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ITERATED ORDER OF SOLUTIONS OF CERTAIN LINEAR
DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

SAADA HAMOUDA

Abstract. In this paper, we investigate the iterated order of solutions of
homogeneous and nonhomogeneous linear differential equations where the co-

efficients are entire functions and satisfy certain growth conditions.

1. Introduction and statement of results

In this paper, we assume that the reader is familiar with the fundamental results
and the standard notation of the Nevanlinna value distribution theory [5].

For n ≥ 2, we consider the linear differential equation

w(n) +An−1(z)w
(n−1)

+ · · ·+A0(z)w = B(z), (1.1)

where A0(z), . . . , An−1, B(z) are entire functions with A0(z) 6≡ 0 or B(z) 6≡ 0. It
is well known that all solutions of (1.1) are entire functions, and if some of the
coefficients are transcendental, then (1.1) has at least one solution of infinite order.
Thus, the question which arises is: What conditions on A0(z), . . . , An−1, B(z) will
guarantee that every solution w 6≡ 0 has infinite order? For the above question,
there are many results, (see for example [2, 4, 1]). Gundersen and Steinbart [4]
proved the following results.

Theorem 1.1 ([4]). Let µ, θ1, θ2 be real constants satisfying µ > 0 and θ1 < θ2.
Suppose that, in the differential equation

w(n) +An−1(z)w
(n−1)

+ · · ·+A0(z)w = B(z), (1.2)

there exists a unique coefficient Aq(z) such that for any θ ∈ (θ1, θ2) there exist
real constants α = α(θ) and β = β(θ) satisfying 0 ≤ β < α, so that the following
conditions hold as z →∞ along arg z = θ:

|Aq(z)| ≥ exp{(α+ o(1))|z|µ},
|Ak(z)| ≤ exp{(β + o(1))|z|µ} for all k 6= q,

|B(z)| ≤ exp{(β + o(1))|z|µ}.

Assume that α(θ) and β(θ) are continuous functions on θ1 < θ < θ2.
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Suppose that w is transcendental solution of (1.2) with σ(w) < ∞. If l ≥ q is
an integer, then for any θ ∈ (θ1, θ2) we have

|w(l)(z)| ≤ exp{−(α− β + o(1))|z|µ}
as z →∞ along arg z = θ.

Corollary 1.2 ([4]). Let θ1, θ2, . . . , θm be a finite set of real numbers that satisfy
θ1 < θ2 < · · · < θm + 2π. Suppose that for each i = 1, 2, . . . ,m− 1, there exists in
(1.2) one particular coefficient Aqi

(z) and a corresponding constant µi > 0, such
that for any θ ∈ (θi, θi+1) there exist constants αi = αi(θ) and βi = βi(θ) satisfying
0 ≤ βi < αi, so that the following conditions hold as z →∞ along arg z = θ:

|Aqi
(z)| ≥ exp{(αi + o(1))|z|µi},

|Ak(z)| ≤ exp{(βi + o(1))|z|µi} for all k 6= qi,

|B(z)| ≤ exp{(βi + o(1))|z|µi}.

For each i = 1, 2, . . . ,m− 1, assume that αi(θ) and βi(θ) are continuous functions
on θi < θ < θi+1.

Then every transcendental solution w of (1.2) satisfies σ(w) = ∞.

In 2001, Beläıdi and Hamouda proved the following result.

Theorem 1.3 ([1]). Let A0(z), . . . , An−1 be entire functions with A0(z) 6≡ 0, such
that for some real constants α, β, µ, θ1, θ2, with 0 ≤ β < α, µ > 0, θ1 < θ2, we have

|A0(z)| ≥ eα|z|µ ,

|Ak(z)| ≤ eβ|z|µ (k = 1, . . . , n− 1),

as z → ∞ with θ1 ≤ arg z ≤ θ2. Then every solution w 6≡ 0 of the differential
equation

w(n) +An−1(z)w
(n−1)

+ · · ·+A0(z)w = 0 (1.3)
has infinite order.

Another question is: For solutions of infinite order, how can we describe precisely
their growth?

For r ∈ [0,∞), we define exp0 r = r, exp1 r = er and expi+1 r = exp(expi r)
(i ∈ N). For r sufficiently large, we define log0 r = r, log1 r = log r, logi+1 r =
log(logi r) (i ∈ N). Also, we can define exp−i r = logi r and log−i r = expi r. To
express the rate of growth of entire function of infinite order, we introduce the
notion of iterated order [9, 7, 6].

The iterated i-order of entire function w is defined by

σi(w) = lim sup
r→+∞

logi T (r, w)
log r

= lim sup
r→+∞

logi+1M(r, w)
log r

(i ∈ N). (1.4)

Recently, Tu, Chen and Zheng proved the following result.

Theorem 1.4 ([10]). Let A0(z), . . . , An−1 be entire functions with A0(z) 6≡ 0, such
that for real constants α, β, µ, θ1, θ2, and positive integer p with 0 ≤ β < α, µ > 0,
θ1 < θ2, we have

|A0(z)| ≥ expp{α|z|µ},
|Ak(z)| ≤ expp{β|z|µ}, (k = 1, . . . , n− 1),
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as z → ∞ with θ1 ≤ arg z ≤ θ2. Then σp+1(w) ≥ µ holds for all non-trivial
solutions of (1.3).

In this paper, we will prove the following results.

Theorem 1.5. Let A0(z), . . . , An−1 be entire functions with A0(z) 6≡ 0, and let
θ1, θ2, . . . , θm be a finite set of real numbers that satisfy 0 = θ1 < θ2 < · · · < θm =
2π such that for each i ∈ {1, 2, . . . ,m−1}. Then there exists in (1.3) one particular
coefficient Asi(z) and a corresponding constant µi > 0, such that for any θ ∈ (θi,
θi+1) there exist constants αi and βi satisfying 0 ≤ βi < αi, we have

|Asi(z)| ≥ expp{αi|z|µi}, (1.5)

|Ak(z)| ≤ expp{βi|z|µi} for all k 6= si), (1.6)

as z → ∞ along arg z = θ, where p ≥ 1 is an integer. Then, every transcendental
solution w of (1.3) satisfies

σp+1(w) ≥ min
1≤i≤m−1

{µi}.

Theorem 1.6. Suppose that A0(z), . . . , An−1, B(z) are entire functions such that
for real constants α, β, µ, θ1, θ2, with 0 ≤ β < α, µ > 0, 0 ≤ θ1 < θ2 ≤ 2π, we
have, for some integer s (1 ≤ s ≤ n− 1),

|As(z)| ≥ expp{α|z|µ}, (1.7)

|Ak(z)| ≤ expp{β|z|µ} for all k 6= s, (1.8)

|B(z)| ≤ expp{β|z|µ} (1.9)

as z → ∞ with θ1 ≤ arg z ≤ θ2, where p ≥ 1 is an integer. Given ε > 0 small
enough. If w is a transcendental solution with σp(w) <∞ of the differential equa-
tion

w(n) +An−1(z)w
(n−1)

+ · · ·+A0(z)w = B(z), (1.10)

then there exists a constant M > 0 such that, for each integer l ≥ s, we have

|w(l)(z)| ≤M (1.11)

along any ray arg z = θ ∈ S(ε) = {θ : θ1 + ε ≤ arg z ≤ θ2 − ε}.

Corollary 1.7. Let A0(z), . . . , An−1, B(z) be entire functions with B(z) 6≡ 0, let
θ1, θ2, . . . , θm be a finite set of real numbers that satisfy 0 = θ1 < θ2 < · · · < θm =
2π such that for each i ∈ {1, 2, . . . ,m − 1} there exists in (1.10) one particular
coefficient Asi(z) and a corresponding constants µi, αi, βi satisfying 0 ≤ βi < αi,
µi > 0, we have

|Asi(z)| ≥ expp{αi|z|µi}, (1.12)

|Ak(z)| ≤ expp{βi|z|µi} for all k 6= si, (1.13)

|B(z)| ≤ expp{βi|z|µi} (1.14)

as z →∞ with θi < arg z < θi+1, where p ≥ 1 is an integer. Then, every transcen-
dental solution w of (1.10) satisfies σp(w) = ∞.

In the above corollary, the differential equation (1.10) may have a polynomial
solution. For example, w(z) = z is a solution of

w(4) + ezw(3) + e−zw′′ + w′ + w = z + 1.



4 S. HAMOUDA EJDE-2007/83

In general, w(z) = z is a solution of the differential equation

w(n) +An−1(z)w(n−1) + · · ·+A2(z)w′′ + w′ + w = z + 1,

where the coefficients A2(z), . . . , An−1(z) satisfy the conditions (1.12) and (1.13).
Our proofs depend mainly on the following Lemmas.

2. Auxiliary Lemmas

Lemma 2.1 ([3]). Let w(z) be a transcendental entire function. Let

Γ = {(k1, q1), (k2, q2), . . . , (km, qm)}

denote a finite set of distinct pairs of integers that satisfy ki > qi ≥ 0 (i = 1, . . . ,m)
and let α > 0 be a given real constant. Then there exists a set E ⊂ [0, 2π) that
has linear measure zero and a constant c > 0 that depend only on α, such that if
ψ0 ∈ [0, 2π) − E, then there is a constant R0 = R0(ψ0) > 1 such that for all z
satisfying arg z = ψ0 and |z| = r ≥ R0, and for all (k, q) ∈ Γ, we have∣∣w(k)(z)

w(q)(z)

∣∣ ≤ c[T (αr,w)
1
r

logα(r) log T (αr,w)]k−q.

From the above Lemma, which is also [3, Theorem 2], we obtain the following
result.

Lemma 2.2. Let w be a transcendental entire function with σp(w) = σ < ∞
(p ≥ 1). Let Γ = {(k1, q1), (k2, q2), . . . , (km, qm)} denote a finite set of distinct
pairs of integers that satisfy ki > qi ≥ 0 (i = 1, . . . ,m). Then there exists a
set E ⊂ [0, 2π) that has linear measure zero, such that if ψ0 ∈ [0, 2π) − E, then
there is a constant R0 = R0(ψ0) > 1 such that for all z satisfying arg z = ψ0 and
|z| = r ≥ R0, and for all (k, q) ∈ Γ, we have∣∣w(k)(z)

w(q)(z)

∣∣ ≤ [expp−1{rσ+ε}]k−q,

where ε > 0.

Proof. The definition

σp(w) = lim sup
r→+∞

logp T (r, w)
log r

= σ

implies that for any given ε′ > 0 there exists r0 > 0 such that for all r ≥ r0 we have

logp T (r, w)
log r

< σ + ε′;

which implies
T (r, w) < expp−1{rσ+ε′}. (2.1)

Combining (2.1) with Lemma 2.1, for α > 0, there exists a set E ⊂ [0, 2π) that
has linear measure zero and a constant c > 0, such that if ψ0 ∈ [0, 2π) − E, then
there is a constant r′0 = r′0(ψ0) > 1 such that for all z satisfying arg z = ψ0 and
|z| = r ≥ r′0, ∣∣w(k)(z)

w(q)(z)

∣∣ ≤ c
[
expp−1{(αr)σ+ε′} expp−2{(αr)σ+ε′}

]k−q
.
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Then, there exists a constant ε > ε′ > 0 and R0 large enough, such that for
|z| = r ≥ R0 ∣∣w(k)(z)

w(q)(z)

∣∣ ≤ [expp−1{rσ+ε}]k−q.

�

Lemma 2.3 ([2, 4, 8]). Let w(z) be an entire function and suppose that |w(k)(z)| is
unbounded on some ray arg z = θ. Then there exists an infinite sequence of points
zj = rje

iθ (j = 1, 2, . . . ), where rj → +∞, such that w(k)(zj) →∞ and∣∣w(q)(zj)
w(k)(zj)

∣∣ ≤ 1
(k − q)!

(1 + o(1))|zj |k−q q = 0, . . . , k − 1.

3. Proof of Theorems

Proof of Theorem 1.5. From (1.3) we can write

|Asi | ≤ | w
(n)

w(si)
|+ |An−1||

w(n−1)

w(si)
|+ · · ·+ |Asi+1||

w(si+1)

w(si)
|

+ |Asi−1||
w(si−1)

w(si)
|+ · · ·+ |A1||

w′

w(si)
|+ |A0||

w

w(si)
|.

(3.1)

By Lemma 2.1 and taking into account 1
r log2(r) < 1 and

log T (2r, w(si)) < T (2r, w(si)),

there exists a constant c > 0 and a set E ⊂ [0, 2π) that has linear measure zero,
such that if θ ∈ [0, 2π) − E, then there is a constant r1 = r1(θ) > 1 such that for
all z satisfying arg z = θ and |z| = r ≥ r1, we have∣∣ w(k)(z)

w(si)(z)

∣∣ ≤ c[T (2r, w(si))]2n, k = si + 1, . . . , n. (3.2)

Since w is transcendental, then there exist a real constants ϕ1, ϕ2, with 0 ≤ ϕ1 <
ϕ2 ≤ 2π, such that for all θ ∈ (ϕ1, ϕ2), |w(si)(z)| is unbounded as z → ∞ along
arg z = θ. The sector (ϕ1, ϕ2) will certainly be intersected with, at least, one of
the sectors (θi, θi+1) (i = 1, . . . ,m− 1) in a sector (ϕ′1, ϕ

′
2), (ϕ1 ≤ ϕ′1 < ϕ′2 ≤ ϕ2).

By Lemma 2.3, if θ ∈ (ϕ′1, ϕ
′
2), there exists an infinite sequence of points zj = rje

iθ

where rj →∞, such that w(si)(zj) →∞ and

| w
(k)(zj)

w(si)(zj)
| ≤ (1 + o(1))|zj |si−k (3.3)

as zj →∞, for all k satisfying 0 ≤ k ≤ si − 1.
Combining (1.5), (1.6), (3.2) and (3.3) with (3.1), we obtain, for rj large enough,

expp{αir
µi

j } ≤ A[T (2rj , w(si))]2n expp{βir
µi

j },
where A > 0; so that

expp{αir
µi

j } exp{− expp−1{βir
µi

j }} ≤ A[T (2rj , w(si))]2n,

which implies

lim sup
r→+∞

logp+1 T (r, w(si))
log r

≥ µi.

Since
T (r, w(si)) ≤ (si + 1)T (r, w) + S(r, w),
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where S(r, w) = o{T (r, w)} as r → ∞, it follows that σp+1(w) ≥ µi for, at least,
one i ∈ {1, . . . ,m− 1}. Thus, in general, we have

σp+1(w) ≥ min
1≤i≤m−1

{µi}.

�

Proof of Theorem 1.6. Suppose that w is a transcendental solution with σp(w) =
σ <∞ of (1.10). From (1.10), we can write

w(s)
[w(n)

w(s)

1
As

+
w(n−1)

w(s)

An−1

As
+ · · ·+ w(s+1)

w(s)

As+1

As

+ 1
w(s−1)

w(s)

As−1

As
+ · · ·+ w

w(s)

A0

As

]
=

B

As

(3.4)

From Lemma 2.2, there exists a set E ⊂ [0, 2π) of linear measure zero such that for
all k = s+ 1, . . . , n and all r ≥ r2 large enough, we have

∣∣w(k)(z)
w(s)(z)

∣∣ ≤ [expp−1{rσ+ε}]k−s, (3.5)

along any ray arg z = ψ ∈ [0, 2π)− E, provided ε > 0.
If |w(s)(z)| is unbounded on some ray arg z = φ ∈ S(0)−E, then by Lemma 2.3,

there exists a sequence of points zj = rje
iφ, rj →∞ such that w(s)(zj) →∞ and

∣∣w(q)(zj)
w(s)(zj)

| ≤ 1
(s− q)!

(1 + o(1))|zj

∣∣s−q ≤ 2|zj |n (3.6)

for all q = 0, . . . , s− 1 and all j large enough.
Combining now (1.7), (1.8), (1.9), (3.5) and (3.6) with (3.4) yelds w(s)(zj) → 0

as zj →∞, a contradiction. Hence |w(s)(zj)| must be bounded on any arg z = φ ∈
S(0)− E. By Phragmén-Lindelöf theorem, we conclude that |w(s)(z)| is bounded,
say |w(s)(z)| < M , in the whole sector S( ε

2 ). Using the Cauchy integral formula to
deduce that for all l > s,

|w(l)(z)| < M

in S(ε). �

Proof of Corollary 1.7. Suppose that w(z) is a transcendental solution of (1.10)
with σp(w) < ∞. By Theorem 1.6, in all the sectors (θi + ε, θi+1 − ε) (i =
1, 2, . . . ,m− 1), (ε > 0 small enough), we obtain

|w(l)(z)| < M (3.7)

for all l ≥ n−1. By the Phragmén-Lindelöf theorem, (3.7) remains valid in the whole
plane; and by the Liouville theorem, w(z) has to be a polynomial, a contradiction.
Then σp(w) = ∞. �
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