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WEIGHTED FUNCTION SPACES OF FRACTIONAL
DERIVATIVES FOR VECTOR FIELDS

ANDRÁS DOMOKOS

Abstract. We introduce and study weighted function spaces for vector fields

from the point of view of the regularity theory for quasilinear subelliptic PDEs.

section

1. Results

We consider a bounded domain Ω ⊂ Rn and a system of smooth vector fields
X = (X1, . . . , Xm), m ≤ n, defined on Ω. Denote by Xf = (X1f, . . . , Xmf) the
X-gradient of a function f and use the notation |Xf |2 =

∑m
i=1(Xif)2.

In terms of the vector fields X1, . . . , Xm, in the theory of second order PDE,
usually we have one of the following two cases:

(1) Xi = ∂
∂xi

, 1 ≤ i ≤ n and we refer to it as the (classical) elliptic case.
(2) There are points in Ω where the linear subspace of the tangent space

spanned by the vector fields X1, . . . , Xm has dimension strictly less then n,
but at the same time Hörmander’s condition is satisfied, which means that
there exists a positive integer ν ≥ 2 such that the vector fields Xi and their
commutators

[Xi1 , [Xi2 , . . . , Xik
] . . . ] , 2 ≤ k ≤ ν

of length at most ν ∈ N span the tangent space at every point of Ω. We
refer to this case as the subelliptic case and the vector fields Xi are called
horizontal vector fields.

Let 2 ≤ p < ∞ and K ⊂ Ω be a compact subset of Ω. Consider the Sobolev
space

XW 1,p(Ω) =
{

f ∈ Lp(Ω) : Xif ∈ Lp(Ω) for all i ∈ {1, . . . ,m}
}

.

In the elliptic case we use the usual W 1,p(Ω) notation.
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If Z is a smooth vector field then we define its flow as the mapping F (x, s) = esZx
which solves the initial value problem

∂F

∂s
(x, s) = ZF (x, s)

F (x, 0) = x .
(1.1)

For f ∈ XW 1,p(Ω), we define the weight

w(Xf, s, x) =
(
1 + |Xf(x)|2 + |Xf(esZx)|2

)1/2

and the following first and second order differences:

∆Z,sf(x) = f(esZx)− f(x) ,

∆Z,−sf(x) = f(x)− f(e−sZx) ,

∆2
Z,sf(x) = f(esZx) + f(e−sZx)− 2f(x) .

Notice that
∆2

Z,sf(x) = ∆Z,−s∆Z,sf(x) = ∆Z,s∆Z,−sf(x) .

Let 0 < θ < 2, 0 ≤ α ≤ p− 2 and 2 ≤ q ≤ p−α. Consider sK > 0 sufficiently small
such that

esZx ∈ Ω , for all 0 < |s| < sK and x ∈ K ,

and the Jacobian of the transformation x 7→ esZx to be bounded in the following
way:

0 < aq ≤
∣∣J(

esZx
)∣∣ ≤ bq , for all 0 < |s| < sK and x ∈ K ,

where 0 < a ≤ 1 ≤ b.
Consider the following two pseudo-norms:

‖f‖θ,1
Z,α,p,q = ‖f‖LP (Ω) + sup

0<|s|<sK

( ∫
Ω

wα(Xf, s, x)
|∆Z,sf(x)|q

|s|θq
dx

)1/q

,

‖f‖θ,2
Z,α,p,q = ‖f‖LP (Ω) + sup

0<|s|<sK

( ∫
Ω

wα(Xf, s, x)
|∆2

Z,sf(x)|q

|s|θq
dx

)1/q

.

Define the following function spaces which help us to handle the fractional deriva-
tives in the Z direction:

Bθ,1
Z,α,p,q(K, Ω) =

{
f ∈ XW 1,p(Ω) : supp f ⊂ K and ‖f‖θ,1

Z,α,p,q < ∞
}

,

and

Bθ,2
Z,α,p,q(K, Ω) =

{
f ∈ XW 1,p(Ω) : supp f ⊂ K and ‖f‖θ,2

Z,α,p,q < ∞
}

.

If α = 0 then these are linear normed spaces. Also, in the elliptic case, for α = 0,
q = p we get similar spaces to the fractional order Besov spaces [5, 6]

Bθ
p,∞(Ω) =

{
f ∈ Lp(Ω) : ‖f‖Lp(Ω) + sup

0 6=‖z‖≤δ, z∈Rn

‖42
zf‖Lp(Ωz)

|z|θ
< ∞

}
,

where 42
zf(x) = f(x + z) + f(x − z) − 2f(x), and Ωz =

{
x ∈ Ω : x + z ∈ Ω

}
.

In the elliptic case the vector fields ∂
∂xi

generate a commuting family of strongly
continuous semigroup of operators and by their isotropic nature, we can have a
uniform treatment of the difference quotients in every direction. In the subelliptic
case, using the Carnot-Carathéodory metric, a generalization of the elliptic setting is
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possible [2]. However, this approach does not allow us to study fractional derivatives
in the direction of one vector field at a time.

Let us list a few evident properties of our function spaces:

(i) By [4, Theorem 4.3], if Z is a commutator of length k of the horizontal
vector fields Xi, then

XW 1,p(Ω) ⊂ B
1
k ,1

Z,0,p,p(K, Ω) .

(ii) By [1, Lemma 2.3], if f ∈ B1,1
Z,0,p,p(K, Ω) then Zf ∈ Lp(K).

(iii) Using the fact that ∆2
Z,sf(x) = ∆Z,sf(x)−∆Z,−sf(x) we easily get that

Bθ,1
Z,α,p,q(K, Ω) ⊂ Bθ,2

Z,α,p,q(K, Ω) .

The reversed inclusion is not elementary, and for the proof we use a method
of Zygmund [7] which already proved to be useful in the Heisenberg group
[3].

Theorem 1.

(a) For 0 < θ < 1 we have Bθ,2
Z,α,p,q(K, Ω) ⊂ Bθ,1

Z,α,p,q(K, Ω).
(b) For every 0 < γ < 1 we have B1,2

Z,α,p,q(K, Ω) ⊂ Bγ,1
Z,α,p,q(K, Ω).

(c) For 1 < θ < 2 we have Bθ,2
Z,α,p,q(K, Ω) ⊂ B1,1

Z,α,p,q(K, Ω).

Proof. (a) Let f ∈ Bθ,2
Z,α,p,q(K, Ω). Then∫

Ω

(
1 + |Xf(x)|2 + |Xf(esZx)|2

)α/2|f(esZx) + f(e−sZx)− 2f(x)|qdx ≤ Mq|s|θq

for all 0 < |s| < sK . Therefore,∫
Ω

(
1 + |Xf(esZx)|2

)α/2|f(esZx) + f(e−sZx)− 2f(x)|qdx ≤ Mq|s|θq

and then changing s to −s/2 we get∫
Ω

(
1 + |Xf(e−

s
2 Zx)|2

)α/2|f(e
s
2 Zx) + f(e−

s
2 Zx)− 2f(x)|qdx ≤ Mq

2θq
|s|θq .

We use now the change of variables x 7→ e
s
2 Zx to get∫

Ω

(
1 + |Xf(x)|2

)α/2 ∣∣f(esZx) + f(x)− 2f(e
s
2 Zx)

∣∣q dx ≤ Mq

aq2θq
|s|θq .

In this way we have obtained the inequality∫
Ω

(
1 + |Xf(x)|2

)α/2 ∣∣4Z,s(f)(x)− 24Z, s
2
(f)(x)

∣∣q dx ≤ Mq

aq2θq
|s|θq

and repeating n-times the process of changing s to s/2 and multiplying the inequal-
ity by 2q we get∫

Ω

(
1 + |Xf(x)|2

)α/2∣∣2n−14Z, s

2n−1
f(x)− 2n4Z, s

2n f(x)
∣∣qdx

≤ Mq

aq2θq
|s|θq 2(1−θ)q(n−1) .
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These inequalities give( ∫
Ω

(
1 + |Xf(x)|2

)α/2 ∣∣4Z,sf(x)− 2n4Z, s
2n f(x)

∣∣q dx
)1/q

≤ M

a2θ
|s|θ

n−1∑
k=0

2(1−θ)k

(1.2)
and hence by our assumptions on q, p and α it follows that, for a constant C > 0
depending on the XW 1,p norm of f , we have( ∫

Ω

(
1 + |Xf(x)|2

)α/2 ∣∣4Z, s
2n f(x)

∣∣q dx
)1/q

≤ 1
2n

( ∫
Ω

(
1 + |Xf(x)|2

)α/2 |4Z,sf(x)|q dx
)1/q

+ c
M

a2θ
|s|θ2−θn

≤ C
( 1

2n
+ |s|θ2−θn

)
.

(1.3)

For all h with 0 < |h| < sK/2 there exist n ∈ N and s ∈ R such that |s| ∈ [sK/2, sK ]
and h = s/2n. In this way we get

1
|h|θ

( ∫
Ω

(
1 + |Xf(x)|2

)α/2 |4Z,hf(x)|q dx
)1/q

≤ C
( |h|1−θ

sK
+ 1

)
.

Also, for sK/2 ≤ |h| ≤ sK we have

1
|h|θ

( ∫
Ω

(
1 + |Xf(x)|2

)α/2 |4Z,hf(x)|q dx
)1/q

≤ C ,

and therefore,

sup
0<|h|<sK

( ∫
Ω

(
1 + |Xf(x)|2

)α/2 |4Z,hf(x)|q

|h|θq
dx

)1/q

≤ C .

The change of variables x 7→ e−hZx shows that, for a possible different C and
sufficiently small h, we have( ∫

Ω

(
1 + |Xf(e−hZx)|2

)α/2 |4Z,−hf(x)|q

|h|qθ
dx

)1/q

≤ C .

Changing h to −h gives( ∫
Ω

(
1 + |Xf(ehZx)|2

)α/2 |4Z,hf(x)|q

|h|qθ
dx

)1/q

≤ C . (1.4)

and therefore,

sup
0<|h|<sK

( ∫
Ω

(
1 + |Xf(x)|2 + |Xf(ehZx)|2

)α/2 |4Z,hf(x)|q

|h|qθ
dx

)1/q

≤ C .

(b) Let f ∈ B1,2
Z,α,p,q(K, Ω) and start in a similar way to the proof of the part

(a). Inequality (1.2) for θ = 1 gives( ∫
Ω

(
1 + |Xf(x)|2

)α/2 ∣∣4Z,sf(x)− 2n4Z, s
2n f(x)

∣∣q dx
)1/q

≤ M

a2θ
|s|n. (1.5)

Again, for 0 < |h| < sK/2 consider n ∈ N and s ∈ R such that |s| ∈ [sK/2, sK ] and
h = s/2n and get

1
|h|γ

( ∫
Ω

(
1 + |Xf(x)|2

)α/2 |4Z,hf(x)|q dx
)1/q

≤ C
( |h|1−γ

sK
+ |h|1−γ | lnh|

)
.
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This leads to f ∈ Bγ,1
Z,α,p,q(K, Ω).

(c) Let f ∈ Bθ,2
Z,α,p,q(K, Ω). Taking into consideration that we suppose now

1 < θ < 2, inequality (1.2) has the form(∫
Ω

(
1 + |Xf(x)|2

)α/2 ∣∣4Z,sf(x)− 2n4Z, s
2n f(x)

∣∣q dx

)1/q

≤ M

a2θ
|s|. (1.6)

and this leads to
1
|h|

( ∫
Ω

(
1 + |Xf(x)|2

)α/2 |4Z,hf(x)|q dx
)1/q

≤ C
1

sK

(
1 + sθ−1

K

)
.

It easily follows now that f ∈ B1,1
Z,α,p,q(K, Ω). �

Remark 2. As will be shown in the Examples 3 and 5 below, slight variations
of these weighted function spaces might also appear. To define them consider the
pseudo-norms:

‖f‖θ,1
XZ,α,p,q = ‖f‖LP (Ω) + sup

0<|s|<sK

( ∫
Ω

wα(Xf, s, x)
|∆Z,sXf(x)|q

|s|θq
dx

)1/q

,

‖f‖θ,2
XZ,α,p,q = ‖f‖LP (Ω) + sup

0<|s|<sK

( ∫
Ω

wα(Xf, s, x)
|∆2

Z,sXf(x)|q

|s|θq
dx

)1/q

,

and the function spaces

XBθ,1
Z,α,p,q(K, Ω) =

{
f ∈ XW 1,p(Ω) : supp f ⊂ K and ‖f‖θ,1

XZ,α,p,q < ∞
}

,

and

XBθ,2
Z,α,p,q(K, Ω) =

{
f ∈ XW 1,p(Ω) : supp f ⊂ K and ‖f‖θ,2

XZ,α,p,q < ∞
}

.

If we follow the proof of Theorem 1, we realize that it remains valid in the case of
XBθ,1

Z,α,p,q(K, Ω) and XBθ,2
Z,α,p,q(K, Ω), too. Another inclusion which will be used

in Examples 3 and 5 is that if f ∈ XBθ,1
Z,p−2,p,2(K, Ω) then f ∈ XB

2θ
p ,1

Z,0,p,p(K, Ω)
(see also the proof of [3, Lemma 3.1]) .

In the following two examples we show that our function spaces naturally appear
when we study the regularity of the minimizers to the problem

min
u∈XW 1,p(Ω)

∫
Ω

(
1 + |Xu(x)|2

)p/2
dx (1.7)

subject to a boundary condition of type u−v ∈ XW 1,p
0 (Ω), where v ∈ XW 1,p(Ω) is

fixed. A minimizing function u is a weak solutions of the following nondegenerate
p-Laplacian equation

m∑
i=1

Xi

((
1 + |Xu|2

) p−2
2 Xiu

)
= 0 , in Ω (1.8)

which means that∫
Ω

(
1 + |Xu|2

) p−2
2 X1u X1ϕ +

(
1 + |Xu|2

) p−2
2 X2u X2ϕ dx = 0 , (1.9)

for all ϕ ∈ XW 1,p(Ω) with support compactly included in Ω.
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Example 3. In this example we refer to the proof of [3, Lemma 3.1]. Consider the
the Heisenberg group H as R3 endowed with the group multiplication

(x1, x2, t) · (y1, y2, s) =
(
x1 + y1, x2 + y2, t + s− 1

2
(x2y1 − x1y2)

)
.

The horizontal vector fields are

X1 =
∂

∂x1
− x2

2
∂

∂t
, X2 =

∂

∂x2
+

x1

2
∂

∂t
.

Denote

T =
∂

∂t
and observe that [X1, X2] = T . To study the regularity of weak solutions first we
have to prove the differentiability in the direction of T . The vector fields X1, X2

and T span the tangent space at every point and according to [4, Theorem 4.3] we
have

η2u ∈ B
1
2 ,1

T,0,p,p(Ω)

for every η ∈ C∞
0 (Ω). Use now a test function

ϕ =
4T,−s

s1/2

(4T,s(η2u)
s1/2

)
to get

η2u ∈ XB
1
2 ,1

T,p−2,p,2(supp η, Ω).

This implies that

η2u ∈ XB
1
p ,1

T,0,p,p(supp η, Ω)

and by the fact that T commutes with the horizontal vector fields X1 and X2 we
can use again [4, Theorem 4.3] to get

η2u ∈ B
1
2+ 1

p ,2

T,0,p,p(supp η, Ω) .

For p = 2 we have η2u ∈ B1,2
T,p−2,p,2(supp η, Ω) which implies

η2u ∈ Bγ,1
T,p−2,p,2(supp η, Ω)

for any 1
2 < γ < 1. Restarting our proof on the bases of the previous line we get

η2u ∈ B
1
2+γ,2

T,0,p,p(supp η, Ω) ,

and this leads to Tu ∈ Lp
loc(Ω).

For p > 2, by Theorem 1, the inequality 1
2 + 1

p < 1 implies that

η2u ∈ B
1
2+ 1

p ,1

T,0,p,p(supp η, Ω) ,

and hence we can restart the whole process again with 1
2 + 1

p instead of 1
2 and a

new cut-off function η with a conveniently chosen support to get

η2u ∈ B
1
2+ 1

p + 2
p2 ,1

T,0,p,p (supp η, Ω) .

In general, after k iterations we get η2u ∈ Bγk,2
T,0,p,p(supp η, Ω), with

γk =
1
2

+
1
p

(
1 +

2
p

+ · · ·+ 2k−1

pk−1

)
.
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If 2 ≤ p < 4 then for a sufficiently large k we have γk > 1 and then

η2u ∈ B1,1
T,0,p,p(supp η, Ω)

which implies that Tu ∈ Lp
loc(Ω). Of course, there is the question of what is

happening if, for a k ∈ N, we get γk = 1. In this case, we can choose a γk+1 < 1
sufficiently close to 1 such that after repeating the iteration to get γk+2 > 1.

Remark 4. We study the case p ≥ 2 in order to be able to give a uniform approach
to our function spaces in various cases of horizontal vector fields. In [3] it is also
proved that Tu ∈ Lp

loc(Ω) for 1 < p < 2. The proof of this result is connected to
Heisenberg group and does not work for other Carnot groups of step 3 or higher.
However, let us give the sequence of spaces in which we include η2u. So, we start
with B

1
2 ,1

T,0,p,p(supp η, Ω) and continue with

XB
1
4 ,1

T,p−2,p,2(supp η, Ω) , XB
1
4 ,1

T,0,p,p(supp η, Ω),

B
3
4 ,2

T,0,p,p(supp η, Ω) , B
3
4 ,1

T,0,p,p(supp η, Ω) , . . . ,

B
2k+1−1
2k+1 ,1

T,0,p,p (supp η, Ω) , B
1
2+γk,2

T,0,p,p (supp η, Ω),

where γk = 2k−1
2k+2 (p− 1) + 2k+1−1

2k+2 > 1/2 for k sufficiently large.

Example 5. We consider now an example involving commutators of length higher
than 2. Our preference goes with Grushin type vector fields, but we could use T
from the center of any nilpotent Lie Algebra generated by a system of horizontal
vector fields. Consider Ω ⊂ R2 intersecting the line x1 = 0 and the vector fields
X1 = ∂

∂x1
and X2 = x3

1
∂

∂x2
. At the points (0, x2) ∈ Ω the vector fields X1 and X2

span a 1 dimensional subspace, so we need their commutator of length 4

T = [X1, [X1, [X1, X2]]] = 6
∂

∂x2

to span the whole tangent space.

According to [4] we have

η2u ∈ B
1
4 ,1

T,0,p,p(Ω)
for every η ∈ C∞

0 (Ω) and we can start the iteration process with the test function

ϕ =
4T,−s

s1/4

(4T,s(η2u)
s1/4

)
.

In a similar to way to Example 3 we get the series of inclusions

η2u ∈ XB
1
4 ,1

T,p−2,p,2(supp η, Ω),

η2u ∈ XB
1
2p ,1

T,0,p,p(supp η, Ω) ,

η2u ∈ B
1
4+ 1

2p ,2

T,0,p,p (supp η, Ω) .

By Theorem 1, the inequality 1
4 + 1

2p < 1 implies that

η2u ∈ B
1
4+ 1

2p ,1

T,0,p,p (supp η, Ω) ,

and hence we can restart the whole process again with 1
4 + 1

2p instead of 1
4 and get

η2u ∈ B
1
4+ 1

2p + 1
p2 ,1

T,0,p,p (supp η, Ω) .
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Therefore, after k iterations we get

η2u ∈ Bγk,2
T,0,p,p(supp η, Ω),

with

γk =
1
4

+
1
2p

(
1 +

2
p

+ · · ·+ 2k−1

pk−1

)
.

If 2 ≤ p < 8/3 then for a sufficiently large k we have γk > 1 and then

η2u ∈ B1,1
T,0,p,p(supp η, Ω)

which implies that Tu ∈ Lp
loc(Ω).
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