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GENERALIZED RIEMANN PROBLEM FOR A TOTALLY

DEGENERATE HYPERBOLIC SYSTEM

RICHARD DE LA CRUZ, JUAN CARLOS JUAJIBIOY, LEONARDO RENDÓN

Communicated by Jesus Ildefonso Diaz

Abstract. We consider the generalized Riemann problem for the Suliciu re-

laxation system in Lagrangian coordinates and we calculate the first-order ex-

pansion given by LeFloch and Raviart to verify our results, then we show the
explicit solution for the generalized Riemann problem in Eulerian coordinates,

which has a similar structure as the classical Riemann problem.

1. Introduction

The aim of this article is to study the generalized Riemann problem associated
with the Suliciu relaxation system [1, 14]

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + s2v)x = 0,

(ρv)t + (ρuv + u)x = 0,

(1.1)

where s is a positive constant. The Suliciu relaxation system can be considered as
a simplified viscoelastic shallow fluid model [11] where ρ denotes the layer depth
of fluid, u is the horizontal velocity, s is a positive constant related to the stress
tensor and v is the relaxed pressure. The existence of global weak solutions for
the Suliciu relaxation system, including vacuum regions ρ0(x) ≥ 0, was obtained in
[11] by using the vanishing viscosity method joint with a compensated compactness
argument. The classical Riemann problem for the Suliciu relaxation system has
been extensively studied in [1, 2, 3, 5]. The existence and uniqueness of delta
shock solution for the Riemann problem were studied in [5, 6] and the generalized
Riemann problem for the Suliciu relaxation system in Lagrangian coordinates was
partially studied in [7]. In [5], the authors show uniqueness of global weak solutions
for the classical Riemann and Cauchy problems for the Suliciu relaxation system.
From [5, Theorem 2] with initial data v0(x) = −1/ρ0(x) for ρ0(x) ≥ ρ > 0, the
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system (1.1) is the relaxation for the isentropic Chaplygin gas dynamics system

ρt + (ρu)x = 0,

(ρu)t + (ρu2 − s2

ρ
) = 0.

(1.2)

The system (1.2) was introduced by Chaplygin [4] as a suitable mathematical ap-
proximation for calculating the lifting force on a wing of an airplane in aerody-
namics. The same model was rediscovered later by Tsien [15] and von Karman
[16]. The negative pressure following from the equation of state could also be used
for the description of certain effects in deformable solids [13]. The Chaplygin gas
occurs in certain cosmology theories and has been announced as a possible model
for dark energy [8, 12].

Although the uniqueness of global weak solutions for the Cauchy problem of the
Suliciu relaxation system was studied in [5], in general the explicit solutions are
difficult to construct. To understand better the explicit solutions we focus on the
study of the generalized Riemann problem associated with the Suliciu relaxation
system (1.1) in Eulerian coordinates with bounded initial data

(ρ, u, v)(x, 0) = (ρ0, u0, v0)(x), x ∈ R,
ρ0(x) ≥ ρ

where ρ is a positive constant, the total variations of u0(x) ± sv0(x) are bounded
and the functions ρ0, u0 and v0 satisfy the generalized Lax shock condition

sup
x∈R

λ1(ρ0, u0, v0) < inf
x∈R

λ3(ρ0, u0, v0), (1.3)

for the eigenvalues associated with the system

λ1 = u− s/ρ, λ2 = u λ3 = u+ s/ρ.

Observe that when the initial data is given by

(ρ, u, v)(x, 0) =

{
(ρl, ul, vl), if x < 0,

(ρr, ur, vr), if x > 0,

for the left and right constant states (ρl, ul, vl) and (ρr, ur, vr), respectively, the
classical Lax shock condition [9, Definition 7.1] becomes

λ1(ρl, ul, vl) < λ3(ρr, ur, vr).

In this article we have expanded the results given in [7] for the case in Lagrangian
coordinates, showing the interaction of elementary waves in Lagrangian coordinates.
Additionally, we give an example of the interaction of elementary waves in Eulerian
coordinates.

2. Generalized Riemann problem in Lagrangian coordinates

In this section, we show uniqueness of solutions for the Suliciu relaxation sys-
tem in Lagrangian coordinates. Moreover, we study the interaction of elementary
waves. Finally, we compare the solutions with the first-order asymptotic expan-
sion of LeFloch-Raviart. Thereby, by the Euler-Lagrange (E-L) transformation
(x, t)→ (y, t) = (Y (x, t), t) defined by

dy = ρdx− ρudt and Y (x, 0) = Y0(x)
def
=

∫ x

0

ρ0(ξ) dξ,
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the Suliciu relaxation system (1.1) becomes

ωt − νy = 0,

νt + s2κy = 0,

κt + νy = 0,

(2.1)

where ω(y, t) = 1
ρ(x,t) , ν(y, t) = u(x, t) and κ(y, t) = v(x, t). Now, we consider the

Suliciu relaxation system in Lagrangian coordinates (2.1) with initial data

(ω, ν, κ)(y, 0) =

{
(ω0
L, ν

0
L, κ

0
L)(y), if y < 0,

(ω0
R, ν

0
R, κ

0
R)(y), if y > 0,

(2.2)

where ω0
i (y), ν0

i (y), κ0
i (y), for i = L or R, are piecewise smooth functions but dis-

continuous at y = 0. In this way, the solution of the generalized Riemann problem
is

(ω, ν, κ)(y, t) =


(ωL, νL, κL)(y, t), if y < −st,
(ω∗, ν∗, κ∗)(y, t), if − st < y < 0,

(ω∗∗, ν∗∗, κ∗∗)(y, t), if 0 < y < st,

(ωR, νR, κR)(y, t), if y > st,

(2.3)

where for i = L or R,

ωi(y, t) = ω0
i (y) + κ0

i (y)− κ0
i (y, t),

νi(y, t) = Λ+
ν0
i
(y, t)− sΛ−

κ0
i
(y, t),

κi(y, t) = Λ+
κ0
i
(y, t)− 1

s
Λ−
ν0
i
(y, t)

with Λ±f (y, t) = 1
2 [f(y + st)± f(y − st)] and

ω∗(y, t) =
νR(y, t)− νL(y, t)

2s
− κR(y, t)− κL(y, t)

2
+ ωL(y, t),

ω∗∗(y, t) =
νR(y, t)− νL(y, t)

2s
+
κR(y, t)− κL(y, t)

2
+ ωR(y, t),

ν∗(y, t) = ν∗∗(y, t),

κ∗(y, t) = κ∗∗(y, t).

From the above, for the Suliciu relaxation system in Lagrangian coordinates we
have the following result.

Theorem 2.1. Given left and right states

(ω0
L(y), ν0

L(y), κ0
L(y)) and (ω0

R(y), ν0
R(y), κ0

R(y)),

respectively. The generalized Riemann problem for the Suliciu relaxation system in
Lagrangian coordinates (2.1)–(2.2) has an unique entropy solution.

This result plays an important role in the study of the interaction of elementary
waves for the Suliciu relaxation system in Lagrangian coordinates.
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2.1. Interaction of elementary waves. For the interaction of elementary waves,
we consider the Suliciu relaxation system in Lagrangian coordinates (2.1) with
initial data

(ω, ν, κ)(y, 0) =


(ω0
l , ν

0
l , κ

0
l )(y), if y < a,

(ω0
m, ν

0
m, κ

0
m)(y), if a < y < b,

(ω0
r , ν

0
r , κ

0
r)(y), if y > b,

(2.4)

with a < b.

a+b
2

t1

t2

t3

t4

[l] [r]
[m]

⊕1
�1 ⊗1

�1

⊕2
�2

⊕3
�3 ⊗3

�3

⊕4
�4

⊕5

�5 ⊗5

�5

y

t

←−y 1

a

−→y 2
←−y 2

b

−→y 1

←−y 3
−→y 3

←−y 4
−→y 4

←−y 5
−→y 5

Figure 1. Interaction of elementary waves for the Suliciu relax-
ation system in Lagrangian coordinates.

In the Figure 1, the intermediate states are denoted by ⊕k, �k, ⊗k and �k.
Here, the subscripts represent the k-interaction, ⊕ or ⊗ the first intermediate state
while � or � for the second one intermediate state in each Riemann problem. For
example, for 0 < t < t1 the 1-interaction of elementary waves is given by

(ωl, νl, κl)(y, t) = [l], if y <←−y1(t),

(ω∗, ν∗, κ∗)(y, t) = ⊕1, if ←−y1(t) < y < a,

(ω∗∗, ν∗∗, κ∗∗)(y, t) = �1, if a < y < −→y2(t),
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(ωm, νm, κm)(y, t) = [m], if y > −→y2(t),

and

(ωm, νm, κm)(y, t) = [m], if y <←−y2(t),

(ω̃∗, ν̃∗, κ̃∗)(y, t) = ⊗1, if ←−y2(t) < y < b,

(ω̃∗∗, ν∗∗, κ̃∗∗)(y, t) = �1, if b < y < −→y1(t),

(ωr, νr, κr)(y, t) = [r], if y > −→y1(t),

where←−y1(t) = −st+a,←−y2(t) = −st+b, −→y1(t) = st+b and −→y2(t) = st+a. Moreover,
for k = 1, 2, . . . ,

tk = k
(b− a

2s

)
,

←−yk(t) = −st+ (2− k)a+ (k − 1)b,
−→yk(t) = st+ (k − 1)a+ (2− k)b.

Let (y, t) be a point in R × R+. Consider the Riemann problem for the Suliciu
relaxation system (2.1) with initial data

(ω, ν, κ)(y, t) =

{
V− = (ω−, ν−, κ−)(y, t), if y < y,

V+ = (ω+, ν+, κ+)(y, t), if y > y.
(2.5)

For t > t, the solution for the Riemann problem (2.1)–(2.5) is given by

(ω, ν, κ)(y, t) =


V− = (ω−, ν−, κ−)(y, t), if y < −s(t− t) + y,

V∗ = (ω∗, ν∗, κ∗)(y, t), if − s(t− t) + y < y < y,

V∗∗ = (ω∗∗, ν∗∗, κ∗∗)(y, t), if y < y < s(t− t) + y,

V+ = (ω+, ν+, κ+)(y, t), if y > s(t− t) + y.

(2.6)

To solve the Riemann problem (2.1)–(2.4), we consider two problems. In the
first problem, we choose V− = (ωl, νl, κl), V+ = (ωm, νm, κm) and using (2.6) is
obtained the first solution. In the second one, we choose V− = (ωm, νm, κm),
V+ = (ωr, νr, κr) and once again by (2.6) is obtained the other solution. Observe
that the states of the first Riemann problem are separated by the lines←−y1 = −st+a,
y = a and −→y2 = st + a, while the states of second problem by ←−y2 = −st + b, y = b
and −→y1 = st+ b. But the lines −→y2 and ←−y2 intersect at t1 = b−a

2s and y1 = a+b
2 .

A new Riemann problem appears here with a second intermediate state of first
Riemann problem and a first intermediate state of the second Riemann problem.
Now, we choose V− = �1, V+ = ⊗1 and once again by (2.6) is obtained the solution
for t > t1.

In general, for ti = i
(
b−a
2s

)
, i = 1, 2, . . . , we have the following two situations:

(1) The Riemann problem with initial data V− = �2i−1 and V+ = ⊗2i−1,
i = 1, 2, . . . . In this case, for t2i−1 < t < t2i the solution is given by

(ω, ν, κ)(y, t) =


�2i−1, if y < −s(t− t2i−1) + a+b

2 ,

⊕2i, if − s(t− t2i−1) + a+b
2 < y < a+b

2 ,

�2i, if a+b
2 < y < s(t− t2i−1) + a+b

2 ,

⊗2i−1, if y > s(t− t2i−1) + a+b
2 .
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(2a) The Riemann problem with initial data V− = ⊕2i−1 and V+ = ⊕2i, i =
1, 2, . . . . For t2i < t < t2i+1 the solution is given by

(ω, ν, κ)(y, t) =


⊕2i−1, if y < −s(t− t2i) + a,

⊕2i+1, if − s(t− t2i) + a < y < a,

�2i+1, if a < y < s(t− t2i) + a,

⊕2i, if y > s(t− t2i) + a.

(2b) The Riemann problem with initial data V− = �2i and V+ = �2i−1, i =
1, 2, . . . . For t2i < t < t2i+1 the solution is given by

(ω, ν, κ)(y, t) =


�2i, if y < −s(t− t2i) + b,

⊗2i+1, if − s(t− t2i) + b < y < b,

�2i+1, if b < y < s(t− t2i) + b,

�2i−1, if y > s(t− t2i) + b.

Now, for smooth solutions we compare the solution (2.3) with the asymptotic
expansion of LeFloch-Raviart.

2.2. Asymptotic expansion of LeFloch-Raviart. For smooth solutions of the
generalized Riemann problem, we consider the Taylor expansions of the initial data
(2.2), ω0

i (y) = ω0
i +
∑∞
j=1 ω

j
i y
j , ν0

i (y) = ν0
i +
∑∞
j=1 ν

j
i y
j and κ0

i (y) = κ0
i+
∑∞
j=1 κ

j
iy
j ,

i = L or R. Then, by the asymptotic expansion of LeFloch-Raviart [10], for the
first-order, we obtain that

ωi(y, t) ≈ ω0
i + (yω1

i + tν1
i ),

νi(y, t) ≈ ν0
i + (yν1

i − s2tκ1
i ),

κi(y, t) ≈ κ0
i + (yκ1

i − tν1
i ), for i = L or R,

(2.7)

and
ω∗(y, t) ≈ ω0

∗ + y(ω1
L + κ1

L)− Φ−(y, t)/s,

ω∗∗(y, t) ≈ ω0
∗∗ + y(ω1

R + κ1
R)− Φ−(y, t)/s,

ν∗(y, t) = ν∗∗(y, t) ≈ ν0
∗ + Φ+(y, t),

κ∗(y, t) = κ∗∗(y, t) ≈ κ0
∗ + Φ−(y, t)/s,

(2.8)

where

Φ±(y, t) =
1

2
[(y − st)(ν1

L + sκ1
L)± (y + st)(ν1

R − sκ1
R)].

Note that for smooth solutions, the first-order of the Taylor expansion of the exact
solution evaluated in y = 0, (ω, ν, κ)(0, t), coincides with the expansion of Lefloch-
Raviart (2.7)–(2.8).

Example 2.2. For s > 1, consider the generalized Riemann problem for (2.1) with
initial data

(ω, ν, κ)(y, 0) :=

{
(2, 0, 1), if y < 0,

(1, cos(y), sin(y)), if y > 0.

By the first-order LeFloch-Raviart expansion, we obtain

ωR(y, t) ≡ 1, ωL(y, t) ≡ 2,

νR(y, t) ≈ 1− s2t, νL(y, t) ≡ 0,

κR(y, t) ≈ y, κL(y, t) ≡ 1,
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ω∗(y, t) ≈ (5s+ 1)/2s− (y + st)/2,

ω∗∗(y, t) ≈ (s+ 1)/2 + (y − st)/2,
ν∗(y, t) = ν∗∗(y, t) ≈ (s+ 1)/2− s(y + st)/2,

κ∗(y, t) = κ∗∗(y, t) ≈
(s− 1) + s(y + st)

2s
.

The exact solution of the generalized Riemann problem satisfies

ωL(0, t) ≡ 2, νL(0, t) ≡ 0, κL(0, t) ≡ 1,

ωR(0, t) ≡ 1, κR(0, t) ≡ 0,

νR(0, t) = cos(st)− s sin(st) = 1− s2t+O((st)2),

ω∗(0, t) =
5s+ 1

2s
− s

2
t+O(st2), ω∗∗(0, t) =

s+ 1

2
− s

2
t+O(st2),

ν∗(0, t) =
s+ 1

2
− s2

2
t+O((st)2), κ∗(0, t) =

s− 1

2s
+
s

2
t+O(st2).

3. Generalized Riemann problem in Eulerian coordinates

Now, we consider the Suliciu relaxation system in Eulerian coordinates (1.1)
with initial data

(ρ, u, v)(x, 0) =

{
(ρ0
l , u

0
l , v

0
l )(x), if x < 0,

(ρ0
r, u

0
r, v

0
r)(x), if x > 0,

(3.1)

where ρ0
i (x), u0

i (x), v0
i (x), for i = l, r, are piecewise smooth functions but disconti-

nuities at x = 0. The solution of generalized Riemann problem is of the form

(ρ, u, v)(x, t) =


(ρl, ul, vl)(x, t), if x < x1(t),

(ρ∗, u∗, v∗)(x, t), if x1(t) < x < x2(t),

(ρ∗∗, u∗∗, v∗∗)(x, t), if x2(t) < x < x3(t),

(ρr, ur, vr)(x, t), if x > x3(t).

(3.2)

Each component in (3.2) is given by

ρi(x, t) =
1

1
ρ0i (X0(Y (x,t)))

+ v0
i (X0(Y (x, t)))− vl(x, t)

,

ui(x, t) = Γ+
u0
i
(x, t)− sΓ−

v0i
(x, t),

vi(x, t) = Γ+
v0i

(x, t)− 1

s
Γ−
u0
i
(x, t),

where the functions X0, Y0, X and Y are defined by the E-L transformation,

Γ±g (x, t) =
1

2
[g(X0(Y (x, t) + st))± g(X0(Y (x, t)− st))]

and the intermediate states are

1

ρ∗(x, t)
=

1

ρl(x, t)
+
ur(x, t)− ul(x, t)

2s
− vr(x, t)− vl(x, t)

2
,

1

ρ∗∗(x, t)
=

1

ρr(x, t)
+
ur(x, t)− ul(x, t)

2s
+
vr(x, t)− vl(x, t)

2
,

u∗(x, t) =
ur(x, t) + ul(x, t)

2
− svr(x, t)− vl(x, t)

2
= u∗∗(x, t),
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v∗(x, t) =
vr(x, t) + vl(x, t)

2
− ur(x, t)− ul(x, t)

2s
= v∗∗(x, t).

Moreover, the k-th contact discontinuity x = xk(t), k = 1, 2, 3, satisfies

dx1(t)

dt
= ul(x1(t), t)− s

ρl(x1(t), t)
= u∗(x1(t), t)− s

ρ∗(x1(t), t)
,

x1(0) = 0,

x′1(0) = ul(0, 0)− s

ρl(0, 0)
,

dx2(t)

dt
= u∗(x2(t), t) = u∗∗(x2(t), t),

x2(0) = 0,

x′2(0) = u∗(0, 0),

and

dx3(t)

dt
= ur(x3(t), t) +

s

ρr(x3(t), t)
= u∗∗(x3(t), t) +

s

ρ∗∗(x3(t), t)
,

x3(0) = 0,

x′3(0) = ur(0, 0) +
s

ρr(0, 0)
,

x

t

x1(t)

x2(t)

x3(t)

(ρl, ul, vl)(x, t)

(ρ∗, u∗, v∗)(x, t)

(ρ∗∗, u∗∗, v∗∗)(x, t)

(ρr, ur, vr)(x, t)

Figure 2. Solution for the generalized Riemann problem.

As in Section 2, we have the following result.

Theorem 3.1. Given left and right states (ρ0
l (x), u0

l (x), v0
l (x)) and (ρ0

r(x), u0
r(x), v0

r(x)),
respectively, such that the initial data (3.1) satisfy the generalized Lax shock con-
dition (1.3) and the total variations of u0(x) ± sv0(x) are bounded. Then, the
generalized Riemann problem for the Suliciu relaxation system (1.1)–(3.1) has an
unique entropy solution.

Figure 2 corresponds to the solution for the generalized Riemann problem in
Eulerian coordinates.
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3.1. Example of a interaction of waves. Now, we are interested in the interac-
tion of elementary waves for the generalized Riemann problem associated with the
Suliciu relaxation system (1.1). In this sense, we consider (1.1) with initial data

(ρ0, u0, v0)(x) =


(ρl, ul, vl), if x < 0,

(ρm(x), um, vm), if 0 < x < b,

(ρr, ur, vr), if x > b,

where ρl, ρr, ui, vi, i = l,m or r, are constants and ρm(x) = ex.
Thereby, the solution on the left, right and middle states is given by

ρl(x, t) = ρl, ρm(x, t) = ex−umt, ρr(x, t) = ρr,

ul(x, t) = ul, um(x, t) = um, ur(x, t) = ur,

vl(x, t) = vl, vm(x, t) = vm, vr(x, t) = vr,

and the intermediate states by

ρ∗(x, t) =
1

1
ρl

+ um−ul

2s − vm−vl
2

= ρ∗,

ρ∗∗(x, t) =
1

1
ex−umt + um−ul

2s + vm−vl
2

,

u∗(x, t) =
um + ul

2
− svm − vl

2
= u∗∗(x, t),

v∗(x, t) =
vm + vl

2
− um − ul

2s
= v∗∗(x, t).

and

ρ̃∗(x, t) =
1

1
ex−umt + ur−um

2s − vr−vm
2

,

ρ̃∗∗(x, t) =
1

1
ρr

+ ur−um

2s + vr−vm
2

= ρ̃∗∗,

ũ∗(x, t) =
ur + um

2
− svr − vm

2
= ũ∗∗(x, t) and

ṽ∗(x, t) =
vr + vm

2
− ur − um

2s
= ũ∗∗(x, t).

Also, the curves xi = xi(t), x̃i = x̃i(t) for i = 1, 2, 3, are

x1(t) =
(
ul −

s

ρl

)
t,

x2(t) =
(um + ul

2
− svm − vl

2

)
t,

x3(t) = umt+ ln(st+ 1),

and

x̃1(t) = umt+ ln(eb − st),

x̃2(t) =
(ur + um

2
− svr − vm

2

)
t+ b,

x̃3(t) =
(
ur +

s

ρr

)
t+ b.
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x

t x1(t) x2(t)
x3(t)

Figure 3. The curves xi = xi(t) in the plane t− x.

x

t

x̃1(t)
x̃2(t)

x̃3(t)

Figure 4. The curves x̃i = x̃i(t) in the plane t− x.

Now, we observe that the curves x3 = x3(t) and x̃1 = x̃1(t) intersect at point
(t1, x1) defined by

t1 =
eb − 1

2s
,

x1 = um
eb − 1

2s
+ ln

(eb + 1

2

)
= umt1 + ln

(eb + 1

2

)
.

(3.3)

x

t

x3(t)x̃1(t)

t1

x1

Figure 5. Point of intersection (t1, x1) of the curves x3(t) and x̃1(t).

Following the way of getting the interaction of elementary waves, we propose to
solve the following Riemann problem associated with the Suliciu relaxation system
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(1.1) with initial data

(ρ∗∗, u∗∗, v∗∗)(x, t1), if x < x1,

(ρ̃∗, ũ∗, ṽ∗)(x, t1), if x > x1,

where x1 and t1 is given by (3.3). For time t > t1, we must find the solution in four
new regions until some time t2 as shown in Figure 6.

x

t
x1(t)

x2(t)

x̃2(t)

x̃3(t)t1

t2

x1

x̂1(t)

x̂2(t)

x̂3(t)

A

B C

D

Figure 6. Regions A, B, C and D.

In the region A = {(x, t) : t1 < t < t2, x2(t) < x < x̂1(t) and x2(t2) = x̂1(t2)},
we have

1

ρ∗∗(x, t)
=

1

ex−umt1−u∗(t−t1)
+ C1,

u∗∗(x, t) =
um + ul

2
− svm − vl

2
= u∗ = u∗∗,

v∗∗(x, t) =
vm + vl

2
− um − ul

2s
= v∗ = v∗∗.

Moreover, the curve x̂1 = x̂1(t) is

x̂1(t) =

{
umt1 + u∗(t− t1) + ln

(
1+eC1s(t−t1)(C1e

x1−umt1−1)
C1

)
, if C1 6= 0,

umt1 + u∗(t− t1) + ln (ex1−umt1 − s(t− t1)) , if C1 = 0,

where

C1 =
um − ul

2s
+
vm − vl

2
.

In the region D = {(x, t) : t1 < t < t3, x̂3(t) < x < x̃2(t) and x̃2(t3) = x̂3(t3)},
we have

1

ρ̃∗(x, t)
=

1

ex−umt1−ũ∗(t−t1)
+ C2,

ũ∗(x, t) =
ur + um

2
− svr − vm

2
= ũ∗ = ũ∗∗,

ṽ∗(x, t) =
vr + vm

2
− ur − um

2s
= ṽ∗ = ṽ∗∗,

and the curve x̂3 = x̂3(t) is given by

x̂3(t) =

{
umt1 + ũ∗(t− t1) + ln

(
eC2s(t−t1)(C2e

x1−umt1+1)−1
C2

)
, if C2 6= 0,

umt1 + ũ∗(t− t1) + ln (s(t− t1) + ex1−umt1) , if C2 = 0,
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with

C2 =
ur − um

2s
− vr − vm

2
.

In the regions B and C, we obtain that

1

ρ̂∗(x, t)
=

1

ex−umt1−u∗(t−t1)
+ C1 +

ũ∗ − u∗
2s

− ṽ∗ − v∗
2

,

1

ρ̂∗∗(x, t)
=

1

ex−umt1−ũ∗(t−t1)
+ C1 +

ũ∗ − u∗
2s

+
ṽ∗ − v∗

2
,

û∗(x, t) =
ũ∗ + u∗

2
− s ṽ∗ − v∗

2
= û∗∗(x, t),

v̂∗(x, t) =
ṽ∗ + v∗

2
− ũ∗ − u∗

2s
= v̂∗∗(x, t),

and where the curve x̂2 = x̂2(t) is

x̂2(t) = x1 +
( ũ∗ + u∗

2
− s ṽ∗ − v∗

2

)
(t− t1).

Observe that, at time t2 the curves x2(t) and x̂1(t) intersect and a new Riemann
problem should be considered for the Suliciu relaxation system with initial data

(ρ∗, u∗, v∗)(x, t2), if x < x2,

(ρ̂∗, û∗, v̂∗)(x, t2), if x > x2.

In each new intersection, we obtain a Riemann problem which can be solve of
natural form.

3.2. Numerical solutions. Now, we show some numerical solutions for the gener-
alized Riemann problem for the system (1.1) in Eulerian coordinates. Our numerical
evidences were studied for the interaction of elementary waves. Similar numerical
results can be obtained for Lagrangian coordinates, we shall omit them. For the
system (1.1), we denote m = ρu w = ρv, U = (ρ,m,w) and the initial condition by
U0 = (ρ0,m0, w0). The Lax-Friedrichs scheme is obtained in the following way: let
h, k be positive numbers satisfying the CFL condition

k

h
max
U∈Σ
{λ1(U), λ2(U), λ3(U)} < 1

where Σ is some region containing the initial data. Then we define the grid points
tn = nk, xj = jh and xj+1/2 = (j + 1/2)h where n ∈ N, j ∈ Z. The initial data
U0 = (ρ0,m0, w0) is approximated by

Uh0 (x) :=
∑
j

U0
j χ(xj−1/2,xj+1/2](x),

where U0
j are constant states in Σ such that Uh0 converges weakly to U0 as h

approaches zero, e.g.

U0
j =

1

h

∫ xj+1/2

xj−1/2

U0(x)dx.

Now suppose that the approximate solution Uh has been defined in some strip
R × [0, tn), n ≥ 1. Then, in each rectangle Rj,n = (xj−1/2, xj+1/2] × [tn, tn+1) we

define Uh(x, t) as the constant Unj where, for the system (1.1), it is given by

ρnj =
1

2

(
ρn−1
j−1 + ρn−1

j+1

)
− k

2h

(
mn−1
j+1 −m

n−1
j−1

)
,
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mn
j =

1

2

(
mn−1
j−1 +mn−1

j+1

)
− k

2h

( (mn−1
j+1 )2 + s2wn−1

j+1

ρn−1
j+1

−
(mn−1

j−1 )2 + s2wn−1
j−1

ρn−1
j−1

)
,

wnj =
1

2

(
wn−1
j−1 + wn−1

j+1

)
− k

2h

(mn−1
j+1 (wn−1

j+1 + 1)

ρn−1
j+1

−
mn−1
j−1 (wn−1

j−1 + 1)

ρn−1
j−1

)
.

The CFL condition guarantees that ρnj > 0. We also shall set unj = mn
j /ρ

n
j and

vnj = wnj /ρ
n
j . Now, we consider the Riemann problem for the system (1.1) with

s = 1 and initial data

(ρ0, u0, v0)(x) =


(1, 3, 7

2 ), if x < 0,

(ex, 5
2 , 4), if 0 < x < ln(4),

( 1
2 ,

7
2 , 3), if x > ln(4).

(3.4)

For CFL= 0.994 and final time t = 1.0, the numerical results are show in the
Figure 7.

-1 0 1 2 3 4 5 6 7

x

0

0.5

1

1.5

2

2.5

3

-1 0 1 2 3 4 5 6 7

x

2.4

2.6

2.8

3

3.2

3.4

3.6

u

-1 0 1 2 3 4 5 6 7

x

2.8

3

3.2

3.4

3.6

3.8

4

4.2

v

Figure 7. Numerical solution for the generalized Riemann prob-
lem (1.1)–(3.4). On the left, ρ at the time t = 1.0; On the middle,
u at the time t = 1.0; On the right, v at the time t = 1.0.

From subsection 3.1, for s = 1 and 0 < t < 3/2, the solution for problem
(1.1)–(3.4) is given by

(ρ(x, t), u(x, t), v(x, t))

=



(1, 3, 7
2 ), if x < 2t,

(2, 5
2 , 4), if 2t < x < 5

2 t,

(ex−
5
2 t, 5

2 , 4), if 5
2 t < x < 5

2 t+ ln(t+ 1),

(ex, 5
2 , 4), if 5

2 t+ ln(t+ 1) < x < 5
2 t+ ln(4− t),

(ex−
5
2 t/(1 + ex−

5
2 t), 7

2 , 3), if 5
2 t+ ln(4− t) < x < 7

2 t+ ln(4),

( 1
2 ,

7
2 , 3), if 7

2 t+ ln(4) < x < 11
2 t+ ln(4),

( 1
2 ,

7
2 , 3), if x > 11

2 t+ ln(4),

which are in correspondence with the results presented in the Figure 7.

Conclusions. In this work, we studied the generalized Riemann problem for the
Suliciu relaxation system. In [5] the uniqueness of solutions for the Cauchy problem
is proved. However, generally is difficult the construction of explicit solutions for
a particular initial data. For additional information about the behavior of the
solution, we solve the generalized Riemann problem and we show an example of
the interaction of the elementary waves.
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