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EXISTENCE RESULTS FOR NONLINEAR BOUNDARY-VALUE
PROBLEMS

WITH INTEGRAL BOUNDARY CONDITIONS

ABDELKADER BELARBI, MOUFFAK BENCHOHRA

Abstract. In this paper, we investigate the existence of solutions for a second

order nonlinear boundary-value problem with integral boundary conditions.
By using suitable fixed point theorems, we study the cases when the right
hand side has convex and nonconvex values.

1. Introduction

This paper concerns the existence of solutions of a nonlinear boundary-value
problem with integral boundary conditions. More precisely, in Section 3, we con-
sider the nonlinear boundary-value problem

x′′(t) ∈ F (t, x(t)), a.e. t ∈ [0, 1], (1.1)

x(0)− k1x
′(0) =

∫ 1

0

h1(x(s))ds, (1.2)

x(1) + k2x
′(1) =

∫ 1

0

h2(x(s))ds, (1.3)

where F : [0, 1] × R → P(R) is a compact valued multivalued map, P(R) is the
family of all subsets of R, hi : R → R are continuous functions and ki are non-
negative constants (i = 1, 2). Boundary-value problems with integral boundary
conditions constitute a very interesting and important class of problems. They in-
clude two, three, multipoint and nonlocal boundary-value problems as special cases.
For boundary-value problems with integral boundary conditions and comments on
their importance, we refer the reader to the papers by Gallardo [11], Karakostas and
Tsamatos [14], Lomtatidze and Malaguti [18] and the references therein. Moreover,
boundary-value problems with integral boundary conditions have been studied by a
number of authors, for instance, Brykalov [4], Denche and Marhoune [8], Jankowskii
[13] and Krall [16] and Rahmat and Bashir [20]. The present paper is motivated by
a recent one due to Rahman [19] in which the generalized method of quasilineariza-
tion was applied to a class of second order boundary-value problem with integral
boundary conditions of the form (1.2) and (1.3). In this paper, we shall present
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three existence results for the problem (1.1)-(1.3) when the right hand side is con-
vex as well as nonconvex valued. The first one relies on the nonlinear alternative
of Leray-Schauder type. In the second one, we shall use the fixed point theorem
for contraction multivalued maps due to Covitz and Nadler, while in the third one,
we shall combine the nonlinear alternative of Leray-Schauder type for single-valued
maps with a selection theorem due to Bressan and Colombo for lower semicontin-
uous multivalued maps with nonempty closed and decomposables values. These
results extend to the multivalued case some ones considered in the literature.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper. C([0, 1],R) is the Ba-
nach space of all continuous functions from [0, 1] into R with the norm

‖x‖∞ = sup{|x(t)| : 0 ≤ t ≤ 1}.
L1([0, 1],R) denotes the Banach space of measurable functions x : [0, 1] → R which
are Lebesgue integrable normed by

‖x‖L1 =
∫ 1

0

|x(t)|dt for all x ∈ L1([0, 1],R).

AC1((0, 1),R) is the space of differentiable functions x : (0, 1) → R, whose first
derivative, x′, is absolutely continuous. Let (X, | · |) be a normed space, Pcl(X) =
{Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈
P(X) : Y compact} and Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}. A
multivalued map G : X → P (X) is convex (closed) valued if G(x) is convex (closed)
for all x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in
X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper
semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a nonempty
closed subset of X and if for each open set N of X containing G(x0), there exists
an open neighbourhood N0 of x0 such that G(N0) ⊆ N.G is said to be completely
continuous if G(B) is relatively compact for every B ∈ Pb(X). If the multivalued
map G is completely continuous with nonempty compact values, then G is u.s.c.
if and only if G has a closed graph (i.e. xn → x∗, yn → y∗, yn ∈ G(xn) imply
y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed
point set of the multivalued operator G will be denoted by FixG. A multivalued
map G : [0, 1] → Pcl(R) is said to be measurable if for every y ∈ R, the function
t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)} is measurable. For more details on
multivalued maps see the books of Aubin and Cellina [1], Aubin and Frankowska
[2], Deimling [7] and Hu and Papageorgiou [12] .

Definition 2.1. A multivalued map F : [0, 1] × R → P(R) is said to be L1-
Carathéodory if

(i) t 7→ F (t, x) is measurable for each x ∈ R;
(ii) x 7→ F (t, x) is upper semicontinuous for almost all t ∈ [0, 1];
(iii) for each q > 0, there exists ϕq ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕq(t) for all |x| ≤ q and for a.e. t ∈ [0, 1].

For each x ∈ C([0, 1],R), define the set of selections of F by

SF,x = {v ∈ L1([0, 1],R) : v(t) ∈ F (t, x(t)) a.e. t ∈ [0, 1]}.
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Let E be a Banach space, X a nonempty closed subset of E and G : X → P(E)
a multivalued operator with nonempty closed values. G is lower semi-continuous
(l.s.c.) if the set {x ∈ X : G(x) ∩ B 6= ∅} is open for any open set B in E. Let
A be a subset of [0, 1] × R. A is L ⊗ B measurable if A belongs to the σ-algebra
generated by all sets of the form J ×D, where J is Lebesgue measurable in [0, 1]
and D is Borel measurable in R. A subset A of L1([0, 1],R) is decomposable if for
all u, v ∈ A and J ⊂ [0, 1] measurable, the function uχJ + vχJ−J ∈ A, where χJ
stands for the characteristic function of J .

Definition 2.2. Let Y be a separable metric space and letN : Y → P(L1([0, 1],R))
be a multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.);
2) N has nonempty closed and decomposable values.

Let F : [0, 1]×R → P(R) be a multivalued map with nonempty compact values.
Assign to F the multivalued operator

F : C([0, 1],R) → P(L1([0, 1],R))

by letting

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]}.
The operator F is called the Nymetzki operator associated with F .

Definition 2.3. Let F : [0, 1]×R → P(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its
associated Nymetzki operator F is lower semi-continuous and has nonempty closed
and decomposable values.

Let (X, d) be a metric space induced from the normed space (X, | · |). Consider
Hd : P(X)× P(X) → R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X),Hd) is a
metric space and (Pcl(X),Hd) is a generalized metric space (see [15]).

Definition 2.4. A multivalued operator N : X → Pcl(X) is called
a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,
b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 2.5 ([17]). Let X be a Banach space. Let F : [0, 1]×X → Pcp,c(X) be an
L1-Carathéodory multivalued map and let Γ be a linear continuous mapping from
L1([0, 1], X) to C([0, 1], X), then the operator

Γ ◦ SF : C([0, 1], X) → Pcp,c(C([0, 1], X)),

x 7→ (Γ ◦ SF )(x) := Γ(SF,x)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

Lemma 2.6 ([3]). Let Y be a separable metric space and N : Y → P(L1([0, 1],R))
be a multivalued operator which has property (BC). Then N has a continuous se-
lection; i.e., there exists a continuous function (single-valued) g : Y → L1([0, 1],R)
such that g(x) ∈ N(x) for every x ∈ Y .
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Lemma 2.7 ([6]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

3. Main Results

In this section, we are concerned with the existence of solutions for the prob-
lem (1.1)-(1.3) when the right hand side has convex as well as nonconvex values.
Initially, we assume that F is a compact and convex valued multivalued map.

Definition 3.1. A function x ∈ AC1((0, 1),R) is said to be a solution of (1.1)-(1.3)
if there exists a function v ∈ L1([0, 1],R) with v(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]
such that x′′(t) = v(t) a.e. on [0, 1] and the function x satisfies the conditions (1.2)
and (1.3).

We need the following auxiliary result. Its proof uses a standard argument.

Lemma 3.2. For any σ(t), ρ1(t), ρ2(t) ∈ C([0, 1],R), the nonhomogeneous linear
problem

x′′(t) = σ(t), a.e. t ∈ [0, 1],

x(0)− k1x
′(0) =

∫ 1

0

ρ1(s)ds,

x(1) + k2x
′(1) =

∫ 1

0

ρ2(s)ds,

has a unique solution x ∈ AC1((0, 1),R) given by

x(t) = P (t) +
∫ 1

0

G(t, s)σ(s)ds,

where

P (t) =
1

1 + k1 + k2
{(1− t+ k2)

∫ 1

0

ρ1(s)ds+ (k1 + t)
∫ 1

0

ρ2(s)ds}

is the unique solution of the problem

x′′(t) = 0, a.e. t ∈ [0, 1],

x(0)− k1x
′(0) =

∫ 1

0

ρ1(s)ds,

x(1) + k2x
′(1) =

∫ 1

0

ρ2(s)ds,

and

G(t, s) =
−1

k1 + k2 + 1

{
(k1 + t)(1− s+ k2), 0 ≤ t < s ≤ 1,
(k1 + s)(1− t+ k2), 0 ≤ s < t ≤ 1

is the Green’s function of the problem. We note that G(t, s) < 0 on (0, 1)× (0, 1).

Let us introduce the following hypotheses which are assumed hereafter:
(H1) The function F : [0, 1]× R → Pcp,c(R) is L1-Carathéodory;
(H2) there exist two nonnegative constants c1 and c2 such that

|h1(x)| ≤ c1, and |h2(x)| ≤ c̄2 for all x ∈ R;
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(H3) there exist a continuous non-decreasing function ψ : [0,∞) → (0,∞), a
function p ∈ L1([0, 1],R+) such that

‖F (t, x)‖ ≤ p(t)ψ(|x|) for each (t, x) ∈ [0, 1]× R,

(H4) there exists a number M > 0 such that

M
1

1+k1+k2
{(1 + k2)c1 + (k1 + 1)c2}+ sup(t,s)∈[0,1]×[0,1] |G(t, s)|ψ(M)

∫ 1

0
p(s)ds

> 1.

Theorem 3.3. Suppose hypotheses (H1)–(H4) are satisfied. Then the boundary-
value problem (1.1)-(1.3) has at least one solution.

Proof. We transform (1.1)-(1.3) into a fixed point problem. Consider the operator
N : C([0, 1],R) → P(C([0, 1],R)) defined by

N(x) = {h ∈ C([0, 1],R) : h(t) = P (t) +
∫ 1

0

G(t, s)v(s)ds, v ∈ SF,x},

where

P (t) =
1

1 + k1 + k2
{(1− t+ k2)

∫ 1

0

h1(x(s))ds+ (k1 + t)
∫ 1

0

h2(x(s))ds}.

Remark 3.4. Clearly, from Lemma 3.2, the fixed points of N are solutions to
(1.1)-(1.3).

We shall show that N satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type. The proof will be given in several steps.

Step 1: N(x) is convex for each x ∈ C([0, 1],R). Indeed, if h1, h2 belong to N(x),
then there exist v1, v2 ∈ SF,x such that for each t ∈ [0, 1] we have

hi(t) = P (t) +
∫ 1

0

G(t, s)vi(s)ds, (i = 1, 2).

Let 0 ≤ d ≤ 1. Then, for each t ∈ [0, 1] we have

(dh1 + (1− d)h2)(t) = P (t) +
∫ 1

0

G(t, s)[dv1(s) + (1− d)v2(s)]ds.

Since SF,x is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ N(x).

Step 2: N maps bounded sets into bounded sets in C([0, 1],R). Let Bq = {x ∈
C([0, 1],R) : ‖x‖∞ ≤ q} be a bounded set in C([0, 1],R) and x ∈ Bq, then for each
h ∈ N(x), there exists v ∈ SF,x such that

h(t) = P (t) +
∫ 1

0

G(t, s)v(s)ds.
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From (H2) and (H3) we have

|h(t)|

≤ |P (t)|+
∫ 1

0

|G(t, s)||v(s)|ds

≤ |P (t)|+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|
∫ 1

0

|v(s)|ds

≤ 1
1 + k1 + k2

{(1 + k2)c1 + (k1 + 1)c2}+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|ψ(q)
∫ 1

0

p(s)ds

≤ 1
1 + k1 + k2

{(1 + k2)c1 + (k1 + 1)c2}+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|ψ(q)‖p‖L1 .

Step 3: N maps bounded sets into equicontinuous sets of C([0, 1],R). Let r1, r2 ∈
[0, 1], r1 < r2 and Bq be a bounded set of C([0, 1],R) as in Step 2 and x ∈ Bq. For
each h ∈ N(x)

|h(r2)− h(r1)| ≤ |P (r2)− P (r1)|+
∫ 1

0

|G(r2, s)−G(r1, s)||v(s)|ds

≤ |P (r2)− P (r1)|+ ψ(q)
∫ 1

0

|G(r2, s)−G(r1, s)|p(s)ds.

The right hand side tends to zero as r2 − r1 → 0. As a consequence of Steps 1 to 3
together with the Arzelá-Ascoli Theorem, we can conclude that N : C([0, 1],R) →
P(C([0, 1],R)) is completely continuous.
Step 4: N has a closed graph. Let xn → x∗, hn ∈ N(xn) and hn → h∗. We need
to show that h∗ ∈ N(x∗).
hn ∈ N(xn) means that there exists vn ∈ SF,xn

such that for each t ∈ [0, 1]

hn(t) = Pn(t) +
∫ 1

0

G(t, s)vn(s)ds,

where

Pn(t) =
1

1 + k1 + k2
[(1− t+ k2)

∫ 1

0

h1(xn(s))ds+ (k1 + t)
∫ 1

0

h2(xn(s))ds].

We must show that there exists h∗ ∈ SF,x∗ such that for each t ∈ [0, 1]

h∗(t) = P∗(t) +
∫ 1

0

G(t, s)v∗(s)ds,

where

P∗(t) =
1

1 + k1 + k2
[(1− t+ k2)

∫ 1

0

h1(x∗(s))ds+ (k1 + t)
∫ 1

0

h2(x∗(s))ds].

Clearly we have ‖(hn−Pn)− (h∗−P∗)‖∞ → 0 as n→∞. Consider the continuous
linear operator Γ : L1([0, 1],R) → C([0, 1],R) defined by

v 7→ (Γv)(t) =
∫ 1

0

G(t, s)v(s)ds.

From Lemma 2.5, it follows that Γ ◦ SF is a closed graph operator. Moreover, we
have (

hn(t)− Pn(t)
)
∈ Γ(SF,xn).
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Since xn → x∗, it follows from Lemma 2.5 that

h∗(t) = P∗(t) +
∫ 1

0

G(t, s)v∗(s)ds

for some v∗ ∈ SF,x∗ .
Step 5: A priori bounds on solutions. Let x be a possible solution of the problem
(1.1)-(1.3). Then, there exists v ∈ L1([0, 1],R) with v ∈ SF,x such that for each
t ∈ [0, 1]

x(t) = P (t) +
∫ 1

0

G(t, s)v(s)ds.

This implies by (H2) and (H3) that for each t ∈ [0, 1] we have

|x(t)|

≤ 1
1 + k1 + k2

{(1 + k2)c1 + (k1 + 1)c2}+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|
∫ 1

0

p(s)ψ(|x(s)|)ds

≤ 1
1 + k1 + k2

{(1 + k2)c1 + (k1 + 1)c2}+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|ψ(‖x‖∞)
∫ 1

0

p(s)ds.

Consequently

‖x‖∞
( 1

1 + k1 + k2
{(1 + k2)c1 + (k1 + 1)c2}

+ sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|ψ(‖x‖∞)
∫ 1

0

p(s)ds
)−1

≤ 1.

Then by (H4), there exists M such that ‖x‖∞ 6= M . Let

U = {x ∈ C([0, 1],R) : ‖x‖∞ < M}.

The operator N : U → P(C([0, 1],R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λN(x) for
some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder
type [9], we deduce that N has a fixed point x in U which is a solution of the
problem (1.1)-(1.3). �

We present now a result for the problem (1.1)-(1.3) with a nonconvex valued right
hand side. Our considerations are based on the fixed point theorem for multivalued
map given by Govitz and Nadler [6]. We need the following hypotheses:

(H5) F : [0, 1] × R → Pcp(R) has the property that F (·, x) : [0, 1] → Pcp(R) is
measurable for each x ∈ R;

(H6) Hd(F (t, x), F (t, x)) ≤ l(t)|x−x| for almost all t ∈ [0, 1] and x, x ∈ R where
l ∈ L1([0, 1],R) and d(0, F (t, 0)) ≤ l(t) for almost each t ∈ [0, 1];

(H7) there exist two nonnegative constants d1 and d2 such that |h1(x)−h1(x)| ≤
d1|x− x| and |h2(x)− h2(x)| ≤ d2|x− x| for all x, x in R.

Theorem 3.5. Assume that (H5)-(H7) are satisfied. If

1
1 + k1 + k2

[(1 + k1)d1 + (1 + k2)d2] + sup
(t,s)∈[0,1]×[0,1]

|G(t, s)|‖l‖L1 < 1,

then (1.1)-(1.3) has at least one solution.



8 A. BELARBI, M. BENCHOHRA EJDE-2005/06

Remark 3.6. For each x ∈ C([0, 1],R), the set SF,x is nonempty since by (H5), F
has a measurable selection (see [5], Theorem III.6).

Proof. We shall show that N satisfies the assumptions of Lemma 2.7. The proof
will be given in two steps.

Step 1: N(x) ∈ Pcl(C([0, 1],R)) for each x ∈ C([0, 1],R). Indeed, let (xn)n≥0 ∈
N(x) such that xn → x̃ in C([0, 1],R). Then, x̃ ∈ C([0, 1],R) and there exists
vn ∈ SF,x such that for each t ∈ [0, 1]

xn(t) = P (t) +
∫ 1

0

G(t, s)vn(s)ds.

Using the fact that F has compact values and from (H6), we may pass to a subse-
quence if necessary to get that vn converge to v in L1([0, 1],R) and hence v ∈ SF,x.
Then, for each t ∈ [0, 1]

xn(t) → x̃(t) = P (t) +
∫ 1

0

G(t, s)v(s)ds.

So, x̃ ∈ N(x).

Step 2: There exists γ < 1 such that Hd(N(x), N(x)) ≤ γ‖x − x‖∞ for each
x, x ∈ C([0, 1],R). Let x, x ∈ C([0, 1],R) and h1 ∈ N(x). Then, there exists
v1(t) ∈ F (t, x(t)) such that for each t ∈ [0, 1]

h1(t) = P (t) +
∫ 1

0

G(t, s)v1(s)ds.

¿From (H6) it follows that

Hd(F (t, x(t)), F (t, x(t))) ≤ l(t)|x(t)− x(t)|.

Hence, there exists w ∈ F (t, x(t)) such that

|v1(t)− w| ≤ l(t)|x(t)− x(t)|, t ∈ [0, 1].

Consider U : [0, 1] → P(R) given by

U(t) = {w ∈ R : |v1(t)− w| ≤ l(t)|x(t)− x(t)|}.

Since the multivalued operator V (t) = U(t)∩F (t, x(t)) is measurable [5, Proposition
III.4], there exists a function v2(t) which is a measurable selection for V . So,
v2(t) ∈ F (t, x(t)) and for each t ∈ [0, 1]

|v1(t)− v2(t)| ≤ l(t)|x(t)− x(t)|.

Let us define for each t ∈ [0, 1]

h2(t) = P̄ (t) +
∫ 1

0

G(t, s)v2(s)ds,

where

P̄ (t) =
1

1 + k1 + k2
[(1− t+ k2)

∫ 1

0

h1(x(s))ds+ (1 + k1)
∫ 1

0

h2(x(s))ds].
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We have

|h1(t)− h2(t)|

≤ |P (t)− P̄ (t)|+
∫ 1

0

|G(t, s)||v1(s)− v2(s)|ds

≤ 1
1 + k1 + k2

[(1 + k1)d1 + (1 + k2)d2]‖x− x̄‖∞ +
∫ 1

0

|G(t, s)|l(s)|x(s)− x(s)|ds.

Thus,

‖h1 − h2‖∞

≤
( 1

1 + k1 + k2
[(1 + k1)d1 + (1 + k2)d2] + sup

(t,s)∈[0,1]×[0,1]

|G(t, s)|‖l‖L1

)
‖x− x‖∞.

By an analogous relation, obtained by interchanging the roles of x and x, it follows
that

Hd(N(x), N(x))

≤
( 1

1 + k1 + k2
[(1 + k1)d1 + (1 + k2)d2] + sup

(t,s)∈[0,1]×[0,1]

|G(t, s)|‖l‖L1

)
‖x− x‖∞.

So, N is a contraction and thus, by Lemma 2.7, N has a fixed point x which is
solution to (1.1)-(1.3). �

In this part, by using the nonlinear alternative of Leray Schauder type combined
with the selection theorem of Bresssan and Colombo for semi-continuous maps
with decomposable values, we shall establish an existence result for the problem
(1.1)-(1.3). We need the following hypothesis:

(H8) F : [0, 1]×R → P(R) is a nonempty compact-valued multivalued map such
that:
a) (t, x) 7→ F (t, x) is L ⊗ B measurable;
b)x 7→ F (t, x) is lower semi-continuous for each t ∈ [0, 1];

The following lemma is of great importance in the proof of our next result.

Lemma 3.7 ([10]). Let F : [0, 1]×R → P(R) be a multivalued map with nonempty
compact values. Assume (H3) and (H8) hold. Then F is of l.s.c. type.

Theorem 3.8. Assume that (H2), (H3), (H4) and (H8) hold. Then the BVP
(1.1)-(1.3) has at least one solution.

Proof. Note that (H3), (H8) and Lemma 3.7 imply that F is of l.s.c. type. Then
from Lemma 2.6, there exists a continuous function f : C([0, 1],R) → L1([0, 1],R)
such that f(x) ∈ F(x) for all x ∈ C([0, 1],R). Consider the problem

x′′(t) = f(x(t)), a.e. t ∈ [0, 1], (3.1)

x(0)− k1x
′(0) =

∫ 1

0

h1(x(s))ds, (3.2)

x(1) + k2x
′(1) =

∫ 1

0

h2(x(s))ds. (3.3)

It is clear that if x ∈ AC1((0, 1),R) is a solution of (3.1)-(3.3), then x is a solution
to the problem (1.1)-(1.3). Transform the problem (3.1)-(3.3) into a fixed point
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theorem. Consider the operator N̄ defined by

N̄(x)(t) = P (t) +
∫ 1

0

G(t, s)f(x(s))ds.

We can easily show that N̄ is continuous and completely continuous. The remaning
of the proof is similar to that of Theorem 3.3. �
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