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DIFFICULTIES IN OBTAINING FINITE TIME BLOWUP FOR

FOURTH-ORDER SEMILINEAR SCHRÖDINGER EQUATIONS

IN THE VARIATIONAL METHOD FRAME

RUNZHANG XU, QIANG LIN, SHAOHUA CHEN, GUOJUN WEN, WEI LIAN

Abstract. This article concerns the Cauchy problem for fourth-order semi-

linear Schrödinger equations. By constructing a variational problem and some

invariant manifolds, we prove the existence of a global solution. Then we an-
alyze the difficulties in proving the finite time blowup of the solution for the

corresponding problem in the frame of the variational method. Understanding
the finite time blowup of solutions, without radial initial data, still remains an

open problem.

1. Introduction

In this article, we consider the Cauchy problem of the semilinear fourth-order
Schrödinger equation

iut + ∆u−∆2u = −|u|pu, (x, t) ∈ RN × [0, T ),

u(0, x) = u0(x),
(1.1)

where i =
√
−1, ∆2 = ∆∆ is the biharmonic operator, ∆ =

∑N
i=1

∂2

∂x2
i

is the Laplace

operator in RN ; u(x, t) : RN × [0, T ) → C denotes the complex valued function,
T is the maximum existence time; N is the space dimension and p satisfies the
embedding condition

0 < p <

{
+∞, 2 ≤ N ≤ 4,

8
N−4 , N > 4.

(1.2)

There has been a lot of interest in fourth-order semilinear Schrödinger equation,
because of their strong physical background. Karpmam [12] investigated the fourth-
order Schrödinger equation

iut +
1

2
∆u+

1

2
γ∆2u+ |u|2pu = 0, (1.3)

where γ ∈ R, p ≥ 1, and the space dimension is no more than three. Equation
(1.3) describes a stable soliton which is a wave pulse or wave beam, specially, there
are solitons in magnetic materials for p = 1 in 3-D space. Karpmam and Shagalov
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[13] presented a numerical study on the axially symmetric fourth-order Schrödinger
equation

i
∂u

∂ξ
+

1

2
S∆⊥u+ λ∆2

⊥u+ µ|u|2u = 0, (1.4)

where S > 0, µ > 0, ∆⊥ = ∂2/∂ρ2 + (1/ρ)∂/∂ρ, and ξ, ρ are properly normalized
cylindrical variables. For λ < 0, Equation (1.4) plays a crucial role in the self-
focusing, here the fourth derivative term in (1.4) may give rise to an oscillatory
approach to the asymptotically homogeneous wave beam. Fibich et al. [9] ana-
lyzed the self-focusing and singularity formation in the mixed-dispersion nonlinear
Schrödinger equation

iut + ∆u+ ε∆2u+ |u|2pu = 0, (x, t) ∈ RN × [0, T ), (1.5)

where ε = ±1, p ≥ 1, which occurs in propagation models for fiber arrays. The au-
thors showed that the generic propagation dynamics for ε < 0 is focusing-defocusing
oscillations. Davydova et al. [7] considered the Schrödinger equation in dimension-
less variables

iut +D∆u+ P∆2u+B|u|2u+K|u|4u = 0, (1.6)

where D,P,B,K ∈ R and BK < 0. This equation was used for describing the
dynamics of slowly varying wave packet envelope amplitude.

Given its mathematical interests, a lot of attention is paid to the existence and
nonexistence of global solutions to the fourth-order semilinear Schrödinger equation.
Pausader [14] studied the equation

iut + ∆2u+ β∆u+ λ|u|p−1u = 0, (x, t) ∈ RN × [0, T ), (1.7)

where λ, β ∈ R, p ∈ (1, 2#−1], and 2# = 2N
N−4 is the energy critical exponent for the

embedding from H2 into Lebesgue’s spaces. Using the Strichartz-type estimates
and Gagliardo-Nirenberg’s inequalities, he proved the local well-posedness, and
investigated global well-posedness and scattering with radially symmetrical initial
data.

Fibich et al. [9] proved the existence of a global solution to the Cauchy problem

iut + ε∆2u+ |u|2pu = 0, (x, t) ∈ RN × [0, T ),

u(0, x) = u0(x),
(1.8)

under each of the following three sets of conditions: (i) ε > 0, (ii) ε < 0 and pN < 4,
(iii) ε < 0, pN = 4 and ||u0||22 < ‖RB‖22, where RB is the ground-state solution

of −∆2RB − RB + R
8
N +1

B = 0. Furthermore, the authors gave the global well-
posedness of problem (1.8) on a bounded domain Ω ⊂ RN with Dirichlet boundary
condition when (i)–(iii) are satisfied. Based on the numerical simulations instead
of rigorous mathematical proof, the blowup solution was showed. And they figured
out sufficient conditions for existence of global solution for (1.8) and for (1.5).

Guo and Cui [10] studied the Cauchy problem of the equation

iut + µ∆2u+ λ∆u+ f(|u|2)u = 0, (x, t) ∈ RN × [0, T ),

u(0, x) = u0(x),
(1.9)

where λ ∈ R, µ 6= 0, and f is a given real-valued nonlinear function. Let N = 1, 2, 3,
by the standard contraction mapping argument, a local solution for u0 ∈ Hk and
k > N

2 was obtained. Then the authors obtained a global solution of (1.9) with

νu2p instead of f(|u|2), for each of the following three sets of conditions: (i) µν > 0;
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(ii) µν < 0 and 0 < pN < 4; (iii) µν < 0, pN ≥ 4 and initial data ‖u0‖22 ≤ c∗,
where 0 < c∗ ≤ 1.

Later, Guo [11] consider the Cauchy problem (1.9) with νu2p instead of f(|u|2) in
the low regularity Sobolev spaceHs(RN )(s < 2). Assuming that 4 < (p−1)N/2 < p
and

s > 1 +

p−1
2 N − 9 +

√
(2p+ 5− p−1

2 N)2 + 16

2(p− 1)
,

by the I-method and ‖Iu0‖2(p+1)

L2(p+1) ≤ CN2(2−s)‖u0‖2(p+1)
Hs , where C is a constant,

the global well-posedness of solution was established when µ > 0, λ < 0, ν > 0 or
µ < 0, λ > 0, ν < 0.

There is literature devoted to blowup solutions. Consider the Cauchy problem
of the fourth-order Schrödinger equation

iut −∆2u = −|u|2pu, (x, t) ∈ ×RN × [0, T ),

u(x, 0) = u0(x).
(1.10)

In the mass-critical case Np = 4, using an adaptive grid technique, Baruch et al.
[1] proved the peak-type singular solution by numerical simulation when the space
dimension is no more than three. Later, for the mass-supercritical case Np > 4,
Baruch et al. [3] considered peak-type singular solution of (1.10) through asymp-
totic analysis and numerical simulations. Ring-type singular solution of (1.10) was
studied numerically in [2]. Most recently, Dinh [8] proved the finite time blowup
of solution with radial data u0 ∈ Hγc(RN ) ∩ H2(RN ) for negative initial energy,
i.e., E(u0) < 0 and N ≥ 5, 4/N < p < min{2, 4/(N − 4)}. Moreover, the addi-
tional condition supt∈[0,T ) ‖u(t)‖γcH < ∞ is also needed, where the critical Sobolev

exponent γc := N
2 −

2
p .

Boulenger and Lenzmann [4] studied the equation

iut −∆2u+ µ∆u = −|u|2pu, (x, t) ∈ RN × [0, T ), (1.11)

where 0 < p < ∞ for 2 ≤ N ≤ 4 and 0 < p < 4
N−4 for N ≥ 5. When µ > 0,

in the mass-supercritical case 4
N < p < 4

N−4 (N ≥ 5) for negative initial energy

(E(u0) < 0), they proved the blowup of solutions with radial initial data in H2(RN ),
which was also established for the mass-critical case p = 4

N (N ≥ 2) and the energy-

critical case p = 4
N−4 (N ≥ 5). Furthermore, for the mass-supercritical case and

the energy-critical case, it was proved that: (i) when µ 6= 0, finite time blowup
of solution was obtained for negative initial energy (E(u0) < 0); (ii) when µ = 0
(although this is not the case considered in the present paper), the finite time
blowup of solution with radial initial data u0 (not necessarily radial in the mass-
supercritical case) can be obtained for the positive initial energy.

Cho et al. [6] studied the Cauchy problem

iut + ∆u− µ∆2u = −|x|−2|u| 4N u, (x, t) ∈ RN × [0, T ),

u(x, 0) = ψ(x),
(1.12)

where µ > 0 and N ≥ 3, −|x|−2|u| 4N works as an attractive self-reinforcing poten-

tial, −|x|−2|u| 4N u is a Hartree type nonlinearity, ψ(x) is a sufficiently smooth and
decreasing function. They investigated existence and finite time blowup of local
solution to (1.12) for negative initial energy (E(u0) < 0).
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In summary for the Cauchy problem (1.10) of the fourth-order Schrödinger equa-
tion with term −∆2u, when u0 is radially symmetric and E(u0) < 0: for the mass-
critical case, the solution of (1.10) either blows up in finite time, or blows up in
infinite time [4]; for the mass-supercritical and energy-critical cases, the solution
of (1.10) blows up in finite time [4]; because of the lack of conservation of mass,
the solution of (1.10) blows up in finite time for 4/N < p < min{2, 4/(N − 4)}
[8]. When u0 is radially symmetric and E(u0) > 0, the finite time blowup solution
of (1.10) was proved in the energy-critical case and the mass-supercritical case (u0
is not necessarily radial) in [4]. For the Cauchy problem (1.1) of the fourth-order
Schrödinger equation with radial initial data, which contains both −∆2u and ∆u,
E(u0) < 0 is currently a sufficient condition for the finite time blowup of solution in
mass-critical, mass-supercritical and energy-critical cases [4]. The above discussions
indicate that there is no blowup result for problem (1.1) when the initial energy is
non-negative, i.e., E(u0) ≥ 0. Hence we have no sharp condition for problem (1.1)
in positive initial energy case, which even can be derived for the second-order non-
linear Schrödinger equation [22]. As the sharp condition is not only the sufficient
condition of blowup, but also its necessary condition to some extent, and links the
initial conditions of blowup and global existence, we desire to obtain it for problem
(1.1), similar to the case of second-order nonlinear Schrödinger equation as follows:
(i) If u0 ∈ B := {u ∈ H1(RN ) : I(u) < 0, E(u) < d}, where d > 0, then the
solution u(x, t) blows up in finite time; (ii) If u0 ∈ G := {u ∈ H1(RN ) : I(u) > 0,
E(u) < d}, then the solution u(x, t) exists globally [22]. And the sharp conditions
were also derived for the second-order Schrödinger equation with harmonic poten-
tial (cf. [16, 20, 21]). It is well known that all the sharp conditions on Schrödinger
equations for positive initial energy were proved by the so-called potential well
method or the mountain pass theory [16, 20, 21, 22]. It is natural to ask if we can
applied the potential well method to problem (1.1) to derive the sharp condition.
This paper deals with this problem by considering two points: existence of a global
solution and finite time blowup of local solutions. First we construct the structure
of the potential well method, and then prove the invariance of manifolds. By these
tools, we shall prove the global existence first. But we find that it is too hard to
prove the finite time blowup because of the failure of the standard route for the
second-order Schrödinger equation. However, we do not like to just convince that
we have given up to prove the blowup part of the sharp condition. Hence in this
paper we like to show the main difficulties of proving the blowup part of the sharp
condition by comparing to the case of second-order Schrödinger equation and the
computation of the second-order derivative of J(t) =

∫
|x|2|u|2dx. It should be men-

tioned that, we denote by J ′′(t) the second order derivative of J(t) =
∫
|x|2|u|2dx

for the fourth-order semilinear Schrödinger equation and by J′′(t) the second-order
derivative of J(t) =

∫
|x|2|u|2dx for the second-order semilinear Schrödinger equa-

tion, where J ′′(t) and J′′(t) are essentially different for the different composition of
equation. Generally speaking, the motivation of this paper is to prove the global
existence part of the expected sharp condition and analyze the difficulties of prov-
ing the blowup part. Next we shall explain why the computation of J ′′(t) is that
important for proving the finite time blowup of the solution to problem (1.1).

Indeed in this article we have proved the existence of a global solution to (1.1)
for I(u0) > 0 and 0 < E(u0) < d. To derive the expected sharp condition, we
need to prove the finite time blowup part of the sharp condition for I(u0) < 0
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and 0 < E(u0) < d, which seems too difficult to be obtained, and is very different
from the case of second-order semilinear Schrödinger equation. In the progress
of proving the finite time blowup as a part of the sharp condition, the inequality
‖u‖2 ≤ C(N)‖∇u‖ · ‖xu‖ plays a very important role [17]. Because of the mass
conservation (we shall prove this in Lemma 3.2), we can only expect that the finite
time blowup happens to the term ‖∇u‖, thus we need show that the term ‖xu‖
must hit the zero line as time t approaches to a finite time T <∞. To prove this,
a convenient way is to verify that J(t) =

∫
|x|2|u|2dx is convex, i.e., J ′′(t) < 0 for

J(u0) > 0 and 0 < E(u0) < d as [16, 20, 21, 22]. For the Cauchy problem (2.1) of
the second-order semilinear Schrödinger equation for 0 < E(u0) < d, we have

I(u) =

∫
RN

(
|u|2 + |∇u|2 − Np

2(p+ 2)
|u|p+2

)
dx

and

J′′(t) = 8

∫
RN

(
|∇u|2 − Np

2(p+ 2)
|u|p+2

)
dx.

Obviously, J′′(t) has a very similar structure with the Nehari functional I(u), hence
I(u) < 0 can easily yield J′′(t) < 0 to prove the blowup of solution. But for
the Cauchy problem (1.1) of the fourth-order semilinear Schrödinger equation, we
do not have such luck. We shall derive in the main part of this paper that the
corresponding J ′′(t) for the fourth-order semilinear Schrödinger equation is

J ′′(t) =8
(

4

∫
RN

|∇(∆u)|2dx+ 4

∫
RN

|∆u|2dx+

∫
RN

|∇u|2dx
)

+ 4
(
− Np

p+ 2

∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx
)

by comparing it with

I(u) =

∫
RN

(
|u|2 + |∇u|2 + |∆u|2 − Np

2(p+ 2)
|u|p+2

)
dx.

As the structure of this J ′′(t) is complex and very different from that of I(u), up
to now, we do not know how to derive J ′′(t) < 0 from I(u) < 0, so we have to leave
the finite time blowup part of the possible sharp condition open. In this paper,
we first prove the global existence part of the sharp condition for problem (1.1)
with 0 < E(u0) < d. Then by a rather long but totally explicit computation for
J ′′(t), we analyze the difficulties of proving the blowup part of the sharp condition
for problem (1.1) with 0 < E(u0) < d. As Cazenave [5] (Chapter 6.5) indicated,
the calculation based on the variance of J(t) =

∫
|x|2|u|2dx for the second-order

semilinear Schrödinger equation is technically complicated, to calculate J ′′(t) for
the fourth-order semilinear Schrödinger equation is a much more difficult work.
Unfortunately, there has been a work [15, Theorem 3.3] incorrectly using the J′′(t)
for the second-order semilinear Schrödinger equation as the J ′′(t) for the fourth-
order semilinear Schrödinger equation. Therefore, the calculation of J ′′(t) will be
a tough work.

The rest of this paper is organized as follows. In Section 2, the established
results for the second-order semilinear Schrödinger equation is revisited to compare
with the fourth order case. We also calculate J′′(t) for the second-order semilinear
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Schrödinger equation in detail to illustrate the relation between I(u) and J′′(t) and
show the detailed steps for the calculations of J ′′(t) for the fourth order case. In
Section 3, we first verify the energy and mass conservation laws for the fourth-
order semilinear Schrödinger equation through accurate calculations. Meanwhile,
the global existence of solution for the fourth-order semilinear Schrödinger equation
is proved in the case of 0 < E(u0) < d and I(u0) > 0. Then the attentions quickly
move to the analysis of the failure of proving the finite time blowup of the solution
for the fourth order case in the frame of variational method by calculating J ′′(t)
and corresponding analysis.

2. Nonlinear second-order Schrödinger equation

In this section, we consider the Cauchy problem

iut + ∆u = −|u|pu, (x, t) ∈ RN × [0, T ),

u(0, x) = u0(x),
(2.1)

where i =
√
−1, ∆ =

∑N
i=1

∂2

∂x2
i

is the Laplace operator in RN , u(x, t) : RN ×
[0, T )→ C denotes the complex valued function, T is the maximum existence time,
N is the space dimension and p satisfies the embedding condition

4

N
< p <

{
+∞, N = 1, 2

4
N−2 , N > 2.

Consider the Cauchy problem (2.1), we define the energy functional

E(u) =

∫
RN

(1

2
|∇u|2 − 1

p+ 2
|u|p+2

)
dx

and the auxiliary functionals

P(u) =

∫
RN

(1

2
|u|2 +

1

2
|∇u|2 − 1

p+ 2
|u|p+2

)
dx,

and

I(u) =

∫
RN

(
|u|2 + |∇u|2 − Np

2(p+ 2)
|u|p+2

)
dx.

For the above two functionals, P(u) is composed of both mass and energy, and I(u)
can be considered as Nehari functional. Further we define the Hilbert space

H = {u ∈ H1(RN ) :

∫
RN

|x|2|u|2dx <∞} ,

the Nehari manifold

M = {u ∈ H1(RN ) \ {0} : I(u) = 0} ,
and the invariant manifolds

G = {u ∈ H : P(u) < d, I(u) > 0} ∪ {0}

and

B = {u ∈ H : P(u) < d, I(u) < 0},
where

d = inf
u∈M

P(u).
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Remark 2.1. (i) For set G, we can obtain P(u) > 0 by I(u) > 0. So the set G is
equivalent to

G′ = {u ∈ H|0 < P(u) < d, I(u) > 0} ∪ {0} .
(ii). For set B, if P(u) ≤ 0, we can get E(u) < 0, which is a sufficient condition

for finite time blowup, cf. [22]. Therefore, it is only necessary here to consider the
case of E(u) > 0, i.e., we only need

B′ = {u ∈ H|0 < P(u) < d, I(u) < 0} .

The above remark is also applicable to sets G and B in Section 3.
For the Cauchy problem (2.1) of the second-order semilinear Schrödinger equa-

tion, we summarize some results established in [5, 16, 18, 19, 21, 22] as follows.

Theorem 2.2. Assume that u0 ∈ H and p satisfies the embedding condition

4

N
< p <

{
+∞, N = 1, 2

4
N−2 , N > 2.

(i) (Local existence [5, 19]) There exists T > 0 and a unique local solution
u(x, t) of problem (2.1) in C([0, Tmax];H). Moreover if

Tmax = sup{T > 0 : u = u(x, t) exists on [0, T ]} <∞

then

lim
t→Tmax

‖u‖H =∞ (blowup),

otherwise Tmax =∞ (global existence).
(ii) (Conservation laws [5, 18]) For the solution in (i),∫

RN

|u(t)|2 =

∫
RN

|u0|2dx (mass conservation),

E(u(t)) = E(u0) (energy conservation),

P(u(t)) ≡ P(u0).

(iii) d > 0, cf. [16, 21].
(iv) (Global existence [22]) If u0 ∈ G, then the solution of problem (2.1) is

global.
(v) (Blowup [22]) If u0 ∈ B, then the solution of problem (2.1) blows up in

finite time.

In fact, although [22] proved the blowup solution by a variance of the argument in
[18], there is no explicit computation of J′′(t). Now we give the specific computation
of J′′(t) for the Cauchy problem (2.1).

Theorem 2.3. Assume that u0 ∈ B, u(x, t) ∈ ([0, T );H) is the solution of (2.1).
Let J(t) =

∫
RN |x|2|u|2dx, then

J′′(t) = 8

∫
RN

(
|∇u|2 − Np

2(p+ 2)
|u|p+2

)
dx.

Proof. First

J′(t) =

∫
RN

|x|2 (uūt + ūut) dx =

∫
RN

|x|2 (ūut + ūut) dx = 2 Re

∫
RN

|x|2ūut dx.

(2.2)
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Multiplying both sides of (2.1) by i, we have

ut = i (∆u+ |u|pu) .

Substituting the above equation into (2.2) we have

J′(t) =2 Re

∫
RN

i|x|2ū (∆u+ |u|pu) dx

=− 2 Im

∫
RN

|x|2ū (∆u+ |u|pu) dx

=− 2 Im

∫
RN

|x|2
(
ū∆u+ |u|p+2

)
dx

=− 2 Im

∫
RN

|x|2ū∆udx

=2 Im

∫
RN

|x|2u∆ūdx,

further

J′′(t) =2 Im

∫
RN

|x|2 (ut∆ū+ u∆ūt) dx

=2 Im

∫
RN

(
|x|2ut∆ū+ ∆(|x|2u)ūt

)
dx

=2 Im

∫
RN

(
|x|2ut∆ū+ ūt

N∑
i=1

∂2

∂x2i
(|x|2u)

)
dx

=2 Im

∫
RN

(
|x|2ut∆ū+ ūt

N∑
i=1

∂

∂xi

(
|x|2 ∂u

∂xi
+ 2xiu

))
dx

=2 Im

∫
RN

(
|x|2ut∆ū+ ūt

(
2Nu+ 4

N∑
i=1

xi ·
∂u

∂xi
+ |x|2

N∑
i=1

∂2u

∂x2i

))
dx

=2 Im

∫
RN

(
|x|2ut∆ū+ ūt

(
2Nu+ 4x · ∇u+ |x|2∆u

))
dx

=2 Im

∫
RN

(
|x|2ut∆ū+ |x|2ut∆ū+ ūt (2Nu+ 4x · ∇u)

)
dx

=4 Im

∫
RN

(Nu+ 2x · ∇u) ūt dx.

(2.3)

According to (2.1), we obtain

ūt = −i(∆ū+ |u|pū). (2.4)
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Substituting the above equation into (2.3), we can get

J′′(t) =− 4 Im

∫
RN

i (Nu+ 2x · ∇u) (∆ū+ |u|pū) dx

=− 4 Re

∫
RN

(Nu+ 2x · ∇u)(∆ū+ |u|pū) dx

=− 4
(

Re

∫
RN

(Nu+ 2x · ∇u) ∆ūdx+ Re

∫
RN

(Nu+ 2x · ∇u) |u|pūdx
)

=− 4(I1 + I2),

(2.5)
where

I1 := Re

∫
RN

(Nu+ 2x · ∇u) ∆ūdx and I2 := Re

∫
RN

(Nu+ 2x · ∇u) |u|pūdx.

For I1 and I2, we have

I1 =N Re

∫
RN

u∆ūdx+ 2 Re

∫
RN

(x · ∇u)∆ūdx

=−N
∫
RN

|∇u|2dx− 2 Re

∫
RN

∇(x · ∇u)∇ūdx

=−N
∫
RN

|∇u|2dx− 2 Re

∫
RN

N∑
i=1

∂

∂xi

( N∑
j=1

xj
∂u

∂xj

) ∂ū
∂xi

dx

=−N
∫
RN

|∇u|2dx− 2 Re

∫
RN

N∑
i=1

N∑
j=1

∂

∂xi

(
xj

∂u

∂xj

)
∂ū

∂xi
dx

=−N
∫
RN

|∇u|2dx− 2 Re

∫
RN

N∑
i=1

∂u

∂xi

∂ū

∂xi
dx

− 2 Re

∫
RN

N∑
i=1

N∑
j=1

xj
∂2u

∂xi∂xj

∂ū

∂xi
dx

=−N
∫
RN

|∇u|2dx− 2

∫
RN

|∇u|2dx

− Re

∫
RN

N∑
i=1

N∑
j=1

xj

( ∂2u

∂xi∂xj

∂ū

∂xi
+

∂2ū

∂xi∂xj

∂u

∂xi

)
dx

=−N
∫
RN

|∇u|2dx− 2

∫
RN

|∇u|2dx− Re

∫
RN

N∑
i=1

N∑
j=1

xj
∂

∂xj

( ∂u
∂xi

∂ū

∂xi

)
dx

=−N
∫
RN

|∇u|2dx− 2

∫
RN

|∇u|2dx− Re

∫
RN

x · ∇|∇u|2dx

=−N
∫
RN

|∇u|2dx− 2

∫
RN

|∇u|2dx+N

∫
RN

|∇u|2dx

=− 2

∫
RN

|∇u|2dx

(2.6)
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and

I2 =N

∫
RN

|u|p+2dx+ Re

∫
RN

x · (|u|p (ū∇u+ u∇ū)) dx

=N

∫
RN

|u|p+2dx+ Re

∫
RN

x · (|u|p∇ (uū)) dx

=N

∫
RN

|u|p+2dx+ Re

∫
RN

x ·
(

(|u|2)p/2∇|u|2
)
dx

=N

∫
RN

|u|p+2dx+
2

p+ 2
Re

∫
RN

x · ∇(|u|2)
p+2
2 dx

=N

∫
RN

|u|p+2dx− 2N

p+ 2
Re

∫
RN

|u|p+2dx

=
Np

p+ 2
Re

∫
RN

|u|p+2dx.

Substituting the above equation and (2.6) into (2.5), finally we derive

J′′(t) =− 4
(
− 2

∫
RN

|∇u|2dx+
Np

p+ 2
Re

∫
RN

|u|p+2dx
)

=8

∫
RN

(
|∇u|2 − Np

2(p+ 2)
|u|p+2

)
dx.

Then the proof is complete. �

Remark 2.4. From the above structure of J′′(t) and I(u), we easily judge that
J′′(t) < 0 in the case of I(u) < 0, further the blowup of solution for the second-order
semilinear Schrödinger equation is derived.

3. Nonlinear fourth-order Schrödinger equation

In this section, we consider the nonlinear fourth-order Schrödinger equation for
the Cauchy problem (1.1). First we define the space

H2 =
{
u ∈ H2(RN ) :

∫
RN

|x|2|u|2dx <∞
}
, (3.1)

the energy functional

E(u(t)) =

∫
RN

(1

2
|∇u|2 +

1

2
|∆u|2 − 1

p+ 2
|u|p+2

)
dx (3.2)

and the auxiliary functionals

P (u) =

∫
RN

(1

2
|u|2 +

1

2
|∇u|2 +

1

2
|∆u|2 − 1

p+ 2
|u|p+2

)
dx,

and

I(u) =

∫
RN

(
|u|2 + |∇u|2 + |∆u|2 − Np

2(p+ 2)
|u|p+2

)
dx,

where P (u) is composed of both mass and energy, and I(u) is considered as a Nehari
functional. The Nehari manifold is

M = {u ∈ H2 \ {0} : I(u) = 0}.
Then we introduce the stable set G and unstable set B:

G = {u ∈ H2|P (u) < d, I(u) > 0} ∪ {0}
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and

B = {u ∈ H2|P (u) < d, I(u) < 0},

where d = infu∈M P (u).
Now we state the local existence theory of solution for the Cauchy problem (1.1).

Lemma 3.1 (Local existence [10]). Let u0 ∈ H2, there exists a value T > 0 and a
unique local solution u(x, t) of the problem (1.1) in C([0, T ];H2). Moreover if

Tmax = sup{T > 0 : u = u(x , t) exists on [0 ,T ]} <∞

then

lim
t→Tmax

‖u‖H2 =∞ (blowup),

otherwise T =∞ (global existence).

Next we consider the conservation laws for the fourth order case.

Lemma 3.2 (Conservation laws). Let u0 ∈ H2 and u ∈ ([0, T );H2) be the unique
solution of problem (1.1), then∫

RN

|u(t)|2 =

∫
RN

|u0|2dx (mass conservation), (3.3)

E(u(t)) = E(u0) (energy conservation), (3.4)

P (u(t)) ≡ P (u0). (3.5)

Proof. From the definition of the energy functional E(u(t)) and the auxiliary func-
tional P (u(t)), we have

d

dt

(∫
RN

|u|2dx
)

=
d

dt

(∫
RN

uūdx
)

=

∫
RN

(uūt + utū) dx

=

∫
RN

(utū+ utū) dx

=2Re

∫
RN

ūut dx .

(3.6)

Multiplying both sides of (1.1) by ū, we derive

ūut = i(ū∆u− ū∆2u+ |u|p+2). (3.7)

Substituting (3.7) into (3.6) we have

d

dt

(∫
RN

|u|2dx
)

=2 Re

∫
RN

i
(
ū∆u− ū∆2u+ |u|p+2

)
dx

=− 2 Im

∫
RN

(
ū∆u− ū∆2u+ |u|p+2

)
dx

=2 Im

∫
RN

(
|∇u|2 + |∆u|2 − |u|p+2

)
dx = 0,

so (3.3) holds.
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Then we prove the energy conservation as follows

d

dt
(E(u(t))) =

d

dt

(∫
RN

(1

2
|∇u|2 +

1

2
|∆u|2 − 1

p+ 2
|u|p+2

)
dx
)

=
d

dt

(∫
RN

(1

2
∇u · ∇ū+

1

2
∆u∆ū− 1

p+ 2
(uū)

p+2
2

)
dx
)

=

∫
RN

(1

2
(∇ut · ∇ū+∇u · ∇ūt) +

1

2
(∆ut∆ū+ ∆u∆ūt)

− 1

2
(uū)p/2 (utū+ uūt)

)
dx

=

∫
RN

(1

2

(
∇ut · ∇ū+∇ū · ∇ut

)
+

1

2

(
∆ut∆ū+ ∆ū∆ut

)
− 1

2
(uū)p/2 (utū+ uūt)

)
dx

= Re

∫
RN

(
(∇ut · ∇ū) + (∆ut∆ū)− (uū)p/2(utū)

)
dx

=− Re

∫
RN

(
ut∆ū− ut∆2ū+ |u|pūut

)
dx

=− Re

∫
RN

ut
(
∆ū−∆2ū+ |u|pū

)
dx.

(3.8)

Multiplying both sides of (1.1) by ūt, we obtain

i|ut|2 = −ūt
(
∆u−∆2u+ |u|pu

)
.

Then substituting the above equation into (3.8) gives

d

dt
(E(u(t))) = Re

∫
RN

i |ut |2dx = −Im

∫
RN

|ut |2dx = 0,

thus (3.4) holds. Combining (3.3) and (3.4), we obtain (3.5). �

As shown in [4], the negative initial energy (E(u0) < 0) is currently the sufficient
condition for blowup of the Cauchy problem (1.1), i.e., in this case, it is impossible
to divide the initial condition to obtain the sharp condition of global existence and
blowup in the frame of the variational method. Therefore, we only consider the case
of 0 < E(u0) < d and try to build a similar result to the second-order semilinear
Schrödinger equation. First we need to verify d > 0.

Lemma 3.3. The depth of the potential well is positive, i.e., d > 0.

Proof. When u ∈M , according to Sobolev embedding inequalities, we have∫
RN

(
|∇u|2 + |u|2

)
dx ≤

∫
RN

(
|∇u|2 + |u|2 + |∆u|2

)
dx

=
Np

2(p+ 2)

∫
RN

|u|p+2dx

≤ Np

2(p+ 2)

(∫
RN

c
(
|∇u|2 + |u|2

)
dx
) p+2

2

,
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where c denotes positive Sobolev embedding constant. Let C be a positive constant

that may vary from line to line. If C =
( 2(p+2)

Np

)2/p
c−

p+2
p , then

0 < C ≤
∫
RN

(
|∇u|2 + |u|2

)
dx. (3.9)

From the definition of P (u) and (3.9), we have

P (u) =

∫
RN

(1

2
|u|2 +

1

2
|∇u|2 +

1

2
|∆u|2 − 1

p+ 2
|u|p+2

)
dx

=
(1

2
− 1

p+ 2
· 2(p+ 2)

Np

)∫
RN

(
|u|2 + |∇u|2 + |∆u|2

)
dx

+
1

p+ 2
· 2(p+ 2)

Np

∫
RN

(
|u|2 + |∇u|2 + |∆u|2 − Np

2(p+ 2)
|u|p+2

)
dx

=
Np− 2

2Np

∫
RN

(
|u|2 + |∇u|2 + |∆u|2

)
dx

≥Np− 2

2Np

∫
RN

(
|∇u|2 + |u|2

)
dx

≥C > 0.

Then finally we obtain d ≥ C > 0. �

Next we construct the invariant sets G and B under the flow generated by the
Cauchy problem of the fourth-order semilinear Schrödinger equation. With these
invariant sets, we desire to establish a criterion for global existence and blowup of
solution to the Cauchy problem (1.1) similar to the case of second-order semilinear
Schrödinger equation. Here the invariant set G is used to describe the initial data
leading to the global solution, and the invariant set B is expected to be the manifold
for the initial data yielding the blowup solution although in this paper we fail to
prove it, and our aim is to explain the reason of this failure in detail. Hence the
introduction of B and its invariance are important in this sense.

Theorem 3.4. The sets G and B are invariant manifolds.

Proof. We only prove that G is invariant; the proof for B is similar. Suppose
u0 ∈ G, we claim that u(t) ∈ G for every t ∈ (0, T ).

(i) When u0 = 0, according to the mass conservation law (3.3), we know that
u(x, t) = 0 for any t ∈ [0, T ). Namely, u(t) ≡ 0 is the trivial solution of the problem
(1.1), that is u(t) ∈ G for t ∈ (0, T ).

(ii) When u0 6= 0, according to (3.5) we have

P (u(t)) ≡ P (u0) < d for t ∈ (0, T ). (3.10)

Arguing by contradiction, we assume that there exists a first time t1 ∈ (0, T ), such
that I(u(t1)) = 0, and I(u(t)) > 0 for any t ∈ (0, t1). Obviously, u(t1) 6= 0. In
fact, if u(t1) = 0, according to mass conservation law (3.3), we have u0 = 0, which
contradicts to u0 6= 0. Hence from the definition of d, we have

P (u(t1)) ≥ d,
which contradicts (3.10), and means u(x, t) ∈ G for any t ∈ (0, T ). �

Theorem 3.5. If u0 ∈ G, the solution u(x, t) of the initial value problem (1.1) is
global, i.e., the maximum existence time T =∞.
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Proof. When u0 ∈ G, according to Theorem 3.4, for any t ∈ [0, T ), we have u(x, t) ∈
G, hence

d > P (u) =

∫
RN

(1

2
|u|2 +

1

2
|∇u|2 +

1

2
|∆u|2 − 1

p+ 2
|u|p+2

)
dx

=
(1

2
− 1

p+ 2
· 2(p+ 2)

Np

)∫
RN

(
|u|2 + |∇u|2 + |∆u|2

)
dx

+
1

p+ 2
· 2(p+ 2)

Np

∫
RN

(
|u|2 + |∇u|2 + |∆u|2 − Np

2(p+ 2)
|u|p+2

)
dx

≥Np− 2

2Np

∫
RN

(
|u|2 + |∇u|2 + |∆u|2

)
dx,

i.e., ∫
RN

(
|∇u|2 + |u|2 + |∆u|2

)
dx ≤ 2dNp

Np− 2
.

Then according to Lemma 3.1, the existence time of a local solution of the initial
value problem (1.1) can be extended to infinity, thus the solution of the problem
(1.1) is global. �

Indeed here we are supposed to give the finite time blowup theorem of problem
(1.1) for 0 < E(u0) < d, but we have to concede that it is an impossible task in this
paper. However, we do not want to stop in this way, instead, we like to analyze
the reason. As the fourth-order semilinear Schrödinger equation has a different
structure from that the second-order semilinear Schrödinger equation has, we can
not directly employ the result of J′′(t) for the second-order semilinear Schrödinger
equation to the fourth order nonlinear Schrödinger equation. Next we shall show
that the J ′′(t) for the fourth-order nonlinear Schrödinger equation is very different
from the J′′(t) for the second-order semilinear Schrödinger equation, by giving
the detailed computation of J ′′(t). Remark 3.7 points out the main difficulties of
proving the finite time blowup of fourth-order semilinear Schrödinger equation in
frame of potential well theory, also the wrong proof in [15].

First we present the computation of J ′′(t) related to fourth-order Schrödinger
equation.

Theorem 3.6. Assume that u0 ∈ B and u ∈ C2([0, T );H2) is the solution of
Problem (1.1). Let J(t) =

∫
RN |x|2|u|2dx, then

J ′′(t) =8
(

4

∫
RN

|∇(∆u)|2dx+ 4

∫
RN

|∆u|2dx+

∫
RN

|∇u|2dx
)

+ 4
(
− Np

p+ 2

∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx
)
.

Proof. First

J ′(t) =

∫
RN

|x|2 (uūt + ūut) dx

=

∫
RN

|x|2 (ūut + ūut) dx

= 2 Re

∫
RN

|x|2ūut dx.

(3.11)
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Multiplying both sides of (1.1) by i, we have

ut = i
(
∆u−∆2u+ |u|pu

)
. (3.12)

Substituting the above equation into (3.11), we obtain

J ′(t) =2 Re

∫
RN

i|x|2ū
(
∆u−∆2u+ |u|pu

)
dx

=− 2 Im

∫
RN

|x|2ū
(
∆u−∆2u+ |u|pu

)
dx

=− 2 Im

∫
RN

|x|2
(
ū∆u− ū∆2u+ |u|p+2

)
dx

=− 2 Im

∫
RN

|x|2
(
ū∆u− ū∆2u

)
dx.

Differentiating the above equation with respect to t, we obtain

J ′′(t) =− 2 Im

∫
RN

|x|2
(
ūt∆u+ ū∆ut − ūt∆2u− ū∆2ut

)
dx

=− 2 Im

∫
RN

|x|2 (ūt∆u+ ū∆ut) dx

+ 2 Im

∫
RN

|x|2
(
ūt∆

2u+ ū∆2ut
)
dx

=− 2K1 + 2K2,

(3.13)

where

K1 := Im

∫
RN

|x|2 (ūt∆u+ ū∆ut) dx, K2 := Im

∫
RN

|x|2
(
ūt∆

2u+ ū∆2ut
)
dx.

Further we have

K1 = Im

∫
RN

(
|x|2ūt∆u+ ∆

(
|x|2ū

)
ut
)
dx

= Im

∫
RN

(
|x|2ūt∆u+ ut

N∑
i=1

∂2

∂x2i

(
|x|2ū

))
dx

= Im

∫
RN

(
|x|2ūt∆u+ ut

N∑
i=1

∂

∂xi

(
|x|2 ∂ū

∂xi
+ 2xiū

))
dx

= Im

∫
RN

(
|x|2ūt∆u+ ut

(
2Nū+ 4

N∑
i=1

xi ·
∂ū

∂xi
+ |x|2

N∑
i=1

∂2ū

∂x2i

))
dx

= Im

∫
RN

(
|x|2ūt∆u+ ut

(
2Nū+ 4x · ∇ū+ |x|2∆ū

))
dx

= Im

∫
RN

(
|x|2ūt∆u+ |x|2ūt∆u+ ut(2Nū+ 4x · ∇ū)

)
dx

=2 Im

∫
RN

ut (Nū+ 2x · ∇ū) dx

(3.14)

and

K2 = Im

∫
RN

(
|x|2ūt∆2u+ ∆

(
|x|2ū

)
∆ut

)
dx
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= Im

∫
RN

(
|x|2ūt∆2u+ ∆ut

N∑
i=1

∂2

∂x2i

(
|x|2ū

) )
dx

= Im

∫
RN

(
|x|2ūt∆2u+ ∆ut

N∑
i=1

∂

∂xi

(
2xiū+ |x|2 ∂ū

∂xi

))
dx

= Im

∫
RN

(
|x|2ūt∆2u+ ∆ut

(
2Nū+ 4

N∑
i=1

xi
∂ū

∂xi
+ |x|2

N∑
i=1

∂2ū

∂x2i

))
dx

= Im

∫
RN

(
|x|2ūt∆2u+ ∆ut

(
2Nū+ 4x · ∇ū+ |x|2∆ū

))
dx

= Im

∫
RN

(
|x|2ūt∆2u+ ut

(
2N∆ū+ 4∆(x · ∇ū) + ∆

(
|x|2∆ū

)))
dx

= Im

∫
RN

(
|x|2ūt∆2u+ ut

(
2N∆ū+ 4

N∑
i=1

∂2

∂x2i

( N∑
j=1

(
xj

∂ū

∂xj

))

+

N∑
i=1

∂2

∂x2i
(|x|2∆ū)

))
dx

= Im

∫
RN

(
|x|2ūt∆2u+ 2Nut∆ū

)
dx

+ 4 Im

∫
RN

ut

( N∑
i=1

N∑
j=1

∂2

∂x2i

(
xj

∂ū

∂xj

)
+

N∑
i=1

∂

∂xi

(
2xi∆ū+ |x|2 ∂∆ū

∂xi

))
dx

= Im

∫
RN

(
|x|2ūt∆2u+ 2Nut∆ū

)
dx

+ 4 Im

∫
RN

ut

N∑
i=1

N∑
j=1

∂

∂xi

( ∂ū
∂xi

+ xj
∂2ū

∂xi∂xj

)
dx

+ Im

∫
RN

ut

(
2N∆ū+ 4

N∑
i=1

xi
∂∆ū

∂xi
+ |x|2

N∑
i=1

∂2∆ū

∂x2i

)
dx

= Im

∫
RN

(
|x|2ūt∆2u+ 2Nut∆ū

)
dx

+ 4 Im

∫
RN

ut

(
2

N∑
i=1

∂2ū

∂x2i
+

N∑
i=1

N∑
j=1

(
xj

∂3ū

∂x2i ∂xj

))
dx

+ Im

∫
RN

ut

(
2N∆ū+ 4x · ∇(∆ū) + |x|2∆2ū

)
dx

= Im

∫
RN

(
|x|2ūt∆2u+ 2Nut∆ū

)
dx

+ 4 Im

∫
RN

ut

(
2∆ū+

N∑
i=1

N∑
j=1

(
xj

∂

∂xj

(∂2ū
∂x2i

)))
dx

+ Im

∫
RN

(
ut (2N∆ū+ 4x · ∇(∆ū)) + |x|2ūt∆2u

)
dx
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=4 Im

∫
RN

ut (N∆ū+ x · ∇(∆ū)) dx+ 4 Im

∫
RN

ut (2∆ū+ x · ∇(∆ū)) dx

=4 Im

∫
RN

ut (N∆ū+ 2x · ∇(∆ū) + 2∆ū) dx.

Substituting (3.14) and the above expression into (3.13), we derive

J ′′(t) =− 4 Im

∫
RN

ut (Nū+ 2x · ∇ū) dx

+ 8 Im

∫
RN

ut (N∆ū+ 2x · ∇(∆ū) + 2∆ū) dx

=4 Im

∫
RN

ut ((2N + 4)∆ū+ 4x · ∇(∆ū)−Nū− 2x · ∇ū) dx.

(3.15)

Substituting (3.12) into the above equation, we have

J ′′(t) =4 Im

∫
RN

i
(
∆u−∆2u+ |u|pu

) (
(2N + 4)∆ū+ 4x · ∇(∆ū)

−Nū− 2x · ∇ū
)
dx

=4 Re

∫
RN

(
∆u−∆2u+ |u|pu

) (
(2N + 4)∆ū+ 4x · ∇(∆ū)

−Nū− 2x · ∇ū
)
dx

=4 (I1 − I2 + I3) ,

(3.16)

where

I1 := Re

∫
RN

∆u ((2N + 4)∆ū+ 4x · ∇(∆ū)−Nū− 2x · ∇ū) dx,

I2 := Re

∫
RN

∆2u ((2N + 4)∆ū+ 4x · ∇(∆ū)−Nū− 2x · ∇ū) dx,

I3 := Re

∫
RN

|u|pu ((2N + 4)∆ū+ 4x · ∇(∆ū)−Nū− 2x · ∇ū) dx.

Further we derive

I1 =(2N + 4)

∫
RN

|∆u|2dx+ Re

∫
RN

(4x · ∇(∆ū)∆u−Nū∆u− 2x · ∇ū∆u) dx

=(2N + 4)

∫
RN

|∆u|2dx+N

∫
RN

|∇u|2dx

+ Re

∫
RN

(
4

N∑
i=1

xi

(∂∆ū

∂xi
∆u
)

+ 2∇(x · ∇ū) · ∇u
)
dx

=(2N + 4)

∫
RN

|∆u|2dx+N

∫
RN

|∇u|2dx

+ Re

∫
RN

(
2

N∑
i=1

xi

(∂∆ū

∂xi
∆u+

∂∆u

∂xi
∆ū
)

+ 2

N∑
i=1

∂

∂xi

( N∑
j=1

(
xj

∂ū

∂xj

)) ∂u
∂xi

)
dx
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=(2N + 4)

∫
RN

|∆u|2dx+N

∫
RN

|∇u|2dx

+ Re

∫
RN

(
2

N∑
i=1

xi
∂

∂xi
(∆u∆ū) + 2

N∑
i=1

N∑
j=1

∂

∂xi

(
xj

∂ū

∂xj

) ∂u
∂xi

)
dx

=(2N + 4)

∫
RN

|∆u|2dx+N

∫
RN

|∇u|2dx

+ Re

∫
RN

(
2x · ∇|∆u|2 + 2

N∑
i=1

∂ū

∂xi

∂u

∂xi
+ 2

N∑
i=1

N∑
j=1

xj
∂2ū

∂xi∂xj

∂u

∂xi

)
dx

=(2N + 4)

∫
RN

|∆u|2dx+N

∫
RN

|∇u|2dx− 2N

∫
RN

|∆u|2dx

+ 2

∫
RN

|∇u|2dx+ Re

∫
RN

( N∑
i=1

N∑
j=1

xj

( ∂2ū

∂xi∂xj

∂u

∂xi
+

∂2u

∂xi∂xj

∂ū

∂xi

))
dx

=4

∫
RN

|∆u|2dx+ (N + 2)

∫
RN

|∇u|2dx

+ Re

∫
RN

( N∑
i=1

N∑
j=1

xj
∂

∂xj

( ∂ū
∂xi

∂u

∂xi

))
dx

=4

∫
RN

|∆u|2dx+ (N + 2)

∫
RN

|∇u|2dx+ Re

∫
RN

x · ∇|∇u|2dx

=4

∫
RN

|∆u|2dx+ (N + 2)

∫
RN

|∇u|2dx−N
∫
RN

|∇u|2dx

=4

∫
RN

|∆u|2dx+ 2

∫
RN

|∇u|2dx,

I2 =− (2N + 4)

∫
RN

|∇(∆u)|2dx−N
∫
RN

|∆u|2dx

+ 4 Re

∫
RN

∆2ux · ∇(∆ū)dx− 2 Re

∫
RN

∆2ux · ∇ūdx

=− (2N + 4)

∫
RN

|∇(∆u)|2dx−N
∫
RN

|∆u|2dx

− 4 Re

∫
RN

∇(∆u) · ∇ (x · ∇(∆ū)) dx− 2 Re

∫
RN

∆u∆(x · ∇ū)dx

=− (2N + 4)

∫
RN

|∇(∆u)|2dx−N
∫
RN

|∆u|2dx

− 4 Re

∫
RN

N∑
i=1

∂∆u

∂xi

∂

∂xi

( N∑
j=1

xj
∂∆ū

∂xj

)
dx

− 2 Re

∫
RN

∆u

N∑
i=1

∂2

∂x2i

( N∑
j=1

xj
∂ū

∂xj

)
dx

=− (2N + 4)

∫
RN

|∇(∆u)|2dx−N
∫
RN

|∆u|2dx
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− 4 Re

∫
RN

N∑
i=1

N∑
j=1

∂∆u

∂xi

∂

∂xi

(
xj
∂∆ū

∂xj

)
dx

− 2 Re

∫
RN

∆u

N∑
i=1

N∑
j=1

∂2

∂x2i

(
xj

∂ū

∂xj

)
dx

=− (2N + 4)

∫
RN

|∇(∆u)|2dx−N
∫
RN

|∆u|2dx

− 4 Re

∫
RN

N∑
i=1

N∑
j=1

∂∆u

∂xi

(
∂∆ū

∂xi
+ xj

∂2∆ū

∂xi∂xj

)
dx

− 2 Re

∫
RN

∆u

N∑
i=1

N∑
j=1

∂

∂xi

(
∂xj
∂xi

∂ū

∂xj
+ xj

∂2ū

∂xi∂xj

)
dx

=− (2N + 4)

∫
RN

|∇(∆u)|2dx−N
∫
RN

|∆u|2dx

− 4

∫
RN

N∑
i=1

∂∆u

∂xi

∂∆ū

∂xi
dx− 4

∫
RN

|∆u|2dx

− 2 Re

∫
RN

N∑
i=1

N∑
j=1

xj

(
∂∆u

∂xi

∂2∆ū

∂xj∂xi
+
∂∆ū

∂xi

∂2∆u

∂xj∂xi

)
dx

− 2 Re

∫
RN

∆u

N∑
i=1

N∑
j=1

xj
∂3ū

∂2xi∂xj
dx

=− (2N + 4)

∫
RN

|∇(∆u)|2dx−N
∫
RN

|∆u|2dx

− 4

∫
RN

|∇(∆u)|2dx− 4

∫
RN

|∆u|2dx

− 2 Re

∫
RN

N∑
i=1

N∑
j=1

xj
∂

∂xj

(
∂∆u

∂xi

∂∆ū

∂xi

)
dx− 2 Re

∫
RN

∆u

N∑
j=1

xj
∂∆ū

∂xj
dx

=− (2N + 8)

∫
RN

|∇(∆u)|2dx− (N + 4)

∫
RN

|∆u|2dx

− 2 Re

∫
RN

x · ∇|∇(∆u)|2dx− Re

∫
RN

N∑
j=1

xj

(
∂∆ū

∂xj
∆u+

∂∆u

∂xj
∆ū

)
dx

=− (2N + 8)

∫
RN

|∇(∆u)|2dx− (N + 4)

∫
RN

|∆u|2dx

+ 2N

∫
RN

|∇(∆u)|2dx− Re

∫
RN

N∑
j=1

xj
∂

∂xj
(∆ū∆u)dx

=− 8

∫
RN

|∇(∆u)|2dx− (N + 4)

∫
RN

|∆u|2dx− Re

∫
RN

x · ∇|∆u|2dx

=− 8

∫
RN

|∇(∆u)|2dx− (N + 4)

∫
RN

|∆u|2dx+N

∫
RN

|∆u|2dx
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=− 8

∫
RN

|∇(∆u)|2dx− 4

∫
RN

|∆u|2dx

and

I3 =−N
∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx− 2 Re

∫
RN

|u|px · (u∇ū)dx

=−N
∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx− Re

∫
RN

|u|px · (u∇ū+ ū∇u) dx

=−N
∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx− Re

∫
RN

x ·
(

(uū)p/2∇(uū)
)
dx

=−N
∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx− 2

p+ 2
Re

∫
RN

x · ∇(uū)
p+2
2 dx

=−N
∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx+
2N

p+ 2
Re

∫
RN

|u|p+2dx

=− Np

p+ 2

∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx.

Substituting the above equalities for I1, I2 and I3 into (3.16), we have

J ′′(t) =4
(

4

∫
RN

|∆u|2dx+ 2

∫
RN

|∇u|2dx
)

+ 4
(

8

∫
RN

|∇(∆u)|2dx+ 4

∫
RN

|∆u|2dx
)

+ 4
(
− Np

p+ 2

∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx
)

=8
(

4

∫
RN

|∇(∆u)|2dx+ 4

∫
RN

|∆u|2dx+

∫
RN

|∇u|2dx
)

+ 4
(
− Np

p+ 2

∫
RN

|u|p+2dx+ (2N + 4) Re

∫
RN

|u|pu∆ūdx

+ 4 Re

∫
RN

|u|pux · ∇(∆ū)dx
)
.

(3.17)

The proof is complete. �
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Remark 3.7. Based on the explicit expression of J ′′(t), obviously, we cannot
determine the sign of J ′′(t) from I(u) < 0. On the other hand, the form of J ′′(t) is
more complicated than J′′(t) in Section 2, which leads to great difficulties in proving
the finite time blowup of solution if we adapt the arguments in [18]. Meanwhile, we
point out that the proof of [15, Theorem 3.3] does not hold because they used the
J′′(t) for the classical second-order Schrödinger equation, which is very different
from J ′′(t) for the fourth-order nonlinear Schrödinger equation. Hence the finite
time blowup of solutions to the Cauchy problem of the fourth-order semilinear
Schrödinger equation without radially initial data under 0 < E(u0) < d(d > 0) is
still an open problem.
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