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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR
SUBLINEAR PROBLEMS WITH PRESCRIBED NUMBER OF

ZEROS ON EXTERIOR DOMAINS

JANAK JOSHI

Communicated by Jerome A. Goldstein

Abstract. We prove existence of radial solutions of ∆u + K(r)f(u) = 0 on

the exterior of the ball, of radius R, centered at the origin in RN such that
limr→∞ u(r) = 0 if R > 0 is sufficiently small. We assume f : R → R is odd

and there exists a β > 0 with f < 0 on (0, β), f > 0 on (β,∞) with f sublinear

for large u, and K(r) ∼ r−α for large r with α > 2(N − 1). We also prove
nonexistence if R > 0 is sufficiently large.

1. Introduction

In this article we study radial solutions to
∆u+K(|x|)f(u) = 0 for R < |x| <∞,
u(x) = 0 when |x| = R, lim

|x|→∞
u(x) = 0, (1.1)

where u : RN → R with N ≥ 2, R > 0, f is odd and locally Lipschitz. In addition
we have the following:

(H1) f ′(0) < 0, there exists β > 0 such that f(u) < 0 on (0, β), f(u) > 0 on
(β,∞).

(H2) f(u) = |u|p−1u+ g(u) with 0 < p < 1 , and limu→∞
|g(u)|
|u|p = 0.

(H3) Denoting F (u) ≡
∫ u
0
f(t) dt we assume that there exists γ with 0 < β < γ

such that F < 0 on (0, γ) and F > 0 on (γ,∞).
(H4) We assume K and K ′ are continuous on [R,∞), K(r) > 0, and there exists

α > 2(N − 1) such that limr→∞
rK′

K = −α, 2(N − 1) + rK′

K < 0.
(H5) We assume that there exists positive d1, d2 such that d1r

−α ≤ K(r) ≤
d2r
−α for r ≥ R.

Theorem 1.1. Assume (H1)–(H5), N > 2, and α > 2(N − 1). Then for each
nonnegative integer n there exists a radial solution, un, of (1.1) such that un has
exactly n zeros on (R,∞) if R is positive and sufficiently small.

Theorem 1.2. Let N ≥ 2 and α > 2(N−1). If R is positive and sufficiently large,
then there are no nontrivial radial solutions of (1.1).
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The radial solutions of (1.1) on RN with f superlinear for large u and K(r) ≡ 1
have been well-studied; see for example [1, 2, 9, 11]. Recently there has been interest
in studying these problems on RN\BR(0), with various types of non linearities, see
[4, 5, 6, 7, 8, 10, 12]. Interest in the topic for this paper comes from the papers
[5, 6, 7] by Iaia where he studied the solutions of the differential equations with
superlinear and hilltop type of nonlinearity. The type of nonlinearity addressed
here has not been studied as extensively as other cases, see [4, 8]. In [8] the same
nonlinearity as here was studied but in the case α < 2. In this article we use
different methods to study the case α > 2(N − 1). We use a scaling argument as
in [11] to prove existence of solutions for (1.1), (1.2) with large number of zeros.

For the proofs in sections 2 and 3, we will need to temporarily extend K and
K ′ continuously to (0,∞) so that (H4) and (H5) continue to hold on (0,∞). We
define

K̃(r) =

{
K(R)− K′(R)Rα+1

α [ 1
rα −

1
Rα ] r ≤ R

K(r) r ≥ R.
(1.2)

It follows that

lim
r→R−

K̃(r) = K(R) and lim
r→R−

K̃ ′(r) = K ′(R).

It is straightforward to verify that K̃ and K̃ ′ extend K and K ′ continuously on
(0,∞) and K̃ satisfies (H4) on (0,∞). In addition

lim
r→0+

rαK̃(r) = −K
′(R)Rα+1

α
> 0.

Therefore with perhaps a smaller positive number d1 and larger positive number
d2 we may ensure (H5) on (0,∞).

2. Preliminaries

Since we are interested in radial solutions of (1.1) we denote r = |x| and consider
u(x) = u(|x|) where u satisfies

u′′ +
N − 1
r

u′ +K(r)f(u) = 0 for R < r <∞, (2.1)

u(R) = 0, u′(R) = b > 0. (2.2)

We will occasionally write u(r, b) to emphasize the dependence of the solution on
b. By the standard existence-uniqueness theorem [3] there is a unique solution of
(2.1)-(2.2) on [R,R+ ε) for some ε > 0.

We next consider:

E(r) =
1
2
u′2

K(r)
+ F (u). (2.3)

It is straightforward using (2.1) and (H4) to show that

E′(r) = − u′2

2rK
[2(N − 1) +

rK ′

K
] ≥ 0. (2.4)

Thus E is non-decreasing. Therefore

1
2
u′2

K(r)
+ F (u) = E(r) ≥ E(R) =

1
2

b2

K(R)
for r ≥ R. (2.5)
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Proof of Theorem 1.2. Suppose there is a nontrivial solution u(r) of (2.1)-(2.2)
with limr→∞ u(r) = 0. Then u has a local maximum at some Mb > R and u′ >
0 on [R,Mb). Evaluating (2.5) at r = Mb gives

F (u(Mb)) ≥
1
2

b2

K(R)
> 0.

So by (H3) we see
u(Mb) > γ. (2.6)

Now by (2.4) we have

E(r) ≤ E(Mb) for R ≤ r ≤Mb

so
1
2
u′2

K
+ F (u) ≤ F (u(Mb)) for R ≤ r ≤Mb. (2.7)

Rewriting this expression, integrating over [R,Mb] and applying (H5) yields∫ Mb

R

|u′| dr√
2
√
F (u(Mb))− F (u)

≤
∫ Mb

R

√
K ≤

√
d2

∫ Mb

R

r−
α
2 dr. (2.8)

Setting u(r) = t we have∫ u(Mb)

0

dt√
2
√
F (u(Mb))− F (t)

≤ 2
√
d2

α− 2
[
R

2−α
2 −M

2−α
2

b

]
≤ 2
√
d2

α− 2
R

2−α
2 . (2.9)

Next since f(0) = 0, f ′(0) < 0 and 0 < p < 1 it follows that limu→0
F (u)
|u|p+1 = 0.

Also from (H2) we see that limu→∞
F (u)
|u|p+1 = 1

p+1 . Then there exists c1 > 0 such
that

|F (u)| ≤ c1|u|p+1 ∀u. (2.10)
Moreover, by (H1) and (H3) we have

F (u) ≥ −F0 for some F0 > 0 (2.11)

and so it follows from (2.10) and (2.11) that

F (u(Mb))− F (u) ≤ c1|u(Mb)|p+1 + F0

for all u. This along with (2.9) implies

2
√
d2

α− 2
R

2−α
2 ≥

∫ u(Mb)

0

dt√
F (u(Mb))− F (t)

≥ u(Mb)√
c1|u(Mb)|p+1 + F0

. (2.12)

Since u(Mb) > γ by (2.6) and 0 < p < 1, we have

u(Mb)√
c1|u(Mb)|p+1 + F0

=
|u(Mb)|

1−p
2√

c1 + F0
|(u(Mb)|p+1

≥ γ
1−p
2√

c1 + F0
γp+1

. (2.13)

Thus by (2.12) and (2.13) it follows that

2
√
d2

α− 2
R

2−α
2 ≥ γ

1−p
2√

c1 + F0
γp+1

which implies

R
α−2

2 ≤ 2
√
d2

α− 2

√
c1 + F0

γp+1

γ
1−p
2

. (2.14)
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Since α > 2 we see that (17) is violated if R is sufficiently large. Hence there are
no solutions of (1.1) such that limr→∞ u(r) = 0 if R is sufficiently large. This
completes the proof. �

3. Proof of Theorem 1.1

To prove Theorem 1.1 we first make the following change of variables. Let

u(r) = u1(r2−N ), (3.1)

R∗ = R2−N , b∗ =
bRN−1

N − 2
. (3.2)

This transforms (2.1)-(2.2) into

u′′1(t) + h(t)f(u1(t)) = 0, with t = r2−N for 0 < t < R∗, (3.3)

where

u1(R∗) = 0, u′1(R∗) = −b∗ < 0, (3.4)

h(t) =
1

(N − 2)2
t

2(N−1)
2−N K(t

1
2−N ). (3.5)

Since (r2(N−1)K)′ < 0 and N > 2 it follows that

h′(t) > 0 for 0 < t < R∗. (3.6)

In addition, from (H4)-(H5) we see that

d1

(N − 2)2
≤ h(t)

tq
≤ d2

(N − 2)2
for 0 < t ≤ R∗, (3.7)

where

q =
α− 2(N − 1)

N − 2
> 0.

Moreover by using (1.2) and (3.5), we can extend h on (0,∞) such that (3.6)-(3.7)
hold on (0,∞) and that

lim
t→∞

h(t)
tq

= −K
′(R)Rα+1

(N − 2)2α
≡ L > 0. (3.8)

Now instead of considering (3.3)-(3.4) we look at the initial value problem

u′′1(t) + h(t)f(u1(t)) = 0, t > 0 (3.9)

with:
u1(0) = 0, u′1(0) = a > 0. (3.10)

From (3.5) and (3.7) it follows that h(t) can be extended to be continuous at t = 0
with h(0) = 0 and so by the standard existence-uniqueness theorem there is a
unique solution of (3.9)-(3.10) on [0, 2ε] for some ε > 0. Let

E1(t) =
1
2
u′21
h(t)

+ F (u1).

Then using (3.6) and (3.9) we see that

E′1(t) = −u
′2
1 h
′

2h2
≤ 0.
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Thus
1
2
u′21
h(t)

+ F (u1) = E1(t) ≤ E1(ε) =
1
2
u′21 (ε)
h(ε)

+ F (u1(ε)) for t > ε. (3.11)

It follows from (3.11) that u1 and u′1 are uniformly bounded on [ε, t] from which it
follows that the solution of (3.9)-(3.10) exists on [0, t]. Since t is arbitrary, we see
the solution of (3.9)-(3.10) exists on [0,∞).

Lemma 3.1. Suppose (H1)–(H5) hold and u1 solves (3.9)-(3.10). Then there exists
ta > 0 such that u(ta) = β. Moreover lima→0+ ta =∞.

Proof. From (3.10) we see that u1 increases initially and u1 > 0 for small t > 0. If
u1 has a first local maximum M then u′1(M) = 0 and u′′1(M) ≤ 0. By uniqueness
of solutions of initial value problems it follows that u′′(M) < 0. Then since h > 0 it
follows from (3.9) that f(u1(M)) > 0 which in turn from (H1) implies u1(M) > β.
Since u1(0) = 0 it then follows by the Intermediate Value Theorem that the first
part of the lemma holds. Otherwise suppose 0 < u1 < β and u′1 > 0 for t > 0.
Then by (H1) we have f(u1(t)) < 0 for all t > 0. Thus it follows from (3.9) that
u′′1(t) > 0 for t > 0 so u′1(t) > a and hence u1(t) > at for t > 0. This implies
u1(t) → ∞ as t → ∞ contradicting that 0 < u1(t) < β for all t > 0. Hence there
exists ta > 0 such that u1(ta) = β and 0 < u1 < β on (0, ta). This proves the first
part of Lemma 3.1.

Now we let

E2(t) =
1
2
u′21 + h(t)F (u1).

By (H3) and (3.6) we see

E′2(t) =
[1
2
u′21 + h(t)F (u1)

]′ = h′(t)F (u1) < 0 if u1 < γ

and since 0 ≤ u1 ≤ β < γ on [0, ta] this implies

1
2
u′21 + h(t)F (u1) ≤ 1

2
a2 on [0, ta]. (3.12)

Also by (H2)-(H3) there exists c2 > 0 such that

F (u1) ≥ −c2u2
1 on [0, γ]. (3.13)

It then follows from (3.12) and (3.13) that

1
2
u′21 − c2 h(t)u2

1 ≤
1
2
u′21 + h(t)F (u1) ≤ 1

2
a2 on [0, ta]

which on rewriting and using (3.7) gives

u′21 ≤ a2 + 2c2h(t)u2
1 ≤ a2 +

2c2d2

(N − 2)2
tqu2

1 on [0, ta]

which implies
u′1 ≤ a+ c3t

q/2u1 on [0, ta] (3.14)

where c3 =
√

2c2d2
N−2 . After rewriting (3.14), multiplying by e−y(s) where y(t) =

c3 t
q
2 +1

q
2+1 , and integrating on (0, t) we see

u1e
−y(t) =

∫ t

0

(
u1e
−y(s) ds

)′
≤
∫ t

0

a e−y(s) ds on [0, ta].
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This implies

u1 ≤ a ey(t)
∫ t

0

e−y(s) ds on [0, ta]

and since e−y(t) ≤ 1 it then follows that

β = u1(ta) ≤ a ey(ta)
∫ ta

0

e−y(s) ds ≤ a ta ey(ta). (3.15)

Now suppose |ta| ≤ S for some constant S. Since y(t) is continuous on [0,M ] then
y(ta) is bounded and thus the right side of (3.15) goes to 0 as a → 0+. This is a
contradiction as the left side is β > 0. Hence ta → ∞ as a → 0+. This completes
the proof �

We now use a rescaling argument to show u1 has a large number of zeros if a > 0
is sufficiently large. For this we let

vλ(t) = λ−
2+q
1−pu1(λt), (3.16)

where q = α−2(N−1)
N−2 > 0 (from (3.7)). Also from (3.3) and (H2) we have

u′′1(λ t) + h(λt)[up1(λt) + g(u1(λt))] = 0.

It now follows using (3.16) that

v′′λ +
h(λt)
(λt)q

tq
[
vpλ + λ−

p(q+2)
1−p g(λ

2+q
1−p vλ)

]
= 0 (3.17)

with
vλ(0) = 0, v′λ(0) = λ−

p+q+1
1−p a.

On setting a = λ
1+p+q
1−p we have

vλ(0) = 0, v′λ(0) = 1. (3.18)

Integrating (3.17) on (0, t) and using (3.18) gives

v′λ(t) = 1−
∫ t

0

h(λs)
(λs)q

sq
[
vpλ(s) + λ−

p(q+2)
1−p g

(
λ

2+q
1−p vλ(s)

)]
ds. (3.19)

Integrating on (0, t) by using (3.18) gives

vλ(t) = t−
∫ t

0

∫ s

0

h(λx)
(λx)q

xq
[
vpλ(x) + λ−

p(q+2)
1−p g

(
λ

2+q
1−p vλ(x)

)]
dx ds. (3.20)

Therefore

|vλ(t)| ≤ t+
∫ t

0

∫ s

0

∣∣h(λx)
(λx)q

∣∣xq∣∣vpλ(x) + λ−
p(q+2)
1−p g

(
λ

2+q
1−p vλ(x)

)∣∣ dx ds.
Using (3.7) yields

|vλ(t)| ≤ t+
d2

(N − 2)2

∫ t

0

sq
∫ s

0

∣∣vpλ(x) + λ−
p(q+2)
1−p g

(
λ

2+q
1−p vλ(x)

)∣∣ dx ds. (3.21)

Since from (H2) we have | g(u)
up | → 0 as u → ∞, it follows that given ε > 0 there

exists u0 such that |g(u)| ≤ ε|u|p for |u| ≥ u0 and also the continuity of g implies
|g(u)| ≤ c4 for u ≤ u0 where c4 is some positive constant. Thus

|g(u)| ≤ c4 + ε |u|p for all u. (3.22)
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Now rewriting (3.21) and using (3.22) we see that

|vλ(t)| ≤ t+
d2

(N − 2)2

∫ t

0

sq
∫ t

0

[
(1 + ε)|vpλ(x)|+ c4

λ
(2+q)p
1−p

]
dx ds. (3.23)

Now choose λ > 0 large enough so that c4

λ
(2+q)p
1−p

≤ 1. Since 0 < p < 1 it follows that

|vλ|p ≤ 1 + |vλ|. Hence it follows from (3.23) that for large λ,

|vλ(t)| ≤ t+
[ d2

(q + 1)(N − 2)2
tq+2

]
+
[ d2(1 + ε)

(q + 1)(N − 2)2
tq+1

∫ t

0

|vλ(x)| dx
]

so for large λ,

|vλ(t)| ≤ t+Btq+2 +
[
Atq+1

∫ t

0

|vλ(x)| dx
]

(3.24)

where

A =
d2(1 + ε)

(q + 1)(N − 2)2
, B =

d2

(q + 1)(N − 2)2
.

Now let w(t) =
∫ t
0
|vλ(x)| dx. Then w′(t) = |vλ(t)| and hence from (41) we have

|vλ(t)| = w′(t) ≤ t+B tq+2 +A tq+1w(t). (3.25)

Thus
w′(t)−A tq+1w(t) ≤ t+B tq+2

and therefore ∫ t

0

(
w e−( A

q+2 )tq+2)′ ≤ [t+B tq+2]e−( A
q+2 )tq+2

.

which implies

w(t) ≤ e(
A
q+2 )tq+2

∫ t

0

[s+ 2Asq+2]e−( A
q+2 )tq+2

ds.

Since e−( A
q+2 )tq+2

≤ 1 it follows that

w(t) ≤ e(
A
q+2 )tq+2[ t2

2
+
B tq+3

q + 3
]
.

Thus for any fixed 0 < T <∞ we have

w(t) ≤ e(
A
q+2 )T q+2[T 2

2
+
B T q+3

q + 3
]

= CT on [0, T ]. (3.26)

Now from (3.25) and (3.26) we have

|vλ(t)| ≤ T +B T q+2 +AT q+1CT = DT on [0, T ] (3.27)

and using (3.7), (3.22) and (3.27) in (3.19) it follows that

|v′λ(t)| ≤ 1 +
d2(1 +DT )(2 + ε)
(q + 1)(N − 2)2

T q+1 = QT on [0, T ]. (3.28)

Using this inequality along with (3.9), (3.22) and (3.27) in (3.17) it follows, for
sufficiently large λ, that

|v′′λ(t)| ≤ d2(2 + ε)(1 +DT )
(N − 2)2

T q = JT on [0, T ].

where CT , DT , QT , JT are constants for the fixed T < ∞. Hence by the Arzela-
Ascoli theorem vλ → v and v′λ → v′ uniformly on [0, T ] as λ → ∞ for some
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subsequence still denoted by vλ. Since T is arbitrary we see that v and v′ are
continuous on [0,∞).

Now by (3.19) we have

lim
λ→∞

v′λ(t) = 1− lim
λ→∞

(∫ t

0

h(λs)
(λs)q

sq
[
vpλ(s) + λ−

(2+q)p
1−p g

(
λ

2+q
1−p vλ(s)

)]
ds
)
.

But we know that limλ→∞ v′λ(t) = v′(t) so

v′(t) = 1− lim
λ→∞

(∫ t

0

h(λs)
(λs)q

sq
[
vpλ(s) + λ−

(2+q)p
1−p g

(
λ

2+q
1−p vλ(s)

)]
ds
)
. (3.29)

Next we show that

lim
λ→∞

∫ t

0

(h(λ s)
(λs)q

λ−
(2+q)p
1−p g(λ

2+q
1−p vλ)

)
ds = 0.

From (3.7) and (3.22) it follows that∣∣ ∫ t

0

h(λ s)
(λs)q

sqλ−
(2+q)p
1−p g

(
λ

2+q
1−p vλ(s)

)
ds
∣∣

≤ d2

(N − 2)2

∫ t

0

sq
(
c4λ
− (2+q)p

1−p + ε vpλ(s)
)
ds

≤ d2 c4
(q + 1)(N − 2)2

T q+1

λ
(2+q)p
1−p

+
( d2D

p
T T

q+1

(q + 1)(N − 2)2
)
ε on [0, T ].

Since T q+1

λ
(2+q)p
1−p

→∞ as λ→∞ and ε > 0 is arbitrary it follows that

lim
λ→∞

∫ t

0

(h(λ s)
(λs)q

λ−
(2+q)p
1−p g(λ

2+q
1−p vλ)

)
ds = 0.

Therefore from (3.27) it follows that

v′(t) = 1− lim
λ→∞

∫ t

0

(h(λ s)
(λs)q

sqvpλ(s)
)
ds (3.30)

and since from (3.8) we have 0 < limt→∞
h(t)
tq = L then it follows from (3.27) that

v′(t) = 1− L
∫ t

0

sqvp(s) ds

therefore v′′(t) = −L tq vp(t). Hence v satisfies:

v′′(t) + Ltqvp(t) = 0, (3.31)

v(0) = 0, v′(0) = 1. (3.32)

Lemma 3.2. Suppose v satisfies (3.30)-(3.31). Then v(t) has an infinite number
of zeros on (0,∞).

Proof. We first show v has a local maximum. If not v′ > 0 and v(t) ≥ c0 for some
c0 > 0 on (t0,∞) for some t0 > 0. Then from (3.31) we see

− v′′ ≥ Lc0 tq (3.33)

Integrating on [t0, t] gives

−v′(t) ≥ −v′(t0) +
Lc0
q + 1

[tq+1 − tq+1
0 ].
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This implies v′(t) → −∞ as t → ∞ which contradicts that v′ > 0. Thus there
exists an M > 0 such that v′(M) = 0 and v(M) > 0. Thus by (3.31) v′′(M) < 0.
So v has a local maximum at M . Integrating (3.31) on [M, t] gives

− v′(t) = L

∫ t

M

sq vp ds. (3.34)

Now let us assume that v > 0 for t > M then (3.34) implies that v′ < 0 for t > M
hence estimating (3.34) on [M, t] gives

−v′(t) = L

∫ t

M

sqvp ds ≥ Lvp(t)
[ tq+1 −Mq+1

q + 1
]

which on rewriting it yields

−v−p v′ ≥ L
[ tq+1 −Mq+1

q + 1
]
.

Integrating this on [M, t] gives

v1−p(M)
1− p

− v1−p(t)
1− p

≥ L
∫ t

M

sq+1 −Mq+1

q + 1
ds

Thus
v1−p(M)

1− p
− L

(q + 1)(q + 2)
[
tq+2 − (q + 2)Mq+1t+ (q + 1)Mq+2

]
≥ v1−p(t)

1− p
the left side of which goes to −∞ as t→∞ since L > 0 and q > 0 hence

v1−p(t)
1− p

→ −∞ as t→∞.

This is a contradiction since we assumed v > 0 for t > M . Hence there exists
z1 > 0 such that v(z1) = 0 and v > 0 on [M, z1] so v′(z1) ≤ 0. In addition by
uniqueness of solution of initial value problems it follows that v′(z1) < 0. Similarly
we can then show that v has a local minimum, m > z1 and that v has a second
zero z2 > m. Proceeding similarly we can show that v has infinitely many zeros on
[0,∞). This completes the proof. �

Since vλ → v uniformly on compact sets and since v has an infinite number of
zeros, so vλ has large number of zeros for large values of λ and hence u1 satisfying
(3.9)-(3.10) has a large number of zeros for large a.

Proof of Theorem 1.1. From Lemma 3.2 we see that u1 has a first zero, z1(a), if a
is sufficiently large. Note by continuous dependence on initial conditions z1(a) is a
continuous function of a. Now choose R > 0 small enough so that z1(a) < R2−N .
Then by Lemma 3.1 if a is sufficiently small ta > R2−N and so u1(t, a) > 0 on
(0, R2−N ) if a is sufficiently small. Thus {a > 0 : z1(a) < R2−N} is nonempty and
bounded from below. Then let:

a0 = inf{a : z1(a) < R2−N}.

Since z1(a) is continuous it follows that z1(a0) ≤ R2−N .
Now suppose z1(a0) < R2−N . Then by the continuous dependency of the so-

lutions on initial conditions we have z1(a) < R2−N for a < a0 with a sufficiently
close to a0 which contradicts the definition of a0. So z1(a0) = R2−N and hence
u1(z1(a0)) = u1(R2−N ) = 0. Now let U0(r) = u1(r2−N , a0). Then U0 satisfies (2.1)
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and (2.2) with b = u′1(R2−N )(2 −N)R1−N > 0, limr→∞ U0(r) = 0 and U0 > 0 on
(R,∞).

Next using Lemma 3.2 we see that if a is sufficiently large then u1 has two zeros
z1(a) and z2(a) with u1 > 0 on (0, z1(a)) and u1 < 0 on (z1(a), z2(a)). Choose
R > 0 small enough so that z2(a) < R2−N . Let

a1 = inf{a| z2(a) < R2−N}.
As above we can show that z2(a1) = R2−N . Let U1(r) = −u1(r2−N , a1). Then
U ′1(R) = (N−2)R1−Nu1(R2−N ) > 0, U1 has one zero on (R,∞), satisfies (2.1) and
(2.2) and limr→∞ U1(r) = 0. Proceeding inductively, we obtain a2, a3, a4, . . . , an
for any non negative integer n such that u1(R2−N , an) = 0 by choosing R suf-
ficiently small. Define Un(r) = (−1)nu1(r2−N , an). Then U ′n(R) = (−1)n(2 −
N)R1−Nu′1(R2−N , an) > 0 and as above we can show that Un has n zeros on (R,∞),
satisfies (2.1) and (2.2) and limr→∞ Un(r) = 0. This completes the proof. �
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