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AB STR ACT

PERSONALIZED AND COLLABORATIVE CLUSTERING OF SEARCH

RESULTS

by

Dragos Anastasiu, B.A.

Texas State University-San Marcos 

August 2011

SUPERVISING PROFESSOR: BYRON J. GAO

Organizing and presenting search results plays a critical role in the utility of 

search engines. Due to the unprecedented scale of the Web and diversity of search 

results, the common strategy of ranked lists has become increasingly inadequate, 

and clustering has been considered as a promising alternative. Clustering divides a 

long list of disparate search results into a few topic-coherent clusters, allowing the 

user to quickly locate relevant results by topic navigation. While many clustering 

algorithms have been proposed that innovate on the automatic clustering procedure, 

I introduce Clustering Wiki, the first prototype and framework for personalized 

clustering that allows direct user editing of the clustering results. Through a Wiki

x



XI

interface, the user can edit and annotate the membership, structure and labels of 

clusters for a personalized presentation. In addition, the edits and annotations can 

be shared among users as a mass-collaborative way of improving search result 

organization and search engine utility.



CH APTER I

INTRODUCTION

We live in the information age. Billions of documents on all topics imaginable are 

connected and accessible on the Web through the simple concept of the hyperlink. 

Yet the sheer size of the Web makes browsing to locate desired information a 

daunting task. Web search attempts to alleviate this problem by connecting short 

phrase queries to relevant documents on the Web, which are generally displayed in a 

flat ranked list.

Every day millions of people search the Web, unaware of the complexity 

involved in matching their query with the information they seek. They hope that 

the exact search results they are looking for will be displayed as soon as they 

execute their query. However, queries are inherently ambiguous and search results 

are often diverse with multiple senses. With a list presentation, the results on 

different sub-topics of a query will be mixed together. The user has to sift through 

many irrelevant results to locate those relevant ones.

With the rapid growth in the scale of the Web, queries have become more 

ambiguous than ever. For example, there are more than 20 entries in Wikipedia for 

different renown individuals under the name of Jim Gray, including a computer

1
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scientist, a diplomat, a linguist, a poet, a turbine design engineer, a filmmaker, and 

so on. Suppose we intend to find information about Jim Gray, the Turing Award 

winner, we can issue a query of “Jim Gray” in Yahoo!1. For this extremely famous 

name in computer science, only 2 are relevant in the top 10 results.

The way search results are organized and presented has a direct and significant 

impact on the utility of search engines. While the flat ranked list presentation is 

acceptable for homogeneous search results, the diversity of search results for most 

queries has increased to the point that we must consider alternative presentations 

by providing additional structure to flat lists so as to effectively minimize browsing 

effort and alleviate information overload [Carpineto et al., 2009; Hearst and 

Pedersen, 1996; Pirolli et al., 1996; Zamir and Etzioni, 1998]. Over the years 

clustering has been accepted as the most promising alternative.

Clustering is the process of organizing objects into groups or clusters that 

exhibit internal cohesion and external isolation. Based on the common observation 

that it is much easier to scan a few topic-coherent groups than many individual 

documents, clustering can be used to categorize a long list of disparate search 

results into a few clusters such that each cluster represents a homogeneous sub-topic

of the query. Meaningfully labeled, these clusters form a topic-wise non-predefined,

1 Other choices of search engine in this example would not change the validity of the observations. 

Also note that search results and their ranks may change over time.
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faceted search interface, allowing the user to quickly locate relevant and interesting 

results. Evidence shows that clustering improves user experience and search result 

quality [Manning et ah, 2008].

Given the significant potential benefits, search result clustering has received 

increasing attention in recent years from the communities of information retrieval 

(IR), Web search, and data mining. Many clustering algorithms have been proposed 

[Hearst and Pedersen, 1996; Kummamuru et al., 2004; Lee et ah, 2009; Pirolli et ah, 

1996; Wang and Zhai, 2007; Zamir and Etzioni, 1998, 1999; Zeng et al., 2004]. In 

the industry, well-known cluster-based commercial search engines include Clusty 

(www.clusty.com), iBoogie (www.iboogie.com) and CarrotSearch 

(carrotsearch.com). Carrot2 (www.carrot2.org) is an open source clustering engine 

distributed under the BSD license.

Despite the high promise of the approach and a decade of endeavor, 

cluster-based search engines have not gained prominent popularity, evident by 

Clusty’s Alexa rank [Iskold, 2007]. This is because clustering is known to be a hard 

problem, and search result clustering is particularly hard due to its high 

dimensionality, complex semantics and unique additional requirements beyond 

traditional clustering.

As emphasized in [Wang and Zhai, 2007] and [Carpineto et al., 2009], the 

primary focus of search result clustering is NOT to produce optimal clusters, an

http://www.clusty.com
http://www.iboogie.com
http://www.carrot2.org


objective that has been pursued for decades for traditional clustering with many 

successful automatic algorithms. Search result clustering is a highly user-centric 

task with two unique additional requirements. First, clusters must form interesting 

sub-topics or facets from the user’s perspective. Second, clusters must be assigned 

informative, expressive, meaningful and concise labels. Automatic algorithms often 

fail to fulfill the human factors in the objectives of search result clustering, 

generating meaningless, awkward or nonsense cluster labels [Carpineto et al., 2009],

In this thesis, I explore a completely different direction in tackling the problem 

of clustering search results, utilizing the power of direct user intervention and 

mass-collaboration. I introduce ClusteringWiki, the first prototype and framework 

for personalized clustering that allows direct user editing of the clustering results. 

This is in sharp contrast with existing approaches that innovate on the automatic 

algorithmic clustering procedure.

In ClusteringWiki [Anastasiu et al., 2011], the user can edit and annotate the 

membership, structure and labels of clusters through a Wiki interface to personalize 

their search result presentation. Personalization provides direct and immediate 

benefit to the user by reducing user effort spent locating desired results. Edits and 

annotations can be implicitly shared among users as a mass-collaborative way of 

improving search result organization and search engine utility. This approach is in 

the same spirit as other current trends in the Web, like Web 2.0, semantic web,
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personalization, social tagging and mass collaboration.

In social tagging, or collaborative tagging, users annotate Web objects, and 

such personal annotations can be used to collectively classify and find information. 

Clustering Wiki extends conventional tagging by allowing tagging of structured 

objects, which are clusters of search results organized in a hierarchy.

Clustering algorithms fall into two categories: partitioning and hierarchical. 

Regarding clustering results, however, a hierarchical presentation generalizes a flat 

partition. Based on this observation, Clustering Wiki handles both clustering 

methods smoothly by providing editing facilities for cluster hierarchies and treating 

partitions as a special case. In practice, hierarchical methods are advantageous in 

clustering search results because they construct a topic hierarchy that allows the 

user to easily navigate search results at different levels of granularity.

Figure 1.1 shows a snapshot of ClusteringWiki2. The left-hand label panel 

presents a hierarchy of cluster labels. The right-hand result panel presents search 

results for a chosen cluster label. A logged-in user can edit the current clusters by 

creating, deleting, modifying, moving or copying nodes in the cluster tree. Each edit 

will be validated against a set of predefined consistency constraints before being 

stored.

Designing and implementing ClusteringWiki pose non-trivial technical

2 dmlab. cs. txst ate. edu /ClusteringWiki /.
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Figure 1.1: Snapshot of ClusteringWiki.

challenges. User edits represent user preferences or constraints that should be 

respected and enforced when the same query is next issued. Query processing is 

time-critical, thus efficiency must be given high priority in maintaining and 

enforcing user preferences. Moreover, complications also come from the dynamic 

nature of search results that constantly change over time.

Cluster editing takes user effort. It is essential that such user effort can be 

properly reused. ClusteringWiki considers two kinds of reuse scenarios, preference 

transfer and preference sharing. The former transfers user preferences from one 

query to similar ones, e.g., from “David J. Dewitt” to “David Dewitt.” The latter 

aggregates and shares clustering preferences among users. Proper aggregation allows 

users to collaborate at a mass scale and “vote” for the best clustering presentation.



C H A P T E R  II

B A C K G R O U N D

The World Wide Web was created in 1990 as a result on Sir Tim Barners-Lee’s

vision for a decentralized system for information dissemination [Zimmerman, 2000].

Since then it has grown exponentially both in terms of number of users and linked

documents. Today there are over 17.47 billion estimated pages1 on the Web, not

including documents hidden behind web forms or ftp servers (hidden web

documents). This explosion in both the size and depth of the Web makes

“browsing” as the main means of finding Web information obsolete.

The research community has been active over the past several decades,

investigating new methods of analyzing, organizing, and presenting Web documents,

with the goal of minimizing the time spent between executing the user query and

filling the information need. Below I present some of the related research which

either influences or enables the work in this thesis.

Retrieved from www.worldwidewebsize.com on Tuesday, 14 June, 2011

7
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2.1 Web Search

Information retrieval (IR) aims to retrieve, from a large collection, those materials 

(usually documents) that satisfy an information need [Manning et al., 2008]. When 

applied to the Web, IR focuses on free-text documents and multimedia files, and is 

better known as Web search.

Vector Space Model. The vector space model (VSM), an algebraic model for text 

document representation coined by Gerard M Salton [Salton et al., 1975], was first 

used in the SMART [Salton, 1971] information retrieval system. In the vector space 

model the query and each indexed document are represented by vectors of term 

weights,

A  =  C

where wl:) represents the weight of the jth  term in document i.

Initially, document term frequency (tf) was recommended as a good term 

weighting scheme. In 1972, Karen Sparck Jones introduced a weighting scheme 

based on collection term specificity, the inverse document frequency (idf). [Salton 

et al., 1975] used a combination of the two schemes, defining the term 

frequency-inverse document frequency (tf-idf) weighting scheme, in which

w,hj tfi,j x log P I
\ {i'£ D  \ j  £ d'}\'

where t fhJ is the number of times term j  appears in document i, \D\ is the number



of documents in the collection, and \{d! G D  | j  G d'}\ represents the number of 

collection documents containing the term j.

Various functions have been developed for computing the similarity of two 

documents defined by their document vectors d\ and d2, including the Jaccard index 

and the Tanimoto coefficient. [Salton et al., 1975] suggested using an inverse 

function of the angle between the two document vectors, after normalizing all vector 

lengths to one. The cosine similarity he defined, which is also often used in 

document clustering algorithms [Tan et al., 2005], can be derived from the 

Euclidean dot product formula,

9

di ■ d2 =  ||di|| ||d2|| cos(0),

where 6 is the angle between the normalized term vectors of documents d\ and d2. 

Therefore,

similarity =  cos (9)
d\ • d2 S ?= i dij x d2,:

ii* ii ii*n x

ClusteringWiki relies on external search engines and on Apache Lucene2 to 

retrieve and rank appropriate results for user queries. The process followed by 

Google or Yahoo! is unknown. Lucene, however, indexes documents locally and 

uses, among others, the vector space model and cosine similarity to rank a retrieved 

set of results. In addition to their use in retrieving initial search results,

2http: /  /lucene.apache.org/
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ClusteringWiki uses the vector space model and cosine similarity to compute cluster 

cohesion in two of its implemented k-means-based clustering algorithms.

2.2 Improving Search Through Personalization

User queries are short [Jansen et al., 2000] and generally ambiguous [Krovetz and 

Croft, 1992], causing many of the retrieved results to be irrelevant for a given search 

intent. [Lawrence, 2000] suggested that searcher and query context could be used to 

better direct search, producing more relevant results or raking those relevant results 

higher in the returned list.

Personalized search. Personalized search algorithms use additional searcher 

information to return a personalized list of results in response to a query. For 

example, if an entomologist searches for “fly southwest” , he would rather find 

species of diptera found in the south-west, whereas someone else may wish to find 

the web site for Southwest Airlines3.

Algorithms that focus on the searcher context generally build a long-term or 

short-term user profile for the searcher. The user profile is built either explicitly, by 

asking users to provide preferences [Chirita et al., 2005], or implicitly [Pretschner 

and Gauch, 1999]. Since most users do not provide explicit preference information 

[Carroll and Rosson, 1987], most research has been focused on implicit user profile

3 www. southwest. com
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generation.

Some personalized search algorithms build user profiles as ontology-based 

concept hierarchies [Chaffee and Gauch, 2000; Chirita et al., 2005; Gauch et al., 

2003]. Others use lists of terms extracted from previous search contexts [Sugiyama 

et ah, 2004; Tan et ah, 2006]. Once built, user profiles can be used to refine the 

executed query (e.g. using relevance feedback) [Chirita et ah, 2007; Joachims et ah, 

2005; Kelly and Teevan, 2003; Ruthven and Laimas, 2003; Teevan et ah, 2005], to 

guide the result gathering process via a personalized version of the PageRank 

algorithm [Haveliwala, 2002; Jeh and Widom, 2003; Qiu and Cho, 2006; Sarlos
v

et ah, 2006], or to re-rank non-personalized retrieved results [Speretta and Gauch, 

2005]. [Dou et ah, 2009] pose that personalized search is only effective for some 

queries and propose an algorithm for identifying those personalization-prone 

queries. [Wen et ah, 2009] provides an extensive survey of personalized Web search.

Similar to personalized search algorithms that re-rank results, ClusteringWiki 

personalizes the view to the results list. However, the personalization is applied to 

the clustering of search results, not altering the order or make-up of the result set. 

Through selecting a personalized cluster label, the searcher is able to quickly review 

only those results of interest to them.

In general, personalization in ClusteringWiki is explicit. The user edits the 

labels and membership of the clustering of search results formed in response to a
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query. The user “profile” is made up of cluster edits performed by the user in 

response to one or more queries. When a similar enough query whose search result 

cluster has been personalized can be found, the present query is implicitly 

personalized by applying the similar query’s edits (preference transfer).

Collaborative search. Personalized Web search algorithms cannot always be 

implemented efficiently for large number of users, due to the space requirements for 

off-line storage of user profiles or Personalized PageRank Vectors (PPV). Some 

algorithms, which fall under the umbrella of (implicit) Collaborative Search, 

personalize Web search using representative user profiles for groups of like-minded 

users. This approach also alleviates the “cold-start” problem of new users without 

well-defined profiles. Collaborative Filtering (CF) algorithms, made popular by 

their use in recommendation systems, are applied in [tao Sun et al., 2005; Xue 

et al., 2009] to match an individual user with a group profile. [Dalai, 2007] extends 

community context based personalization with explicit social search and cooperative 

search methods.

Research has shown that people value information provided by family, friends 

and other collaborators [Wilson, 2006]. A survey conducted in [Morris, 2008] 

highlights the fact that users often engage in cooperative search behaviors. This 

type of (explicit) collaborative search can either be distributed [Morris and Horvitz, 

2007], where users interact through electronic means, or co-located [Amershi and
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Morris, 2008]. [Twidale et al., 1997] describes a remote asynchronous collaborative 

search model in which both the search process and product are captured and 

communicated.

Collaboration in ClusteringWiki is a result of implicit aggregation of 

community preferences for a given search result cluster tree. Unlike collaborative 

search approaches that apply personalization of a community profile,

ClusteringWiki uses preferences from any user that has edited the cluster tree for 

the executed query, irrespective of that user profile’s similarity to the searcher. In 

fact, community preferences are applied for logged-out searchers, whose profiles are 

not known. However, the mass-collaboration editing effort of logged-in users is 

utilized “free of charge” by logged-out users.

Social search. Search is often a social collaborative experience. Social search 

extends personalized and collaborative search by giving special consideration to 

content created or touched by users in the searcher’s social graph. Example forms of 

user contributions include shared bookmarks, tagging of content with descriptive 

labels, and even explicit assistance through chat or email. Currently there are more 

than 40 such people-powered or community-powered social search engines, including



Eurekster Swiki4, Mahalo5, Wikia6, and Google social search7. [Evans and Chi,

2008] model social search behavior through a survey of 150 users on Amazon’s 

Mechanical Turk.

In ClusteringWiki statistically significant paths are chosen from community 

preferences without special consideration for a searcher’s social network. Therefore, 

the ClusteringWiki collaboration strategy is distinct from that employed in social 

search.

Tagging /  Social Annotations. Tagging allows users to associate objects with 

tags, generally keywords or short phrases, as a means of annotating and categorizing 

them. While users are primarily interested in tagging for their personal use, tags in 

a community collection tend to stabilize into power law distributions [Halpin et al., 

2007]. Collaborative tagging systems leverage this property to derive folksonomies 

and improve search [Xu et al., 2008]. [Sigurbjornsson and van Zwol, 2008] and [Song 

et al., 2008] have studied tag suggestion as a means to minimize user tagging effort. 

[Zollers, 2007] has shown that most user tags are phrases rather than single words. 

In ClusteringWiki, users tag clusters to organize search results, and the tags

can be shared and utilized in a similar way as in collaborative tagging. Since

4www.eurekster.com
5www.mahalo.com
6answers. wikia.com/wiki /Wikianswers
7googleblog.blogspot.com/2009/10/introducing-google-social-search-i.html

14

http://www.eurekster.com
http://www.mahalo.com
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clusters are organized in a hierarchy, ClusteringWiki extends conventional tagging 

by allowing tagging of structured objects. Similar to tag suggestion in social 

tagging, the base clustering algorithm in ClusteringWiki provides suggested phrases 

for tagging clusters. While social tagging is leveraged to build a concept hierarchy 

(folksonomy) from the bottom up, ClusteringWiki automatically generates 

top-down concept hierarchy sections editable by the searcher.

Prototypes that allow user editing and annotation of search results exist, e.g.

U Rank by Microsoft8 and Searchwiki by Google9. Rants [Gao and Jan, 2010] 

implemented a prototype with additional interesting features including the 

incorporation of both absolute and relative user preferences. Similar to 

ClusteringWiki, these works pursue personalization as well as a mass-collaborative 

way of improving search engine utility. The difference is that they use the 

traditional flat list, instead of cluster-based, search interface.

Semantic Web. Another popular use of annotations is to assign machine readable 

meaning to words and phrases in free-text. Semantic annotations, as they are called, 

are metadata attached to parts of text which assign them formal semantics 

(knowledge), often though ontology references [Horrocks, 2008]. As first envisioned 

by Sir Tim Barners-Lee in 2001 [Berners-Lee et al., 2001], semantic annotations

8research.microsoft.com/ en-us/  projects/urank
9googleblog.blogspot.com/2008/ll/searchwiki-make- search- your-own.html
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would allow the creation of intelligent Web search agents capable of automatically 

interacting with data and other agents to provide complex and specific answers to 

our queries. This futuristic concept of the Web has been dubbed the Semantic Web.

The task of on-demand integration of data, without participation by humans, 

cannot be completed without semantic annotation of the current Web content. As a 

result, mass-collaborative projects have been started, such as Web Ontology 

Language (OWL), to create ontologies which span the Web and to semantically 

annotate Web content.

The scope of ClusteringWiki and the Semantic Web are the same: to improve 

search performance. However, ClusteringWiki provides direct answers to the query 

given, without intelligently deducing and retrieving answers to subsequent follow-up 

questions, as a Semantic Web agent would do. The mass-collaborative effort to 

build semantic Web ontologies is similar to the ClusteringWiki collaborative effort 

which builds annotation hierarchies.

2.3 W hy Personalized and Collaborative Clustering

The initial goal of the World Wide Web was to make information readily available 

to whomever wished and was authorized to retrieve it [Zimmerman, 2000]. Two 

decades later, the Web is so much more: a place for social gathering, self-expression, 

entertainment, business, etc.
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Web 2.0. Web 2.0 ushered in a new era in Internet publishing. It changed the web 

from a medium where information was made available for users to consume to one 

where users work together to create and share information. Two themes stand out 

at the core of Web 2.0: the Web as Platform, and users control data. Web as 

platform means applications are built with Web community authorship in mind. 

Powerful platforms like Amazon, Wikipedia, eBay, YouTube, Twitter, and Facebook 

harness the collective intelligence of the masses to build services [O’Reilly and 

Battelle, 2009]. While their actions benefit all in the community, individual authors 

are in charge of and responsible for their own content.

ClusteringWiki is built on the same Web 2.0 principles. It works to improve 

search for the Web community through the efforts of many individual authors who 

manage their own search result cluster edits.

Mass collaboration. One of the effects of the Web 2.0 movement has been mass 

collaboration. A mass collaboration system uses a large number of people to help 

solve a problem. User collaboration can be either implicit, e.g. playing an online 

game which collaboratively is used for optical character recognition [von Ahn and 

Dabbish, 2004], or explicit. As defined by [Doan et al., pear], users of explicit mass 

collaboration systems expressly provide data or services by:

-• Evaluating. Users evaluate products, services, or other users. (Netflix,

Amazon)



• Sharing. Users share knowledge, products, services, etc. (Wikinews, 

Technorati, [Bernardo, 2007])

• Networking. Users form connections with other users, building a graph which 

is exploited to provide services. (Twitter, Facebook)

• Building artifacts. Users coordinate efforts to build a product. (Linux, 

Hadoop)

• Executing tasks. Users execute sub-tasks, providing a community solution for 

a larger task. (Mechanical Turk)

Mass collaboration has been applied to many aspects of the Web search 

problem. Wikia Search10 11 Alpha, launched January 7, 2008, used the power of 

mass-collaboration to develop and popularize open-source search engine software. 

The site has been replaced by WikiAnswers11, a Wikia site allowing users to ask 

questions, in lieu of traditional Web search, which are then answered by the 

community. The Eurekster swicki12 is a customized, community-driven social search 

portal. Swiki owners can customize sites the search engine should crawl (whitelist), 

sites it should ignore (blocklist), and can even manually add new search results or

comment on existing ones. Google SearchWiki13 allows users to customize their

10http: / /search, wikia.com
11 ht tp: /  /  wiki. answers .com/
12 http: /  /  www .eurekster.com
13http://googleblog.blogspot.com/2008/ll/sear chwiki-make-search-your-own.html
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Google search results by ranking, removing, or adding comments to them. 

Comments are public and thus shared with the community. [Gao and Jan, 2010] 

describes the first academic system for search result rank editing and provides 

capabilities for sharing edits within the searcher’s social network. Freebase14 is an 

open, searchable, community-driven repository of structured data. Mass 

collaboration roles in the Freebase project include data contributors and curators, 

schema builders, and application developers.

Search is a problem that cannot be perfectly solved by machines. 

ClusteringWiki enables users to author new creative content by editing cluster 

hierarchies, and the efforts of individual users are shared with the community as a 

collaborative effort to improve search performance. It can thus be categorized as a 

sharing explicit mass collaboration system. A challenging task when designing a 

mass collaboration system is identifying portions of the final task that can be 

performed by a crowd and finding ways to combine the individual user results. 

ClusteringWiki treats cluster edits independently and uses a novel root-to-leaf node 

path approach to aggregate significant edits from multiple users.

19

14 http: /  /  www. freebase. com /
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2.4 Improving Search Through Presentation

Given its exponential growth, the Web likely contains documents on many 

sub-topics within any given topic. Additionally, user’s queries are often short and 

ambiguous, vulnerable to the problem of polysemy. Given multiple senses associated 

with the query, how can we know which one the searcher has in mind? While some 

have attempted to answer this question through analyzing the searcher’s context 

(e.g. Personalized Search), diversification and search result clustering employ 

alternate presentations of the search results to let the user quickly choose thier 

intended meaning.

Diversification. Diversification works under the premise that the user’s search 

intent cannot be fully known and instead spreads results with different 

characteristics throughout the search result list. This approach aids users exploring 

different themes within a topic. Results can be diversified based on their similarity 

to each other [Zhai et al., 2003; Zhang and Hurley, 2008], by following the maximal 

marginal relevance (MMR) paradigm [Carbonell and Goldstein, 1998], based on 

novelty [Clarke et ah, 2008], or based on topic coverage [Agrawal et al., 2009; 

Carterette and Chandar, 2009]. Personalized Web search approaches are also 

applied to the diversification problem in [Radlinski and Dumais, 2006; Rafiei et ah, 

2010]. While most diversification methods focus on re-ranking results, [Santos et ah,



2010] explores query reformulations to retrieve diverse results for a given topic. 

[Drosou and Pitoura, 2010] surveys the field of search result diversification.

While diversification tries to provide users with results from many query 

senses in the same page, ClusteringWiki takes a different approach, providing label 

hierarchies for these senses and allowing the user to filter results pertaining to a 

chosen sense. Diversification can be detrimental for informational queries, as users 

may have to chase sub-topic results through many result pages before finding what 

they are looking for. ClusteringWiki combats this problem by “gathering” sub-topic 

results and allowing the user to find them easily.

Clustering. Clustering is the process of organizing objects into groups or clusters 

so that objects in the same cluster are as similar as possible, and objects in different 

clusters are as dissimilar as possible. Clustering algorithms fall into two main 

categories, partitioning and hierarchical. Partitioning algorithms, such as fc-means 

[MacQueen, 1967], produce a flat partition of objects without any explicit structure 

that relate clusters to each other. Hierarchical algorithms, on the other hand, 

produce a more informative hierarchy of clusters called a dendrogram. Hierarchical 

algorithms are agglomerative (bottom-up) such as AGNES [Kaufman and 

Rousseeuw, 1990], divisive (top-down) such as DIANA [Kaufman and Rousseeuw, 

1990], or use hybrid clustering approaches [Zhao and Karypis, 2002].

21

Clustering in IR. As a common data analysis technique, clustering has a wide
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array of applications in machine learning, data mining, pattern recognition, 

information retrieval, image analysis and bioinformatics [Everitt et al., 2001; Jain 

and Dubes, 1988]. In information retrieval and Web search, document clustering 

was initially proposed to improve search performance by validating the cluster 

hypothesis, which states that documents in the same cluster behave similarly with
o

respect to relevance to information needs [Rijsbergen, 1979].

In recent years, clustering has been used to organize search results, creating a 

cluster-based search interface as an alternative presentation to the ranked list 

interface. The list interface works fine for most navigational queries, but is less 

effective for informational queries, which account for the majority of Web queries 

[Broder, 2002; Rose and Levinson, 2004]. In addition, the growing scale of the Web 

and diversity of search results have rendered the list interface increasingly 

inadequate. Research has shown that the cluster interface improves user experience 

and search result quality [Hearst and Pedersen, 1996; Kaki, 2005; Tombros et al., 

2002; Zamir and Etzioni, 1999].

Search result clustering. One way of creating a cluster interface is to construct a 

static, off-line, pre-retrieval clustering of the entire document collection. However, 

this approach is ineffective because it is based on features that are frequent in the 

entire collection but irrelevant to the particular query [Carpineto et al., 2009; 

Griffiths et al., 1986; Salton, 1971]. It has been shown that query-specific, on-line,
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post-retrieval clustering, i.e., clustering search results, produces much superior 

results [Hearst and Pedersen, 1996].

Scatter/Gather [Hearst and Pedersen, 1996; Pirolli et al., 1996] was an early 

cluster-based document browsing method that performs post-retrieval clustering on 

top-ranked documents returned from a traditional information retrieval system. The 

Grouper system [Zamir and Etzioni, 1998, 1999] (retired in 2000) introduced the 

well-known Suffix Tree Clustering (STC) algorithm that groups Web search results 

into clusters which are labeled by phrases extracted from snippets. It was also 

shown that using snippets is as effective as using whole documents. Carrot2  

(www.carrot2 .org) is an open source search result clustering engine that utilizes 

STC as well as Lingo [Osinski and Weiss, 2005], a clustering algorithm based on 

singular value decomposition.

Other related work from the Web, IR and data mining communities exists. 

[Zeng et ah, 2004] explored supervised learning for extracting meaningful phrases 

from snippets, which axe then used to group search results. [Kummamuru et ah, 

2004] proposed a monothetic algorithm, where a single feature is used to assign 

documents to clusters and generate cluster labels. [Wang and Zhai, 2007] 

investigated the use of past query history in order to better organize search results 

for future queries. [Lee et al., 2009] studied search result clustering for object-level 

search engines that automatically extract and integrate information on Web objects.

http://www.carrot2.org
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[Carpineto et al., 2009] surveyed Web clustering engines and algorithms.

Methods of organizing search results based on text categorization are studied 

in [Chen and Dumais, 2000; Dumais et al., 2 0 0 1 ]. In this work, a text classifier is 

trained using a Web directory, and search results are then classified into the 

predefined categories. The authors designed and studied different category 

interfaces and they found that category interfaces are more effective than list 

interfaces. However predefined categories are often too general to reflect the finer 

granularity aspects of a query.

While all these methods focus on improvement in the automatic algorithmic 

procedure of clustering, ClusteringWiki employs a Wiki interface that allows direct 

user editing of the clustering results.

Clustering with user intervention. In machine learning, clustering is referred to 

as unsupervised learning. However, similar to ClusteringWiki, there are a few 

clustering frameworks that involve an active user role, in particular, semi-supervised 

clustering [Basu et al., 2004; Cohn et al., 2009] and interactive clustering [Balcan 

and Blum, 2008; Bekkerman et al., 2007; Ji and Xu, 2006; Raghavan et al., 2005; 

Wagstaff et al., 2001] These frameworks are also motivated by the fact that 

clustering is too complex, and it is necessary to open the “black box” of the 

clustering procedure for easy understanding, steering and focusing. However, they 

differ from ClusteringWiki in that their focus is still on the clustering procedure,



where they adopt a constraint clustering approach by transforming user feedback 

and domain knowledge into constraints (e.g., must-links and cannot-links) that are 

incorporated into the clustering procedure.

Clustering aggregation. The problem of clustering aggregation tries to find, 

among a set of clusterings, one that agrees the most with the entire set of 

clusterings. Often, when the clusterings are produced by different clustering 

algorithms, the problem is known as ensemble clustering, and has been studied 

extensively [Fern and Lin, 2008; Gionis et al., 2007; Li et al., 2010; Singh et al., 

2008],

Similar to clustering aggregation, ClusteringWiki aggregates multiple user 

clusterings to form a final community-edited cluster tree. However, unlike ensemble 

clustering, it does so without regard to the membership of each cluster or its 

agreement with the set of initial clusterings. Instead, significant edited root-to-leaf 

paths are chosen and applied to the community clustering.

25



C H A P T E R  III

CLUSTERINGW IKI

In this chapter I will present ClusteringWiki, including its main architecture and 

the design principles of the clustering and editing frameworks.

3.1 Overview

Hierarchical clustering forms a tree structure. A root cluster exists and each cluster 

can have 0  or more sub-clusters or results. There are different ways to represent a 

cluster hierarchy in a Web application. One way is to use the concept of “file 

folders” to represent clusters. As extension of this concept, executing cluster edits 

through copy/paste and drag and drop type functionality is instantly familiar to 

most users. Additionally, it allows users complete control, with few restrictions, to 

reshape the clusters as they see fit.

Architecture. Figure 3.1 shows the two ClusteringWiki key modules. The query 

processing module takes a query q and a set of stored user preferences as input to 

produce a cluster tree T  that respects the preferences. The cluster editing module 

takes a cluster tree T  and a user edit e as input to create/update a set of stored

26
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query q Query cluster
 ̂ tree T ^ Cluster

Processing Editing
Module edit e — > Module

stored user 
preferences

Figure 3.1: Main architecture of ClusteringWiki.

user preferences. Each user editing session usually involves a series of edits. The 

processing-editing cycle recurs over time.

Query processing. ClusteringWiki takes a query q from a user u and retrieves the 

search results R from a data source (e.g., Google). Then, it clusters R with a 

default clustering algorithm (e.g., frequent phrase hierarchical) to produce an initial 

cluster tree Tmit. Then, it applies P, an applicable set of stored user preferences, to 

Timt and presents a modified cluster tree T  that respects P.

Note that ClusteringWiki performs clustering. The modification should not 

alter R, the input data.

If the user u is logged-in, P  will be set to Pq>u, a set of preferences for q 

previously specified by u. In case Pg>u =  0, Pq>jU will be used on condition that q' is 

sufficiently close to q. If the user u is not logged-in, P  will be set to Pqy ,  a set of 

aggregated preferences for q previously specified by all users. In case Pqy  =  0, Pq\u 

will be used on condition that q' is sufficiently close to q.
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In the cluster tree T, the internal nodes, i.e., non-leaf nodes, contain cluster 

labels and are presented on the left-hand label panel. Each label is a set of 

keywords. The leaf nodes contain search results, and the leaf nodes for a selected 

label are presented on the right-hand result panel. A search result can appear 

multiple times in T . The root of T  represents the query q itself and is always 

labeled with All. When it is chosen, all search results will be presented on the result 

panel. Labels other than A ll represent the various, possibly overlapping, sub-topics 

of q. When there is no ambiguity, internal node, label node, cluster label and label 

are used interchangeably in the thesis. Similarly, leaf node, result node, search result 

and result are used interchangeably.

Cluster editing. If logged-in, a user u can edit the cluster tree T  for query q by 

creating, deleting, modifying, moving or copying nodes. User edits will be validated 

against a set C  of consistency constraints before being written to PqjU.

The set C  contains predefined constraints that are specified on, for example, 

the size of clusters, the height of the tree and the length of labels. These constraints 

exist to maintain a favorable user interface for fast and intuitive navigation. The 

cluster tree T  is consistent if it satisfies all the constraints in C .

By combining preferences in Pq̂u for all users who have edited the cluster tree 

T  for query q, I obtain Pq,u, a set of aggregated preferences for query q. I use Pu to 

denote the collection of clustering preferences by user u for all queries, which is a set
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of sets of preferences such that Vg, PqjU E Pu- I also use Pu to denote the collection 

of aggregated preferences by all users for all queries, which is a set of sets of 

aggregated preferences such that Vg, Pqy  E Pu- Pu and Pu are maintained over time 

and used by ClusteringWiki in processing queries for the user u.

Design principles. In a search result clustering engine, there are significant 

uncertainties, from the data to the clustering algorithm. Wiki-facilitated 

personalization further adds substantial complications. Simplicity should be a key 

principle in designing such a complex system. ClusteringWiki adopts a simple yet 

powerful path approach.

With this approach, a cluster tree T  is decomposed into a set of root-to-leaf 

paths that serve as independent editing components. A path always starts with All 

(root) and ends with some search result (leaf). In ClusteringWiki, maintenance, 

aggregation and enforcement of user preferences are based on simple path 

arithmetic. Moreover, the path approach is sufficiently powerful, being able to 

handle the finest user preference for a cluster tree.

In particular, each edit of T  can be interpreted as operations on one or more 

paths. There are two primitive operations on a path p, insertion of p and deletion of 

p. A modification of p to p' is simply a deletion of p followed by an insertion of p'.

For each user u and each query g, ClusteringWiki maintains a set of paths PQ:U 

that represents the user edits from u for query q. Each path p E Pq>u can be either
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positive or negative. A positive path p represents an insertion of p, meaning that the 

user prefers to have p in T. A negative path —p represents a deletion of p, meaning 

that the user prefers not to have p in T. Two opposite paths p and —p will cancel 

each other out. The paths in PqtU may be added from multiple editing sessions at 

different times.

To aggregate user preferences for query g, ClusteringWiki first combines the 

paths in all PqtU) u £ U, where U is the set of users who have edited the cluster tree 

of q. Then, certain statistically significant paths are selected and stored in Pq,u-

Suppose in processing query q, P  is identified as the applicable set of paths to 

enforce. ClusteringWiki first combines the paths in P  and the paths in Tmit, where 

Tmit is the initial cluster tree. Then, it presents the combined paths as a tree, which 

is the cluster tree T. The combination is straightforward. For each positive p G P, if 

P £ Timt, add p to Timt. For each negative p G P, if p G T„aU remove p from Timt.

Reproducibility. It is easy to verify that ClusteringWiki has the property of 

reproducing edited cluster trees. In particular, after a series of user edits on Timt to 

produce T, if Tmit remains the same in a subsequent query, exactly the same T  will 

be produced after enforcing the stored user preferences generated from the user 

edits on Timt.
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3.2 Framework

This section introduces the ClusteringWiki framework in detail. In particular, I 

present the algorithms for the query processing and cluster editing modules and 

explain their main components.

3.2.1 Query Processing

Algorithm 1  presents the pseudocode for the query processing algorithm in 

ClusteringWiki. In the input, Pu and Pu are used instead of PqjU and Pqjj for 

preference transfer purposes. In processing query q, it is likely that Pq)U — 0 or 

Pq,u =  0; then some applicable Pq>tU £ Pu or Pq/tU £ Pu can be used. The creation 

and maintenance of such user preferences will be discussed in Section 3 .2 .2 . The 

output of the algorithm is a consistent cluster tree T.

Retrieving search results. Line 1 retrieves a set R  of search results for query q 

from a chosen data source. The size of R is set to 50 by default and adjustable to 

up to 500. The available data sources include Google and Yahoo! Search APIs 

among others (see Section 5 for details). ClusteringWiki retrieves the results via 

multi-threaded parallel requests, which are much faster than sequential requests.

The combined titles and snippets of search results retrieved from the sources 

are preprocessed. In order to extract phrases, I implement a custom tokenizer that 

identifies whether a token is a word, numeric, punctuation mark, capitalized, all
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Algorithm 1 Query processing *
Input: q, u , C, Pu and Pu- q is a query, u is a user. C  is a set of consistency 

constraints. Pu is a collection of preferences by user u for all queries, where 
V(?, Pq)U 6  Fu, Pu is a collection of aggregated preferences for all queries, where 
V?, Pq,u £ P /-

Output: T: a consistent cluster tree for the search results of query q.
1 : retrieve a set R  of search results for query q\
2 : cluster R  to obtain an initial cluster tree Timt;
3: P  4— 0; //P  is the set of paths to be enforced on TlJllt 
4: if (u is logged-in) then 
5: q' <— Trans(q,u);
6: if (q1 ± NULL) then
7: P i -  Pq',u'i //u se  applicable personal preferences
8: end if
9: else

10: q' i— Trans(q, U)\
11: if {q' ± NULL) then
1 2 : P  <— Pqitu ; //u se  applicable aggregated preferences
13: end if
14: end if
15: T i— Ttmt; //initialize T, the cluster tree to present
16: clean P ; / /remove p G P  if its result node is not in R
17: for each p 6 P
18: if (p is positive) then
19: T f - T U  {p};  / /add a preferred path
20: else
2 1 : T i— T — {p }; / /remove a non-preferred path
22: end if
23: end for
24: trim (T ,C ); //m ake T  consistent
25: present{T)\ //present the set of paths in T  as a tree
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caps, etc. I then remove non-textual tokens and stop words, using the stop word list 

from the Apache Snowball package (www.docjar.com/html/api/org/apache/ 

lucene/analysis/ snowball/SnowballAnalyzer.java.html). The tokens are then 

stemmed using the Porter (tartarus.org/martin/PorterStemmer/) algorithm and 

indexed as terms. For each term, document frequency and collection frequency are 

computed and stored. A numeric id is also assigned to each term in the document 

collection in order to efficiently calculate document similarity, identify frequent 

phrases, etc.

Building initial tree. Line 2 builds an initial cluster tree Tmit with a built-in 

clustering algorithm. ClusteringWiki provides 4 such algorithms: /c-means flat, 

/c-means hierarchical, frequent phrase flat and frequent phrase hierarchical. The 

hierarchical algorithms recursively apply their flat counterparts in a top-down 

manner to large clusters.

The /c-means algorithms follow a strategy that generates clusters before labels. 

They use a simple approach to generate cluster labels from titles of search results 

that are the closest to cluster centers. In order to produce stable clusters, the typical 

randomness in /c-means, due to the random selection of initial cluster centers, is 

removed. The parameter k is heuristically determined based on the size of the input.

The frequent phrase algorithms follow a strategy that generates labels before 

clusters. They first identify frequent phrases using a suffix tree built in linear time

http://www.docjar.com/html/api/org/apache/
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by Ukkonen’s algorithm [Ukkonen, 1995]. Then they select labels from the frequent 

phrases using a greedy set cover heuristic, where at each step a frequent phrase 

covering the most uncovered search results is selected until the whole cluster is 

covered or no frequent phrases remain. Then they assign each search result r to a 

label L if r contains the keywords in L. Uncovered search results are added to a 

special cluster labeled Other. These algorithms are able to generate very meaningful 

cluster labels with a couple of heuristics. For example, a sublabel cannot be a 

subset of a superlabel, in which case the sublabel is redundant.

ClusteringWiki smoothly handles flat clustering by treating partitions as a 

special case of trees. The built-in clustering algorithms are meant to serve their 

basic functions. The focus of the thesis is not the production, but rather the 

modification, of the initial cluster trees.

Determining applicable preferences. Lines 3 ~  14 determine P, a set of

applicable paths to be enforced on Timt. Two cases are considered. If the user u is 

logged-in, P  will use some set from Pu representing personal preferences of u (lines 4 

~  8 ). Otherwise, P  will use some set from Pu representing aggregated preferences 

(lines 9 ~  14). The subroutine TransQ determines the actual set to use, if any.

The pseudocode of Trans(q,u) is presented in Algorithm 2 . Given a user u 

and a query q, it returns a query q', whose preferences stored in Pq>tU are applicable 

to query q. In the subroutine, two similarity measures are used. Term similarity,
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termSim(q,q'), is the Jaccard coefficient that compares the terms of q and q'. 

Result similarity, resultSim{q,q')1 is the Jaccard coefficient that compares the 

URLs of the top k (e.g., k =  10) results of q and q'. This calculation requires that 

the URLs of the top k results for q' be stored.

Algorithm 2 Trans(q, u)

Input: g, u and Pu: q is a query, u is a user. Pu is a collection of preferences by user 
u for all queries, where Vg, PqiU G Pu.

Output: q': a query such that Pq'iU is applicable for q.
1: if {Pq,u exists) then
2 : return g; / /u  has edited the cluster tree of g
3: else
4: find q1 s.t. Pq>tU G Pu A term S im (q , q') is the largest;
5: if term S im (q , q') >  Sts then / /Sts is a threshold
6 : if resu ltS im (q ,q ') > 5rs then / / S r3 is a threshold
7 : PqtU <— Pq/jU; / /copy preferences from q' to q
8 : return q';
9: end if

10: end if
11: end if 
1 2 : return NULL ; *

To validate g', both similarity values need to pass their respective thresholds 

8ts and 5rs. Obviously, the bigger the thresholds, the more conservative the transfer. 

Setting the thresholds to 1  shuts down preference transfer. Instead of thresholding, 

another reasonable way of validation is to provide a ranked list of similar queries 

and ask the user for confirmation.

The subroutine in Algorithm 2  first checks if PqtU exists (line 1 ). If it does, 

preference transfer is not needed and q is returned (line 2). In this case, u has
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already edited the cluster tree for query q and stored the preferences in PqtU.

Otherwise, the subroutine tries to find q' such that Pq>)U is applicable (lines 4 

~  1 1 ). To do so, it first finds q' such that Pq̂ u exists and term S im (q , q') is the 

largest (line 4). Then, it continues to validate the applicability of q1 by checking if 

term S im (q , qr) and resu ltS im (q , q') have passed their respective thresholds (lines 5 

sim  6 ). If so, user preferences for q' will be copied to q (line 7), and q' will be 

returned (line 8 ). Otherwise, N U L L  will be returned (line 1 1 ), indicating no 

applicable preferences exist for query q.

The preference copying (line 7) is important for the correctness of 

ClusteringWiki. Otherwise, suppose there is a preference transfer from q' to q, 

where Pq>u =  0 and Pq>)U has been applied on Tlnlt to produce T . Then, after some 

editing from u, T  becomes T ' and the corresponding edits are stored in PqiU. Then, 

this Pq>u will be used the next time the same query q is issued by u. However, PQtU 

will not be able to bring an identical Tlmt to the expected T 1. It is easy to verify 

that line 7 fixes the problem and ensures reproducibility.

T ra n s(q , U) works in the same way. Preference transfer is an important 

component of ClusteringWiki. Cluster editing takes user effort and there are an 

infinite number of queries. It is essential that such user effort can be properly reused.

Enforcing applicable preferences. Back to Algorithm 1 , lines 15 ~  23 enforce 

the paths of P  on Tmit to produce the cluster tree T . The enforcement is
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straightforward. First P  is cleaned by removing those paths whose result nodes are 

not in the search result set R (line 16). Recall that Clustering Wiki performs 

clustering. It should not alter the input data R. Then, the positive paths in P  are 

the ones u prefers to see in T, thus they are added to T  (lines 18 ~  19). The ■ 

negative paths in P  are the ones u prefers not to see in T, thus they are removed 

from T  (lines 20 ~  21). If P  =  0, there are no applicable preferences and Timt will 

not be modified.

Trimming and Presenting T. The cluster tree T  must satisfy a set C  of 

predefined constraints. Some constraints may be violated after applying P  to Tmit. 

For example, adding or removing paths may result in small clusters that violate 

constraints on the size of clusters. In line 24, subroutine trim(T, C) is responsible 

for making T  consistent, e.g., by re-distributing the paths in the small clusters. I 

will discuss the constraint set C  in detail in Section 3.2.2.

In line 25, subroutine present(T) presents the set of paths in T  as a cluster 

tree on the search interface. The labels can be expanded or collapsed. The search 

results for a chosen label are presented in the result panel in their original order 

when retrieved from the source. Relevant terms corresponding to current and 

ancestor labels in search results are highlighted.

Sibling cluster labels in the label panel are ordered by lexicographically 

comparing the lists of original ranks of their associated search results. For example,
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let A  and D be two sibling labels as in Figure 3 .2 , where A  contains Pi, P2, P3 and 

P4  and D contains Pi and P5 . Suppose that 1 in Pt indicates the original rank of P, 

from the source. By comparing two lists < 1 , 2 ,3 ,4  > and < 1 ,5 >, A  goes in front 

of D. “ Other” is a special label that is always listed at the end behind all its siblings.

Discussion. As [Kale et al., 2 0 1 0 ] suggested, the subset of web pages visited by 

employees in an Enterprise is centered around the company’s business objectives. 

Additionally, employees share a common vocabulary describing the objects and tasks 

encountered in day to day activities. ClusteringWiki can be even more effective in 

this environment as user preferences can be better aggregated and utilized.

3.2.2 Cluster Editing

Before explaining the algorithm handling user edits, I will first introduce the 

essential consistency constraints for cluster trees and the primitive user edits.

Essential consistency constraints. Predefined consistency constraints exist to 

maintain a favorable user interface for fast and intuitive navigation. They can be 

specified on any structural component of the cluster tree T. In the following, I list 

the essential ones.

• Path constraint: Each path of cluster tree T  must start with the root labeled All 

and end with a leaf node that is a search result. In case there are no search

results returned, T  is empty without paths.
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Figure 3 .2 : Example cluster tree.

• Presence constraint: Each initial search result must be present in T. It implies 

that deletion of paths should not result in absence of any search result in T.

• H om ogeneity constraint: A label node in T  must not have heterogeneous children 

that combine cluster labels with search results. This constraint is also used in 

other clustering engines such as Clusty and Carrot2 .

• Height constraint: The height of T  must be equal or less than a threshold, e.g., 4.

• Label length constraint: The length of each label in T  must be equal or less than a 

threshold.

Primitive user edits. ClusteringWiki implements the following categories of 

atomic primitive edits that a logged-in user can initiate in the process of tree 

editing. Each edit e is associated with Pe and N P e) the set of paths to be inserted 

to the tree and the set of paths to be deleted from the tree after e.
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• e\. copy a label node to another non-bottom label node as its child. Note that it 

is allowed to copy a parent label node to a child label node.

Example: in Figure 3 .2 , we can copy D  to A . For this edit,

Pe =  {A ll  —y A  —̂ D  —̂ A ll —̂ A  —y D —̂ is } .  E P e — 0 for any edit of this 

type.

• e2: copy a result node to a bottom label node.

Example: in Figure 3.2, we can copy P3 to D , but not to A , which is not a 

bottom label node. For this edit, Pe =  {A ll  -y  D  —>• P3}. N P e =  0 for any edit of 

this type.

• e3: modify a non-root label node.

Example: in Figure 3 .2 , we can modify D  to E . For this edit,

Pe =  {A ll  -y  E  -y  Pi, A ll -y  E  -y  P5}  and 

N P e =  {A ll  - y  D  -> Px, A ll -4 D  -> P5}.

• e4 : delete a non-root node, which can be either a label node or a result node.

Example: in Figure 3 .2 , we can delete P5. For this edit, N P e =  {A ll  -y  D  —> P5}. 

Pe =  0 for any edit of this type.

• e5: create a label node, which can be either a non-bottom or a bottom label node. 

In particular, recursive creation of non-bottom labels is a way to add levels to
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cluster trees.

Example: in Figure 3.2, we can add E  as parent of D . For this edit, 

Pe =  {A ll  ->■ E  -> D  ->• Pi, A ll -*  E  D  -> P5} and 

N Pe =  {A ll  -> D  PltA ll-*  D  ->■ P5}.

Algorithm 3 Cluster editing
Input: q, u, T , C , PQyU, PQyu and e: g is a query, u is a user. T  is a cluster tree for 

q. C  is a set of consistency constraints for T . PqyU is a set of paths representing 
the preferences by u for q. Pq>u is a set of paths representing the aggregated 
preferences for q. e is an edit by u on T .

Output: updated T , P9>u and PQyu 
1: if (pre-validation fail) then 
2 : return;
3: end if 
4: identify Pe;
5: identify N P e\
6: if (validation fail) then 
7: return;
8 : end if 
9: update T;

1 0 : add Pe as positive paths to Pq>u]
1 1 : add N P e as negative paths to PqyU;
1 2 : update P9 ij/;

The editing framework results in several favorable properties. First, the 

primitive user edits are such that, with a series of edits, a user can produce any 

consistent cluster tree. Secondly, since e\ only allows a label node to be placed 

under a non-bottom node and e2 only allows a result node to be placed under a 

bottom node, the homogeneity constraint will not be violated after any edit given 

the consistency of T  before the edit. Thirdly, the framework uses eager validation,
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where validation is performed right after each edit, compared to lazy validation, 

where validation is performed in the end of the editing process. Eager validation is 

more user-friendly and less error-prone in implementation.

Note that user editing can possibly generate empty labels, i.e., labels that do 

not contain any search results and thus are not on any path. Such labels will be 

trimmed.

To add convenience, ClusteringWiki also implements several other types of 

edits. For example, move (instead of copy as in ei) a label node to another 

non-bottom label node as its child, or move (instead of copy as in e2) a result node 

to a bottom label node. Such a move edit can be considered as a copy edit followed 

by a delete edit.

Editing algorithm. Algorithm 3 presents the pseudocode of the cluster editing 

algorithm in ClusteringWiki for a single edit e, where e can be any type of edit from 

to 64.

Lines 1  ~  3 perform pre-validation of e to see if it is in violation of consistency 

constraints. Violations can be caught early for certain constraints on certain edits, 

for example, the label length constraint on e\ type of edits. If pre-validation fails, 

the algorithm returns immediately.

Otherwise, the algorithm continues with lines 4 ~  5 that identify Pe and NPe. 

Then, lines 6  ~  8  perform full validation of e against C, the set of consistency
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constraints. If the validation fails, the algorithm returns immediately.

Otherwise, e is a valid edit and T  is updated (line 9). Then, the personal user 

preferences are stored by adding Pe and NPe to Pq>u as positive paths and negative 

paths respectively (lines 10 ~  11). In adding these paths, the opposite paths in Pq>u 

cancel each other out. In line 12, the aggregated preferences stored in P<hu are 

updated. Preference aggregation is described further in the following.

Preference sharing. Preference sharing in Clustering Wiki is in line with the many 

social-powered search engines as a mass-collaborative way of improving search 

utility. In ClusteringWiki, U is considered as a special user and Pqiu stores the 

aggregated user preferences.

In particular, let PqU signify the paths specified for query q by all users. Each 

path p £ Pq u has a count attribute, recording the total number of times that p 

appears in any Pq<u. All paths in Pq U are grouped by leaf nodes. In other words, all 

paths that end with the same search result are in the same group. For each group, 

the system keeps track of two best paths: a positive one with the most count and a 

negative one with the most count. A best path is marked if its count passes a 

predefined threshold. All the marked paths constitute Pq,u, the set of aggregated 

paths that are used in query processing. Note that, here ClusteringWiki adopts a 

conservative approach, making use of at most one positive path and one negative 

path for each search result.



44

Editing interface. Cluster editing in Clustering Wiki is primarily available through 

context menus attached to label and result nodes. Context menus are context 

aware, displaying only those operations that are valid for the selected node. For 

example, the paste result operation will not be displayed unless the selected node is 

a bottom label node and a result node was previously copied or cut. This effectively 

implements pre-validation of cluster edit operations by not allowing the user to 

choose invalid tasks.

Users can drag and drop a result node or cluster label in addition to 

cutting/copying and pasting to perform a move/copy operation. A label node will 

be tagged with an icon if the item being dragged can be pasted within that node. 

An item that is dropped outside a label node in which it could be pasted simply 

returns to its original location.



C H A P T E R  IV

IM P L E M E N T A T IO N

Clustering Wiki was implemented as an AJAX-enabled web application running in a 

Java Enterprise Edition 1.5 container. In this section I detail the choices made in 

implementing the system.

\

4.1 Q uery Processing

ClusteringWiki search requests are sent to the server via AJAX and expect in return 

a JSON structure including both the search result set and cluster tree data. The 

received data is interpreted to display an in-page cluster tree, to attach appropriate 

tree functionality, and to display results contained in the root cluster node.

R etrieving query results. In order to easily test ClusteringWiki with multiple

search engines and data sources, I created a web service, named Abstractsearch,

responsible for hiding query execution details. Abstracts earch runs as a separate

Java Enterprise Edition application and interprets received query parameters into

parameters specific to the requested search source. For example, Google AJAX

Search API1 expects a zero-based first requested result parameter, while Yahoo!

1http: / /code.google.com/apis/ajaxsearch/
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Search API2 expects a one-based equivalent parameter. The Google API can 

retrieve a maximum of 8  results per request and a total of 64 results per query, 

while the Yahoo! API can retrieve 100 results per request and a total of 1000 results 

per query. Abstractsearch retrieves the results via one or more parallel requests to 

the search source and returns the entire requested result set at once as either XML 

or JSON data. The multi-threaded parallel execution of requests allows 500 Yahoo! 

results (executed using 5 Yahoo! requests) to be returned in less than 2  seconds 

instead of the 8  seconds it would take if the requests were executed sequentially.

During our testing, I found that the Yahoo! Search API sometimes returns 

duplicate results among multi-page requests for the same query (ex: last result from 

the first page of results is repeated as the first result of the second page).

Abstracts earch corrects this issue by removing identified duplicates from the 

returned result set. The returned result set in these cases will contain less than the 

requested number of results.

Preprocessing. ClusteringWiki analyzes the result set retrieved from 

AbstractSearch and builds a collection context data structure that is used in later 

processing. The combined title and snippet fields of a search result are used to 

textually represent a search result document. Each result document is first broken 

into a bag of lowercase words. After removing non-textual characters and stop
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2http: /  /  developer.yahoo.com/search/web/Vl/webSearch.html



47

words, the remaining words are stemmed using the Porter3 algorithm creating a list 

of document terms. The stop word list used is that from the Apache Snowball4  

package. The terms are then added to an index of collection terms spanning all 

retrieved search result documents, and each term is associated with a numeric index 

id. Document frequency and collection frequency are also computed for each term.

Similar to the Apache Lucene tokenizers, my tokenization process identifies 

additional information about each token which it stores as bitwise flags in a short 

value. I identify whether a token is a word, numeric, or punctuation mark, or 

whether a word token is capitalized, all caps, and starting or ending with a 

punctuation mark. The token attributes are used to identify the start and end of 

phrases within the document text, which are stored in an array as pairs of document 

text index integers.

Further textual processing is done using the assigned numeric term and 

document ids to increase efficiency. A Cluster Document data structure is used to 

encompass all necessary information for a result document being clustered, 

including term ids for terms in the given document, term counts, normalized term 

frequencies, and term and word phrase boundaries.

Clustering results. ClusteringWiki clusters documents using one of four

3http://tartarus.org/ martin/PorterStemmer/
4http://www.docjar.com/html/api/org/apache/lucene/analysis/snowball/SnowballAnalyzer .java.html

http://tartarus.org/
http://www.docjar.com/html/api/org/apache/lucene/analysis/snowball/SnowballAnalyzer
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pre-defined clustering algorithms: modified k-means, modified hierarchical k-means, 

frequent phrase flat, or frequent phrase hierarchical.

Unlike the standard version of fc-means, ClusteringWiki creates consistent 

clusters over the same data set by choosing the same initial cluster centers rather 

than random ones. Cluster centers are chosen as a function of the number of 

retrieved results, after first pre-ordering the results using a result-specific parameter 

(ex: url). The modified hierarchical ft-means uses stable functions, based on the 

cluster level, parent cluster size, and tree height constraint, to decide whether a 

parent cluster should be sub-clustered and how many initial cluster centers should 

be chosen for the sub-cluster. The A:-means based clusters are assigned the title of 

the document closest to the cluster centroid as the cluster label.

Frequent phrase flat and frequent phrase hierarchical algorithms are based on 

identifying frequent phrases within the document text. I use a suffix tree data 

structure built using Ukkonen’s linear time online construction algorithm to identify 

term frequent phrases within the combined text of all documents being clustered. I 

then assign to that cluster all documents from the collection being clustered that 

contain any of the label terms. The details of the frequent phrase algorithm, as 

applied for each level of clustering, are as follows:

1 . I build an integer sequence from all the initial term phrases identified in each 

document being clustered, noting phrase boundaries with unique negative
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integers, which are characters outside of the document alphabet. I also note 

document boundaries in a separate integer stack.

2 . I apply Ukkonen’s linear time online suffix tree construction algorithm to 

create a suffix tree for the integer sequence. I also keep track of document ids 

for each of the phrase suffixes entered in the suffix tree.

3. I walk the suffix tree, identifying and retrieving frequent phrases with a given 

minimum and maximum length and minimum support. For our current 

implementation I experimentally chose to use minimum term phrase length 2 , 

maximum term phrase length 5, and minimum document support 2. For each 

phrase I also retrieve from the suffix tree a bit set representing all the 

documents that contain the given phrase.

4. I greedily retrieve the phrase with the highest coverage of uncovered 

documents within the collection being clustered, ignoring phrases that are 

comprised of a subset of terms of any parent label. I consider the root cluster 

label to be the executed query. The bit set representation of covered 

documents for each phrase allows for fast set based operations when 

computing phrase coverage among the set of uncovered documents.

5. For each label identified, I build a cluster and assign it all documents 

containing any of the terms in the label.
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6 . I greedily choose a word phrase label for each cluster by choosing the word 

phrase associated with the cluster label term phrase that has the highest 

support in the cluster documents.
\

7. When all qualified phrases are processed, any remaining uncovered documents 

are added to an additional cluster labeled Other.

8 . I heuristically choose to subcluster a given cluster if it contains more than 5 

documents and the path of the child cluster does not violate the given tree 

height constraint. However, I choose not to subcluster if subclustering 

produces less than two clusters.

Our process for retrieving frequent phrases from the text collection is similar 

with that used in Carrot2 5, except they retrieve frequent word phrases and then 

apply certain heuristic scoring methods to prioritize phrases retrieved from the suffix 

tree. The remainder of the clustering algorithm is also quite different in Carrot2 .

Clustering Wiki uses a Cluster data structure to encompass cluster related 

information such as documents contained in the cluster, cluster label and term label, 

and references to the cluster’s parent and possible child clusters. In the case of flat 

clustering, all identified clusters are made children of a root cluster labeled All.

Retrieving and merging preferences. Clustering Wiki cluster preferences are

5http: / /project.carrot2.org/
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Figure 4.1: ClusteringWiki database schema.

stored in a MySQL database. Figure 4.1 shows the ClusteringWiki database 

schema. Fields and tables not related to cluster editing have been omitted.

Users are assigned unique numeric ids upon account creation. Executed 

queries are stored in the queries table and associated with a given user id. The 

query text is added to a full-text search index. Additionally a list of stemmed terms 

contained in the query text is kept. A referential integrity constraint exists between 

the queries and users tables via the userJd field.

The top k (e.g., k =  20) results of an executed query are stored in the 

query-responses table and associated with the executed query id. If a query already
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existed in the database, its set of responses are updated if the query was last 

executed more than a day before. A referential integrity constraint exists between 

the query-responses and queries tables via the query-id field.

In order to test ClusteringWiki with multiple clustering algorithms, I have 

associated a user preference PqtU with the chosen clustering algorithm in addition to 

the executed query q and the logged in user u. A preference is stored as a 

cluster-edits tuple containing the path of the preference and an associated 

cardinality'(ex: + 1  or —1), signifying a positive (p E Pu) or negative (p E N P U) 

preference. A path is represented by the set of cluster labels along the tree path 

from the root node to the bottom label node containing the result node (leaf node) 

in the path, along with the label of the result node. The root node label is assumed 

and ignored when storing a path since all preferences would contain this label. 

Given a relatively low maximum tree height h constraint, I have chosen to keep the 

path in h — 1 path fields within the cluster-edits tuple. Alternative approaches for 

storing a path without a height constraint include adjacency list and nested set 

storage models6. A referential integrity constraint exists between the cluster-edits 

and queries tables and between the cluster-edits-all and queries tables via the 

query-id field.

Query processing is time-critical. Aiming to minimize query response time,

6http://dev.mysql.com/tech-resources/articles/hierarchical-data.html.

http://dev.mysql.com/tech-resources/articles/hierarchical-data.html
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ClusteringWiki defines a special user all and stores aggregated preferences from all 

users in Pq,au■ To make the preferences in PqAu ready to use for query processing, 

the aggregation is done during cluster editing. The cluster editing process is 

interactive. Aggregation is processed in the background, while the user is performing 

cluster edits on the interface, causing no or negligible waiting time for the user.

Preferences for the user all are incrementally stored in the cluster-edits-all 

table whenever a preference Pq>u is stored for any application user u. The 

cluster-edits-all table structure is identical to that of the cluster-edits table. 

Retrieving a set of preferences for the current search query becomes trivial: execute 

a database query for the set of preferences associated with the given query q, the 

chosen clustering algorithm, and either the logged in user u or the user all if the 

user is not logged in. Changes to cluster-edits-all tuples are efficiently executed via 

database triggers attached to the cluster-edits table.

In the event that the initial database query does not return any results, 

ClusteringWiki searches for a similar query q1, first via a MySQL full-text search for 

the queried text, and then by searching for the conjuncted stemmed query text 

terms. If any matching similar queries related to the chosen clustering algorithm 

and appropriate user are found, they are then checked against the 8ts term similarity 

and 8rs result similarity thresholds. ClusteringWiki retrieves and merges the 

preferences of the first similar query q' that passes these tests into the initial cluster.
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The retrieved set of preferences is applied to the cluster hierarchy sequentially, 

first adding all positive cardinality preferences and then removing any negative 

preferences as long as they do not violate any pre-defined cluster constraints. A 

reverse-lookup index of result labels to cluster node paths is used to speed up 

negative preference validations.

Ordering cluster labels. After clustering has finished, the clusters are ordered by 

ascending minimum document ids contained in each cluster. The final cluster T, 

along with the original search result set are then added to a JSON structure and 

returned to the browser.

Displaying the cluster tree. The JSON data received from the server is passed 

on to a JavaScript object, named EditableClusterTree, which encapsulates all 

client-side functionality of the editable search result cluster tree. Using a JavaScript 

object allows the creation of an efficient stateful representation of the cluster tree 

and its operations. EditableClusterTree first builds an internal cluster node object 

hierarchy from the data received. The internal cluster representation computes and 

stores additional node information such as references to parent and children nodes, 

current node path, level, and maximum depth, which are used to efficiently validate 

and execute cluster operations. Paths are stored internally as sets of numeric cluster 

index ids to optimize node retrieval. Furthermore, the internal cluster tree stores 

result nodes as arrays of result index ids within T  bottom label nodes, shortening
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the internal tree height by one level and improving efficiency of subtree operations.

EditableClusterTree then creates an HTML unordered list representation of 

the cluster tree and a set of HTML result node structures, which it appends to the 

page within specified < div >  elements. Cluster node labels and result node titles 

along paths that were added due to a previous cluster edit are tagged with a red 

asterisk. CSS styles are used to make the cluster structure appear as a tree. 

JavaScript events are added to individual tree and result nodes to enable 

Editable ClusterTree functionality.

Highlighting. Relevant terms corresponding to currently selected and ancestor 

labels in search results are highlighted. The highlighting function stems all label 

words to create label terms using the same stemming algorithm used during 

clustering (the Porter stemming algorithm) and then uses JavaScript regular 

expressions to match and highlight each term found within the document text.

4.2 Cluster Editing

Cluster editing in ClusteringWiki involves editing the in-page cluster tree using the 

EditableClusterTree object and storing any cluster path changes resulting from 

executed operations. Editing is primarily available through context menus attached 

to cluster and result nodes displayed in the page.

Context menus. ClusteringWiki context menus display only those operations that
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are valid for the cluster or result node that was right-clicked. For example, the Paste 

result operation will not be displayed unless the node right-clicked is a bottom label 

node and a result node was previously copied or cut. This effectively implements 

pre-validation of cluster edit operations by not allowing the user to choose invalid 

tasks. Edit operations are only displayed when the application user is logged in.

The EditableClusterTree object displays a different context menu depending on 

the current cluster tree edit mode: an edit disabled menu, an edit enabled menu, or a 

browse only menu. Menus contain all possible operations for the given mode. Each 

operation is pre-validated via internal EditableClusterTree methods and only 

displayed if the operation passes validation. EditableClusterTree takes advantage of 

its internal cluster tree representation to efficiently pre-validate cluster operations.

Operation validation. Additional operation validation methods are executed 

after an operation has been invoked but before effectively executing the operation. 

These include validation methods that cannot be executed during pre-validation 

(ex: checking a modified node label is valid), or ones that can be slow and would 

delay the context menu from being displayed (ex: checking a node being copied does 

not already exist in the node being copied to). When a validation method fails, a 

message is displayed above the cluster tree alerting the user to the cause of the 

failure.

Operation execution. Once an operation has been validated, EditableClusterTree
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computes the set of positive paths and negative paths caused by the given 

operation. Positive paths are assigned cardinality +1 and negative paths are 

assigned cardinality —1. If the set of path changes is not empty, it is encoded as a 

binary upload and sent to the server for processing via AJAX. For each path 

received, ClusteringWiki updates a preference for both the logged in user and the 

all user. For either application user, if a tuple for the preference does not already 

exist, it is inserted and given the preference cardinality. If the path already existed 

in the database, the preference cardinality is added to the existing cardinality. The 

preference associated with the logged in user’s query (Pq>u) is restricted to a 

cardinality within the set { —1,1}. Paths with a cardinality of 0 after an update are 

deleted in order to improve database efficiency.

The server returns a confirmation message to the browser when all paths have 

been successfully stored. EditableClusterTree then modifies the in-page HTML tree 

and selected result set to display the effects of the executed operation.

Convenience features. I have implemented several ClusteringWiki convenience 

operations that increase the usability of the application. In addition to copying a 

cluster or result node, executed via a copy followed by a paste operation, I allow 

users to also move a node via cut and paste. Additionally, double-clicking on any 

label node expands/collapses the clicked tree node and all its children.

Users can drag and drop a result node or cluster label in addition to
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cutting/copying and pasting to perform a move/copy operation. A label node will 

be tagged with an icon if the item being dragged can be pasted within that node. 

An item that is dropped outside a label node in which it could be pasted simply 

returns to its original location.

Users can see what the cluster tree would look like without edits by selecting 

Show tree w/o edits from the root label context menu while being logged in. Once 

selected, the cluster tree is re-built without adding or subtracting any user 

preferences. The re-built tree is displayed in browse only mode, without access to 

any cluster editing operations.



C H A P T E R  V

EVALUATION

Clustering Wiki was implemented as an AJAX-enabled Java Enterprise Edition 1.5 

application. The prototype is maintained on an average PC with Intel Pentium 4

3.4 GHz CPU and 4Gb RAM running Apache Tomcat 6. I have conducted a 

comprehensive experimental evaluation detailed below.

5.1 Methodology and Metrics

I performed two series of experiments: system evaluation and utility evaluation.

The former focused on the correctness and efficiency of the implemented prototype. 

The latter, the main experiments, focused on the effectiveness of ClusteringWiki in 

improving search performance.

Data sources. Multiple data sources were used in the empirical evaluation, 

including Google AJAX Search API (code.google.com/apis/ajaxsearch), Yahoo! 

Search API (developer.yahoo.com/search/web/webSearch.html), and local Lucene 

indexes built on top of the New York Times Annotated Corpus [Sandhaus, 2008] 

and several datasets from the TIPSTER (disks 1-3) and TREC (disks 4-5) 

collections (www.nist.gov/tac/data/data_desc.html). The Google API can retrieve a
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maximum of 8 results per request and a total of 64 results per query. The Yahoo! 

API can retrieve a maximum of 100 results per request and a total of 1000 results 

per query. Due to user licence agreements, the New York Times, TIPSTER and 

TREC datasets are not available publicly.

System evaluation methodology. For system evaluation of ClusteringWiki, I 

focused on correctness and efficiency. I tested the correctness by manually 

executing a number of functional and system tests designed to test every aspect of 

application functionality. These tests included cluster reproducibility, edit operation 

pre-validations, cluster editing operations, convenience features, applying 

preferences, preference transfer, preference aggregation, etc. ClusteringWiki is a 

multi-tiered system with interactive components written in multiple programming 

languages. As such, standard unit tests are not as helpful in determining the proper 

functionality.

In order to have repeatable search results for the same query, I used the stable 

New York Times data source when evaluating ClusteringWiki correctness. I chose 

queries that returned at least 200 results.

I evaluated system efficiency by monitoring query processing time in various 

settings. In particular, the following were considered:

• 2 data sources: Yahoo! and New York Times
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• 5 different numbers of retrieved search results: 100, 200, 300, 400, 500

• 2 types of clusterings: flat (F) and hierarchical (H)

For each of the combinations, I executed 5 queries, each twice. The queries 

were chosen such that at least 500 search results would be returned. For each query, 

I monitored 6 portions of execution that constitute the total query response time:

• Retrieving search results

• Preprocessing retrieved search results

• Initial clustering by a built-in algorithm

• Applying preferences to the initial cluster tree

• Presenting the final cluster tree

• Other (e.g., data transfer time between server and browser)

For the New York Times data source, the index was loaded into memory to 

more closely simulate the server side search engine behavior. The time spent on 

applying preferences depends on the number of applicable stored paths. For each 

query, I made sure that at least half the number of retrieved results existed in a 

modified path, which is a practical upper-bound on the number of user edits on a 

query’s cluster of search results.
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U tility evaluation m ethodology. For utility evaluation, I focused on the 

effectiveness of Clustering Wiki in improving search performance, in particular, the 

time users spent to locate a certain number of relevant results. The experiments 

were conducted through a user study with 22 paid participants. Study participation 

was advertised within the Computer Science department at Texas State 

University-San Marcos and users were chosen on a first-come first-serve basis. The 

participants were primarily undergraduate, while a few were graduate, college 

students.

I compared 4 different search result presentations:

• Ranked list (RL): search results were not clustered and presented as a traditional 

ranked list.

• Initial clustering (IC): search results were clustered by a default built-in algorithm 

(frequent phrase hierarchical).

• Personalized clustering (PC): search result clustering was personalized by a 

logged-in user after a series of edits, taking on average 1 and no more than 2 

minutes per query.

• Aggregated clustering (AC): search result clustering was based on aggregated 

edits from on average 10 users.

Navigational queries seek the website or home page of a single entity that the
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user has in mind. The more common [Broder, 2002; Rose and Levinson, 2004] 

informational queries seek general information on a broad topic. The ranked list 

interface works fine for the former in general but is less effective for the latter, which 

is where clustering can be helpful [Manning et al., 2008]. In practice, a user may 

explore a varied number (e.g., 5 or 10) of relevant results for an informational query. 

Thus, I considered 2 types of informational queries. In addition, I argue that for 

some deep navigational queries where the desired page “hides” deep in a ranked list, 

clustering can still be helpful by skipping irrelevant results. Thus, I also considered 

such queries:

• jRi0: Informational. To locate any 10 relevant results.

• R5: Informational. To locate any 5 relevant results.

• i?i: Navigational. To locate 1 pre-specified result.

For each query type, 10 queries were executed, 5 on Google results and 5 on 

the AP Newswire dataset from disk 1 of the TIPSTER corpus. The AP Newswire 

queries were chosen from TREC topics 50-150, ensuring that they returned at least 

15 relevant results within the first 50 results. For Ri queries, the topic descriptions 

were modified to direct the user to a single result that is relatively low-ranked to 

make the queries “deep.” Google queries were chosen from topics that participants 

were familiar with. All queries returned at least 50 results.
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A subset of the chosen queries for each data set are presented below. The 

entire set can be found in [Anastasiu et al., 2010]. Each query was presented with a 

description of the task to be performed. Informational queries were also followed by 

a narrative further explaining the information need for the current task.

AP News wire data source, R\o and R$ queries:

• Query: Rail Strikes

Description: Find relevant pages that predict or anticipate a rail strike or report an 

ongoing rail strike.

Narrative: A relevant document will either report an impending rail strike, describing 

the conditions which may lead to a strike, or will provide an update on an ongoing 

strike. To be relevant, the document will identify the location of the strike or potential 

strike. For an impending strike, the document will report the status of negotiations, 

contract talks, etc. to enable an assessment of the probability of a strike. For an 

ongoing strike, the document will report the length of the strike to the current date and 

the status of negotiations or mediation.

• Query: Surrogate Motherhood

Description: Find relevant pages that report judicial proceedings and opinions on 

contracts for surrogate motherhood. After tagging relevant results, please edit the result 

clusters so that you can find those relevant results easier in the future.

Narrative: A relevant document will report legal opinions, judgments, and decisions
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regarding surrogate motherhood and the custody of any children which result from 

surrogate motherhood. To be relevant, a document must identify the case, state the 

issues which are or were being decided and report at least one ethical or legal question 

which arises from the case.

Google data source, Ri queries:

• Query: Texas State University-San Marcos

Description: Find the page for the graduate college at Texas State University-San 

Marcos.

• Query: Longhorns

Description: Find the page for the Texas Longhorn Breeders Association of America.

• Query: Byron J. Gao

Description: Find the KDD 2007 Conference program information page, Dr. Byron J. 

Gao had a paper published in that conference with Dr. Martin Ester.

Each user was given 15 queries, 5 for each query type. Each query was 

executed 4 times for the 4 presentations being compared. Thus, in total each user 

executed 15 x 4 =  60 queries. For each execution, the user exploration effort was 

computed.

User effort was the metric I used to measure the search result exploration 

effort exerted by a user in fulfilling thier information need. [Koren et al., 2008] used
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a similar metric under a probabilistic model instead of a user study. Assuming both 

search results and cluster labels are scanned and examined in a top-down manner, 

user effort Q can be computed as follows:

• Add 1 point to for each examined search result.

• Add 0.25 point to Q, for each examined cluster label. This is because labels are 

much shorter than snippets.

• Add 0.25 point to il for each uncertain result. I assume that all results before a 

tagged relevant result are examined. However, results after the last tagged result 

remain uncertain. For linked list presentation, there is no uncertainty because the 

exploration ends at a tagged result due to the way the queries are chosen (more 

relevant results than needed).

Uncertainty could occur for results within a chosen cluster C. As an effective way 

of utilizing cluster labels, most users would partially examine a few results in C  to 

evaluate the relevance of C  itself. If they think C  is relevant, they must have 

found and tagged some relevant results in C. If they think C  is irrelevant, they 

would ignore the cluster and quickly move to the next label. Thus, each uncertain 

result has a probability of being examined. Based on my observation for this 

particular user study, I empirically used 0.25 for this probability.



67

5.2 System Evaluation Results

ClusteringWiki operation is independent of parameters such as number of results or 

chosen clustering algorithm. I chose the following defaults when executing 

correctness evaluation:

• Results: 200

• Algorithm: hierarchical fc-means

• Similarity calculator: Jaccard

• Term similarity threshold: 0.5

• Result similarity threshold: 0.05

A system test was also executed which verified the application functionality 

with other chosen values for the above parameters.

Functional tests. ClusteringWiki is a multi-tiered system with interactive 

components written in multiple programming languages. As such, standard unit 

tests are not as helpful in determining the proper functionality of this system. I 

used manually executed function tests to verify that ClusteringWiki works as 

indented. A description of each test can be found in [Anastasiu et al., 2010]. All 

tests were executed successfully and no anomalies were encountered.
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System  efficiency. I measured 6 sections of the Clustering Wiki total response 

time, as follows:

• Retrieving results. The retrieving results section of the total response time 

includes processing query parameters, passing the search request to 

Abstractsearch, retrieving its JSON response, and processing the JSON data 

into a collection of Java search response document objects used in the 

remainder of the algorithm execution.

• Preprocessing. The document preprocessing section of the total response time 

includes analyzing the text of the search response document titles and 

snippets, creating document bags of words, the collection term index, and 

various other reverse lookup indexes used by different sections of

ClusteringWiki execution.

• Initial clustering. In the clustering section the initial document cluster tree 

Timt is created using the chosen clustering algorithm.

• Applying preferences. This section includes identifying the set of preferences to 

be applied to Timt as well as merging those preferences into Tmit to create the 

final cluster tree.

• Presenting final tree. Presenting the final tree includes the browser side time 

needed to process the data received from the server into a new
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EditableClusterTree object, embedding the HTML representation of the 

cluster tree and result nodes into the browser page, and attaching necessary 

JavaScript events to enable tree functionality.

• Other. The remaining time, which is out of ClusteringWiki control, includes 

transferring requests and data between the browser and server and some 

negligible time for program control.

Table 5.1: Efficiency evaluation using Yahoo! data source

N u m b e r  o f  r e s u lts 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

T y p e  o f  c lu s t e r in g F H F H F H F H F H

R etrieving results 0 979 1 018 1 309 1 222 1 615 1,.391 1 847 1 579 1 679 1 661

Preprocessing 0 009 0 011 0,.052 0 052 0 037 0 037 0 049 0 112 0 152 0 150

Initial clustering 0 004 0 005 0 051 0 040 0 033 0 042 0 104 0 063 0 118 0 144

A p p lyin g  preferences 0 006 0 007 0 049 0 012 0 015 0 O il 0 021 0 015 0i 08 0 013

Presenting final tree 0 143 0 172 0 249 0 278 0 341 0 421 0 451 0i 66 0 723 0 752

O ther 0 396 0 416 0 469 0 524 0 624 0 684 0 558 0 593 0 853 0 912

T o t a l  e x e c u t io n  t im e 0 160 0 194 0 401 0 381 0 426 0 511 0,,624 0 850 1 073 1 059

T o t a l  r e s p o n s e  t im e 1 535 1 628 2 179 2 127 2 665 2 585 3 029 3 022 3 604 3 632

Tables 5.1 and 5.2 show the averaged (over 10 queries) runtime in seconds for 

all 6 portions of the total response time for the two tested data sources. In addition, 

I computed and list the average total execution time, which includes preprocessing, 

initial clustering, applying preferences and presenting the final tree. This is the time 

that the prototype is responsible for. The remaining time is irrelevant to the way 

the prototype is designed and implemented. From the table we can see that:
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Table 5.2: Efficiency evaluation using New York Times data source

N u m b e r  o f  r e s u lts 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

T y p e  o f  c lu s t e r in g F H F H F H F H F H

R etrieving results 0 102 0 113 0 131 0 130 0 285 0 259 0 326 0 338 0 419 0 387

Preprocessing 0 019 0 019 0 067 0 066 0 068 0 069 0 096 0 168 0 189 0 187

Initial clustering 0 005 0 006 0 022 0 025 0 035 0 041 0 053 0 062 0 147 0 196

A p plyin g preferences 0 012 0 011 0 013 0 024 0 018 0 011 0 013 0 017 0 016 0 014

Presenting final tree 0 282 0 279 0 372 0 449 0 591 0 691 0 751 0 872 0 846 0 941

O th er 0 338 0 497 0 478 0 678 0 589 0 672 0 625 0 937 0 736 0 868

T o t a l  e x e c u t io n  t i m e 0 317 0 315 0 473 0 565 0 713 0 813 0 913 1 118 1 197 1 338

T o ta l  r e s p o n s e  t im e 0 758 0 925 1 083 1 373 1 587 1 744 1 863 2 393 2 352 2 593

• The majority of the total response time is taken up by retrieving search 

results, which would be negligible if ClusteringWiki was implemented by a 

search company.

• Applying preferences takes less than 1/10 second in all test cases, which 

certifies the efficiency of my “path approach” for managing preferences.

• Presenting the final tree takes the majority (roughly 80%) of the total 

execution time, which can be improved by using alternate user interface 

technologies.

Figure 5.1 shows the trends of the average total execution time (Exec in the 

figure) and response time (Resp) for both flat (F) and hierarchical (H) presentations 

over 2 sources of Yahoo! (Yahoo!) and New York Times (NYT). From the figure we

can see that:
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Figure 5.1: Efficiency evaluation.

• Response and execution time trends are linear, testifying to the scalability of the 

prototype. In particular, for both flat and hierarchical clustering, the total 

execution time is about 1 second for 500 results and 0.4 second for 200 results 

from either source. Note that most existing clustering search engines, e.g., 

iBoogie (www.iboogie.com) and CarrotSearch (carrotsearch.com), cluster 100 

results by default and 200 at maximum. Clusty (www.clusty.com) clusters 200 

results by default and 500 at maximum.

• Hierarchical presentation (H) takes comparable times to flat presentation (F), 

showing that recursive generation of hierarchies does not add significant cost to 

efficiency.

http://www.iboogie.com
http://www.clusty.com
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• There is a bigger discrepancy between response and execution times for the 

Yahoo! data source compared to New York Times, suggesting a significant 

efficiency improvement by integrating the prototype with the data sources.

• Execution times for Yahoo! are shorter than New York Times due to the shorter 

titles and snippets.

5.3 Utility Evaluation Results

System utility. Figure 5.2 shows the averaged user effort (over 22 x 5 =  110 

queries) for each of the 4 presentations (RL, IL, PC, AC) and each of the query 

types (i?i, i?5 ,' Rio) on the Google and New York Times data sources. From the 

figure we can see that:

• Clustering saves user effort in informational and deep navigational queries, with 

personalized clustering being the most effective, saving up to 50% of user effort.

• Aggregated clustering also provides significant benefits, although it is not as 

effective as personalized clustering. However, it is “free,” in the sense that it does 

not take user editing effort or require user login.

In evaluating aggregated clustering, I made sure that the users browsing the 

aggregated clusters were not the same ones who edited them.
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• The effectiveness of clustering is related to how “deep” the relevant results are. 

The lower they are ranked, the more effective clustering is because more irrelevant 

results can be skipped.

The hierarchy of cluster labels plays a central role in the effectiveness of 

clustering search engines. Prom the data I have collected as well as the user 

feedback, I can make the following observations:

• Cluster labels should be short and in the range of 1 to 4 terms, with 2 and 3 the 

best. The total levels of the hierarchy should be limited to 3 or 4.

• There are two types of cluster edits, (1) assigning search results to labels and (2) 

editing the hierarchy of labels. Both types are effective for personalized 

clustering. However, they respond differently for aggregated clustering. For type 

1 edits, there is a ground truth (in a loose sense) for each assignment that users 

tend to agree on. Such edits are easy to aggregate and be collaboratively utilized. 

For type 2 edits, it can be challenging (and a legitimate research topic) to 

aggregate hierarchies because many edited hierarchies can be good, but in diverse 

ways. A good initial clustering (e.g., frequent phrase hierarchical) can alleviate 

the problem by reducing the diversity.

System usability. At the end of the utility study, I asked the study participants to 

complete a survey about ClusteringWiki. Users answered the following four
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questions, assigning a rating between 1 and 10, where 1 meant strongly disagree and 

10 meant strongly agree:

1. In your opinion, is clustering of search results a helpful technique for finding 

relevant web search results easier?

2. Does the ability to edit the search result cluster increase your chances to find 

relevant results in the future?

3. If thousands of people were contributing on editing search result clusters on 

many topics, would you likely take advantage of the mass collaboration by 

using a system like ClusteringWiki?

4. Was the ClusteringWiki interface easy to use?

User ratings ranged between 3 and 10 and mostly showed the users were 

satisfied with the application and willing to use ClusteringWiki or a similar system

in the future. The average user ratings for the four questions are listed below:

Q1 8.23 

Q2 8.18 

Q3 8.50 

Q4 7.91

Additionally, users were asked to provide optional comments for improving 

ClusteringWiki. The comments I received show that, while most users found the
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application interface easy to use, they desired additional convenience features. The 

user study participant comments can be found in [Anastasiu et ah, 2010].



C H A P T E R  V I

CLU STERIN G W IK I2

This thesis introduced the concept of cluster editing as a way of personalizing a 

search result clustering presentation, and Clustering Wiki, the first prototype for 

personalized and collaborative clustering of search results. ClusteringWiki uses the 

concept of “file folders” to represent cluster hierarchies and, by extension, includes 

file and folder copy/paste and drag-and-drop functionality to execute cluster editing 

(personalization). I conducted a comprehensive experimental evaluation of 

ClusteringWiki, including a user study, which proved the potential of search result 

cluster personalization to improve search utility. The feedback received from users 

highlighted some advantages and limitations of the current implementation, 

presented below.

Advantages:

• The ClusteringWiki interface was user-friendly and did not require previous 

training.

• Users instantly associated clusters/sub-clusters with folders/sub-folders and 

search results with files.

77
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• Users took advantage of all provided editing operations to personalize their 

clusters.

Limitations:

• Editing was not always transparent to the community. At times, some users 

did not understand the rationale behind previous user edits.

• When working on result cluster placement, users wanted to edit multiple 

results at once.

• Some users wanted the ability to customize results by tagging them with 

personally identifiable keywords.

As mentioned in Chapter 3, there is more than one way to represent a cluster 

hierarchy and perform cluster edits. Keeping in mind the original system usability 

goal, I designed a new system which addresses the ClusteringWiki limitations 

identified in the user study. This chapter introduces the new system, 

ClusteringWiki2, and highlights the similarities and differences between the 

clustering and editing frameworks of the two systems.

6.1 Overview

While ClusteringWiki uses typical file and folder specific operations for editing 

clusters, ClusteringWiki2 takes a different approach, allowing users to annotate
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Figure 6.1: Snapshot of ClusteringWiki2.

search results both directly and through their cluster participation. Cluster labels 

are themselves annotations and can be composed of positive terms, negative terms, 

positive phrases and negative phrases. ClusteringWiki2 establishes a communication 

channel between editors by enforcing a reasonable, straightforward “membership 

condition” : to be included in a cluster, a search result or its annotation must 

contain all the positive terms and positive phrases and not contain any of the 

negative terms or negative phrases in the cluster’s label path1. This introduces

transparency among editors and allows better collaboration.

Considering the executed query as the root node label, a cluster’s label path is the set of labels 

along the path from the root node to the given cluster node.



Figure 6.1 presents a snapshot of ClusteringWiki22. The architecture of 

ClusteringWiki2 is identical to that of Clustering Wiki, containing two modules, 

query processing and cluster editing, which are used cyclically over time. The path 

approach to storing and incorporating user preferences in clusters was very efficient 

in ClusteringWiki, and it validated the system architecture design.

Q uery processing. ClusteringWiki2 query processing is similar to that of 

ClusteringWiki. The set of search results R imt is retrieved from a chosen data 

source in response to a query q from a user u. R imt is then clustered using a chosen 

clustering algorithm to produce an initial cluster tree Tmit. Then, ClusteringWiki2 

applies P , an applicable set of stored user preferences, to Tmit and R imt and 

presents a modified cluster tree T  and an annotated set of results R  that respect P .

In ClusteringWiki, preferences represent root-to-leaf paths within the cluster, 

where leaf nodes are the results contained in bottom level nodes. ClusteringWiki2 

continues to use the root-to-leaf path approach. However, leaf nodes are the bottom 

level nodes rather than the search results contained in those nodes. This allows 

search result preferences and cluster preferences, even though conceptually linked, 

to be treated separately. Thus P  is the union of Pc, the set of stored cluster 

preferences, and Pr , the set of stored search result preferences.

Pc is applied to Timt and Pr is applied to R imt to create T  and R  respectively.

80
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Figure 6.2: ClusteringWiki2 database schema.

Pr does not alter the input data. Rather, each annotation preference pr G Pr 

associated with a result r is attached as metadata to r iff r G R. Note that the 

membership condition allows result annotations to be independent of cluster 

membership. Therefore, unlike in ClusteringWiki, result preferences are only 

associated with the result r and query q and not connected with the cluster path a 

result may be found in. This leads to a significant reduction in the number of stored

user preferences.
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Figure 6.2 shows the database schema for ClusteringWiki2. Fields and tables 

not related to clustercediting have been omitted. The schema is identical to that for 

ClusteringWiki, adding only two tables, result-edits and result-edits-all, for storing 

result annotation preferences.

The procedure for identifying which preferences should be applied to query q, 

utilizing preference transfer and query transfer as appropriate, is identical to that in 

ClusteringWiki. Similarly, the procedure for storing and applying positive and 

negative paths from Pc to Ttmt is the same in the two systems. Please see Chapter 3 

for details.

ClusteringWiki assigns search results to clusters according to the chosen 

clustering method. ClusteringWiki2 ignores the initial assignment of results to 

clusters by the base clustering algorithm. After both cluster preferences and result 

preferences are applied, ClusteringWiki2 traverses T  and assigns to each node those 

results from R  that respect the membership condition.

Cluster and result editing. If logged-in, a user u can edit the cluster tree T  for 

query q by creating, deleting, or modifying nodes, and they can edit a result in R  by 

modifying its attached annotation. Similar to ClusteringWiki, user edits will be 

validated against a set C  of consistency constraints before being written to Pq̂u, the 

set of preferences for q previously specified by u.

By combining preferences in PQjU for all users who have edited the cluster tree
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T  for query q, I obtain Pq,u, a set of aggregated preferences for query q. I use Pu to 

denote the collection of clustering preferences by user u for all queries, and Pu to 

denote the collection of aggregated preferences for all queries from all users. Pu and 

Pu are maintained over time and used by ClusteringWiki2 in processing queries for 

the user u.

Reproducibility. It is easy to verify that ClusteringWiki has the property of 

reproducing edited cluster trees. In particular, if Timt remains the same in a 

subsequent query, after a series of user edits on Timt to produce T, the same T will 

be produced after enforcing the stored user preferences generated from the user 

edits on Tmtt. Similarly, if Rimt remains the same in a subsequent query, after a 

series of user edits on Rimt to produce R, the same R will be produced after 

enforcing the stored user preferences generated from the user edits on Rmit. Finally, 

the membership condition leads to a stable algorithm for assigning results to cluster 

nodes, described further in the following.

6.2 Framework

This section introduces the ClusteringWiki2 framework in detail. In particular, I 

present the algorithms for the query processing and cluster editing modules, and

then explain their main components.
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6.2.1 Query Processing

The query processing framework is the same in ClusteringWiki2 as in 

ClusteringWiki, with the exception that P  contains both Pc, the cluster preferences, 

and Pr, the result preferences. Pc is applied to Tmit in the same way as P  was 

applied to Timt in ClusteringWiki. If the user u is logged in, preferences in the set 

Pr are applied to Rimt by attaching each annotation pr associated with a result r to 

the result if r G R. Otherwise, pr will be formed by aggregating the set of 

statistically significant preferences for the result r from all users that have edited r.

Annotation aggregation. A user preference for a result r is an annotation. An 

annotation A  is the union of the set of positive terms T , negative terms AfT , 

positive phrases V, and negative phrases J\fV in that annotation. Algorithm 4 

describes the simple algorithm used to aggregate a set of annotations. Lines 1 ~  5 

initialize the aggregated annotation A  which will be returned. Line 6 initiates the 

loop traversing each annotation in the input set. For each annotation in the input 

set, the four sets of loops at lines 8 ~  14, 15 ~  21, 22 ~  28, and 29 ~  35 add a term 

i or a phrase p to the aggregated annotation A  if the opposite of t or p is not 

present in A. Alternatively the opposite of t or p is removed from A.

Cluster result assignment. Once T  and R have been devised, ClusteringWiki2 

assigns results to each cluster node according to the membership condition. In
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Algorithm 4 aggregate(S)
Input: S\ S  is the set of annotations to be aggregated.
Output: A , the aggregated annotation from all annotations in S  

1: A  <— 0; //initialize aggregated annotation 
2: Ta G- 0; / /initialize set of positive terms 
3: N T a 0; / /initialize set of negative terms
4: Va G- 0; //initialize set of positive phrases 
5: N V a  G- 0; //initialize set of negative phrases 
6: for each A  G S
7: A  := T U N T U V U N V ;  //A  is set of positive and negative terms and phrases
8: for each t G T
9: if (t G N T  a ) then

io : N T A < - N T A \{t} ;
11: else
12: Ta - ^ T a U {t } ;
13: end if
14: end for
15: for each t € A/”T
16: if (t G 7̂ t) then
17: Ta  < - T a  \ {t};
18: else
19: N T  A t -  N T  A U
20: end if
21: end for
22: for each p G V
23: i f  (p G N V a ) t h e n

24- N V A ^ N V A \ { p h
25: else
26: V a 4̂ - T A U { p };
27: end if
28: end for
29: for each p G N V
30. if (p G Va ) then
31: VA G- VA \ {p}\
32: else
33: N V  a ■t-  N V  a U {p};
34: end if
35: end for
36: end for
37: A  <— Ta  U N T  a  U Va  U N V  a \
38: return A ;
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ClusteringWiki2 cluster node labels are annotations. Similar to result annotations, 

a cluster annotation is composed of positive and negative terms and phrases.

Considering the executed query as the root node label, a cluster’s label path is 

the set of labels along the path from the root node to the given cluster node. A 

straight forward approach to the result assignment problem would be to compare 

terms and phrases between the cluster’s label path and each result. A result belongs 

to a cluster if it (including its annotation) contains all the positive terms and 

phrases while not containing any negative terms or phrases in the cluster label path 

annotation. Note that a negative term or phrase in a result annotation indicates the 

result does not contain that term or phrase, even if it is present in the result title or 

snippet.

ClusteringWiki2 takes advantage of the hierarchical nature of the cluster 

nodes and implements a recursive method for assigning results to clusters. In doing 

so, it reduces both the number of results and annotation terms and phrases 

considered at each subsequent recursion level. The pseudocode of 

assignResults(n, D', M ) is presented in Algorithm 5. Given a cluster node n, a set 

of potentially covered results D1, and a dictionary M  correlating terms to results 

that contain them, the subroutine finds the subset of D' which are results covered 

by the label path annotation of n, and assigns it to node n if different than the 

currently assigned result set.
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Algorithm 5 assignResults(n, D ’, M)
Input: n, D 1, M: n is a node. D' is a set of potentially covered results. M  is a 

dictionary correlating terms with results containing them.
Output: n'\ the node n after results have been assigned to it.

1. A <— getAnnotation{n)\ / /A is the annotation of node n
2 : A : = T  U A /T  U V  U NV\ //A is set of positive and negative terms and phrases 
3■ D <— getDocs(n)\
4: for each t G N T
5: Dt G— termDocs(M , t); / /retrieve set of results t is in
6 : D '± -D '\ D u
7: end for 
8: for each t G T
9: Dt G- term D ocs(M ,t);

io: D' g-  j y  n A ;
11: e n d  fo r
12: fo r  e a c h  d G D'
13: Ad G— getAnnotation{d); //Ad is the annotation of result d
14: Ad := Td u N Td  U Vd u NVd'i
15: fo r  e a c h  p G N V
16: i f  p 3 N V d t h e n
17: i f  contains(d.p) OR p EVd t h e n
18: D' E- D ’ \ {d };
19: e n d  i f
20: e n d  i f
21: e n d  fo r
22: for each p G V
23: i f  p 3 Vd t h e n
24: if  -i contamsid.p) AN D  p 3 NVd then
25: D' E- D '\  {d };
26: e n d  i f
27: e n d  i f
28: e n d  fo r
29: e n d  fo r
30: i f  D' ^  D  t h e n

31: n' G— setDocs(n , D ') ;
32: N  G— children{n')\
33: for each nc G N
34: nc G— assignResults(nc, D', M ); / /recursive call for children nodes
35: e n d  fo r

36: e n d  i f  
37: return n'\
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Line 1 of the algorithm retrieves the node’s annotation A, which is composed 

of sets of positive and negative terms and phrases. Note that the algorithm is not 

retrieving the aggregated annotation of the node’s label path. This is because we can 

assume, as a result of the recursive call of assignResults, that results in D are 

already covered by n ’s parent’s label path. assignResults is initially called using 

n 4— root and D 4— R.

The subroutine getAnnotation simply retrieves an annotation stored either in 

a cluster node (representing the node’s label) or in a search result. Line 3 uses the 

getDocs subroutine to retrieve the current set of results D  contained in node n.

Lines 4 ~  7 and 8  ~  11 present the term-based reduction of D'. First, results 

containing any of the negative terms in A are removed from D '. Then, only those 

results containing the positive terms in A are kept in D '. The subroutine 

termDocs(M, t) retrieves the set Dt of results containing the term t from a 

dictionary M, which is constructed during the preprocessing phase of 

Clust ering W  iki2 .

Once D' has been reduced to those results covered by the positive and 

negative terms in A, phrase coverage is considered sequentially in the remaining 

results, in lines 1 2  ~  29. The result annotation A^ is first retrieved. Lines 15 ~  2 1  

consider negative phrases p in the cluster annotation A. If p is not a negative phrase 

in the result annotation and it is present in the result title or snippet, the result is
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not covered by the cluster annotation and is removed from D '. Similarly, lines 

15 ~  21 are concerned with positive phrases p in the cluster annotation A. If p is 

not a positive phrase in the result annotation and it is not present in the result title 

or snippet, the result is not covered and is removed from D'. The subroutine 

contains(d, p) simply checks whether the phrase p is present in the result d’s title or 

snippet.

The resulting items in D' are covered by the cluster annotation. If D' is 

different than the already assigned set of contained results D, the algorithm assigns 

D' to the node n (line 31), and then recursively calls assignResults on all children 

nodes of n (lines 32 ~  35).

Ordering. ClusteringWiki2  orders cluster labels within each level in the same way 

as ClusteringWiki —  by lexicographically comparing the lists of original ranks of 

cluster’s associated search results. “ Other” is a special label that is always listed at 

the end, behind all its siblings, and contains parent cluster results not contained in 

any other sibling cluster.

6.2.2 Cluster and Result Editing

Editing in ClusteringWiki2  is executed through changing annotations, whether they 

be cluster labels or result metadata. Each annotation change must re-consider result

assignments for clusters.
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Figure 6.3: Example cluster tree.

Primitive user edits. ClusteringWiki2 implements the following categories of 

atomic primitive edits that a logged-in user can initiate in the process of tree editing 

or result annotation. Like in Clustering Wiki, each cluster edit e is associated with 

Pe and NPe, which are respectively the set of paths to be inserted to the tree and 

the set of paths to be deleted from the tree after e. However, leaf nodes in a 

ClusteringWiki2  cluster tree are cluster nodes rather than results. Note that ei, e2, 

and e3 in ClusteringWiki2  are equivalent with e3 , e ,̂ and e5 in ClusteringWiki, 

though they differ on the added and deleted paths.

• e\\ modify a non-root label (cluster) node.

Example: in Figure 6.3, we can modify A to E. For this edit,

Pe =  {All -► E  -> B ,A ll -> E -> C ,A l l ->  E }  and 

NPe =  {All A -¥ B , All A C, All A }.

• e2: delete a non-root label node.



Example: in Figure 6.3, we can delete A. For this edit,

NPe =  {All -*  A  —>■ B, —t A —tC , All —>• A }. Pe =  $ for any edit of this type.

• e3: create a label node. Recursive creation of labels is a way to add levels to 

cluster trees.

Example: in Figure 6.3, we can add E  as child of D. For this edit,

Pe =  {All - * £ > - > £ }  and NPe =  0.

• e±\ modify a result annotation.

Example: modifying a result annotation does not change the structure of the 

cluster tree. However, it can change the set of results that 0 or more nodes 

contain, and, by extension, the level ordering of cluster nodes.

Notice that modification and deletion of cluster nodes requires subtree path 

changes in ClusteringWiki2 . ClusteringWiki2  deletes and adds both a node and all 

its subtree nodes, while ClusteringWiki only deletes and adds leaf (result) node 

paths. This is due to the different result assignment methods used in the two 

systems. In ClusteringWiki results are assigned by the clustering algorithm and 

users have uninhibited control over node edits. Additionally, non-bottom level nodes 

contain the cumulative set of results from their subtree leaf nodes, and nodes 

without results are trimmed from presentation. In ClusteringWiki2 , results are 

assigned based on the membership condition. Thus, removing all children nodes of a
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cluster node does not affect the set of results it contains. The example below further 

clarifies the difference between the two systems.

Example: in Figure 6.3, a user first modifies the node A to E  and then deletes 

nodes B  and C. Finally, they re-execute their query. If ClusteringWiki2  only 

recorded leaf node path additions and subtractions, as Clustering Wiki does, the 

following would be the stored edits for the two systems:

ClusteringWiki: {  Pe =  {All —»• E  —>• B  —>• Px, All -> E  —»• B  —»• P2, All —>■ 

E - > C - > P 2, A l l - + E - * C ^  P3}, and NPe =  {A ll -> A  -»• B  -)> Pu All -*  A  ->

B ^  P2,All ^  A ->  C -+ P2,All A ->  C P3,All E B Px, All E

B P2,All E C P2,All ^  E ^  C -> P3}  }•

ClusteringWiki2 : { Pe =  {All E B, All - »  E -¥ C }, and 

NPe =  {A ll ->• A ^  B ,A ll -> A -> C ,A ll  -> E  ->■ B ,A ll S  ->■ C } }.

After applying all edits following the search re-execution, both clusters contain 

the node at path {A// —> A}. However, since they changed the node A to J5, the 

user would expect the path {All -> A } instead. In ClusteringWiki, the node A is 

trimmed, as it no longer contains any results, thus solving the naming problem. In 

ClusteringWiki2 , the node A will be displayed with results assigned according to the 

membership condition, causing the unexpected result.

When applying e\ and e2 correctly, as defined above, the ClusteringWiki2  

stored edits will accurately re-create the user changes to the cluster tree. The
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corrected stored edits for the example are displayed below:

ClusteringWiki2 : {  Pe =  {All E —¥ B ,A ll —>■ E —> C,All —> E }, and 

NPe =  {A ll - ^ A ^ B , A l l ^ A - > C ,  All A ,A ll->  E  B, A l l -> E -> C } }.

Once Pe and NPe are computed, ClusteringWiki2  applies the same editing 

algorithm as ClusteringWiki for validating and storing edits. For details please see 

Algorithm 3. Preference sharing is implemented the same way in both systems. 

ClusteringWiki2  implements most of the consistency constraints that 

ClusteringWikidoes, with some modifications:

• Presence constraint: Each initial search result must be present in T. Results not 

present in a custom node of T  will exist in the first level node Other, which must 

be maintained.

• Path constraint: Each path of the cluster tree T  must start with the root node 

labeled All and end with a cluster leaf node. In case there are no search results 

returned, T  is empty without paths.

• Height constraint: The height of T  must be equal or less than a threshold, e.g., 4.

• Label length constraint: The length of each label in T  must be equal or less than a 

threshold.

• Result annotation constraint: The length of each result annotation in R  must be

equal or less than a threshold.
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N ode result set update follow ing edit. ClusteringWiki2  stores a copy of T  and 

R  in memory during an editing session. An editing session starts upon the 

execution of a query and ends when either another query is executed or the browser 

session expires. Result node assignment is only maintained in memory in 

ClusteringWiki2  and not persisted to disk. An edit e updates the in-memory 

representations of T  and R  and then stores any path changes Pe and NPe and any 

result annotation changes to disk. Executing an edit e may require re-computing 

search result assignments for some or all of the cluster nodes. ClusteringWiki2  

implements efficient methods for each, described below.

A lgorithm  6  changeLabel(n, A', M )
Input: n, A', M: n is a node. A! is the updated annotation for node n. M  is a 

dictionary correlating terms with results containing them.
O utput: n': the node n after results have been re-assigned to it.

1: A  4- getAnnotation(n); //A is the annotation of node n 
2 : D <— getDocs{n)\
3: np <— getParent(n)-,
4: Dp getDocs{np)\
5: A  <— getD if ference(A , A ');
6 : T  <r- getTerm s(A);
7: D' •<— term sD ocs(M , T );
8: D 1 —̂ D 1 U D p 5
9: n' <r- assignResults(n, D 1, M );

1 0 : n' <— set Annotation^ , A ' ) ; 
ll: reorderLevelsQ;
1 2 : updateOtherNode();
13: return n;

e\: modify a non-root label node. A straight forward approach for this kind of 

edit would be to consider each r £ R  against all nodes in the paths in Pe.
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Algorithm 6  describes the process used to update node result sets after a cluster 

label is modified. Lines 1 ~  4 retrieve the node’s annotation and contained result 

set as well as the node parent’s contained result set. Line 5 retrieves A, the 

difference between the current and new annotations for the node n. Line 6  retrieves 

T , the set of terms, present in either individual changed terms or phrases in A. Line 

7 retrieves the set of results that contain any of the terms in T. In line 9, the union 

of the parent node’s results and the results containing the changed terms is passed 

to assignResults, which re-assigns results to the node n and its children. 

assignResults is defined in Algorithm 5. Finally lines 1 1  ~  1 2  maintain consistency 

constraints for T  by, if necessary, updating the membership of the Other node and 

re-ordering cluster levels. Other’s membership is updated by simply removing from 

the set of all parent results those results covered by the siblings of Other.

A lgorithm  7 deleteNode(n, M )
Input: n, M: n is a node. M  is a dictionary correlating terms with results containing 

them.
O utput: np: the parent of node n after n has been deleted.

1 : np «— getParent{n)\
2 : rip <r- deleteChild(np,n);
3: updateOtherNodeQ;
4: return np\ * I

ei: delete a non-root label node. This type of edit does not require 

re-assignment of results. Since the parent node’s annotation does not change, it will
I

contain the same set of results as before the edit. No other cluster or result
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annotations are changed. Algorithm 7 describes the process used to delete a cluster 

node. Lines 1  ~  2 retrieve the parent node and remove n from its list of children. 

Line 3 maintains consistency constraints for T  by, if necessary, updating the 

membership of the Other node.

A lgorithm  8  addNode(np, A', M )
Input: np, A1, M: np is the parent node to which the new node is added. A' is the 

annotation for the new node n. M  is a dictionary correlating terms with results 
containing them.

O utput: n: the added node n.
1 : Dp getDocs(np);
2 : n f -  addChildNode(np);
3: n setAnnotation(n, A');
4: n assignResults(n, Dp, M );
5: updateOtherNodeQ]
6 : reorder Lev el (n);
7: return n;

e3 ; create a label node. Algorithm 8  describes the process used to add a node n 

with label L' as child to parent node np. Line 1 retrieves the set of results contained 

in the parent node. It will be used to assign results to the newly created node.

Lines 2  ~  4 add the node n to the parent node np. The subroutine assignResults 

reduces the set of results contained in the parent node to those covered by the 

annotation A' assigned to n. Lines 5 ~  6  maintain consistency constraints for T  by, 

if necessary, updating the membership of the Other node and re-ordering n ’s tree 

level, which places n in the correct place within the level.

e4 : modify a result annotation. Modifying a result annotation can affect all
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nodes in the cluster tree. A straightforward solution for this operation would, be to 

re-consider assigning the result to each node in the cluster tree. Checking the 

membership condition would require comparing each label term and phrase of each 

node with the result title and snippet. ClusteringWiki2  reduces both the number of 

nodes it will consider for assignment as well as the terms and phrases it will check 

against the result. First, the terms and phrases considered are reduced by only 

considering terms and phrases in the annotation difference between the old and new 

annotations (getD if f  erence(A, A ')), and vice-versa (getD if ference(A ', A )). The 

operation also updates the dictionary M, which correlates terms with results 

containing them. The following describes the sets of terms and phrases that are 

considered when modifying a result r, and the update operations on M  for each of 

the members in those sets.

• added positive terms: for each term t in the set, add r to the result set at 

index t.

• removed positive terms: for each term t in the set, remove r from the result set 

at index t only if result title or snippet does not contain i.

• added negative terms: for each term t in the set, remove r from the result set 

at index t.

• removed negative terms: for each term t in the set, add r to the result set at
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index t only if result title or snippet contains t.

• added positive phrases: for each term t in each phrase p in the set, add r to 

the result set at index t.

• removed positive phrases: for each term t in each phrase p in the set, remove r 

from the result set at index t only if result title or snippet does not contain t.

• added negative phrases: no update.

• removed negative phrases: no update.

No update to the dictionary M  is necessary for added negative phrases and 

removed negative phrases as the terms of each phrase, if already in the result, 

continue to exist independently of the phrase within the result. After updating M, 

the four sets of terms and four sets of phrases are respectively combined into a set of 

changed terms T  and a set of changed phrases V.

Algorithm 9 describes assignResult(n, T , V, r), the method used to re-assign 

result r to the cluster tree. After updating a result annotation in R, assignResult is 

called given n 4— root and assign 4- FALSE. The algorithm skips checking terms 

and phrases and eagerly re-assigns the result to children nodes if a parent node has 

been re-assigned the result (lines 2 ~  3). The assignResult subroutine is similar to 

the assignResults subroutine described in Algorithm 5, with two exceptions: it only 

assigns one result and it does not recursively assign the result to children nodes.
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A lgorithm  9 annotateResult(n, T , V ,  r)
Input: n, T, V, r, M, assign: n is a node. T  is the set of changed terms. V  is the set 

of changed phrases, r is the result to be assigned. M  is a dictionary correlating 
terms with results containing them, assign is a boolean noting whether the parent 
node re-assigned results.

O utput: n1: the node n after result r has been re-assigned to it and its children.
1: nl 4- n;
2: i f  assign =  TRUE  t h e n  
3: n' 4— assignResult(n, r, M );
4: e ls e

5: A <— getAnnotation(n);

6: for each t G T
7: if contam s(A,t) then
8: assign 4— TRUE]
9: e n d  i f

10: e n d  fo r
11: fo r  e a c h  p G V
12: i f  contains(A,p) t h e n
13: assign <— TRUE\
14: e n d  i f

15: e n d  fo r
16: N 4— children(n')\
17. i f  assign— TRUE  t h e n
18: nl <— assignResult(n, r, M);
19: e n d  i f
20: fo r  e a c h  nc G N
21: nc 4— annotateResult(nc, T , V, r, M, assign);
22: e n d  fo r

23: e n d  i f  
24: return nl\
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After checking the membership condition, the subroutine may either add or remove 

the given result from the cluster node in consideration.

If the parent node has not been re-assigned the result, ClusteringWiki2  checks 

whether the node’s annotation contains any of the terms in T  (lines 6 ~  10) or 

phrases in V  (lines 11 ~  15). If it does, the result is assigned to the current node 

(line 18). Finally, the assignResult call is propagated to children nodes in lines 

20 ~  22.

Editing interface. Cluster editing in ClusteringWiki2, like in ClusteringWiki, is 

primarily available through context menus attached to label and result nodes. 

However, given its alternative editing methodology, ClusteringWiki2  offers fewer 

operations than ClusteringWiki. Cluster nodes will show a menu containing Create 

child label, Change label, and Delete label. Results will only show Edit result 

annotation. Additionally, ClusteringWiki2  does not include drag and drop or 

copy/paste functionality.

6.3 Cluster Aggregation Discussion

Currently ClusteringWiki and ClusteringWiki2  aggregate personalized clusters to 

form a collaborative (community) cluster tree by applying to Tmit those significant 

personalized paths. Significant paths are simply defined by paths that have been 

personalized by a minimum threshold of users. Two ways this model could be
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improved in future work are described below:

M ass collaboration  optim ization. As this point applies to both ClusteringWiki 

and ClusteringWiki2 , I will use ClusteringWiki to reference both systems in the 

following. The goal of ClusteringWiki is to present a search result cluster that will 

aid the user in reaching their results faster. When the user is logged into the 

system, this goal is achieved by allowing the user to personalize the cluster tree. 

However, users will often personalize portions of the cluster tree based on their 

current search intent interest. Additionally, users will not always agree on what 

clusters should exist or what results they should contain. Thus, aggregating 

personalized clusters to create a collaborative clustering is a hard problem.

The goal of ClusteringWiki when a user is not logged in to the system does 

not change. Therefore, assuming a personalized clustering would best achieve the 

goal, we wish to present a non-logged in user with a clustering that is as close as 

possible to their imaginary personalized, clustering, the cluster tree they would 

create if they did log in and edit the search result cluster tree. Borrowing some 

techniques from collaborative search, this problem can be solved by formulating it as 

an optimization problem. We wish to find a set Us C  U of other known users similar 

enough to the current user and who have edited the cluster tree for the current 

query. Once we do, applying their edits would be more meaningful to the current 

user than applying edits from all users.



Since the current user is unknown (not logged in) and may not have edited 

any cluster tree, we cannot rely on cluster edits as a means of finding similar users. 

One way this problem could be solved is to store user profiles created from a user’s 

search history and click-through information. We can then create an objective 

function that minimizes a user profile similarity score to identify JJS from those user 

profiles of known users who have edited the cluster tree in question. Note that 

u 3 Us and \US\ >  1 , where u is the current user. Allowing |[7S| =  1 would make our 

similar user selection open to noise.

Path to  result annotation reference. In both ClusteringWiki and 

ClusteringWiki2  there is an inherent relation between the search result clusters and 

the results themselves. ClusteringWiki strongly correlates the two. Path edits in 

ClusteringWiki affect both a cluster node and its membership. ClusteringWiki2  

employs a looser strategy which includes two types of edits: cluster (path) edits, and 

search result annotation edits. Currently, ClusteringWiki2  treats aggregation of the 

two types of edits independently. However, users will often make both cluster and 

annotation edits to achieve a personalized cluster goal. Ideally, we wish to choose 

those annotation edits which are strongly associated with those chosen cluster edits. 

One way this could be achieved is by associating cluster and annotation edits made 

in an editing session with the same session id. Then, significant annotation edits 

(made by the same minimum threshold of users as the cluster edits) could be chosen
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from the subset of annotations made in one of the chosen editing sessions.

There are many other interesting directions for future work, from fundamental 

semantics and functionalities of the framework to convenience features, user 

interface and scalability. For example, in line with social browsing, a user’s social 

network can be utilized in preference aggregation. Another interesting direction is 

to seamlessly integrate personalization of search result ranking [Gao and Jan, 2010] 

with that of search result clustering, providing a more complete solution for 

personalized and collaborative information retrieval and Web search.



C H A P T E R  V II

C O N C LU SIO N

Search engine utility has been significantly hampered due to the ever-increasing 

information overload. Clustering has been considered a promising alternative to 

ranked lists in improving search result organization. Given the unique human factor 

in search result clustering, traditional automatic algorithms often fail to generate 

clusters and labels that are interesting and meaningful from the user’s perspective. 

In this thesis I introduced Clustering Wiki, the first prototype and framework for 

personalized clustering, utilizing the power of direct user intervention and 

mass-collaboration. Through a Wiki interface, the user can edit the membership, 

structure and labels of clusters. Such edits can be aggregated and shared among 

users to improve search result organization and search engine utility.

Both personalized and collaborative clustering of search results aid users in 

locating those search results they seek. Personalized clustering saves user effort by 

allowing the user to place results in familiar clusters. Aggregated clustering also 

provides significant benefits and is “free,” in the sense that it does not take user 

editing effort.

As an alternate method of personalized and collaborative clustering of search
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results, I presented ClusteringWiki2 , a cluster editing system based on annotations. 

With complete control over both positive and negative terms and phrases in 

annotations, users can have the same editing freedom as in ClusteringWiki, while 

maintaining collaborative transparency.
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