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A NEUMANN PROBLEM WITH THE ¢-LAPLACIAN ON A
SOLID TORUS IN THE CRITICAL OF SUPERCRITICAL CASE

ATHANASE COTSIOLIS, NIKOS LABROPOULOS

ABSTRACT. Following the work of Ding [2I] we study the existence of a non-
trivial positive solution to the nonlinear Neumann problem

Agu+a(z)ud™t = Af(z)uP™l, w>0 onT,
o -
Vu|q_28—u +b(z)ud™t = Ag(x)uP~t on AT,
v

2 3
p=—q > 6, ﬁ=—q >4, -<g<2
2—q 2—q 2

on a solid torus of R3. When data are invariant under the group G = O(2)x1I C
O(3), we find solutions that exhibit no radial symmetries. First we find the
best constants in the Sobolev inequalities for the supercritical case (the critical
of supercritical).

1. INTRODUCTION

In this paper we study the existence of positive solutions of the Neumann bound-
ary problem

Agu+a(x)u?™t = Af(zx)uP™', uw>0 onT,

9 i
|Vu|q72a—z +b(z)u?™t = Ag(x)uP~t  on OT, (1.1)
2q - q 3
= —— >0, =—>4, -—<g<2,
P=5 p=5—, 5 <4
where a% is the outer unit normal derivative, Aju = —div(|Vul|9=2Vu) is the ¢-

Laplacian and for ¢ = 2, Ay = A is the Laplace-Beltrami operator.

Let © be a bounded domain in R", n > 3 with smooth boundary 9€2. A host of
literature exists, concerning problems of the same type with , when ¢ = 2; see
e.g. [B AL 2 B, 42 34, 15, BT, 35, 25, @4 37, 26, 10, 12} [T, 20, [13, 16, 0] 33, B3
39, [36], 43] and the references therein.
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In [I7] the first author proved (under symmetry assumptions on €2) the existence
and the multiplicity of positive solutions and of nodal solutions for the problem

Au+a(z)u = f(x)[ulP~*u, onQ,
ou

e - p—2
5 +b(x)u = h(z)[ulP""u on IQ, (1.2)
< 2n S 2(n—1)
b=y P70

where a(z), f(z) are functions in C°°(Q) and b(z), h(z) are functions in C>(9Q).

In contrast to the case ¢ = 2, the Neumann problem, for ¢ # 2, has not been
studied so extensively; see e.g. [B] [, 19, [32] 22| [6l, 24]. In all the above mentioned
cases the supercritical exponent under consideration is not the highest possible one.

In problem the main difficulty comes firstly from the dimension 3 of the
domain and secondly because the exponents p = 22—:1(1 > 6 and p = ﬁ > 4,
% < q < 2 of the equation and the boundary condition, respectively, are both
the highest possible supercritital exponents (critical of supercritical). Also, the
boundary condition is more complicated than the one in the above problems with
q # 2. Additionally, we have to find solutions that exhibit no radial symmetries.
However, since the solid torus T C R? is invariant under the group G = O(2) x I C
O(3), the solutions inherit T"s symmetry property.

Best constants in Sobolev inequalities are fundamental in the study of non-linear
PDEs on manifolds [1I, 27, [30, 23], 29] 4] and the references therein. It is also well
known that Sobolev embeddings can be improved in the presence of symmetries
[30) 211, 17, 28, [19] and the references therein.

In our case for any ¢ € [1,2) real, the embedding H{ (T) — Lg;(T) is compact

for 1 < p < 2¢/(2 — q), while H{ ,(T) — Lf?c/;(z_q)(T), is only continuous [I8§].
We will prove that for any ¢ € [1,2) real, the embedding HY (T) — Lg,(97T) is

compact for 1 <p < q/(2—q), while H{ (T) — Lé/(qu)(aT), is only continuous.
In the spirit of [I 4] we determine the best constants of the Sobolev trace in-
equality
”uH%ﬁ(aT) < AHVUH%q(T) + B”UHqu(aT)a

where p = q/(2 — q), 1 < ¢ < 2, which concern the supercritical case (the critical
of supercritical) and we use the above to solve the problem .
2. NOTATION AND STATEMENT OF RESULTS
Let us define the solid torus
T={(x,y,2) eR®: (Va2 + 2 = 1)+ 22 <r? I > >0}

and A = {(,&) : 1 = 1,2} be an atlas on T defined by

0 = {(w,y,2) €T (2,,2) ¢ Hi )

Qo ={(x,y,2) €T: (2,y,2) ¢ Hx,}
where

HY,={(z,y,2) R’ :2 >0, y=0}

Hy,={(z,y,2) ER* 12 <0,y =0}
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and & : Q; — I; x D, i =1,2, with
I = (0,27), Iy=(-m7), D={(ts)eR?:t*+s*<1}

and & (z,y,2) = (w;, t,8), i = 1,2 with
€z Y

CoSWw; = ——, sihw; = —, 1=1,2
! /22 + 42 ! /22 + 2
where
arctan £, x #0 arctan £, x #0
wy = 7/2, x=0,y>0 wy=4{7/2 x=0,y>0
3m/2, x=0,y<0 —7/2, r=0,y<0
and
Ve +y? =1 z
t=Y=2 17— o=
T r

The Euclidean metric g on (£2,€) € A can be expressed as
(Vg o &) (w.t,s) =r*(L+rt).

Consider the spaces of all G-invariant functions under the action of the group

G=0(2)xIcO(3)
Hl g ={ue H{(T):uor =u, V7 € G},
where H{(T) is the completion of C*°(T) with respect the to norm
[ull g = IVullg + flullg:

For all G-invariants u we define the functions ¢(t,s) = (u o £71)(w,t,s). Then we
have

[l ry = 270° [ 1608, 5)P 1+ ) d s, (2.1)
D
IVl =272 [ [9olt,9[1(0+ ) deds, (2.2
D
Il ory = 27 [ 1601+t (23

where by ¢ we denote the extension of ¢ on dD.
Let K(2,q) be the best constant [I] of the Sobolev inequality

lelle @2y < K(2,0)IVellLag2)

for the Buclidean space R2, where 1 < ¢ < 2, p = 2¢/(2 — ¢) and K(2,q) be the
best constant [30] in the Sobolev trace embedding

lellzrorz) < K(QaQ)”V‘PHLq(Ri)
for the Euclidean half-space R%, where 1 < ¢ <2, p = ¢q/(2— q).
Consider a point P;(z;,y;,2;) € T, and by Op, denote the orbit of P; under the
action of the group G. Let [; = 4 /:v? + yJ2 be the horizontal distance of the orbit

Op; from the axis z’z. For ¢ > 0 given and d; = l;¢, consider a finite covering
(Tj)j=1,..5 with

Tj:{(xayvz) GT: (V‘T2+y2*lj)2+(272j)2 <(Sj2}

an open small solid torus (a tubular neighborhood of the orbit Op, ).
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2.1. Best constants on the solid Torus.

Theorem 2.1. Let T be the solid torus and p, q be two positive real numbers such
that p = q/(2 —q) with 1 < g < 2. Then for all € > 0 there exists a real number Be
such that for all u € H{ ; the following inequality holds:

K%(2,q)

eIVl + Bellul oy (24)
[27(l — r)}

s om < |

In addition the constant K(2,q)/[2n(l —r)]9! is the best constant for the above

inequality.

2.2. Resolution of the problem. Consider the set
A={c=(a,f)eR*:a—f>6 g<a<p ¢<B<p},

with 6 € (0,p — p) = (0,¢/(2 — q)), and define the functionals

J(U):/ (\Vu\q+a|u|q)dv+/ blu|?ds
T oT

Jc(u):/Tf|u|adv+%/aTg\u|ﬁds

for all u € H{ ; and for any ¢ € A. I(u) and I.(u) are well defined because the

imbeddings of H} . onto L” and LP are continue according to the Sobolev theorem.
Define, also

Y.={ue HiG : I.(u) =1},
pe = inf{I(u) : u € L.},
co = (p,p), " =sup(t0),
for all ¢t € R. Consequently for the problem we have the following theorem.

Theorem 2.2. Let a, f, b and g be four smooth functions, G-invariant and q,

p, P be three real numbers defined as in (1.1). Suppose that the function f has
constant sign (e.g. f > 0). The problem (1.1)) has a positive solution u € HfG if

the following holds:

K2,q)ud, 1#/2 | p K12, q)uf, 17/
7[7]_([ —’I“)]q/2:| + :(SUpg)+|:[

oz )| el

<1 (2.5)

and if

(1) f >0 everywhere and g is arbitrary, or
(2) f>0, g>0 everywhere and (—infra)™x < 1, where

K= inf{A > 0:38 > 0 5.0 < AIVEILyg + BIoNuor ) (26)
In the rest of this paper we denote K = K(2,¢), K = K(2,q) and L = 2r(l —r).

3. PrROOFS

Proof of Theorem[2.1. The proof is carried out in two steps.
Step 1. Suppose that there exist two real numbers A, B such that for all u € H f) a
the following inequality holds:

||UHquS(aT) < AHVUHqu(T) + B||UHqu(aT)~
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Then R
K1(2,q)
~2n(l —r)|et
Consider a transformation F': D — Rf_. Such a transformation, for example, is
4t 2(1 — 12 — s2)

F(t,s) = (

24+ (145)2" 2+ (1+5)2 )

see [23]. Denote by (g;;) the Euclidian metric on D, dz dy the Euclidian metric on
Ri and do the induced on aRi. Choose a finite covering of D consisting of disks
D, centered on pyg, such that: If py, € D, then entire Dy, lies in D and if p € 0D,
Dy, is a Fermi neighborhood. In these neighborhoods we have

1—¢9< det(gij) <1+¢p (31)

Suppose by contradiction that, there exists
q
La—1

A< and BeR

such that the inequality

4% oy < ANV oy + Bllul o (3.2)

holds for all u € HKG(T). Fix a point Py € 0T, that belongs to the orbit of
minimum range [ — r. For any g9 > 0, we can choose § = go(I — r) < 1 and
Ts = {Q € R*: d(Q,Or,) < 6}

such that, if I x U C I x D is the image of a neighborhood of Py € 9T through the
chart £ of T and V C Ri_ the image of U through F, (3.1) holds. It follows that,
for any u € C§°(Ts), we have successively:

- /P
(/ |u\pdS)q <A \vufav + B/ lu|?ds,
BT(s Té

ITs
_ /B
(%5/ 6P (L — 7+ 5t)dt)q :
oD

<2ms2*qA/ IVo|9(L - r + ot) dtds++27réB/ 619(1 — 1 + 6t)dt,
D oD
_ q/p
(1 <o)z / (16/7/5) o P~ do
F(0D)

< ()P AL [ (VolnG) o P dody
F(D)

+(1 +50)6LB/ )(|¢|q\/§) o F~'do,

F(0D

- /D
(a 750)25L/ |<I>|pdor>q 3
oR%

<( +50)25L(61*‘JA/

(V|7 d dy + B/ |<I>\qda),
R2 ORZ.
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|D|do, (3.3)
2

_ /P
([ 1ofao)"” < pepria [
or2, R2 2

where f(e0) = (1+¢0)/(1—20)*/?, B = f(e0)(6L)?'B and p = q/(2 — q).
Because of (3.2)) and since the above function f: (0,1) — (1, +00) with
(1402

V| dx dy + B/
OR

is monotonically increasing, we can choose g small enough, such that the following
inequality holds
Ka
A< f(Eo)A < F
hence A’ < K% where A’ = f(eo) L9 " A.
So for gy small enough and for all ® € C5°(D) we have

= q/p , -
(/ |<I>|pdg) <A / (V|7 dw dy + B/ ||9do (3.4)
oR RZ oR2.
On the other hand by Hélder’s inequality, for all ® € C5°(Ds), where Ds C D, we
have _
a 1—(a/p) pla a/p
[@[%dao < [Vol(@Ds)]'~ /P ([ (/") day )

8D5 6D5

and since p = ¢/(2 — q), that is 1 — (¢/p) =1 — (2 —q) = ¢ — 1, we have

_ /P
/ 19|7doy < Vol(aD(;)q_1</ |<I>|Pdo—0)q 3 (3.5)
0Ds 9Ds

Hence, choosing €y small enough, by (3.4) and (3.5)), we get that there exists A” <
K1, such that for all ® € C§°(Ds),

= a/p
( / @) " < A" / VO dz dy . (3.6)
AR RZ
Let ¥ € Cg°(R2) and set ¥y () = AY/P¥(Az), A > 0. For A > 0, sufficiently
large, Wy € C°(D) and since ||‘I’/\||Lﬁ(ami) = H‘I’HLﬁ(aRi) and ||V\II>\||L‘I(R3_) =

IV La(R2)s by lb the following inequality

. /D
(/ wr) " < A"/ V| d dy
ORZ. R3

holds for all ¥ € C§°(R2). This is a contradiction since K is the best constant for
the Sobolev inequality in R .

Step 2. For all ¢ > 0 there exists a real number B. such that for all u € HﬁG the
following inequality holds:

K1(2,q)
lullZs0m) < [W + ]IVl Loy + Bellull Lo or

Assume by contradiction that there exists g > 0 such that for all « > 0 we can
find u € H{ ,(T) with

K1

q
||u||Lg(8T) > (Lq,1

+ 50)||Vu||(qu(T) + O‘”U”(IL‘ZG(QT)
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or
HVUHqu (1) +0‘||”v‘||%g(aT) K1

—1
< (Lq—l

+ €0
HUHL” (87) )

It follows that, the above inequality remains true for all € € (0, () and setting

[Vul[7a y T O‘”“”Lq (o7)

I, = in
weHE ! (T)\{0} IIUHLg(aT)
we conclude that for all @ > 1, there exists 8y > 0 independent of « such that

K9 -1 Lot
Ia < (F +EO) = f{q — 90 (37)

As the quotient
q q
19l oy + allull L o,

LP,(87T)
is homogeneous, for any fixed @ we can take a minimizing sequence (uy) C H f’G(T)
for it satisfying ||uk||Lp o1) = =1. As
IVurl o oy + lluellTa or) = Lo (3.8)

we conclude that (uy) is bounded in LE(0T) and (Vuy) is bounded in L, (9T). B
the standard Sobolev trace inequality, we easily take, by contradiction, that there
exists a constant C' such that

[ullZory < CUNVUllLar) + 1l Zeor))- (3.9)

These two facts together 1mply that up — win H{(T), up — uwin LY(T) and uy, — u

in L?(0T). Since convergence in LP spaces implies a.e. convergence, the function u

will be G-invariant. By theorem 4 of [4] we have uy — w in L, (0T), [lullf, o) = 1
G

and

”vu”qL‘é(T) + QHUH%‘IG(aT) = Ia,

that is u is minimizing of I,. Now, for each o > 0, let u, € H 4(T) satisfy
||Ua||Lg(aT) =1 and
La-t

IVtallTs o7y + alltall s o7y = Ta < o (3.10)
Following arguments similar to the ones that proved u is G-invariant minimizing of
I, we conclude that (u,) is bounded in H{ (T'), thus we can take a subsequence
of (uq), denoted (uq) too, such that u, — w in HY 5(T), ue — win LEL(T) and
uq — uin LE(OT). Moreover, by (3.10) we obtain

1, Lt
||ua||Lq (8T) < — (F — 90)7

and sending a to 400 we have u = 0 on 97'. Finally following the proof of theorem
4 of 4] we obtain that Vu, — Vu a.e. and so (Vu,) is bounded in L (T'). Because

of. (2:2) and (2-3) and since 1 < ¢ < 2, p = g/ (2 — q) we have
||VUO¢HLQ(T) + O‘”uaHLq(aT)

[ta ||qLﬁ(3T)
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A e
B ([or lualPdS)y/P
2 (8)*77 [ |Voal® (I — 7+ 6L) dids + 2780 [ |al® (1 —r+ 5L) dt
(272 fyp16al” (1= 7+ 6%) dt)q/ﬁ
21 (8)*7 [, IVéal® (1 — 7 + 61) dtds L 2mfafopldal’ (L= +0%) di
(272 o 16l (1 =+ 6%) di) " (28 Jop |8al” (1= 7+ %) dt)q/ﬁ
(1) 27975 21624 [ Vet (I — 7+ 61) dtds
A (276 Jyp 10al” (1= 7+ 64) dt)q/p
. <1>1% 2160 fop |0’ (1 = 7 +0%) dt
A (276 oy 107 (1 —r+5§)dt)q/p

< 21027 [ [V alt(l —r+ %) dtds + 2néa [5 ) [pal?(l — r+ 6%)dt
R 270 [y |¢alP(l =7+ 65)dt)/P

and as A\ — 400 the above inequality yields

||v“a||%q(T) + CVHuaH%q(aT)

”ua”%ﬁ(aT)
L&*1 [ |Va|?dtds + Lia [, |¢a|9dt
(L3 Jpp |6al7dt)i77
ra-1 Ip IVoa|?dtds + 69D [, |pa|9dt
(Jop |@alPdt)e’?
1 fD [Va|?dtds + a faD |pa|?dt
(Jop |6alPdt)?/?
From the above inequality and (3.10) we obtain

pa1dp|Vealtdtds +a [y |galtdt L1~

< L~

([op |0alPdt)a/p = K o
or
IpVeéaltdtds +ajop Gaftdt 1 _, (3.11)
(Jop |@alPdt)1/? K4
According to [4, Theorem 4] such a function satisfying inequality does not
exist, and the theorem is proved. ([

3.1. Proof of the main theorem.

Proof of Theorem[2.3. The proof is based on ideas from [14]. We recall, in this

point, some notation:
A={c=(a,f)eR*:a—f>6 g<a<p ¢<B<p}
where § € (0,p — p) = (0,q/(2 —q)),

I(u):/ (|Vu|q+a|u\q)dV+/ blu|7ds,
T oT
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u):/f|u|adv+9/ glul?ds
T 5 oT

where u € H{ ;, and ¢ € A,
Ye={ue€ H{;: I.(u) =1},
pe = inf{I(u) : u € 8.},
co = (p,p), tt=sup(t,0), tcR.
Because the imbeddings of HY 4(T) in L, (T) and L2(AT) are continuous but not
compact, we adopt the procedure of solving an approximating equation and then
we pass to the limit as in [I].

1. The proof of this part is carried out in six steps.
Step 1. A real ¢, € X.. Define on [0, 400) the continuous function h. with

/de—Fftﬁ/ gdS
oT

Since o > B we have h.(0) = 0, limy_, o0 he(t) = +00 and there exists t. > 0 such
that h(t.) = 1. Hence the constant function, which in every point is equal to t,
belongs to ¥, and then X, # (.

Step 2. sup{yu. :c € A} < +oo. We will prove that there exists £ € R such that
t. <t for all ¢ € A and the following holds

pe <I(t,) = (/TadV—i—/adeS)tgg (/T|a|dV—|—/8T |b|dS)E‘1

o If faT gdS > 0, since f >0 and a > (3, by equality

1:Ic(tc):t?/ fdv+9tf/ gdS
T ﬁ oT
arises
—1/a —1/a
tc:(/ fdv+gtf_“/ gdS) >sup{(/ fav) g <a <p}
T B aT T

However, if [. fdV <1, since ¢ < a < p, the following holds

(/ fav) i< (/ fav)y Ve <1
T T

while, if [, fdV > 1, we have the inequality

(/ fav)~Ve > (/ fav)y e =a
T T

Therefore, in this case, we set
- _ 1/« 2
t = max{1, (/ fdv) 1/q} > sup{(/ fdv) e, g<a< 7q}
T T 2—q
o If [, gdS <0, let to € R such that

|faT9dS\)1/5}

to 2max{1, (p f Fav
T
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When t > o, because of ¢ < o < p, ¢ < f < pand < a—4, we get (a/B) < (p/q),
and then
he(t) :ta/ fdv+9tﬁ/ gdS
T /6 oT

>t°‘/de+Bta’5/ gdsS
T q aT

e E ) f o

p |f8T gdS| 7—0 /
> 44 £ lJor 971
>t (1+q P o ) | rav

tq
>—/de
qJr

t = max{q"/1 (/T de)il/q, to}

we have h.(t) > 1 and then t, < .

Step 3. inf{u.:c€ A} > —oco. Since f > 0 everywhere, m = infr f > 0 and
because of H{ ;(T) — Lg(BT) is continuous (see [I8] lemma 2.1]) there exists
C > 1 such that for all ¢ € Hf,G(T),

[¥llp.0r < C(IVY

Hence, for

lg.7 + 1¥llq.1)

We set
= ot a0
T

g<asp

Cy = sup [2°7'q 'pCPllgloc[Vol(0T))"~ /7],
4<A<H

C3 = sup [21/0‘01(02 + 1)1/“].

gsasp
We recall, for reals x,y > 0, the elementary inequalities
(z +y)? <2071 (2P + 4P, (3.12)
(z +y)/e <2V (@t 4y, (3.13)
Let u € ¥, with |Jullq7 > 1. Since u € ¥, we have

/f\u|“dv+%/ glul?ds =1
T oT

/f|u\adV :1—9/ glulPds
T B Jar
By (3.12)), (3.13)) and since ¢ < a < p, ¢ < 8 < p we obtain

1/q
fullr < m~ ([ fpuftav)
T

Sm_l/q(/T fdv)(l/Q)_(l/“)(/Tf|u|“dV)1/a

<Oyl — 3/ glulPds)/«
ﬂ oT

and then
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<G+ *HgHoo[Vol(aT)]l GIP|ul| or)

<SGl + *Ilglloo[Vol(aT)] G|V ullg.r + ullq.or) 1V

1[1+2ﬁ g pllglloo[Vol(OT) =D (|Vull] 1 + [Jull )]
[Col|Vull? 7 + (Co + D) ullf ]

< 2Y°C[Cy/* | Vul I + (Co + 1)V

< Cs(|Vullys + [lull)).

<C
<Gy

Since 5 5
g < 1—-— < 1-— )
@ @ p
ife € (0,1) and Cy = Cy(e,p,d,Cs) is a constant such that

1=6m < Sy o
03 + 4,

for any t > 0, the latter inequality implies
”“Hq,T C3(1+ ||Vu||1 /) 4 lu ||1 (6/p)y
e(|Vullgr + lullgr) + Cs(1 + 2Cy)

Hence if 61 = /(1 —¢) and C = C3(1 +2C4)/(1 —¢) is a constant depending on
€1, but not on ¢ € A, by the last inequality we obtain

lullgr < el Vullgr +C (3.14)

Since we can take C' > 1, (3.14)) holds for ¢ € A and for all v € X..
If b # 0, since HY o(T) — LE(9T) and HY (T) — LE(T) are compact, for any
"€ (0,1) we can find a constant C’ = C’(¢’,b) such that
10115 o < 0I5 ENIVENG 2 + C Il 7)

for all ¢ € H{ (T), and then we obtain

() = /T (V417 + alp|7)dV + /8 URE

> IV[l2 - 7 = Iblloo, T 1¥117 57 (3.15)
> (1-€)|Vy) 2y g =Yl 7
= (1 =&Vl 7 — AE)I[I2 1

where A(e’) = ||laloo, 7+ C’. An inequality of the type (3.15)) is always true if b = 0,
because of inequality

1) 2 IVYllg r = lalleo.zl1¥llg 1
By (3.14) because of (3.12]) we obtain

wll? . < 29719 V|2, + 297109 3.16
q,T 1 q,T

Thus if we choose e1, small enough, such that 1 — ¢’ — 2971 A(e)e > 0, for all

u € X¢, by (3.15) and (3.16)) we obtain

I( ) > (1 — &' — 2171 A() a'f)HVqu,T — 2171 A
> 2171 A0
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Hence for all c € A, u > —297LA(")C1.

We observe that if " is a subset of Ugcp X, such that sup{I(u):u €T} =L <
400, I' is bounded in HiG(T). Indeed, according to the former, for any v € I" we
have

I(u) + 2971 A(e")C1 < L+ 2171 A(eC1

Vul? .. < <
” u||q7T 1—¢ — 2q71A(EI)5‘{ 1—¢ — 2q71A(€/)€‘11

=C

and

Jullgr < e1]|Vullgr +C < ¢,

thus
sup(||Vullg,r + [[ullg,r) < +00.
uel

Step 4. p. = inf{I(u) : u € ¥, } is attained. Suppose that ¢ = (o, 3) € A, a <
p, B < p. Let a sequence (u;) € X, such that lim; .o I(uj) = p. Since
Iyuj| = v(Ju;]), (yu; is the trace of u; on OT'), a.e. on 0T and I(|u;|) = I(u;),
I.(Juj|) = Ic(u;) a.e. in T, we conclude that |u;| € X.; in a way similar to the
one that employs (Ju;|) in place of (u;), (v(Ju;|) in place of yu; respectively) or we
can consider u;’s nonnegative a.e. (the same for yu;’s). The sequence (I(u;)) is
bounded in HY 4(T') implies that sup;ey(||lujllge(r)) < +oo. Since the imbeddings
of H{ o(T) in L§(T), LE(9T), Lg(T) and Lg(aT) are compacts, there is a func-
tion u, € H{ (T) and a subsequence (u;) of (u;) such that (u;) — u. in H{ ;(T),
(u;) — u, in everyone of the previous L" spaces, (u;) — u. a.e. in T. (The same
holds and for traces on 9T). Hence u. and yu. are nonnegative. We also have
I.(uc) =lim;_ o I.(u;) =1 and then u. € &, and I.(u.) > p.. Moreover since
[Vuellq < m NG
oo
and
/ autdV + [ butds = lim ( / auddV + [ bulds)
T oT j—moo N Jrp T
holds, we conclude that I(u.) < limj_, o0 I(u;) = pte and I(ue) = pe.
Step 5. There exists a week solution u., > 0. We observe that the deferential
DI.(u) of I, is # 0 for all w € X.. (Because if DI.(u) = 0 for all vy € C5°(T)
then [ fulu|*"21dV = 0. This implies that fu|u|*"?¢ = 0 in (C§°(T))" and since
f>0,u=0. Then u = 0 in H{ ;(T), which is impossible since I.(u) = 1). After
this a Lagrange multiplicand A, exists such that, for all ¢y € H{ ,(T), it satisfies
the next Euler equation 7

/ (|Vue|T2Vu Vb + aud ™ p)dV + / bud™tpdS
r or (3.17)

:)\c</Tfu?_11/JdV+/aTgu'f_lwdS)

In the following we suppose that ¢ = (a, 3) — ¢o = (p,p) and we will prove that
there are a real A\, and a function u., such that

/ (IVtteo |"™*Vuey Vi) + aud "p)dv + / bug, S
r orT

= Aoy ( / JubtpdV + / gul~1pdS)
T oT
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that is ue, is a week solution of (1.1). Substituting ¢ = u,. in (3.17)) we obtain

/(|Vuc|q+aug)dv+/ bugdS:)\c</ fugdv+/ gufds)
T oT T oT

A( [ ruzave [ gutas) = 1) =
T oT

Moreover, we have
1=1I.(u) = / fuldv + g/ gu?ds
T B Jor

_a a B _a a
_ﬂ(/Q"fUCdV+/3TgUCdS)+<1 6)/Tfuch

or

and since
1- 3)/ futdv <0,
B Jr

we obtain
/fungJr/ gufds> 2> 15
T aT « p
Hence ). and p. have the same sign and since the set {p.}cca is bounded a constant
C exists, such that

el < Zlpe| <C

AQ\’U

Since sup{I(u.) : ¢ € A} < 0o, we have (step 2)

sup{||ucllgs 1 ¢ € A} < oo,

Moreover, because the embeddings of HY (T') in L¢,(T) and L%(dT) are continu-
ous, we have

Sup{HucHP’T S A} < 00,
sup{[lucllp.or : ¢ € A} < oo

Jul ™! ||ﬁ/(i>—1),aT < Vol (@)= PP flucl|2 5
< [max(1, [Vol(9T)]'~/P)] max(1, [[ucl|2 57)] < ct

that is, the sets {u®~'}, (respectively {u?~'}) are bounded in the Banach reflexive
spaces LP/(P=1(T), (respectively LP/(P=1)(9T)), of which the dual LP(T) (respec-
tively LP(9T)) contain H{ (T).

The above implies the existence of a sequence ¢; = (¢, §;) € A, which converges
to co, of a real A, which is the limit of (\;) and of a function u., with the following
properties:

(a) e, = ue, on H{(T), (by Banach’s theorem),
(b) ue; — e, on Lq(T) (resp. L(9T), (by Kondrakov’s theorem),
(€) Ue, — U, a.e. in T, (resp. OT') (by proposition 3.43 of [I]) and
(d) ue?™ ' ub~t in Lp/(p’l)(T) (resp. ufj R ul-t in LP/(=1(9T)) (by
Banach theorem).
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From (a) arises that
/T|VUCj‘q72qujvde - /T ‘VUCO‘q72VuCOV1/1dV

for all ¢p € H{(T).

From (c) arises that uc, is G-invariant and u, > 0 on T (resp. yu, = 0 in 9T).
We may also assume that the sequence (j,) converges, with limit po < fic,-

Indeed, let u € X, be a non-negative function such that ., < I(u) < pe, +¢, with

€ > 0. Then for all j, there exists a unique real number ¢; > 0 such that I, (t;u) =1

and lim;_, t; = 1. If this is not the case, there will exist a subsequence t;, with

lim;_ . t;, =1# 1. But in T the following holds,

0 < fu®r < f(1+uP) e LYT)
and on JT the following also holds,
0 < |glu®n < |gl(1+wP) € L1(OT).

According to the dominated convergence theorem we have

I, (tju) — 17 /T FuPdV + %zp /8 gulds
namely, I.,(lu) = 1. This is contradiction since ! # 1 and I, (u) = 1, whereas
we know that there exists unique real number r > 0 such that I.,(ru) = 1. Since
te; < I(tju) = t§1(u) we conclude that limsup; | . fe; < fe,-

Now we can write equation for uc,, and as j — +o0 by Lebesgue’s theorem,
we find that for all ¢ € HY ,(T) the following holds

/ (\Vuco\q—Qvucovw+augo—1¢)dv+/ bultpdS
T

oT

= A, ( / Ful~tydv + / gugjlwds)
T oT

which implies that (A, uc,) is a week solution of the problem (L.I]).

Step 6. u., > 0 everywhere. We proved in step 5 that u,, > 0. By the maximum
principle [40], the function u., is identically equal to 0 or u., > 0 everywhere in
T, and finally in T: since every point P, where u,, attains it’s minimum in 7T,
belongs to 07", assume that u., is regular and that there exists Py € 0T such that
Ueo (Po) = 0. By Hopf’s lemma [40], we have that the normal derivative has strict
sign, (8u00 /81/) (Po) < 0, but the boundary condition imposes

Oue,
v
a contradiction which proves that u.,(P) > 0 in T.

For the solution u., to be strictly positive it suffices u., # 0, which implies that
| teollgr = limj oo || ue,|lqr > 0. By [I8, theorem 3.1] and theorem of this
paper, we conclude that for any K > K/\/T/Q and for any K > f(/L(q_l)/q there
exists a constant C(K, K) such that for all ¢ € H{ 4(T) the following inequalities
hold

‘VUCO‘L]72 (PO) = (_b“ggl + ACOQUI;TI)(PO) = 07

1152 < KAVYIG 7 + ClIG 7, (3.18)
16115, 00 < KUIVENGr + Clvlgr (3.19)
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By (3.15) we have
[Vuellgr < (1 +e)(uc) + A(e)|ucllg r (3.20)
where 1 +e=1/(1—-¢"), A(e) = A(e") /(1 = €).
Let € > 0 and D(g,p) be a constant such that for any x,y > 0 and p € [0, p] the
following holds

(z +y)P/1 < (14 ¢e)xP/9 + Dyr/ (3.21)
By (3.18]) because of (3.20), (3.21) and since I(u.) = p. for a < p, 8 < p we can

write
(K9 V|l 7 + Clluel? 7)*/

<
<L+ 0)YPKIpt + (AKT+ C)|luc||f 7]/ (3.22)
< (148)7K*(u)*/9 + D(AKT + C)*/9|uc|§ ¢
Similarly by (3.19) because of (3.20)), (3.21) we can write,

luelly o7 < (1+)KP ()4 + D(AK! + C)*/ucl|] 7 (3.23)
So by (3.22), (3.23) and Holder inequality we have

1=TI.(u.) = / fuldV + 9/ guflds
T B Jor

< (sup NIVl P fuclp 7

el

+ 2 (sup ) [Vol(AT)] '~ /P fu, ||
ﬂ oT ’

< (L+e)(sup DIVl =PI (uf )/ 9]

(3.24)

(1 e[ (sup g) Vol ()]~ /PR o)V
+ Cyllucl§ 7 + Colluc]l? 7
where the constants

C1 = D(AK? + C)*/4(sup f)[Vol(T)]'~ /),
T
Co = (a/B)D(AK? + C)*/4(sup g) * [Vol(9T)]* ~(#/P)
oT

are bounded by a constant é(5,]€,’€) > 0 independent of a and (3. By |D for
¢ = ¢j, since limj o fic; < fheg for j — +o00, we obtain

p ~ ~ ~
1< (1) [(sup K ()" + = (sup g) P ()]

+ Ol llf 7 + llcollf )

because the sequence (u.;) — uc, strongly into L9(T). Thus if the condition
of the theorem is satisfied and if we choose ¢ > 0 small enough and K, K close
enough to K/+/L/2, K/L@=1/49  respectively, we obtain |ue, s > 0 and hence
we proved the first part of the theorem.

2. If f becomes 0, f > 0, we impose the condition g > 0, namely v = infgr g > 0,
the proof follows along similar lines as in case 1. Thus we have to find two positive
constants Ay, Ao > 0 such that if u € U.cp X, the following will hold,

I(u) > Ay || Vul|? — Ay
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Since g > 0 we have sup,e 5, [[ullgor = D < +oo, because for such a u the
following holds

1= 1I.(u) > /BT gu’dS > VHU”gﬁT > V[VOZ(aT)]lf(ﬁ/q)||U||qﬁ7aT

Let x be the best constant of the inequality (2.6)), namely of
1Pl < AlVYlgr + BlYllgor v € Hi ¢

If ak < 1 where @ = (—infa)™ we choose A close to k such that Ay =1 — Aa >0
and then we have

I(u)Z/ (|Vu\q—éuq)dV—|—/ buldsS
T d

T
> [Vullg = allullgr — lIblloollullg o7

> ||Vull§ — aA|Vull§ — aBllullg o — [bllsc [ulg o7
= (1= ad)||Vull§ — (@B + [[bloo)llullg o7
> Aq||Vullf — Az
where Ay =1 —aA, As = (@B + ||b||co)D? and the theorem is proved. O
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