluster

tree on the search interface. The labels can be expanded or collapsed. The search

results for a chosen label are presented in the result panel in their original order

when retrieved from the source. Relevant terms corresponding to current and

ancestor labels in search results are highlighted.

Sibling cluster labels in the label panel are ordered by lexicographically

comparing the lists of original ranks of their associated search results. For example,

38

let A and D be two sibling labels as in Figure 3 .2 , where A contains Pi, P2, P3 and

P4 and D contains Pi and P5 . Suppose that 1 in Pt indicates the original rank of P,

from the source. By comparing two lists < 1 , 2 ,3 ,4 > and < 1 ,5 >, A goes in front

of D. “ Other” is a special label that is always listed at the end behind all its siblings.

Discussion. As [Kale et al., 2 0 1 0] suggested, the subset of web pages visited by

employees in an Enterprise is centered around the company’s business objectives.

Additionally, employees share a common vocabulary describing the objects and tasks

encountered in day to day activities. ClusteringWiki can be even more effective in

this environment as user preferences can be better aggregated and utilized.

3.2.2 Cluster Editing

Before explaining the algorithm handling user edits, I will first introduce the

essential consistency constraints for cluster trees and the primitive user edits.

Essential consistency constraints. Predefined consistency constraints exist to

maintain a favorable user interface for fast and intuitive navigation. They can be

specified on any structural component of the cluster tree T. In the following, I list

the essential ones.

• Path constraint: Each path of cluster tree T must start with the root labeled All

and end with a leaf node that is a search result. In case there are no search

results returned, T is empty without paths.

39

Figure 3 .2 : Example cluster tree.

• Presence constraint: Each initial search result must be present in T. It implies

that deletion of paths should not result in absence of any search result in T.

• H om ogeneity constraint: A label node in T must not have heterogeneous children

that combine cluster labels with search results. This constraint is also used in

other clustering engines such as Clusty and Carrot2 .

• Height constraint: The height of T must be equal or less than a threshold, e.g., 4.

• Label length constraint: The length of each label in T must be equal or less than a

threshold.

Primitive user edits. ClusteringWiki implements the following categories of

atomic primitive edits that a logged-in user can initiate in the process of tree

editing. Each edit e is associated with Pe and N P e) the set of paths to be inserted

to the tree and the set of paths to be deleted from the tree after e.

40

• e\. copy a label node to another non-bottom label node as its child. Note that it

is allowed to copy a parent label node to a child label node.

Example: in Figure 3 .2 , we can copy D to A . For this edit,

Pe = {A ll —y A —̂ D —̂ A ll —̂ A —y D —̂ is } . E P e — 0 for any edit of this

type.

• e2: copy a result node to a bottom label node.

Example: in Figure 3.2, we can copy P3 to D , but not to A , which is not a

bottom label node. For this edit, Pe = {A ll -y D —>• P3}. N P e = 0 for any edit of

this type.

• e3: modify a non-root label node.

Example: in Figure 3 .2 , we can modify D to E . For this edit,

Pe = {A ll -y E -y Pi, A ll -y E -y P5} and

N P e = {A ll - y D -> Px, A ll -4 D -> P5}.

• e4 : delete a non-root node, which can be either a label node or a result node.

Example: in Figure 3 .2 , we can delete P5. For this edit, N P e = {A ll -y D —> P5}.

Pe = 0 for any edit of this type.

• e5: create a label node, which can be either a non-bottom or a bottom label node.

In particular, recursive creation of non-bottom labels is a way to add levels to

41

cluster trees.

Example: in Figure 3.2, we can add E as parent of D . For this edit,

Pe = {A ll ->■ E -> D ->• Pi, A ll -* E D -> P5} and

N Pe = {A ll -> D PltA ll-* D ->■ P5}.

Algorithm 3 Cluster editing
Input: q, u, T , C , PQyU, PQyu and e: g is a query, u is a user. T is a cluster tree for

q. C is a set of consistency constraints for T . PqyU is a set of paths representing
the preferences by u for q. Pq>u is a set of paths representing the aggregated
preferences for q. e is an edit by u on T .

Output: updated T , P9>u and PQyu
1: if (pre-validation fail) then
2 : return;
3: end if
4: identify Pe;
5: identify N P e\
6: if (validation fail) then
7: return;
8 : end if
9: update T;

1 0 : add Pe as positive paths to Pq>u]
1 1 : add N P e as negative paths to PqyU;
1 2 : update P9 ij/;

The editing framework results in several favorable properties. First, the

primitive user edits are such that, with a series of edits, a user can produce any

consistent cluster tree. Secondly, since e\ only allows a label node to be placed

under a non-bottom node and e2 only allows a result node to be placed under a

bottom node, the homogeneity constraint will not be violated after any edit given

the consistency of T before the edit. Thirdly, the framework uses eager validation,

42

where validation is performed right after each edit, compared to lazy validation,

where validation is performed in the end of the editing process. Eager validation is

more user-friendly and less error-prone in implementation.

Note that user editing can possibly generate empty labels, i.e., labels that do

not contain any search results and thus are not on any path. Such labels will be

trimmed.

To add convenience, ClusteringWiki also implements several other types of

edits. For example, move (instead of copy as in ei) a label node to another

non-bottom label node as its child, or move (instead of copy as in e2) a result node

to a bottom label node. Such a move edit can be considered as a copy edit followed

by a delete edit.

Editing algorithm. Algorithm 3 presents the pseudocode of the cluster editing

algorithm in ClusteringWiki for a single edit e, where e can be any type of edit from

to 64.

Lines 1 ~ 3 perform pre-validation of e to see if it is in violation of consistency

constraints. Violations can be caught early for certain constraints on certain edits,

for example, the label length constraint on e\ type of edits. If pre-validation fails,

the algorithm returns immediately.

Otherwise, the algorithm continues with lines 4 ~ 5 that identify Pe and NPe.

Then, lines 6 ~ 8 perform full validation of e against C, the set of consistency

43

constraints. If the validation fails, the algorithm returns immediately.

Otherwise, e is a valid edit and T is updated (line 9). Then, the personal user

preferences are stored by adding Pe and NPe to Pq>u as positive paths and negative

paths respectively (lines 10 ~ 11). In adding these paths, the opposite paths in Pq>u

cancel each other out. In line 12, the aggregated preferences stored in P<hu are

updated. Preference aggregation is described further in the following.

Preference sharing. Preference sharing in Clustering Wiki is in line with the many

social-powered search engines as a mass-collaborative way of improving search

utility. In ClusteringWiki, U is considered as a special user and Pqiu stores the

aggregated user preferences.

In particular, let PqU signify the paths specified for query q by all users. Each

path p £ Pq u has a count attribute, recording the total number of times that p

appears in any Pq<u. All paths in Pq U are grouped by leaf nodes. In other words, all

paths that end with the same search result are in the same group. For each group,

the system keeps track of two best paths: a positive one with the most count and a

negative one with the most count. A best path is marked if its count passes a

predefined threshold. All the marked paths constitute Pq,u, the set of aggregated

paths that are used in query processing. Note that, here ClusteringWiki adopts a

conservative approach, making use of at most one positive path and one negative

path for each search result.

44

Editing interface. Cluster editing in Clustering Wiki is primarily available through

context menus attached to label and result nodes. Context menus are context

aware, displaying only those operations that are valid for the selected node. For

example, the paste result operation will not be displayed unless the selected node is

a bottom label node and a result node was previously copied or cut. This effectively

implements pre-validation of cluster edit operations by not allowing the user to

choose invalid tasks.

Users can drag and drop a result node or cluster label in addition to

cutting/copying and pasting to perform a move/copy operation. A label node will

be tagged with an icon if the item being dragged can be pasted within that node.

An item that is dropped outside a label node in which it could be pasted simply

returns to its original location.

C H A P T E R IV

IM P L E M E N T A T IO N

Clustering Wiki was implemented as an AJAX-enabled web application running in a

Java Enterprise Edition 1.5 container. In this section I detail the choices made in

implementing the system.

\

4.1 Q uery Processing

ClusteringWiki search requests are sent to the server via AJAX and expect in return

a JSON structure including both the search result set and cluster tree data. The

received data is interpreted to display an in-page cluster tree, to attach appropriate

tree functionality, and to display results contained in the root cluster node.

R etrieving query results. In order to easily test ClusteringWiki with multiple

search engines and data sources, I created a web service, named Abstractsearch,

responsible for hiding query execution details. Abstracts earch runs as a separate

Java Enterprise Edition application and interprets received query parameters into

parameters specific to the requested search source. For example, Google AJAX

Search API1 expects a zero-based first requested result parameter, while Yahoo!

1http: / /code.google.com/apis/ajaxsearch/

45

Search API2 expects a one-based equivalent parameter. The Google API can

retrieve a maximum of 8 results per request and a total of 64 results per query,

while the Yahoo! API can retrieve 100 results per request and a total of 1000 results

per query. Abstractsearch retrieves the results via one or more parallel requests to

the search source and returns the entire requested result set at once as either XML

or JSON data. The multi-threaded parallel execution of requests allows 500 Yahoo!

results (executed using 5 Yahoo! requests) to be returned in less than 2 seconds

instead of the 8 seconds it would take if the requests were executed sequentially.

During our testing, I found that the Yahoo! Search API sometimes returns

duplicate results among multi-page requests for the same query (ex: last result from

the first page of results is repeated as the first result of the second page).

Abstracts earch corrects this issue by removing identified duplicates from the

returned result set. The returned result set in these cases will contain less than the

requested number of results.

Preprocessing. ClusteringWiki analyzes the result set retrieved from

AbstractSearch and builds a collection context data structure that is used in later

processing. The combined title and snippet fields of a search result are used to

textually represent a search result document. Each result document is first broken

into a bag of lowercase words. After removing non-textual characters and stop

46

2http: / / developer.yahoo.com/search/web/Vl/webSearch.html

47

words, the remaining words are stemmed using the Porter3 algorithm creating a list

of document terms. The stop word list used is that from the Apache Snowball4

package. The terms are then added to an index of collection terms spanning all

retrieved search result documents, and each term is associated with a numeric index

id. Document frequency and collection frequency are also computed for each term.

Similar to the Apache Lucene tokenizers, my tokenization process identifies

additional information about each token which it stores as bitwise flags in a short

value. I identify whether a token is a word, numeric, or punctuation mark, or

whether a word token is capitalized, all caps, and starting or ending with a

punctuation mark. The token attributes are used to identify the start and end of

phrases within the document text, which are stored in an array as pairs of document

text index integers.

Further textual processing is done using the assigned numeric term and

document ids to increase efficiency. A Cluster Document data structure is used to

encompass all necessary information for a result document being clustered,

including term ids for terms in the given document, term counts, normalized term

frequencies, and term and word phrase boundaries.

Clustering results. ClusteringWiki clusters documents using one of four

3http://tartarus.org/ martin/PorterStemmer/
4http://www.docjar.com/html/api/org/apache/lucene/analysis/snowball/SnowballAnalyzer .java.html

http://tartarus.org/
http://www.docjar.com/html/api/org/apache/lucene/analysis/snowball/SnowballAnalyzer

48

pre-defined clustering algorithms: modified k-means, modified hierarchical k-means,

frequent phrase flat, or frequent phrase hierarchical.

Unlike the standard version of fc-means, ClusteringWiki creates consistent

clusters over the same data set by choosing the same initial cluster centers rather

than random ones. Cluster centers are chosen as a function of the number of

retrieved results, after first pre-ordering the results using a result-specific parameter

(ex: url). The modified hierarchical ft-means uses stable functions, based on the

cluster level, parent cluster size, and tree height constraint, to decide whether a

parent cluster should be sub-clustered and how many initial cluster centers should

be chosen for the sub-cluster. The A:-means based clusters are assigned the title of

the document closest to the cluster centroid as the cluster label.

Frequent phrase flat and frequent phrase hierarchical algorithms are based on

identifying frequent phrases within the document text. I use a suffix tree data

structure built using Ukkonen’s linear time online construction algorithm to identify

term frequent phrases within the combined text of all documents being clustered. I

then assign to that cluster all documents from the collection being clustered that

contain any of the label terms. The details of the frequent phrase algorithm, as

applied for each level of clustering, are as follows:

1 . I build an integer sequence from all the initial term phrases identified in each

document being clustered, noting phrase boundaries with unique negative

49

integers, which are characters outside of the document alphabet. I also note

document boundaries in a separate integer stack.

2 . I apply Ukkonen’s linear time online suffix tree construction algorithm to

create a suffix tree for the integer sequence. I also keep track of document ids

for each of the phrase suffixes entered in the suffix tree.

3. I walk the suffix tree, identifying and retrieving frequent phrases with a given

minimum and maximum length and minimum support. For our current

implementation I experimentally chose to use minimum term phrase length 2 ,

maximum term phrase length 5, and minimum document support 2. For each

phrase I also retrieve from the suffix tree a bit set representing all the

documents that contain the given phrase.

4. I greedily retrieve the phrase with the highest coverage of uncovered

documents within the collection being clustered, ignoring phrases that are

comprised of a subset of terms of any parent label. I consider the root cluster

label to be the executed query. The bit set representation of covered

documents for each phrase allows for fast set based operations when

computing phrase coverage among the set of uncovered documents.

5. For each label identified, I build a cluster and assign it all documents

containing any of the terms in the label.

50

6 . I greedily choose a word phrase label for each cluster by choosing the word

phrase associated with the cluster label term phrase that has the highest

support in the cluster documents.
\

7. When all qualified phrases are processed, any remaining uncovered documents

are added to an additional cluster labeled Other.

8 . I heuristically choose to subcluster a given cluster if it contains more than 5

documents and the path of the child cluster does not violate the given tree

height constraint. However, I choose not to subcluster if subclustering

produces less than two clusters.

Our process for retrieving frequent phrases from the text collection is similar

with that used in Carrot2 5, except they retrieve frequent word phrases and then

apply certain heuristic scoring methods to prioritize phrases retrieved from the suffix

tree. The remainder of the clustering algorithm is also quite different in Carrot2 .

Clustering Wiki uses a Cluster data structure to encompass cluster related

information such as documents contained in the cluster, cluster label and term label,

and references to the cluster’s parent and possible child clusters. In the case of flat

clustering, all identified clusters are made children of a root cluster labeled All.

Retrieving and merging preferences. Clustering Wiki cluster preferences are

5http: / /project.carrot2.org/

51

Figure 4.1: ClusteringWiki database schema.

stored in a MySQL database. Figure 4.1 shows the ClusteringWiki database

schema. Fields and tables not related to cluster editing have been omitted.

Users are assigned unique numeric ids upon account creation. Executed

queries are stored in the queries table and associated with a given user id. The

query text is added to a full-text search index. Additionally a list of stemmed terms

contained in the query text is kept. A referential integrity constraint exists between

the queries and users tables via the userJd field.

The top k (e.g., k = 20) results of an executed query are stored in the

query-responses table and associated with the executed query id. If a query already

52

existed in the database, its set of responses are updated if the query was last

executed more than a day before. A referential integrity constraint exists between

the query-responses and queries tables via the query-id field.

In order to test ClusteringWiki with multiple clustering algorithms, I have

associated a user preference PqtU with the chosen clustering algorithm in addition to

the executed query q and the logged in user u. A preference is stored as a

cluster-edits tuple containing the path of the preference and an associated

cardinality'(ex: + 1 or —1), signifying a positive (p E Pu) or negative (p E N P U)

preference. A path is represented by the set of cluster labels along the tree path

from the root node to the bottom label node containing the result node (leaf node)

in the path, along with the label of the result node. The root node label is assumed

and ignored when storing a path since all preferences would contain this label.

Given a relatively low maximum tree height h constraint, I have chosen to keep the

path in h — 1 path fields within the cluster-edits tuple. Alternative approaches for

storing a path without a height constraint include adjacency list and nested set

storage models6. A referential integrity constraint exists between the cluster-edits

and queries tables and between the cluster-edits-all and queries tables via the

query-id field.

Query processing is time-critical. Aiming to minimize query response time,

6http://dev.mysql.com/tech-resources/articles/hierarchical-data.html.

http://dev.mysql.com/tech-resources/articles/hierarchical-data.html

53

ClusteringWiki defines a special user all and stores aggregated preferences from all

users in Pq,au■ To make the preferences in PqAu ready to use for query processing,

the aggregation is done during cluster editing. The cluster editing process is

interactive. Aggregation is processed in the background, while the user is performing

cluster edits on the interface, causing no or negligible waiting time for the user.

Preferences for the user all are incrementally stored in the cluster-edits-all

table whenever a preference Pq>u is stored for any application user u. The

cluster-edits-all table structure is identical to that of the cluster-edits table.

Retrieving a set of preferences for the current search query becomes trivial: execute

a database query for the set of preferences associated with the given query q, the

chosen clustering algorithm, and either the logged in user u or the user all if the

user is not logged in. Changes to cluster-edits-all tuples are efficiently executed via

database triggers attached to the cluster-edits table.

In the event that the initial database query does not return any results,

ClusteringWiki searches for a similar query q1, first via a MySQL full-text search for

the queried text, and then by searching for the conjuncted stemmed query text

terms. If any matching similar queries related to the chosen clustering algorithm

and appropriate user are found, they are then checked against the 8ts term similarity

and 8rs result similarity thresholds. ClusteringWiki retrieves and merges the

preferences of the first similar query q' that passes these tests into the initial cluster.

54

The retrieved set of preferences is applied to the cluster hierarchy sequentially,

first adding all positive cardinality preferences and then removing any negative

preferences as long as they do not violate any pre-defined cluster constraints. A

reverse-lookup index of result labels to cluster node paths is used to speed up

negative preference validations.

Ordering cluster labels. After clustering has finished, the clusters are ordered by

ascending minimum document ids contained in each cluster. The final cluster T,

along with the original search result set are then added to a JSON structure and

returned to the browser.

Displaying the cluster tree. The JSON data received from the server is passed

on to a JavaScript object, named EditableClusterTree, which encapsulates all

client-side functionality of the editable search result cluster tree. Using a JavaScript

object allows the creation of an efficient stateful representation of the cluster tree

and its operations. EditableClusterTree first builds an internal cluster node object

hierarchy from the data received. The internal cluster representation computes and

stores additional node information such as references to parent and children nodes,

current node path, level, and maximum depth, which are used to efficiently validate

and execute cluster operations. Paths are stored internally as sets of numeric cluster

index ids to optimize node retrieval. Furthermore, the internal cluster tree stores

result nodes as arrays of result index ids within T bottom label nodes, shortening

55

the internal tree height by one level and improving efficiency of subtree operations.

EditableClusterTree then creates an HTML unordered list representation of

the cluster tree and a set of HTML result node structures, which it appends to the

page within specified < div > elements. Cluster node labels and result node titles

along paths that were added due to a previous cluster edit are tagged with a red

asterisk. CSS styles are used to make the cluster structure appear as a tree.

JavaScript events are added to individual tree and result nodes to enable

Editable ClusterTree functionality.

Highlighting. Relevant terms corresponding to currently selected and ancestor

labels in search results are highlighted. The highlighting function stems all label

words to create label terms using the same stemming algorithm used during

clustering (the Porter stemming algorithm) and then uses JavaScript regular

expressions to match and highlight each term found within the document text.

4.2 Cluster Editing

Cluster editing in ClusteringWiki involves editing the in-page cluster tree using the

EditableClusterTree object and storing any cluster path changes resulting from

executed operations. Editing is primarily available through context menus attached

to cluster and result nodes displayed in the page.

Context menus. ClusteringWiki context menus display only those operations that

56

are valid for the cluster or result node that was right-clicked. For example, the Paste

result operation will not be displayed unless the node right-clicked is a bottom label

node and a result node was previously copied or cut. This effectively implements

pre-validation of cluster edit operations by not allowing the user to choose invalid

tasks. Edit operations are only displayed when the application user is logged in.

The EditableClusterTree object displays a different context menu depending on

the current cluster tree edit mode: an edit disabled menu, an edit enabled menu, or a

browse only menu. Menus contain all possible operations for the given mode. Each

operation is pre-validated via internal EditableClusterTree methods and only

displayed if the operation passes validation. EditableClusterTree takes advantage of

its internal cluster tree representation to efficiently pre-validate cluster operations.

Operation validation. Additional operation validation methods are executed

after an operation has been invoked but before effectively executing the operation.

These include validation methods that cannot be executed during pre-validation

(ex: checking a modified node label is valid), or ones that can be slow and would

delay the context menu from being displayed (ex: checking a node being copied does

not already exist in the node being copied to). When a validation method fails, a

message is displayed above the cluster tree alerting the user to the cause of the

failure.

Operation execution. Once an operation has been validated, EditableClusterTree

57

computes the set of positive paths and negative paths caused by the given

operation. Positive paths are assigned cardinality +1 and negative paths are

assigned cardinality —1. If the set of path changes is not empty, it is encoded as a

binary upload and sent to the server for processing via AJAX. For each path

received, ClusteringWiki updates a preference for both the logged in user and the

all user. For either application user, if a tuple for the preference does not already

exist, it is inserted and given the preference cardinality. If the path already existed

in the database, the preference cardinality is added to the existing cardinality. The

preference associated with the logged in user’s query (Pq>u) is restricted to a

cardinality within the set { —1,1}. Paths with a cardinality of 0 after an update are

deleted in order to improve database efficiency.

The server returns a confirmation message to the browser when all paths have

been successfully stored. EditableClusterTree then modifies the in-page HTML tree

and selected result set to display the effects of the executed operation.

Convenience features. I have implemented several ClusteringWiki convenience

operations that increase the usability of the application. In addition to copying a

cluster or result node, executed via a copy followed by a paste operation, I allow

users to also move a node via cut and paste. Additionally, double-clicking on any

label node expands/collapses the clicked tree node and all its children.

Users can drag and drop a result node or cluster label in addition to

58

cutting/copying and pasting to perform a move/copy operation. A label node will

be tagged with an icon if the item being dragged can be pasted within that node.

An item that is dropped outside a label node in which it could be pasted simply

returns to its original location.

Users can see what the cluster tree would look like without edits by selecting

Show tree w/o edits from the root label context menu while being logged in. Once

selected, the cluster tree is re-built without adding or subtracting any user

preferences. The re-built tree is displayed in browse only mode, without access to

any cluster editing operations.

C H A P T E R V

EVALUATION

Clustering Wiki was implemented as an AJAX-enabled Java Enterprise Edition 1.5

application. The prototype is maintained on an average PC with Intel Pentium 4

3.4 GHz CPU and 4Gb RAM running Apache Tomcat 6. I have conducted a

comprehensive experimental evaluation detailed below.

5.1 Methodology and Metrics

I performed two series of experiments: system evaluation and utility evaluation.

The former focused on the correctness and efficiency of the implemented prototype.

The latter, the main experiments, focused on the effectiveness of ClusteringWiki in

improving search performance.

Data sources. Multiple data sources were used in the empirical evaluation,

including Google AJAX Search API (code.google.com/apis/ajaxsearch), Yahoo!

Search API (developer.yahoo.com/search/web/webSearch.html), and local Lucene

indexes built on top of the New York Times Annotated Corpus [Sandhaus, 2008]

and several datasets from the TIPSTER (disks 1-3) and TREC (disks 4-5)

collections (www.nist.gov/tac/data/data_desc.html). The Google API can retrieve a

59

http://www.nist.gov/tac/data/data_desc.html

60

maximum of 8 results per request and a total of 64 results per query. The Yahoo!

API can retrieve a maximum of 100 results per request and a total of 1000 results

per query. Due to user licence agreements, the New York Times, TIPSTER and

TREC datasets are not available publicly.

System evaluation methodology. For system evaluation of ClusteringWiki, I

focused on correctness and efficiency. I tested the correctness by manually

executing a number of functional and system tests designed to test every aspect of

application functionality. These tests included cluster reproducibility, edit operation

pre-validations, cluster editing operations, convenience features, applying

preferences, preference transfer, preference aggregation, etc. ClusteringWiki is a

multi-tiered system with interactive components written in multiple programming

languages. As such, standard unit tests are not as helpful in determining the proper

functionality.

In order to have repeatable search results for the same query, I used the stable

New York Times data source when evaluating ClusteringWiki correctness. I chose

queries that returned at least 200 results.

I evaluated system efficiency by monitoring query processing time in various

settings. In particular, the following were considered:

• 2 data sources: Yahoo! and New York Times

61

• 5 different numbers of retrieved search results: 100, 200, 300, 400, 500

• 2 types of clusterings: flat (F) and hierarchical (H)

For each of the combinations, I executed 5 queries, each twice. The queries

were chosen such that at least 500 search results would be returned. For each query,

I monitored 6 portions of execution that constitute the total query response time:

• Retrieving search results

• Preprocessing retrieved search results

• Initial clustering by a built-in algorithm

• Applying preferences to the initial cluster tree

• Presenting the final cluster tree

• Other (e.g., data transfer time between server and browser)

For the New York Times data source, the index was loaded into memory to

more closely simulate the server side search engine behavior. The time spent on

applying preferences depends on the number of applicable stored paths. For each

query, I made sure that at least half the number of retrieved results existed in a

modified path, which is a practical upper-bound on the number of user edits on a

query’s cluster of search results.

62

U tility evaluation m ethodology. For utility evaluation, I focused on the

effectiveness of Clustering Wiki in improving search performance, in particular, the

time users spent to locate a certain number of relevant results. The experiments

were conducted through a user study with 22 paid participants. Study participation

was advertised within the Computer Science department at Texas State

University-San Marcos and users were chosen on a first-come first-serve basis. The

participants were primarily undergraduate, while a few were graduate, college

students.

I compared 4 different search result presentations:

• Ranked list (RL): search results were not clustered and presented as a traditional

ranked list.

• Initial clustering (IC): search results were clustered by a default built-in algorithm

(frequent phrase hierarchical).

• Personalized clustering (PC): search result clustering was personalized by a

logged-in user after a series of edits, taking on average 1 and no more than 2

minutes per query.

• Aggregated clustering (AC): search result clustering was based on aggregated

edits from on average 10 users.

Navigational queries seek the website or home page of a single entity that the

63

user has in mind. The more common [Broder, 2002; Rose and Levinson, 2004]

informational queries seek general information on a broad topic. The ranked list

interface works fine for the former in general but is less effective for the latter, which

is where clustering can be helpful [Manning et al., 2008]. In practice, a user may

explore a varied number (e.g., 5 or 10) of relevant results for an informational query.

Thus, I considered 2 types of informational queries. In addition, I argue that for

some deep navigational queries where the desired page “hides” deep in a ranked list,

clustering can still be helpful by skipping irrelevant results. Thus, I also considered

such queries:

• jRi0: Informational. To locate any 10 relevant results.

• R5: Informational. To locate any 5 relevant results.

• i?i: Navigational. To locate 1 pre-specified result.

For each query type, 10 queries were executed, 5 on Google results and 5 on

the AP Newswire dataset from disk 1 of the TIPSTER corpus. The AP Newswire

queries were chosen from TREC topics 50-150, ensuring that they returned at least

15 relevant results within the first 50 results. For Ri queries, the topic descriptions

were modified to direct the user to a single result that is relatively low-ranked to

make the queries “deep.” Google queries were chosen from topics that participants

were familiar with. All queries returned at least 50 results.

64

A subset of the chosen queries for each data set are presented below. The

entire set can be found in [Anastasiu et al., 2010]. Each query was presented with a

description of the task to be performed. Informational queries were also followed by

a narrative further explaining the information need for the current task.

AP News wire data source, R\o and R$ queries:

• Query: Rail Strikes

Description: Find relevant pages that predict or anticipate a rail strike or report an

ongoing rail strike.

Narrative: A relevant document will either report an impending rail strike, describing

the conditions which may lead to a strike, or will provide an update on an ongoing

strike. To be relevant, the document will identify the location of the strike or potential

strike. For an impending strike, the document will report the status of negotiations,

contract talks, etc. to enable an assessment of the probability of a strike. For an

ongoing strike, the document will report the length of the strike to the current date and

the status of negotiations or mediation.

• Query: Surrogate Motherhood

Description: Find relevant pages that report judicial proceedings and opinions on

contracts for surrogate motherhood. After tagging relevant results, please edit the result

clusters so that you can find those relevant results easier in the future.

Narrative: A relevant document will report legal opinions, judgments, and decisions

65

regarding surrogate motherhood and the custody of any children which result from

surrogate motherhood. To be relevant, a document must identify the case, state the

issues which are or were being decided and report at least one ethical or legal question

which arises from the case.

Google data source, Ri queries:

• Query: Texas State University-San Marcos

Description: Find the page for the graduate college at Texas State University-San

Marcos.

• Query: Longhorns

Description: Find the page for the Texas Longhorn Breeders Association of America.

• Query: Byron J. Gao

Description: Find the KDD 2007 Conference program information page, Dr. Byron J.

Gao had a paper published in that conference with Dr. Martin Ester.

Each user was given 15 queries, 5 for each query type. Each query was

executed 4 times for the 4 presentations being compared. Thus, in total each user

executed 15 x 4 = 60 queries. For each execution, the user exploration effort was

computed.

User effort was the metric I used to measure the search result exploration

effort exerted by a user in fulfilling thier information need. [Koren et al., 2008] used

66

a similar metric under a probabilistic model instead of a user study. Assuming both

search results and cluster labels are scanned and examined in a top-down manner,

user effort Q can be computed as follows:

• Add 1 point to for each examined search result.

• Add 0.25 point to Q, for each examined cluster label. This is because labels are

much shorter than snippets.

• Add 0.25 point to il for each uncertain result. I assume that all results before a

tagged relevant result are examined. However, results after the last tagged result

remain uncertain. For linked list presentation, there is no uncertainty because the

exploration ends at a tagged result due to the way the queries are chosen (more

relevant results than needed).

Uncertainty could occur for results within a chosen cluster C. As an effective way

of utilizing cluster labels, most users would partially examine a few results in C to

evaluate the relevance of C itself. If they think C is relevant, they must have

found and tagged some relevant results in C. If they think C is irrelevant, they

would ignore the cluster and quickly move to the next label. Thus, each uncertain

result has a probability of being examined. Based on my observation for this

particular user study, I empirically used 0.25 for this probability.

67

5.2 System Evaluation Results

ClusteringWiki operation is independent of parameters such as number of results or

chosen clustering algorithm. I chose the following defaults when executing

correctness evaluation:

• Results: 200

• Algorithm: hierarchical fc-means

• Similarity calculator: Jaccard

• Term similarity threshold: 0.5

• Result similarity threshold: 0.05

A system test was also executed which verified the application functionality

with other chosen values for the above parameters.

Functional tests. ClusteringWiki is a multi-tiered system with interactive

components written in multiple programming languages. As such, standard unit

tests are not as helpful in determining the proper functionality of this system. I

used manually executed function tests to verify that ClusteringWiki works as

indented. A description of each test can be found in [Anastasiu et al., 2010]. All

tests were executed successfully and no anomalies were encountered.

68

System efficiency. I measured 6 sections of the Clustering Wiki total response

time, as follows:

• Retrieving results. The retrieving results section of the total response time

includes processing query parameters, passing the search request to

Abstractsearch, retrieving its JSON response, and processing the JSON data

into a collection of Java search response document objects used in the

remainder of the algorithm execution.

• Preprocessing. The document preprocessing section of the total response time

includes analyzing the text of the search response document titles and

snippets, creating document bags of words, the collection term index, and

various other reverse lookup indexes used by different sections of

ClusteringWiki execution.

• Initial clustering. In the clustering section the initial document cluster tree

Timt is created using the chosen clustering algorithm.

• Applying preferences. This section includes identifying the set of preferences to

be applied to Timt as well as merging those preferences into Tmit to create the

final cluster tree.

• Presenting final tree. Presenting the final tree includes the browser side time

needed to process the data received from the server into a new

69

EditableClusterTree object, embedding the HTML representation of the

cluster tree and result nodes into the browser page, and attaching necessary

JavaScript events to enable tree functionality.

• Other. The remaining time, which is out of ClusteringWiki control, includes

transferring requests and data between the browser and server and some

negligible time for program control.

Table 5.1: Efficiency evaluation using Yahoo! data source

N u m b e r o f r e s u lts 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

T y p e o f c lu s t e r in g F H F H F H F H F H

R etrieving results 0 979 1 018 1 309 1 222 1 615 1,.391 1 847 1 579 1 679 1 661

Preprocessing 0 009 0 011 0,.052 0 052 0 037 0 037 0 049 0 112 0 152 0 150

Initial clustering 0 004 0 005 0 051 0 040 0 033 0 042 0 104 0 063 0 118 0 144

A p p lyin g preferences 0 006 0 007 0 049 0 012 0 015 0 O il 0 021 0 015 0i 08 0 013

Presenting final tree 0 143 0 172 0 249 0 278 0 341 0 421 0 451 0i 66 0 723 0 752

O ther 0 396 0 416 0 469 0 524 0 624 0 684 0 558 0 593 0 853 0 912

T o t a l e x e c u t io n t im e 0 160 0 194 0 401 0 381 0 426 0 511 0,,624 0 850 1 073 1 059

T o t a l r e s p o n s e t im e 1 535 1 628 2 179 2 127 2 665 2 585 3 029 3 022 3 604 3 632

Tables 5.1 and 5.2 show the averaged (over 10 queries) runtime in seconds for

all 6 portions of the total response time for the two tested data sources. In addition,

I computed and list the average total execution time, which includes preprocessing,

initial clustering, applying preferences and presenting the final tree. This is the time

that the prototype is responsible for. The remaining time is irrelevant to the way

the prototype is designed and implemented. From the table we can see that:

70

Table 5.2: Efficiency evaluation using New York Times data source

N u m b e r o f r e s u lts 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

T y p e o f c lu s t e r in g F H F H F H F H F H

R etrieving results 0 102 0 113 0 131 0 130 0 285 0 259 0 326 0 338 0 419 0 387

Preprocessing 0 019 0 019 0 067 0 066 0 068 0 069 0 096 0 168 0 189 0 187

Initial clustering 0 005 0 006 0 022 0 025 0 035 0 041 0 053 0 062 0 147 0 196

A p plyin g preferences 0 012 0 011 0 013 0 024 0 018 0 011 0 013 0 017 0 016 0 014

Presenting final tree 0 282 0 279 0 372 0 449 0 591 0 691 0 751 0 872 0 846 0 941

O th er 0 338 0 497 0 478 0 678 0 589 0 672 0 625 0 937 0 736 0 868

T o t a l e x e c u t io n t i m e 0 317 0 315 0 473 0 565 0 713 0 813 0 913 1 118 1 197 1 338

T o ta l r e s p o n s e t im e 0 758 0 925 1 083 1 373 1 587 1 744 1 863 2 393 2 352 2 593

• The majority of the total response time is taken up by retrieving search

results, which would be negligible if ClusteringWiki was implemented by a

search company.

• Applying preferences takes less than 1/10 second in all test cases, which

certifies the efficiency of my “path approach” for managing preferences.

• Presenting the final tree takes the majority (roughly 80%) of the total

execution time, which can be improved by using alternate user interface

technologies.

Figure 5.1 shows the trends of the average total execution time (Exec in the

figure) and response time (Resp) for both flat (F) and hierarchical (H) presentations

over 2 sources of Yahoo! (Yahoo!) and New York Times (NYT). From the figure we

can see that:

71

Figure 5.1: Efficiency evaluation.

• Response and execution time trends are linear, testifying to the scalability of the

prototype. In particular, for both flat and hierarchical clustering, the total

execution time is about 1 second for 500 results and 0.4 second for 200 results

from either source. Note that most existing clustering search engines, e.g.,

iBoogie (www.iboogie.com) and CarrotSearch (carrotsearch.com), cluster 100

results by default and 200 at maximum. Clusty (www.clusty.com) clusters 200

results by default and 500 at maximum.

• Hierarchical presentation (H) takes comparable times to flat presentation (F),

showing that recursive generation of hierarchies does not add significant cost to

efficiency.

http://www.iboogie.com
http://www.clusty.com

72

• There is a bigger discrepancy between response and execution times for the

Yahoo! data source compared to New York Times, suggesting a significant

efficiency improvement by integrating the prototype with the data sources.

• Execution times for Yahoo! are shorter than New York Times due to the shorter

titles and snippets.

5.3 Utility Evaluation Results

System utility. Figure 5.2 shows the averaged user effort (over 22 x 5 = 110

queries) for each of the 4 presentations (RL, IL, PC, AC) and each of the query

types (i?i, i?5 ,' Rio) on the Google and New York Times data sources. From the

figure we can see that:

• Clustering saves user effort in informational and deep navigational queries, with

personalized clustering being the most effective, saving up to 50% of user effort.

• Aggregated clustering also provides significant benefits, although it is not as

effective as personalized clustering. However, it is “free,” in the sense that it does

not take user editing effort or require user login.

In evaluating aggregated clustering, I made sure that the users browsing the

aggregated clusters were not the same ones who edited them.

U
se

r e
ffo

rt
 Q

 (p
oi

nt
s)

U

se
r

ef
fo

rt
 q

 (
po

in
ts

)

35

Query types

(a) Google data source

(b) New York Times data source

Figure 5.2: Utility evaluation on Google and New York Times data sources

74

• The effectiveness of clustering is related to how “deep” the relevant results are.

The lower they are ranked, the more effective clustering is because more irrelevant

results can be skipped.

The hierarchy of cluster labels plays a central role in the effectiveness of

clustering search engines. Prom the data I have collected as well as the user

feedback, I can make the following observations:

• Cluster labels should be short and in the range of 1 to 4 terms, with 2 and 3 the

best. The total levels of the hierarchy should be limited to 3 or 4.

• There are two types of cluster edits, (1) assigning search results to labels and (2)

editing the hierarchy of labels. Both types are effective for personalized

clustering. However, they respond differently for aggregated clustering. For type

1 edits, there is a ground truth (in a loose sense) for each assignment that users

tend to agree on. Such edits are easy to aggregate and be collaboratively utilized.

For type 2 edits, it can be challenging (and a legitimate research topic) to

aggregate hierarchies because many edited hierarchies can be good, but in diverse

ways. A good initial clustering (e.g., frequent phrase hierarchical) can alleviate

the problem by reducing the diversity.

System usability. At the end of the utility study, I asked the study participants to

complete a survey about ClusteringWiki. Users answered the following four

75

questions, assigning a rating between 1 and 10, where 1 meant strongly disagree and

10 meant strongly agree:

1. In your opinion, is clustering of search results a helpful technique for finding

relevant web search results easier?

2. Does the ability to edit the search result cluster increase your chances to find

relevant results in the future?

3. If thousands of people were contributing on editing search result clusters on

many topics, would you likely take advantage of the mass collaboration by

using a system like ClusteringWiki?

4. Was the ClusteringWiki interface easy to use?

User ratings ranged between 3 and 10 and mostly showed the users were

satisfied with the application and willing to use ClusteringWiki or a similar system

in the future. The average user ratings for the four questions are listed below:

Q1 8.23

Q2 8.18

Q3 8.50

Q4 7.91

Additionally, users were asked to provide optional comments for improving

ClusteringWiki. The comments I received show that, while most users found the

76

application interface easy to use, they desired additional convenience features. The

user study participant comments can be found in [Anastasiu et ah, 2010].

C H A P T E R V I

CLU STERIN G W IK I2

This thesis introduced the concept of cluster editing as a way of personalizing a

search result clustering presentation, and Clustering Wiki, the first prototype for

personalized and collaborative clustering of search results. ClusteringWiki uses the

concept of “file folders” to represent cluster hierarchies and, by extension, includes

file and folder copy/paste and drag-and-drop functionality to execute cluster editing

(personalization). I conducted a comprehensive experimental evaluation of

ClusteringWiki, including a user study, which proved the potential of search result

cluster personalization to improve search utility. The feedback received from users

highlighted some advantages and limitations of the current implementation,

presented below.

Advantages:

• The ClusteringWiki interface was user-friendly and did not require previous

training.

• Users instantly associated clusters/sub-clusters with folders/sub-folders and

search results with files.

77

78

• Users took advantage of all provided editing operations to personalize their

clusters.

Limitations:

• Editing was not always transparent to the community. At times, some users

did not understand the rationale behind previous user edits.

• When working on result cluster placement, users wanted to edit multiple

results at once.

• Some users wanted the ability to customize results by tagging them with

personally identifiable keywords.

As mentioned in Chapter 3, there is more than one way to represent a cluster

hierarchy and perform cluster edits. Keeping in mind the original system usability

goal, I designed a new system which addresses the ClusteringWiki limitations

identified in the user study. This chapter introduces the new system,

ClusteringWiki2, and highlights the similarities and differences between the

clustering and editing frameworks of the two systems.

6.1 Overview

While ClusteringWiki uses typical file and folder specific operations for editing

clusters, ClusteringWiki2 takes a different approach, allowing users to annotate

79

t. (lu»Jerirt«Wiki? - Windows inte rne t Fjqjlnrer mms
i Q l », , V 0 S)92i68 56 1> > < > ‘ v] ^ x pfr; ~ ’P »

\ i Favorites [TjCiustenngWMÎ J .< S » Eage* Safety» Teots» y>

Search Ascuî Aefcome Test Logout Help

C l u s t b r i n g , H ,
WïKI V2 hardti ie5

Top 1 DO pfI132S'I fesol»
[ses cr* |

Source N Ti*5e.> v Results 'CA v Alyonthm 'rîqvivr pi-riue-suir arche ii. v

Show duster edits (J Show execution bmes 1 1 Show popular queries L I

4 1,100',
' hard to eat (4) *

’b „J t 3 rd-eelngs,S i
Hard tuck (31

11 s r l Uro ces (4,
i+ <„ 2 Hard ,vc rk f'1)

Hard A?ay 13)
> HARD SE J . i 1 '
’ fear: old 'i*
■» Tot'/a Fardhg i41
1 HARD *S NHL3 ¿i
» Hard 3 pv8 (€>

t-ard Case t.3;
Hard Lesso" ¡,3)

' Hard wsnairg 2)
J Hdrd Cures '4>

Figure SkatHg Assoc abcs C2)
* Other 35)

1 Hard to I lull Hard to Cat
so hard and tasteless A M Peterson Savannah
Nto '¡ "3? ‘ tv £6 1 cTSd^ts» s'ISpst’-? ies»fo“t nyt'1fi7A..34

74 A Clear Path for Harding
Harding cleared another legal hurdle yesterday whan the United States Figure Skating Association decided
not to Ins tenge Harding's participation In the world championships In Japan, beginning on March 23 On
Wednesday United States Di g For Harding before a five-member pane! representing the skating
association The delayed hearing, which stemmed from
Htprr”32 ‘SbSS 1 8C83rAfbet'gctS«a"0!i"Wrestigei,n>t,5rS27"3

Annotation, eat

3 Haiti Soiled Detectives
the hard bolted detective story was created by Raymond Chandler elaborated by Ross I lacdon3id and
perpetuated b, sue f the hatd-boded detective in Amencan liter attire J*N1C£ E JACOBSON Rego Park
H tr/F 3? <SA FS I S^SJiAUt'ottSea c» ?yusl/^<4sivt,3i,0 ? f)

Annotation eat drink

85 Hard Facts On Water Sette tiers
in hard water Theie is a cuie fertile auds of course and that is making *our hard watei a little bit softer
”Ha water hard, ft should be noted that hard water is not a health hazaid In fact according to the National
academy of Sci less hard water is generally considered a nuisance For example Ms Sktptonsaid
clothes washed In herd water ma.
Kf-> / 3? ‘go rS 1 3SSb/Ab-t'cotSpa"ei'?,ft'*fo?t nytrlófjd̂ JS

Annotation hard to ear drinkable

© Internet v $ » % ioq% *

Figure 6.1: Snapshot of ClusteringWiki2.

search results both directly and through their cluster participation. Cluster labels

are themselves annotations and can be composed of positive terms, negative terms,

positive phrases and negative phrases. ClusteringWiki2 establishes a communication

channel between editors by enforcing a reasonable, straightforward “membership

condition” : to be included in a cluster, a search result or its annotation must

contain all the positive terms and positive phrases and not contain any of the

negative terms or negative phrases in the cluster’s label path1. This introduces

transparency among editors and allows better collaboration.

Considering the executed query as the root node label, a cluster’s label path is the set of labels

along the path from the root node to the given cluster node.

Figure 6.1 presents a snapshot of ClusteringWiki22. The architecture of

ClusteringWiki2 is identical to that of Clustering Wiki, containing two modules,

query processing and cluster editing, which are used cyclically over time. The path

approach to storing and incorporating user preferences in clusters was very efficient

in ClusteringWiki, and it validated the system architecture design.

Q uery processing. ClusteringWiki2 query processing is similar to that of

ClusteringWiki. The set of search results R imt is retrieved from a chosen data

source in response to a query q from a user u. R imt is then clustered using a chosen

clustering algorithm to produce an initial cluster tree Tmit. Then, ClusteringWiki2

applies P , an applicable set of stored user preferences, to Tmit and R imt and

presents a modified cluster tree T and an annotated set of results R that respect P .

In ClusteringWiki, preferences represent root-to-leaf paths within the cluster,

where leaf nodes are the results contained in bottom level nodes. ClusteringWiki2

continues to use the root-to-leaf path approach. However, leaf nodes are the bottom

level nodes rather than the search results contained in those nodes. This allows

search result preferences and cluster preferences, even though conceptually linked,

to be treated separately. Thus P is the union of Pc, the set of stored cluster

preferences, and Pr , the set of stored search result preferences.

Pc is applied to Timt and Pr is applied to R imt to create T and R respectively.

80

2 dmlab. cs. txstate. edu/ Clustering Wiki2 /.

81

Figure 6.2: ClusteringWiki2 database schema.

Pr does not alter the input data. Rather, each annotation preference pr G Pr

associated with a result r is attached as metadata to r iff r G R. Note that the

membership condition allows result annotations to be independent of cluster

membership. Therefore, unlike in ClusteringWiki, result preferences are only

associated with the result r and query q and not connected with the cluster path a

result may be found in. This leads to a significant reduction in the number of stored

user preferences.

82

Figure 6.2 shows the database schema for ClusteringWiki2. Fields and tables

not related to clustercediting have been omitted. The schema is identical to that for

ClusteringWiki, adding only two tables, result-edits and result-edits-all, for storing

result annotation preferences.

The procedure for identifying which preferences should be applied to query q,

utilizing preference transfer and query transfer as appropriate, is identical to that in

ClusteringWiki. Similarly, the procedure for storing and applying positive and

negative paths from Pc to Ttmt is the same in the two systems. Please see Chapter 3

for details.

ClusteringWiki assigns search results to clusters according to the chosen

clustering method. ClusteringWiki2 ignores the initial assignment of results to

clusters by the base clustering algorithm. After both cluster preferences and result

preferences are applied, ClusteringWiki2 traverses T and assigns to each node those

results from R that respect the membership condition.

Cluster and result editing. If logged-in, a user u can edit the cluster tree T for

query q by creating, deleting, or modifying nodes, and they can edit a result in R by

modifying its attached annotation. Similar to ClusteringWiki, user edits will be

validated against a set C of consistency constraints before being written to Pq̂u, the

set of preferences for q previously specified by u.

By combining preferences in PQjU for all users who have edited the cluster tree

83

T for query q, I obtain Pq,u, a set of aggregated preferences for query q. I use Pu to

denote the collection of clustering preferences by user u for all queries, and Pu to

denote the collection of aggregated preferences for all queries from all users. Pu and

Pu are maintained over time and used by ClusteringWiki2 in processing queries for

the user u.

Reproducibility. It is easy to verify that ClusteringWiki has the property of

reproducing edited cluster trees. In particular, if Timt remains the same in a

subsequent query, after a series of user edits on Timt to produce T, the same T will

be produced after enforcing the stored user preferences generated from the user

edits on Tmtt. Similarly, if Rimt remains the same in a subsequent query, after a

series of user edits on Rimt to produce R, the same R will be produced after

enforcing the stored user preferences generated from the user edits on Rmit. Finally,

the membership condition leads to a stable algorithm for assigning results to cluster

nodes, described further in the following.

6.2 Framework

This section introduces the ClusteringWiki2 framework in detail. In particular, I

present the algorithms for the query processing and cluster editing modules, and

then explain their main components.

84

6.2.1 Query Processing

The query processing framework is the same in ClusteringWiki2 as in

ClusteringWiki, with the exception that P contains both Pc, the cluster preferences,

and Pr, the result preferences. Pc is applied to Tmit in the same way as P was

applied to Timt in ClusteringWiki. If the user u is logged in, preferences in the set

Pr are applied to Rimt by attaching each annotation pr associated with a result r to

the result if r G R. Otherwise, pr will be formed by aggregating the set of

statistically significant preferences for the result r from all users that have edited r.

Annotation aggregation. A user preference for a result r is an annotation. An

annotation A is the union of the set of positive terms T , negative terms AfT ,

positive phrases V, and negative phrases J\fV in that annotation. Algorithm 4

describes the simple algorithm used to aggregate a set of annotations. Lines 1 ~ 5

initialize the aggregated annotation A which will be returned. Line 6 initiates the

loop traversing each annotation in the input set. For each annotation in the input

set, the four sets of loops at lines 8 ~ 14, 15 ~ 21, 22 ~ 28, and 29 ~ 35 add a term

i or a phrase p to the aggregated annotation A if the opposite of t or p is not

present in A. Alternatively the opposite of t or p is removed from A.

Cluster result assignment. Once T and R have been devised, ClusteringWiki2

assigns results to each cluster node according to the membership condition. In

85

Algorithm 4 aggregate(S)
Input: S\ S is the set of annotations to be aggregated.
Output: A , the aggregated annotation from all annotations in S

1: A <— 0; //initialize aggregated annotation
2: Ta G- 0; / /initialize set of positive terms
3: N T a 0; / /initialize set of negative terms
4: Va G- 0; //initialize set of positive phrases
5: N V a G- 0; //initialize set of negative phrases
6: for each A G S
7: A := T U N T U V U N V ; //A is set of positive and negative terms and phrases
8: for each t G T
9: if (t G N T a) then

io : N T A < - N T A \{t} ;
11: else
12: Ta - ^ T a U {t } ;
13: end if
14: end for
15: for each t € A/”T
16: if (t G 7̂ t) then
17: Ta < - T a \ {t};
18: else
19: N T A t - N T A U
20: end if
21: end for
22: for each p G V
23: i f (p G N V a) t h e n

24- N V A ^ N V A \ { p h
25: else
26: V a 4̂ - T A U { p };
27: end if
28: end for
29: for each p G N V
30. if (p G Va) then
31: VA G- VA \ {p}\
32: else
33: N V a ■t- N V a U {p};
34: end if
35: end for
36: end for
37: A <— Ta U N T a U Va U N V a \
38: return A ;

86

ClusteringWiki2 cluster node labels are annotations. Similar to result annotations,

a cluster annotation is composed of positive and negative terms and phrases.

Considering the executed query as the root node label, a cluster’s label path is

the set of labels along the path from the root node to the given cluster node. A

straight forward approach to the result assignment problem would be to compare

terms and phrases between the cluster’s label path and each result. A result belongs

to a cluster if it (including its annotation) contains all the positive terms and

phrases while not containing any negative terms or phrases in the cluster label path

annotation. Note that a negative term or phrase in a result annotation indicates the

result does not contain that term or phrase, even if it is present in the result title or

snippet.

ClusteringWiki2 takes advantage of the hierarchical nature of the cluster

nodes and implements a recursive method for assigning results to clusters. In doing

so, it reduces both the number of results and annotation terms and phrases

considered at each subsequent recursion level. The pseudocode of

assignResults(n, D', M) is presented in Algorithm 5. Given a cluster node n, a set

of potentially covered results D1, and a dictionary M correlating terms to results

that contain them, the subroutine finds the subset of D' which are results covered

by the label path annotation of n, and assigns it to node n if different than the

currently assigned result set.

87

Algorithm 5 assignResults(n, D ’, M)
Input: n, D 1, M: n is a node. D' is a set of potentially covered results. M is a

dictionary correlating terms with results containing them.
Output: n'\ the node n after results have been assigned to it.

1. A <— getAnnotation{n)\ / /A is the annotation of node n
2 : A : = T U A /T U V U NV\ //A is set of positive and negative terms and phrases
3■ D <— getDocs(n)\
4: for each t G N T
5: Dt G— termDocs(M , t); / /retrieve set of results t is in
6 : D '± -D '\ D u
7: end for
8: for each t G T
9: Dt G- term D ocs(M ,t);

io: D' g- j y n A ;
11: e n d fo r
12: fo r e a c h d G D'
13: Ad G— getAnnotation{d); //Ad is the annotation of result d
14: Ad := Td u N Td U Vd u NVd'i
15: fo r e a c h p G N V
16: i f p 3 N V d t h e n
17: i f contains(d.p) OR p EVd t h e n
18: D' E- D ’ \ {d };
19: e n d i f
20: e n d i f
21: e n d fo r
22: for each p G V
23: i f p 3 Vd t h e n
24: if -i contamsid.p) AN D p 3 NVd then
25: D' E- D '\ {d };
26: e n d i f
27: e n d i f
28: e n d fo r
29: e n d fo r
30: i f D' ^ D t h e n

31: n' G— setDocs(n , D ') ;
32: N G— children{n')\
33: for each nc G N
34: nc G— assignResults(nc, D', M); / /recursive call for children nodes
35: e n d fo r

36: e n d i f
37: return n'\

88

Line 1 of the algorithm retrieves the node’s annotation A, which is composed

of sets of positive and negative terms and phrases. Note that the algorithm is not

retrieving the aggregated annotation of the node’s label path. This is because we can

assume, as a result of the recursive call of assignResults, that results in D are

already covered by n ’s parent’s label path. assignResults is initially called using

n 4— root and D 4— R.

The subroutine getAnnotation simply retrieves an annotation stored either in

a cluster node (representing the node’s label) or in a search result. Line 3 uses the

getDocs subroutine to retrieve the current set of results D contained in node n.

Lines 4 ~ 7 and 8 ~ 11 present the term-based reduction of D'. First, results

containing any of the negative terms in A are removed from D '. Then, only those

results containing the positive terms in A are kept in D '. The subroutine

termDocs(M, t) retrieves the set Dt of results containing the term t from a

dictionary M, which is constructed during the preprocessing phase of

Clust ering W iki2 .

Once D' has been reduced to those results covered by the positive and

negative terms in A, phrase coverage is considered sequentially in the remaining

results, in lines 1 2 ~ 29. The result annotation A^ is first retrieved. Lines 15 ~ 2 1

consider negative phrases p in the cluster annotation A. If p is not a negative phrase

in the result annotation and it is present in the result title or snippet, the result is

89

not covered by the cluster annotation and is removed from D '. Similarly, lines

15 ~ 21 are concerned with positive phrases p in the cluster annotation A. If p is

not a positive phrase in the result annotation and it is not present in the result title

or snippet, the result is not covered and is removed from D'. The subroutine

contains(d, p) simply checks whether the phrase p is present in the result d’s title or

snippet.

The resulting items in D' are covered by the cluster annotation. If D' is

different than the already assigned set of contained results D, the algorithm assigns

D' to the node n (line 31), and then recursively calls assignResults on all children

nodes of n (lines 32 ~ 35).

Ordering. ClusteringWiki2 orders cluster labels within each level in the same way

as ClusteringWiki — by lexicographically comparing the lists of original ranks of

cluster’s associated search results. “ Other” is a special label that is always listed at

the end, behind all its siblings, and contains parent cluster results not contained in

any other sibling cluster.

6.2.2 Cluster and Result Editing

Editing in ClusteringWiki2 is executed through changing annotations, whether they

be cluster labels or result metadata. Each annotation change must re-consider result

assignments for clusters.

90

Figure 6.3: Example cluster tree.

Primitive user edits. ClusteringWiki2 implements the following categories of

atomic primitive edits that a logged-in user can initiate in the process of tree editing

or result annotation. Like in Clustering Wiki, each cluster edit e is associated with

Pe and NPe, which are respectively the set of paths to be inserted to the tree and

the set of paths to be deleted from the tree after e. However, leaf nodes in a

ClusteringWiki2 cluster tree are cluster nodes rather than results. Note that ei, e2,

and e3 in ClusteringWiki2 are equivalent with e3 , e ,̂ and e5 in ClusteringWiki,

though they differ on the added and deleted paths.

• e\\ modify a non-root label (cluster) node.

Example: in Figure 6.3, we can modify A to E. For this edit,

Pe = {All -► E -> B ,A ll -> E -> C ,A l l -> E } and

NPe = {All A -¥ B , All A C, All A }.

• e2: delete a non-root label node.

Example: in Figure 6.3, we can delete A. For this edit,

NPe = {All -* A —>■ B, —t A —tC , All —>• A }. Pe = $ for any edit of this type.

• e3: create a label node. Recursive creation of labels is a way to add levels to

cluster trees.

Example: in Figure 6.3, we can add E as child of D. For this edit,

Pe = {All - * £ > - > £ } and NPe = 0.

• e±\ modify a result annotation.

Example: modifying a result annotation does not change the structure of the

cluster tree. However, it can change the set of results that 0 or more nodes

contain, and, by extension, the level ordering of cluster nodes.

Notice that modification and deletion of cluster nodes requires subtree path

changes in ClusteringWiki2 . ClusteringWiki2 deletes and adds both a node and all

its subtree nodes, while ClusteringWiki only deletes and adds leaf (result) node

paths. This is due to the different result assignment methods used in the two

systems. In ClusteringWiki results are assigned by the clustering algorithm and

users have uninhibited control over node edits. Additionally, non-bottom level nodes

contain the cumulative set of results from their subtree leaf nodes, and nodes

without results are trimmed from presentation. In ClusteringWiki2 , results are

assigned based on the membership condition. Thus, removing all children nodes of a

91

92

cluster node does not affect the set of results it contains. The example below further

clarifies the difference between the two systems.

Example: in Figure 6.3, a user first modifies the node A to E and then deletes

nodes B and C. Finally, they re-execute their query. If ClusteringWiki2 only

recorded leaf node path additions and subtractions, as Clustering Wiki does, the

following would be the stored edits for the two systems:

ClusteringWiki: { Pe = {All —»• E —>• B —>• Px, All -> E —»• B —»• P2, All —>■

E - > C - > P 2, A l l - + E - * C ^ P3}, and NPe = {A ll -> A -»• B -)> Pu All -* A ->

B ^ P2,All ^ A -> C -+ P2,All A -> C P3,All E B Px, All E

B P2,All E C P2,All ^ E ^ C -> P3} }•

ClusteringWiki2 : { Pe = {All E B, All - » E -¥ C }, and

NPe = {A ll ->• A ^ B ,A ll -> A -> C ,A ll -> E ->■ B ,A ll S ->■ C } }.

After applying all edits following the search re-execution, both clusters contain

the node at path {A// —> A}. However, since they changed the node A to J5, the

user would expect the path {All -> A } instead. In ClusteringWiki, the node A is

trimmed, as it no longer contains any results, thus solving the naming problem. In

ClusteringWiki2 , the node A will be displayed with results assigned according to the

membership condition, causing the unexpected result.

When applying e\ and e2 correctly, as defined above, the ClusteringWiki2

stored edits will accurately re-create the user changes to the cluster tree. The

93

corrected stored edits for the example are displayed below:

ClusteringWiki2 : { Pe = {All E —¥ B ,A ll —>■ E —> C,All —> E }, and

NPe = {A ll - ^ A ^ B , A l l ^ A - > C , All A ,A ll-> E B, A l l -> E -> C } }.

Once Pe and NPe are computed, ClusteringWiki2 applies the same editing

algorithm as ClusteringWiki for validating and storing edits. For details please see

Algorithm 3. Preference sharing is implemented the same way in both systems.

ClusteringWiki2 implements most of the consistency constraints that

ClusteringWikidoes, with some modifications:

• Presence constraint: Each initial search result must be present in T. Results not

present in a custom node of T will exist in the first level node Other, which must

be maintained.

• Path constraint: Each path of the cluster tree T must start with the root node

labeled All and end with a cluster leaf node. In case there are no search results

returned, T is empty without paths.

• Height constraint: The height of T must be equal or less than a threshold, e.g., 4.

• Label length constraint: The length of each label in T must be equal or less than a

threshold.

• Result annotation constraint: The length of each result annotation in R must be

equal or less than a threshold.

94

N ode result set update follow ing edit. ClusteringWiki2 stores a copy of T and

R in memory during an editing session. An editing session starts upon the

execution of a query and ends when either another query is executed or the browser

session expires. Result node assignment is only maintained in memory in

ClusteringWiki2 and not persisted to disk. An edit e updates the in-memory

representations of T and R and then stores any path changes Pe and NPe and any

result annotation changes to disk. Executing an edit e may require re-computing

search result assignments for some or all of the cluster nodes. ClusteringWiki2

implements efficient methods for each, described below.

A lgorithm 6 changeLabel(n, A', M)
Input: n, A', M: n is a node. A! is the updated annotation for node n. M is a

dictionary correlating terms with results containing them.
O utput: n': the node n after results have been re-assigned to it.

1: A 4- getAnnotation(n); //A is the annotation of node n
2 : D <— getDocs{n)\
3: np <— getParent(n)-,
4: Dp getDocs{np)\
5: A <— getD if ference(A , A ');
6 : T <r- getTerm s(A);
7: D' •<— term sD ocs(M , T);
8: D 1 —̂ D 1 U D p 5
9: n' <r- assignResults(n, D 1, M);

1 0 : n' <— set Annotation^ , A ') ;
ll: reorderLevelsQ;
1 2 : updateOtherNode();
13: return n;

e\: modify a non-root label node. A straight forward approach for this kind of

edit would be to consider each r £ R against all nodes in the paths in Pe.

95

Algorithm 6 describes the process used to update node result sets after a cluster

label is modified. Lines 1 ~ 4 retrieve the node’s annotation and contained result

set as well as the node parent’s contained result set. Line 5 retrieves A, the

difference between the current and new annotations for the node n. Line 6 retrieves

T , the set of terms, present in either individual changed terms or phrases in A. Line

7 retrieves the set of results that contain any of the terms in T. In line 9, the union

of the parent node’s results and the results containing the changed terms is passed

to assignResults, which re-assigns results to the node n and its children.

assignResults is defined in Algorithm 5. Finally lines 1 1 ~ 1 2 maintain consistency

constraints for T by, if necessary, updating the membership of the Other node and

re-ordering cluster levels. Other’s membership is updated by simply removing from

the set of all parent results those results covered by the siblings of Other.

A lgorithm 7 deleteNode(n, M)
Input: n, M: n is a node. M is a dictionary correlating terms with results containing

them.
O utput: np: the parent of node n after n has been deleted.

1 : np «— getParent{n)\
2 : rip <r- deleteChild(np,n);
3: updateOtherNodeQ;
4: return np\ * I

ei: delete a non-root label node. This type of edit does not require

re-assignment of results. Since the parent node’s annotation does not change, it will
I

contain the same set of results as before the edit. No other cluster or result

96

annotations are changed. Algorithm 7 describes the process used to delete a cluster

node. Lines 1 ~ 2 retrieve the parent node and remove n from its list of children.

Line 3 maintains consistency constraints for T by, if necessary, updating the

membership of the Other node.

A lgorithm 8 addNode(np, A', M)
Input: np, A1, M: np is the parent node to which the new node is added. A' is the

annotation for the new node n. M is a dictionary correlating terms with results
containing them.

O utput: n: the added node n.
1 : Dp getDocs(np);
2 : n f - addChildNode(np);
3: n setAnnotation(n, A');
4: n assignResults(n, Dp, M);
5: updateOtherNodeQ]
6 : reorder Lev el (n);
7: return n;

e3 ; create a label node. Algorithm 8 describes the process used to add a node n

with label L' as child to parent node np. Line 1 retrieves the set of results contained

in the parent node. It will be used to assign results to the newly created node.

Lines 2 ~ 4 add the node n to the parent node np. The subroutine assignResults

reduces the set of results contained in the parent node to those covered by the

annotation A' assigned to n. Lines 5 ~ 6 maintain consistency constraints for T by,

if necessary, updating the membership of the Other node and re-ordering n ’s tree

level, which places n in the correct place within the level.

e4 : modify a result annotation. Modifying a result annotation can affect all

97

nodes in the cluster tree. A straightforward solution for this operation would, be to

re-consider assigning the result to each node in the cluster tree. Checking the

membership condition would require comparing each label term and phrase of each

node with the result title and snippet. ClusteringWiki2 reduces both the number of

nodes it will consider for assignment as well as the terms and phrases it will check

against the result. First, the terms and phrases considered are reduced by only

considering terms and phrases in the annotation difference between the old and new

annotations (getD if f erence(A, A ')), and vice-versa (getD if ference(A ', A)). The

operation also updates the dictionary M, which correlates terms with results

containing them. The following describes the sets of terms and phrases that are

considered when modifying a result r, and the update operations on M for each of

the members in those sets.

• added positive terms: for each term t in the set, add r to the result set at

index t.

• removed positive terms: for each term t in the set, remove r from the result set

at index t only if result title or snippet does not contain i.

• added negative terms: for each term t in the set, remove r from the result set

at index t.

• removed negative terms: for each term t in the set, add r to the result set at

98

index t only if result title or snippet contains t.

• added positive phrases: for each term t in each phrase p in the set, add r to

the result set at index t.

• removed positive phrases: for each term t in each phrase p in the set, remove r

from the result set at index t only if result title or snippet does not contain t.

• added negative phrases: no update.

• removed negative phrases: no update.

No update to the dictionary M is necessary for added negative phrases and

removed negative phrases as the terms of each phrase, if already in the result,

continue to exist independently of the phrase within the result. After updating M,

the four sets of terms and four sets of phrases are respectively combined into a set of

changed terms T and a set of changed phrases V.

Algorithm 9 describes assignResult(n, T , V, r), the method used to re-assign

result r to the cluster tree. After updating a result annotation in R, assignResult is

called given n 4— root and assign 4- FALSE. The algorithm skips checking terms

and phrases and eagerly re-assigns the result to children nodes if a parent node has

been re-assigned the result (lines 2 ~ 3). The assignResult subroutine is similar to

the assignResults subroutine described in Algorithm 5, with two exceptions: it only

assigns one result and it does not recursively assign the result to children nodes.

99

A lgorithm 9 annotateResult(n, T , V , r)
Input: n, T, V, r, M, assign: n is a node. T is the set of changed terms. V is the set

of changed phrases, r is the result to be assigned. M is a dictionary correlating
terms with results containing them, assign is a boolean noting whether the parent
node re-assigned results.

O utput: n1: the node n after result r has been re-assigned to it and its children.
1: nl 4- n;
2: i f assign = TRUE t h e n
3: n' 4— assignResult(n, r, M);
4: e ls e

5: A <— getAnnotation(n);

6: for each t G T
7: if contam s(A,t) then
8: assign 4— TRUE]
9: e n d i f

10: e n d fo r
11: fo r e a c h p G V
12: i f contains(A,p) t h e n
13: assign <— TRUE\
14: e n d i f

15: e n d fo r
16: N 4— children(n')\
17. i f assign— TRUE t h e n
18: nl <— assignResult(n, r, M);
19: e n d i f
20: fo r e a c h nc G N
21: nc 4— annotateResult(nc, T , V, r, M, assign);
22: e n d fo r

23: e n d i f
24: return nl\

100

After checking the membership condition, the subroutine may either add or remove

the given result from the cluster node in consideration.

If the parent node has not been re-assigned the result, ClusteringWiki2 checks

whether the node’s annotation contains any of the terms in T (lines 6 ~ 10) or

phrases in V (lines 11 ~ 15). If it does, the result is assigned to the current node

(line 18). Finally, the assignResult call is propagated to children nodes in lines

20 ~ 22.

Editing interface. Cluster editing in ClusteringWiki2, like in ClusteringWiki, is

primarily available through context menus attached to label and result nodes.

However, given its alternative editing methodology, ClusteringWiki2 offers fewer

operations than ClusteringWiki. Cluster nodes will show a menu containing Create

child label, Change label, and Delete label. Results will only show Edit result

annotation. Additionally, ClusteringWiki2 does not include drag and drop or

copy/paste functionality.

6.3 Cluster Aggregation Discussion

Currently ClusteringWiki and ClusteringWiki2 aggregate personalized clusters to

form a collaborative (community) cluster tree by applying to Tmit those significant

personalized paths. Significant paths are simply defined by paths that have been

personalized by a minimum threshold of users. Two ways this model could be

101

improved in future work are described below:

M ass collaboration optim ization. As this point applies to both ClusteringWiki

and ClusteringWiki2 , I will use ClusteringWiki to reference both systems in the

following. The goal of ClusteringWiki is to present a search result cluster that will

aid the user in reaching their results faster. When the user is logged into the

system, this goal is achieved by allowing the user to personalize the cluster tree.

However, users will often personalize portions of the cluster tree based on their

current search intent interest. Additionally, users will not always agree on what

clusters should exist or what results they should contain. Thus, aggregating

personalized clusters to create a collaborative clustering is a hard problem.

The goal of ClusteringWiki when a user is not logged in to the system does

not change. Therefore, assuming a personalized clustering would best achieve the

goal, we wish to present a non-logged in user with a clustering that is as close as

possible to their imaginary personalized, clustering, the cluster tree they would

create if they did log in and edit the search result cluster tree. Borrowing some

techniques from collaborative search, this problem can be solved by formulating it as

an optimization problem. We wish to find a set Us C U of other known users similar

enough to the current user and who have edited the cluster tree for the current

query. Once we do, applying their edits would be more meaningful to the current

user than applying edits from all users.

Since the current user is unknown (not logged in) and may not have edited

any cluster tree, we cannot rely on cluster edits as a means of finding similar users.

One way this problem could be solved is to store user profiles created from a user’s

search history and click-through information. We can then create an objective

function that minimizes a user profile similarity score to identify JJS from those user

profiles of known users who have edited the cluster tree in question. Note that

u 3 Us and \US\ > 1 , where u is the current user. Allowing |[7S| = 1 would make our

similar user selection open to noise.

Path to result annotation reference. In both ClusteringWiki and

ClusteringWiki2 there is an inherent relation between the search result clusters and

the results themselves. ClusteringWiki strongly correlates the two. Path edits in

ClusteringWiki affect both a cluster node and its membership. ClusteringWiki2

employs a looser strategy which includes two types of edits: cluster (path) edits, and

search result annotation edits. Currently, ClusteringWiki2 treats aggregation of the

two types of edits independently. However, users will often make both cluster and

annotation edits to achieve a personalized cluster goal. Ideally, we wish to choose

those annotation edits which are strongly associated with those chosen cluster edits.

One way this could be achieved is by associating cluster and annotation edits made

in an editing session with the same session id. Then, significant annotation edits

(made by the same minimum threshold of users as the cluster edits) could be chosen

102

103

from the subset of annotations made in one of the chosen editing sessions.

There are many other interesting directions for future work, from fundamental

semantics and functionalities of the framework to convenience features, user

interface and scalability. For example, in line with social browsing, a user’s social

network can be utilized in preference aggregation. Another interesting direction is

to seamlessly integrate personalization of search result ranking [Gao and Jan, 2010]

with that of search result clustering, providing a more complete solution for

personalized and collaborative information retrieval and Web search.

C H A P T E R V II

C O N C LU SIO N

Search engine utility has been significantly hampered due to the ever-increasing

information overload. Clustering has been considered a promising alternative to

ranked lists in improving search result organization. Given the unique human factor

in search result clustering, traditional automatic algorithms often fail to generate

clusters and labels that are interesting and meaningful from the user’s perspective.

In this thesis I introduced Clustering Wiki, the first prototype and framework for

personalized clustering, utilizing the power of direct user intervention and

mass-collaboration. Through a Wiki interface, the user can edit the membership,

structure and labels of clusters. Such edits can be aggregated and shared among

users to improve search result organization and search engine utility.

Both personalized and collaborative clustering of search results aid users in

locating those search results they seek. Personalized clustering saves user effort by

allowing the user to place results in familiar clusters. Aggregated clustering also

provides significant benefits and is “free,” in the sense that it does not take user

editing effort.

As an alternate method of personalized and collaborative clustering of search

104

105

results, I presented ClusteringWiki2 , a cluster editing system based on annotations.

With complete control over both positive and negative terms and phrases in

annotations, users can have the same editing freedom as in ClusteringWiki, while

maintaining collaborative transparency.

BIBLIOGRAPH Y

Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S. (2009). Diversifying search
results. In Proceedings of the Second ACM International Conference on Web
Search and Data Mining, WSDM ’09, pages 5-14, New York, NY, USA. ACM.

Amershi, S. and Morris, M. R. (2008). Cosearch: a system for co-located
collaborative web search. In Proceedings of the twenty-sixth annual SIGCHI
conference on Human factors in computinq systems, CHI ’08, pages 1647-1656,
New York, NY, USA. ACM.

Anastasiu, D. C., Buttler, D., and Gao, B. J. (2010). Clusteringwiki technical
report, dmlab. cs.txstate. edu/ClusteringWiki/pdf/cw.pdf

Anastasiu, D. C., Buttler, D., and Gao, B. J. (2011). Clusteringwiki: Personalized
and collaborative clustering of search results. In Proceeding of the 3fth
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’l l , New York, NY, USA. ACM.

Balcan, M.-F. and Blum, A. (2008). Clustering with interactive feedback. In
Proceedings of the 19th international conference on Algorithmic Learning Theory,
ALT ’08, pages 316-328, Berlin, Heidelberg. Springer-Verlag.

Basu, S., Bilenko, M., and Mooney, R. J. (2004). A probabilistic framework for
semi-supervised clustering. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’04,
pages 59-68, New York, NY, USA. ACM.

Bekkerman, R., Raghavan, H., Allan, J., and Eguchi, K. (2007). Interactive
clustering of text collections according to a user-specified criterion. In Proceedings
of the 20th international joint conference on Artifical intelligence, pages 684-689,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Bernardo, T. (2007). Employing mass collaboration information technologies to
protect human lives and to reduce mass destruction of animals. Veterinaria
Italiana, 2(43):273-284.

106

107

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific
American, 284(5):34-43.

Broder, A. (2 0 0 2). A taxonomy of web search. In SIGIR Forum.

Carbonell, J. and Goldstein, J. (1998). The use of mmr, diversity-based reranking
for reordering documents and producing summaries. In Proceedings of the 21st
annual international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’98, pages 335-336, New York, NY, USA. ACM.

Carpineto, C., Osinski, S., Romano, G., and Weiss, D. (2009). A survey of web
clustering engines. ACM Computing Surveys (CSUR), 41(3):l-38.

Carroll, J. M. and Rosson, M. B. (1987). Paradox of the active user, pages 80-111.
MIT Press, Cambridge, MA, USA.

Carterette, B. and Chandar, P. (2009). Probabilistic models of ranking novel
documents for faceted topic retrieval. In Proceeding of the 18th ACM conference
on Information and knowledge management, CIKM ’09, pages 1287-1296, New
York, NY, USA. ACM.

Chaffee, J. and Gauch, S. (2 0 0 0). Personal ontologies for web navigation. In
Proceedings of the ninth international conference on Information and knowledge
management, CIKM ’00, pages 227-234, New York, NY, USA. ACM.

Chen, H. and Dumais, S. (2000). Bringing order to the web: automatically
categorizing search results. In Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’00, pages 145-152, New York, NY, USA.
ACM.

Chirita, P. A., Firan, C. S., and Nejdl, W. (2007). Personalized query expansion for
the web. In Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’07, pages 7-14,
New York, NY, USA. ACM.

108

Chirita, P. A., Nejdl, W., Paiu, R., and Kohlschütter, C. (2005). Using odp
metadata to personalize search. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’05, pages 178-185, New York, NY, USA. ACM.

Clarke, C. L., Kolia, M., Cormack, G. V., Vechtomova, O., Ashkan, A., Büttcher,
S., and MacKinnon, I. (2008). Novelty and diversity in information retrieval
evaluation. In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’08,
pages 659-666, New York, NY, USA. ACM.

Cohn, D., McCallum, A. K., and Hertz, T. (2009). Constrained Clustering:
Advances in Algorithms, Theory, and Applications, chapter Semi-Supervised
Clustering with User Feedback. Chapman and Hall/CRC.

Dalai, M. (2007). Personalized social & real-time collaborative search. Proceedings
of the 16th international conference on World Wide Web W W W 07, page 1285.

Doan, A., Ramakrishnan, R., and Halevy, A. (to appear). Mass collaboration
systems on the world-wide web. Communications of the ACM.

Dou, Z., Song, R., Wen, J.-R., and Yuan, X. (2009). Evaluating the effectiveness of
personalized web search. Knowledge and Data Engineering, IEEE Transactions
on, 21(8):1178 -1190.

Drosou, M. and Pitoura, E. (2010). Search result diversification. ACM SIGMOD
Record, 39:41-47.

Dumais, S., Cutrell, E., and Chen, H. (2001). Optimizing search by showing results
in context. In Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI ’01, pages 277-284, New York, NY, USA. ACM.

Evans, B. M. and Chi, E. H. (2008). Towards a model of understanding social
search. In Proceedings of the 2008 ACM conference on Computer supported
cooperative work, CSCW ’08, pages 485-494, New York, NY, USA. ACM.

109
A

Everitt, B. S., Landau, S., and Leese, M. (2001). Cluster analysis. Oxford
University Press.

Fern, X. Z. and Lin, W. (2008). Cluster ensemble selection. Statistical Analysis and
Data Mining, 1 (3): 128-141.

Gao, B. J. and Jan, J. (2010). Rants: a framework for rank editing and sharing in
web search. In Proceedings of the 19th international conference on World wide
web, W W W ’ 1 0 , pages 1245-1248, New York, NY, USA. ACM.

Gauch, S., Chaffee, J., and Pretschner, A. (2003). Ontology-based personalized
search and browsing. Web Intelligence and Agent Systems, 1:219-234.

Gionis, A., Mannila, H., and Tsaparas, P. (2007). Clustering aggregation. ACM
Transactions on Knowledge Discovery from Data, l(l):4 -es.

Griffiths, A., Luckhurst, H. C., and Willett, P. (1986). Using interdocument
similarity information in document retrieval systems. Journal of the American
Society for Information Sciences, 37(1):3-11.

Halpin, H., Robu, V., and Shepherd, H. (2007). The complex dynamics of
collaborative tagging. In Proceedings of the 16th international conference on
World Wide Web, W W W ’07, pages 211-220, New York, NY, USA. ACM.

Haveliwala, T. H. (2002). Topic-sensitive pagerank. In Proceedings of the 11th
international conference on World Wide Web, W W W ’02, pages 517-526, New
York, NY, USA. ACM.

Hearst, M. A. and Pedersen, J. O. (1996). Reexamining the cluster hypothesis:
scatter/gather on retrieval results. In Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’96, pages 76-84, New York, NY, USA. ACM.

Horrocks, I. (2008). Ontologies and the semantic web. Communications of the
ACM, 51(12):58.

110

Iskold, A. (2007). Overview of clustering and dusty search engine.
www.readwriteweb.com/archives/overview-of-du.php.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall.

Jansen, B. J., Spink, A., and Saracevic, T. (2000). Real life, real users, and real
needs: a study and analysis of user queries on the web. Information Processing
and Management: an International Journal, 36:207-227.

Jeh, G. and Widom, J. (2003). Scaling personalized web search. In Proceedings of
the 12th international conference on World Wide Web, W W W ’03, pages 271-279,
New York, NY, USA. ACM.

Ji, X. and Xu, W. (2006). Document clustering with prior knowledge. In
Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’06, pages 405-412, New York,
NY, USA. ACM.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. (2005). Accurately
interpreting clickthrough data as implicit feedback. In Proceeding of the 28th
international ACM SIGIR conference on Research and development in
information retrieval (SIGIR).

Kaki, M. (2005). Findex: search result categories help users when document ranking
fails. In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’05, pages 131-140, New York, NY, USA. ACM.

Kale, A., Burris, T., Shah, B., Venkatesan, T. L. P., Velusamy, L., Gupta, M., and
Degerattu, M. (2010). ¿collaborate: harvesting value from enterprise web usage.
In Proceeding of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’10, pages 699-699, New York, NY,
USA. ACM.

Kaufman, L. and Rousseeuw, P. (1990). Finding groups in data: an introduction to
cluster analysis. John Wiley & Sons.

http://www.readwriteweb.com/archives/overview-of-du.php

Ill

Kelly, D. and Teevan, J. (2003). Implicit feedback for inferring user preference: a
bibliography. ACM SIGIR Forum, 37(2): 18-28.

Koren, J., Zhang, Y., and Liu, X. (2008). Personalized interactive faceted search. In
Proceeding of the 17th international conference on World Wide Web, W W W ’08,
pages 477-486, New York, NY, USA. ACM.

Krovetz, R. and Croft, W. B. (1992). Lexical ambiguity and information retrieval.
ACM Transactions on Information Systems (TOIS), 10:115-141.

Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., and Krishnapuram, R. (2004). A
hierarchical monothetic document clustering algorithm for summarization and
browsing search results. In Proceedings of the 13th international conference on
World Wide Web, W W W ’04, pages 658-665, New York, NY, USA. ACM.

Lawrence, S. (2000). Context in web search. IEEE Data Engineering Bulletin,
23(3):25-32.

Lee, J., Hwang, S.-w., Nie, Z., and Wen, J.-R. (2009). Query result clustering for
object-level search. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’09, pages 1205-1214,
New York, NY, USA. ACM.

Li, Z., Li, T., and Ding, C. (2010). Hierarchical ensemble clustering. In Proceeding
of the IEEE 10th International Conference on Data Mining (ICDM), volume 1 ,
pages 1-6. IEEE.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In 5th Berkeley Symposium on mathematics, Statistics and
Probability, pages 281-297.

Manning, C. D., Raghavan, P., and Schtze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press.

Morris, M. R. (2008). A survey of collaborative web search practices. In Proceeding
of the twenty-sixth annual SIGCHI conference on Human factors in computing
systems, CHI ’08, pages 1657-1660, New York, NY, USA. ACM.

112

Morris, M. R. and Horvitz, E. (2007). Searchtogether: an interface for collaborative
web search. In Proceedings of the 20th annual ACM symposium on User interface
software and technology, UIST ’07, pages 3-12, New York, NY, USA. ACM.

O’Reilly, T. and Battelle, J. (2009). Web squared: Web 2.0 five years on.
assets, en. oreilly. com/l/event/28/web2009-websquared-whitepaper.pdf.

Osinski, S. and Weiss, D. (2005). A concept-driven algorithm for clustering search
results. IEEE Intelligent Systems, 20(3):48-54.

Pirolli, R , Schank, R , Hearst, M., and Diehl, C. (1996). Scatter/gather browsing
communicates the topic structure of a very large text collection. In Proceedings of
the SIGCHI conference on Human factors in computing systems: common ground,
CHI ’96, pages 213-220, New York, NY, USA. ACM.

Pretschner, A. and Gauch, S. (1999). Ontology based personalized search. In
Proceedings of the 11th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI ’99, pages 391-, Washington, DC, USA. IEEE Computer
Society.

Qiu, F. and Cho, J. (2006). Automatic identification of user interest for
personalized search. In Proceedings of the 15th international conference on World
Wide Web, W W W ’06, pages 727-736, New York, NY, USA. ACM.

Radlinski, F. and Dumais, S. (2006). Improving personalized web search using
result diversification. In Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’06,
pages 691-692, New York, NY, USA. ACM.

Rafiei, D., Bharat, K., and Shukla, A. (2010). Diversifying web search results. In
Proceedings of the 19th international conference on World wide web, W W W ’10,
pages 781-790, New York, NY, USA. ACM.

Raghavan, H., Madani, O., and Jones, R. (2005). Interactive feature selection. In
Proceedings of the 19th international joint conference on Artificial intelligence,
pages 841-846, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA.

Rose, D. E. and Levinson, D. (2004). Understanding user goals in web search. In
Proceedings of the 13th international conference on World Wide Web, W W W ’04,
pages 13-19, New York, NY, USA. ACM.

Ruthven, I. and Laimas, M. (2003). A survey on the use of relevance feedback for
information access systems. Knowledge Engineering Review, 18(1).

Salton, G. (1971). The SMART Retrieval System. Prentice-Hall.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18:613-620.

Sandhaus, E. (2008). The New York Times Annotated Corpus. Linguistic Data
Consortium, Philadelphia.

Santos, R. L., Macdonald, C., and Ounis, I. (2010). Exploiting query reformulations
for web search result diversification. In Proceedings of the 19th international
conference on World wide web, W W W TO, pages 881-890, New York, NY, USA.
ACM.

Sarlös, T., Benczür, A. A., Csalogâny, K., Fogaras, D., and Râcz, B. (2006). To
randomize or not to randomize: space optimal summaries for hyperlink analysis.
In Proceedings of the 15th international conference on World Wide Web, W W W
’06, pages 297-306, New York, NY, USA. ACM.

Sigurbjörnsson, B. and van Zwol, R. (2008). Flickr tag recommendation based on
collective knowledge. In Proceeding of the 17th international conference on World
Wide Web, W W W ’08, pages 327-336, New York, NY, USA. ACM.

Singh, V., Mukherjee, L., Peng, J., and Xu, J. (2008). Ensemble clustering using
semidefinite programming. Advances in Neural Information Processing Systems
20, 79(1-2): 177-200.

114

Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.-C., and Giles, C. L. (2008).
Real-time automatic tag recommendation. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’08, pages 515-522, New York, NY, USA. ACM.

Speretta, M. and Gauch, S. (2005). Personalized search based on user search
histories. In Proceedings of the 2005 IEEE/WIC/ACM International Conference
on Web Intelligence, pages 622 - 628.

Sugiyama, K., Hatano, K., and Yoshikawa, M. (2004). Adaptive web search based
on user profile constructed without any effort from users. In Proceedings of the
13th international conference on World Wide Web, W W W ’04, pages 675-684,
New York, NY, USA. ACM.

Tan, B., Shen, X., and Zhai, C. (2006). Mining long-term search history to improve
search accuracy. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledqe discovery and data mininq, KDD ’06, pages 718-723,
New York, NY, USA. ACM.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining.
Addison-Wesley.

tao Sun, J., Zeng, H.-J., Liu, H., and Lu, Y. (2005). Cubesvd: A novel approach to
personalized web search. In Proceedings of the lfth International World Wide
Web Conference (WWW), pages 382-390. Press.

Teevan, J., Dumais, S. T., and Horvitz, E. (2005). Personalizing search via
automated analysis of interests and activities. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’05, pages 449-456, New York, NY, USA. ACM.

Tombros, A., Villa, R., and Van Rijsbergen, C. J. (2 0 0 2). The effectiveness of
query-specific hierarchic clustering in information retrieval. Information
Processing and Management: an International Journal, 38(4):559-582.

Twidale, M. B., Nichols, D. M., and Paice, C. D. (1997). Browsing is a collaborative
process. Information Processing and Management: an International Journal,
33:761-783.

115

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14:249-260.

von Ahn, L. and Dabbish, L. (2004). Labeling images with a computer game. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
CHI ’04, pages 319-326, New York, NY, USA. ACM.

Wagstaff, K., Cardie, C., Rogers, S., and Schrödl, S. (2 0 0 1). Constrained k-means
clustering with background knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, pages 577-584, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Wang, X. and Zhai, C. (2007). Learn from web search logs to organize search
results. In Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’07, pages 87-94,
New York, NY, USA. ACM.

Wen, J.-R., Duo, Z., and Song, R. (2009). Personalized web search. Encyclopedia of
Database Systems.

Wilson, T. D. (2006). On user studies and information needs. Journal of
Documentation, 62(6):658-670.

Xu, S., Bao, S., Fei, B., Su, Z., and Yu, Y. (2008). Exploring folksonomy for
personalized search. In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’08,
pages 155-162, New York, NY, USA. ACM.

Xue, G.-R., Han, J., Yu, Y., and Yang, Q. (2009). User language model for
collaborative personalized search. ACM Transactions on Information Systems
(TOIS), 27:11:1-11:28.

Zamir, O. and Etzioni, O. (1998). Web document clustering: a feasibility
demonstration. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’98,
pages 46-54, New York, NY, USA. ACM.

116

Zamir, 0 . and Etzioni, 0 . (1999). Grouper: a dynamic clustering interface to web
search results. In Proceedings of the eighth international conference on World
Wide Web, W W W ’99, pages 1361-1374, New York, NY, USA. Elsevier
North-Holland, Inc.

Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., and Ma, J. (2004). Learning to cluster
web search results. In Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’04,
pages 210-217, New York, NY, USA. ACM.

Zhai, C. X., Cohen, W. W., and Lafferty, J. (2003). Beyond independent relevance:
methods and evaluation metrics for subtopic retrieval. In Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in
informaion retrieval, SIGIR ’03, pages 10-17, New York, NY, USA. ACM.

Zhang, M. and Hurley, N. (2008). Avoiding monotony: improving the diversity of
recommendation lists. In Proceedings of the 2008 ACM conference on
Recommender systems, RecSys ’08, pages 123-130, New York, NY, USA. ACM.

Zhao, Y. and Karypis, G. (2 0 0 2). Evaluation of hierarchical clustering algorithms
for document datasets. In Proceedings of the eleventh international conference on
Information and knowledge management, CIKM ’02, pages 515-524, New York,
NY, USA. ACM.

Zimmerman, M. (2000). Weaving the web: the original design and ultimate destiny
of the world wide web by its inventor [book review]. IEEE Transactions on
Professional Communication, 43(2):217 -218.

Zollers, A. (2007). Emerging motivations for tagging: Expression, performance, and
activism. In Tagging and Metadata for Social Information Organization
Workshop, W W W ’07, New York, NY, USA. ACM.

VITA

Dragos Anastasiu was born in Bucharest, Romania, on February 13, 1979, the son

of Mariana and Miron Anastasiu. He came to the United States to pursue a

Bachelor Degree in Theology. After completing his work at Moody Bible Institute

in Chicago, Illinois, he worked in the Information Technology industry for a number

of years. In Summer 2008 he entered Texas State University-San Marcos. In the

Spring of 2009, he received a post-graduate Certificate in Computer Science from

Texas State University-San Marcos. He continued on at Texas State University-San

Marcos, pursuing a Masters Degree in Computer Science.

Permanent Address: 500 Keystone Loop

Kyle, Texas 78640

This thesis was typed by Dragos Anastasiu.

