Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 49, pp. 1–17. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

CHARACTERIZATION OF A HOMOGENEOUS ORLICZ SPACE

WALDO ARRIAGADA, JORGE HUENTUTRIPAY

Communicated by Vicentiu Radulescu

ABSTRACT. In this article we define and characterize the homogeneous Orlicz space $\mathscr{D}_{0}^{1,\Phi}(\mathbb{R}^{N})$ where $\Phi:\mathbb{R}\to[0,+\infty)$ is the N-function generated by an odd, increasing and not-necessarily differentiable homeomorphism $\phi:\mathbb{R}\to\mathbb{R}$. The properties of $\mathscr{D}_{0}^{1,\Phi}(\mathbb{R}^{N})$ are treated in connection with the ϕ -Laplacian eigenvalue problem

$$-\operatorname{div}\left(\phi(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = \lambda\,g(\cdot)\phi(u) \quad \text{in } \mathbb{R}^N$$

where $\lambda \in \mathbb{R}$ and $g: \mathbb{R}^N \to \mathbb{R}$ is measurable. We use a classic Lagrange rule to prove that solutions of the ϕ -Laplace operator exist and are non-negative.

1. Introduction

Let $N \geq 2$ be an integer. A broad subclass of maximization problems in an open domain $\Omega \subset \mathbb{R}^N$ involves critical Sobolev exponents. Several articles are motivated by the ideas and methods in the seminal paper by Brezis and Nirenberg [5], mainly when Ω is bounded. The case Ω unbounded is treated in [3, 21]. The reference [2] contains significant results on semilinear problems also in the unbounded case, which are largely treated via concentration-compactness methods. In that reference the authors introduce the space

$$\mathscr{D}^{1,p}(\Omega) = \{ u \in L^{p^*}(\Omega) : |\nabla u| \in L^p(\Omega) \}$$
(1.1)

where $1 and <math>p^* = pN/(N-p)$ is the conjugate exponent. This space is equipped with the norm $||u||_{1,p} = ||u||_{p^*} + |||\nabla u|||_p$ where $||\cdot||_p$ is the norm in $L^p(\Omega)$. On the other hand, the completion of the space $\mathcal{D}(\Omega)$ of C^{∞} -functions with compact support in Ω with respect to the norm $||\cdot||_{1,p}$ is denoted by $\mathscr{D}_o^{1,p}(\Omega)$. Equivalently,

$$\mathscr{D}^{1,p}_{o}(\Omega) = \operatorname{cl}_{\mathscr{D}^{1,p}(\Omega)} \mathcal{D}(\Omega)$$

where $\operatorname{cl}_X(Y)$ is the closure operator of Y in X. This space is endowed with the gradient seminorm $\|u\|_{0,p} = \||\nabla u|\|_p$. It can be easily proved that this is actually a norm on $\mathscr{D}_0^{1,p}(\Omega)$ which is equivalent to $\|u\|_{1,p}$. It is moreover known that the two spaces thus defined are reflexive and Banach for the respective norms. Somewhat surprisingly, a fundamental characterization (see [2, Lemma 1.2]) in the (unbounded) case $\Omega = \mathbb{R}^N$ asserts that $\mathscr{D}_0^{1,p}(\mathbb{R}^N) = \mathscr{D}^{1,p}(\mathbb{R}^N)$. This equivalence

²⁰¹⁰ Mathematics Subject Classification. 46E30, 46T30, 35J20, 35J50.

Key words and phrases. Homogeneous space; Orlicz space; eigenvalue problem; ϕ -Laplacian. ©2017 Texas State University.

Submitted August 31, 2016. Published February 16, 2017.

motivates the problem whether this space is still meaningful in a larger context or not and raises the issue about the use and place of this *extended* space in analysis, particularly in optimization and differential equations. In this paper we answer positively the former question and provide an application which well suits the latter via a fundamental formulation in Orlicz spaces, see below. An exhaustive treatment on the theory of these function spaces can be found in the classic textbook by Krasnosel'skii and Rutic'kii [17] and, more recently, in references [16, 18, 24]. The papers and monographs by Gossez [12, 13, 15] are particularly detailed and have played a paramount role in the subject as well.

Orlicz spaces constitute a natural extension of the notion of an L^p space: the function $t\mapsto |t|^p$ entering the definition of L^p is replaced by a more general N-function $\Phi:\mathbb{R}\to[0,+\infty)$ (sometimes called a Young function). The typical approach in the references mentioned above is mostly developed in \mathbb{R}^N with the Lebesgue measure. One is naturally led to the question whether the properties and structure of classic Orlicz spaces are preserved in a much more general measure space (Ω, Σ, μ) . The monograph by J. Musielak [20] studies the properties associated with the generalized Orlicz space $L^{\Phi}(\Omega, \Sigma, \mu)$ (such as embeddings of and compactness in generalized Orlicz classes) in the setting of modular and parameter-dependent families of Orlicz spaces.

An interesting source of research is given by the case of exponents p(x), where $p:\Omega\to(1,+\infty)$ is a bounded function. The article [22] and excellent book [23] are representatives in the case of nonhomogeneous differential operators containing one or more power-type nonlinearities with variable exponents. The theory there is developed in great generality including many possible pathologies of the Young function. As a yet another significant contribution, the paper by Fu and Shan [9] gives sufficient conditions for removability of isolated singular points of elliptic equations in the Sobolev space $W^{1,p(x)}$, which was first studied by Kováčik and Rákosník.

In this manuscript we consider the homogeneous Orlicz space $\mathcal{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$. It corresponds to the completion of $\mathcal{D}(\mathbb{R}^{N})$ with respect to a suitable norm, see Section 4. If additional hypotheses are fulfilled this space constitutes a natural source of solutions of minimization problems with constraints for a wide class of energy functionals in the generalized-Laplacian form. For example, in the article [10] the following quasilinear elliptic problem is considered,

$$-\operatorname{div}\left(\varphi(|\nabla u|)\nabla u\right) = b(|u|)u + \lambda f(x, u) \quad \text{in } \mathbb{R}^{N}$$
(1.2)

where the function $\varphi(t)t$ is non-homogeneous. The term b(|u|)u denotes a critical Sobolev growth coefficient, f(x,u) is a subcritical term and $\lambda>0$ is a parameter. The authors prove that any non-negative solution of this problem can be regarded as a critical point of the variational formulation

$$\label{eq:definition} \begin{array}{ll} \text{minimize} & \int_{\mathbb{R}^N} \left(\Phi(|\nabla u|) - B(u) - \lambda F(x,u)\right) dx \\ \text{such that} & u \in \mathscr{D}^{1,\Phi}_{\mathrm{o}}(\mathbb{R}^N) \end{array}$$

where B(t) and F(x,t) are the primitives of b(t)t and f(x,t), respectively, and $\Phi(t) = \int_0^s \varphi(t)t dt$. Due to some topological restrictions on $\mathscr{D}_o^{1,\Phi}(\mathbb{R}^N)$ standard methods to prove convergence of minimizing sequences for this problem are useless. The techniques employed in [10] consist of a modification of the concentration-compactness principle for Mountain-pass problems.

In this article we assume that $\phi : \mathbb{R} \to \mathbb{R}$ is an increasing, odd and not-necessarily differentiable homeomorphism and define the associated N-function

$$\Phi(t) = \int_0^t \phi(s) \, ds. \tag{1.3}$$

Motivated by the ideas discussed above, we provide a characterization of the homogeneous Orlicz space $\mathcal{D}_0^{1,\Phi}(\mathbb{R}^N)$ generated by Φ . This characterization asserts that the latter space is an *extension* of (1.1) in a precise sense and naturally leads to the following application. Let $g: \mathbb{R}^N \to \mathbb{R}$ be a measurable function and λ be a real number. Under additional global restrictions on Φ and g, existence of nontrivial solutions of the ϕ -Laplacian equation

$$-\operatorname{div}\left(\phi(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = \lambda g(\cdot)\phi(u) \quad \text{in } \mathbb{R}^N$$
(1.4)

can be proved. We address this question and solve the associated optimization problem by implementing a version of Lagrange multipliers rule [6] on the source space $\mathcal{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$. We prove that solutions of the ϕ -Laplace operator exist and are non-negative.

2. N-functions

This is a brief overview on Orlicz spaces. Fundamental definitions and properties can be found in several monographs, articles and books. For further details we refer the reader to [17, 18, 20].

A convex, even and continuous function $\Phi : \mathbb{R} \to [0, +\infty)$ satisfying $\Phi(t) = 0$ if and only if t = 0 and such that

$$\frac{\Phi(t)}{t} \to 0 \text{ as } t \to 0 \quad \text{and} \quad \frac{\Phi(t)}{t} \to +\infty \text{ as } t \to +\infty$$

is called an N-function. Equivalently [13], Φ can be represented in the integral form (1.3), where $\phi : \mathbb{R} \to \mathbb{R}$ is a non-decreasing, odd function which is right-continuous for $t \geq 0$ and which satisfies $\phi(t) = 0$ if and only if t = 0 and $\phi(t) \to +\infty$ as $t \to +\infty$. The N-function Φ satisfies a global Δ_2 -condition (see [1, pp. 266]) if there exists $\mathcal{C} > 0$ such that

$$\Phi(2t) < \mathcal{C}\Phi(t)$$

for all $t \geq 0$.

Lemma 2.1 ([1]). The N-function Φ satisfies a global Δ_2 -condition if and only if

$$q_{\Phi} := \sup_{s>0} \frac{s\phi(s)}{\Phi(s)} < +\infty. \tag{2.1}$$

2.1. Conjugates. The reciprocal function $\psi(s)$ of ϕ is defined for $s \geq 0$ by

$$\psi(s) = \sup \left\{ t : \phi(t) \le s \right\}.$$

Both functions ϕ and ψ have the same properties. Hence the integral

$$\overline{\Phi}(t) = \int_0^t \psi(s) \, ds$$

is an N-function, called the conjugate (or complementary) N-function of Φ . The pair $\Phi, \overline{\Phi}$ is called a pair of complementary N-functions. If ϕ is continuous and increases monotonically then the reciprocal ψ is the ordinary inverse of ϕ .

Lemma 2.2 ([10, Lemma 2.5]). The complementary N-function $\overline{\Phi}$ satisfies a global Δ_2 -condition if and only if

$$p_{\Phi} := \inf_{s>0} \frac{s\phi(s)}{\Phi(s)} > 1.$$
 (2.2)

The Sobolev conjugate N-function Φ_* of Φ is defined as

$$\Phi_*^{-1}(t) = \int_0^t \frac{\Phi^{-1}(s)}{s^{1+\frac{1}{N}}} ds$$

where Φ^{-1} denotes the inverse function of $\Phi|_{[0,+\infty)}$. It is known [24] that the Sobolev conjugate exists if and only if

$$\int_{0}^{1} \frac{\Phi^{-1}(s)}{s^{1+\frac{1}{N}}} ds < +\infty \quad \text{and} \quad \lim_{t \to +\infty} \int_{0}^{t} \frac{\Phi^{-1}(s)}{s^{1+\frac{1}{N}}} ds = +\infty.$$
 (2.3)

Moreover, it is known [11] that if conditions (2.3) are fulfilled then

$$\lim_{t \to +\infty} \frac{\Phi(t)}{\Phi_*(kt)} = 0 \tag{2.4}$$

for all k > 0.

Proposition 2.3 ([10]). If conditions (2.3) are met and $q_{\Phi} < N$ then the following estimates hold:

- (a) $\min\{\rho^{p_{\Phi}}, \rho^{q_{\Phi}}\}\Phi(t) \leq \Phi(\rho t) \leq \max\{\rho^{p_{\Phi}}, \rho^{q_{\Phi}}\}\Phi(t);$
- (b) $\min\{r^{p_{\Phi}^*}, r^{q_{\Phi}^*}\}\Phi_*(t) \leq \Phi_*(rt) \leq \max\{r^{p_{\Phi}^*}, r^{q_{\Phi}^*}\}\Phi_*(t);$ (c) $\min\{r^{p_{\Phi}^*}/(p_{\Phi}^*-1), r^{q_{\Phi}^*}/(q_{\Phi}^*-1)}\}\overline{\Phi_*(t)} \leq \max\{r^{p_{\Phi}^*}/(p_{\Phi}^*-1), r^{q_{\Phi}^*}/(q_{\Phi}^*-1)}\}\overline{\Phi_*(t)}$

for $r,t\geq 0$ and where $p_\Phi^*=p_\Phi\,N/(N-p_\Phi)$ and $q_\Phi^*=q_\Phi\,N/(N-q_\Phi)$ are the conjugate exponents.

Note that Proposition 2.3 ensures that both the Sobolev conjugate N-function Φ_* and its complementary $\overline{\Phi}_*$ satisfy a global Δ_2 -condition provided $q_{\Phi} < N$.

Lemma 2.4. Let 1 < r < N be such that

$$0 < A = \liminf_{s \to 0^+} \frac{\phi(s)}{s^{r-1}} \le \mathsf{B} = \limsup_{s \to 0^+} \frac{\phi(s)}{s^{r-1}} < +\infty. \tag{2.5}$$

Then for $\varepsilon > 0$ sufficiently small there exists $s_0 = s_0(\varepsilon) > 0$ such that for all $0 < s < s_0$

(a) $\frac{(A-\varepsilon)}{r}s^r \le \Phi(s) \le \frac{(B+\varepsilon)}{r}s^r$,

(b)
$$\left(\frac{s\,r^*}{\mathsf{A}}\right)^{1/r^*} \le \Phi_*(s) \le \left(\frac{s\,r^*}{\mathsf{B}}\right)^{1/r^*}$$

where $\overline{\mathsf{B}} = r^{1/r}/(\mathsf{B} + \varepsilon)^{1/r}$, $\overline{\mathsf{A}} = r^{1/r}/(\mathsf{A} - \varepsilon)^{1/r}$ and $r^* = (N-r)/Nr$ is the Sobolev conjugate exponent.

Proof. If $\varepsilon > 0$ is small then there exists $s_0 = s_0(\varepsilon) > 0$ such that if $0 < s < s_0$ then by definition

$$A - \varepsilon \le \frac{\phi(s)}{s^{r-1}} \le B + \varepsilon.$$

Denote $t = \Phi(s)$ and $t_0 = \Phi(s_0)$. The monotonicity of Φ and simple integration yield

$$\frac{(\mathsf{A} - \varepsilon)}{r} (\Phi^{-1}(t))^r \le t \le \frac{(\mathsf{B} + \varepsilon)}{r} (\Phi^{-1}(t))^r$$

provided $0 < t < t_0$. Hence $\overline{B}t^{1/r} \le \Phi^{-1}(t) \le \overline{A}t^{1/r}$ for all $0 < t < t_0$. If $s < t < t_0$ we integrate (from s to t) the latter inequalities with respect to a new variable. This gives

$$\frac{\overline{\mathsf{B}}}{r^*}(t^{r^*}-s^{r^*}) \leq \Phi_*^{-1}(t) - \Phi_*^{-1}(s) \leq \frac{\overline{\mathsf{A}}}{r^*}(t^{r^*}-s^{r^*}).$$

Letting $s \to 0^+$ we get

$$\frac{\overline{\overline{B}}}{r^*}t^{r^*} \le \Phi_*^{-1}(t) \le \frac{\overline{\overline{A}}}{r^*}t^{r^*}$$

provided $0 < t < t_0$. Finally, the change of variables $s = \Phi_*^{-1}(t)$ and $s_0 = \Phi_*^{-1}(t_0)$ and the inequality above yield the estimate in (b) provided $0 < s < s_0$.

3. Function spaces

3.1. Orlicz classes. Let $\Phi, \overline{\Phi}$ be a pair of complementary N-functions and let Ω denote an open domain in \mathbb{R}^N . The Orlicz class $\mathcal{L}_{\Phi}(\Omega)$ is the set of (equivalence classes of) real-valued measurable functions u such that $\Phi(u) \in L^1(\Omega)$. In general, $\mathcal{L}_{\Phi}(\Omega)$ is not a vector space [13]. However, the linear hull $L_{\Phi}(\Omega)$ of $\mathcal{L}_{\Phi}(\Omega)$ equipped with the Luxemburg norm

$$||u||_{\Phi,\Omega} = \inf\left\{k > 0 : \int_{\Omega} \Phi\left(\frac{u}{k}\right) \le 1\right\}$$

is a normed linear space, called the Orlicz space generated by the N-function Φ . It is known [17] that the vector space thus defined is complete.

The closure in $L_{\Phi}(\Omega)$ of the space of bounded measurable functions with compact support in Ω is denoted by $E_{\Phi}(\Omega)$. This space is separable and Banach with the inherited norm. The following lemma gives a useful characterization of a particular type of sequences in E_{Φ} in the unbounded case $\Omega = \mathbb{R}^N$.

Lemma 3.1. Let $z \in E_{\Phi}(\mathbb{R}^N)$ and fix an integer k > 1. Define the function

$$z_k(x) = \begin{cases} z(x) & \text{if } |x| > k \\ 0 & \text{if } |x| \le k. \end{cases}$$

Then $||z_k||_{\Phi \mathbb{R}^N} \to 0$ as $k \to +\infty$.

Proof. If $\varepsilon > 0$ is sufficiently small then $z/\varepsilon \in E_{\Phi}(\mathbb{R}^N) \subseteq \mathcal{L}_{\Phi}(\mathbb{R}^N)$. The latter implies $\Phi(z/\varepsilon) \in L^1(\mathbb{R}^N)$ and then there exists a positive integer k_0 such that if $k \geq k_0$ then

$$\int_{\mathbb{R}^N} \Phi \left(\frac{z_k}{\varepsilon} \right) dx = \int_{\mathbb{R}^N \backslash B_k(0)} \Phi \left(\frac{z}{\varepsilon} \right) dx \leq 1$$

where $B_k(0)$ denotes the ball of radius k and center at zero in \mathbb{R}^N . The definition of the Luxemburg norm hence yields $||z_k||_{\Phi,\mathbb{R}^N} \leq \varepsilon$ provided $k \geq k_0$.

In general, $E_{\Phi}(\Omega) \subseteq \mathcal{L}_{\Phi}(\Omega) \subseteq L_{\Phi}(\Omega)$ but if Φ satisfies a global Δ_2 -condition then $E_{\Phi}(\Omega) = L_{\Phi}(\Omega)$ and vice-versa. In this case, a known result [1, Theorem 8.20] ensures that $L_{\Phi}(\Omega)$ and $L_{\overline{\Phi}}(\Omega)$ are reflexive and separable provided $\overline{\Phi}$ satisfies a global Δ_2 -condition as well. Since this result remains valid after replacing Φ by its Sobolev conjugate Φ_* (provided the latter exists), Proposition 2.3 guarantees the validity of the following result.

Corollary 3.2. If (2.3) are satisfied and $q_{\Phi} < N$ then the Orlicz space $L_{\Phi_{\bullet}}(\Omega)$ is reflexive.

It is well known [1, 13] that one can identify the dual space of $E_{\Phi}(\Omega)$ with $L_{\overline{\Phi}}(\Omega)$ and the dual space of $E_{\overline{\Phi}}(\Omega)$ with $L_{\Phi}(\Omega)$. Moreover, if $u \in L_{\Phi}(\Omega)$ and $v \in L_{\overline{\Phi}}(\Omega)$ then the inequality

$$\int_{\Omega} |uv| \, dx \le 2||u||_{\Phi,\Omega} \, ||v||_{\overline{\Phi},\Omega} \tag{3.1}$$

holds. This estimate is an extension of Hölder's inequality to Orlicz spaces.

An Orlicz-Sobolev space. The Orlicz-Sobolev space $W^1L_{\Phi}(\Omega)$ is the vector space of functions in $L_{\Phi}(\Omega)$ with first distributional derivatives in $L_{\Phi}(\Omega)$. This space is Banach with the norm

$$|||u|||_{\Omega} = ||u||_{\Phi,\Omega} + \sum_{i=1}^{N} ||\partial_{x_i} u||_{\Phi,\Omega}$$
 (3.2)

where ∂_{x_i} denotes the partial derivative $\partial/\partial x_i$. Usually, $W^1L_{\Phi}(\Omega)$ is identified with a subspace of the product $L_{\Phi}(\Omega)^{N+1} = \Pi L_{\Phi}(\Omega)$. The space $W^1L_{\Phi}(\Omega)$ is not separable in general.

- 3.2. **Approximation properties.** In what follows we consider $\Omega = \mathbb{R}^N$ in which case further characterizations are possible. The Luxemburg norm $\|\cdot\|_{\Phi,\mathbb{R}^N}$ will be simply denoted by $\|\cdot\|_{\Phi}$. The symbol $\mathcal{D}(\mathbb{R}^N)$ denotes the space of C^{∞} -functions with compact support in \mathbb{R}^N . We choose a mollifier $\rho \in \mathcal{D}(\mathbb{R}^N)$; i.e. ρ is a real-valued function such that
 - (a) $\rho(x) \geq 0$, if $x \in \mathbb{R}^N$;
 - (b) $\rho(x) = 0$, if $|x| \ge 1$;
 - (c) $\int_{\mathbb{R}^N} \rho(x) \, dx = 1.$

If ε is positive, it is clear that the function $\rho_{\varepsilon}(x) = \varepsilon^{-N} \rho(x/\varepsilon)$ is non-negative, belongs to $\mathcal{D}(\mathbb{R}^N)$ and satisfies $\rho_{\varepsilon}(x) = 0$ provided $|x| \geq \varepsilon$. In addition,

$$\int_{\mathbb{R}^N} \rho_{\varepsilon}(x) \, dx = 1. \tag{3.3}$$

If $u \in L_{\Phi}(\mathbb{R}^N)$ we define the regularized function u_{ε} of u by the convolution

$$u_{\varepsilon}(x) = (\rho_{\varepsilon} * u)(x) = \int_{\mathbb{R}^N} u(x - y) \rho_{\varepsilon}(y) dy.$$

It is easy to see that if u has compact support in \mathbb{R}^N then u_{ε} belongs to $\mathcal{D}(\mathbb{R}^N)$.

Proposition 3.3. If $u \in L_{\Phi}(\mathbb{R}^N)$ then $u_{\varepsilon} \in L_{\Phi}(\mathbb{R}^N)$ and $||u_{\varepsilon}||_{\Phi} \leq ||u||_{\Phi}$.

Proof. Let $\lambda = ||u||_{\Phi}$. Jensen's inequality [13, pp. 18] yields

$$\int_{\mathbb{R}^N} \Phi\left(\frac{u_{\varepsilon}(x)}{\lambda}\right) dx \le \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} \Phi\left(\frac{u(x-y)}{\lambda}\right) \rho_{\varepsilon}(y) dy\right) dx. \tag{3.4}$$

Define the function $F(x,y) = \Phi(u(x-y)/\lambda)\rho_{\varepsilon}(y)$. It is clear from the definition of λ that

$$\int_{\mathbb{R}^N} F(x, y) \, dx = \rho_{\varepsilon}(y) \int_{\mathbb{R}^N} \Phi\left(\frac{u(x - y)}{\lambda}\right) dx \le \rho_{\varepsilon}(y). \tag{3.5}$$

Integration of this inequality with respect to y and condition (3.3) imply $F \in L^1(\mathbb{R}^N \times \mathbb{R}^N)$. Hence Fubini's theorem and (3.4) yield

$$\int_{\mathbb{R}^N} \Phi\left(\frac{u_{\varepsilon}(x)}{\lambda}\right) dx \le \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} \Phi\left(\frac{u(x-y)}{\lambda}\right) dx\right) \rho_{\varepsilon}(y) dy \le 1$$

and then $u_{\varepsilon} \in L_{\Phi}(\mathbb{R}^N)$. By definition of the Luxemburg norm, $||u_{\varepsilon}||_{\Phi} \leq \lambda = ||u||_{\Phi}$.

Lemma 3.4 ([14]). If $u \in E_{\Phi}(\mathbb{R}^N)$ then $||u_{\varepsilon} - u||_{\Phi} \to 0$ as $\varepsilon \to 0$.

4. The homogeneous Orlicz space $\mathscr{D}_{0}^{1,\Phi}(\mathbb{R}^{N})$

In what follows we assume that $\phi: \mathbb{R} \to \mathbb{R}$ is an odd, non-decreasing and not-necessarily differentiable homeomorphism which generates the N-function (1.3). We suppose that condition (2.1) is fulfilled; i.e. Φ satisfies a global Δ_2 -condition. We will assume that (2.3) are met as well, so that the Sobolev conjugate Φ_* is defined. The set $B_R(x_0) \subseteq \mathbb{R}^N$ will denote the ball of radius R with center at $x_0 \in \mathbb{R}^N$. As mentioned previously, the operator ∂_{x_i} will denote the partial derivative $\partial/\partial x_i$, $i=1,\ldots,N$. We start out by defining the space

$$\mathscr{D}^{1,\Phi}(\mathbb{R}^N) = \left\{ u \in L_{\Phi_*}(\mathbb{R}^N) : |\nabla u| \in L_{\Phi}(\mathbb{R}^N) \right\}.$$

Proposition 4.1. The space $\mathcal{D}^{1,\Phi}(\mathbb{R}^N)$ equipped with the norm

$$||u||_{1,\Phi} = ||u||_{\Phi_*} + |||\nabla u|||_{\Phi}. \tag{4.1}$$

is complete.

Proof. Let $\{u_n\}$ be a Cauchy sequence in $\mathscr{D}^{1,\Phi}(\mathbb{R}^N)$; that is,

$$||u_n - u_m||_{\Phi_*} \to 0 \text{ and } |||\nabla u_n - \nabla u_m|||_{\Phi} \to 0$$
 (4.2)

as $n, m \to +\infty$. Since $L_{\Phi_*}(\mathbb{R}^N)$ is a Banach space we can find $u \in L_{\Phi_*}(\mathbb{R}^N)$ such that $u_n \to u$ in $L_{\Phi_*}(\mathbb{R}^N)$. The second condition in (4.2) implies that $\{\partial_{x_i}u_n\}$ is a Cauchy sequence in $L_{\Phi}(\mathbb{R}^N)$. Then for each index $i=1,\ldots,N$ there exists $\omega_i \in L_{\Phi}(\mathbb{R}^N)$ such that $\partial_{x_i}u_n \to \omega_i$ in $L_{\Phi}(\mathbb{R}^N)$. Since $\partial_{x_i}u_n$ is the weak derivative of u_n we have $\partial_{x_i}u_n \in L_{\Phi}(\mathbb{R}^N)$. Then

$$-\int_{\mathbb{R}^N} u_n \, \partial_{x_i} \psi \, dx = \int_{\mathbb{R}^N} \partial_{x_i} u_n \, \psi \, dx$$

for all $\psi \in \mathcal{D}(\mathbb{R}^N)$. Hölder's inequality (3.1) and uniqueness of limits yield

$$-\int_{\mathbb{R}^N} u \, \partial_{x_i} \psi \, dx = \int_{\mathbb{R}^N} \omega_i \, \psi \, dx.$$

Thus, we get $\partial_{x_i} u = \omega_i \in L_{\Phi}(\mathbb{R}^N)$ and $||u_n - u||_{1,\Phi} \to 0$ as $n \to +\infty$.

Definition 4.2. The homogeneous Orlicz space $\mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$ is the completion of $\mathcal{D}(\mathbb{R}^{N})$ with respect to the norm (4.1). Equivalently,

$$\mathscr{D}^{1,\Phi}_{o}(\mathbb{R}^{N}) = \operatorname{cl}_{\mathscr{D}^{1,\Phi}(\mathbb{R}^{N})} \mathcal{D}(\mathbb{R}^{N})$$

where $\operatorname{cl}_{\mathscr{D}^{1,\Phi}(\mathbb{R}^N)}$ denotes the closure operator.

The space $\mathcal{D}_{0}^{1,\Phi}(\mathbb{R}^{N})$ is endowed with the seminorm

$$||u||_{o,\Phi} = |||\nabla u||_{\Phi}. \tag{4.3}$$

Lemma 4.3. On $\mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$ the seminorm (4.3) defines a norm which is equivalent to (4.1).

Proof. By [8, Theorem 3.4], if $u \in \mathcal{D}(\mathbb{R}^N)$ then

$$||u||_{\Phi_*} \le \mathscr{C}(N) |||\nabla u|||_{\Phi} = \mathscr{C}(N) ||u||_{o,\Phi}$$

$$\tag{4.4}$$

where $\mathscr{C}(N)$ is a positive constant. This inequality extends to all of $\mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$ by density.

We remark that since $\mathcal{D}(\mathbb{R}^N) \subseteq \mathcal{D}_o^{1,\Phi}(\mathbb{R}^N)$, the inclusions

$$W^{1}L_{\Phi}(\mathbb{R}^{N}) \subseteq \mathcal{D}_{0}^{1,\Phi}(\mathbb{R}^{N}) \subseteq \mathcal{D}^{1,\Phi}(\mathbb{R}^{N}) \tag{4.5}$$

hold. Example 4.7 below proves that there exist N-functions Φ for which the inclusion $W^1L_{\Phi}(\mathbb{R}^N)\subseteq \mathcal{D}^{1,\Phi}(\mathbb{R}^N)$ is strict.

The following theorem is the main result in this article.

Theorem 4.4. Assume that there exists 1 < r < N such that estimates (2.5) are fulfilled. If $q_{\Phi} < N$ then the reversed inclusion $\mathscr{D}^{1,\Phi}(\mathbb{R}^N) \subseteq \mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^N)$ holds as well. That is,

$$\mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N}) = \{ u \in L_{\Phi_{*}}(\mathbb{R}^{N}) : |\nabla u| \in L_{\Phi}(\mathbb{R}^{N}) \}.$$

Proof. Take $u \in \mathcal{D}^{1,\Phi}(\mathbb{R}^N)$ and define $\omega \in \mathcal{D}(\mathbb{R}^N)$ by

$$\omega(x) = \begin{cases} 0 & \text{if } |x| \ge 2, \\ 1 & \text{if } |x| \le 1. \end{cases}$$

Next, form the functions

$$\omega_k(x) = \omega\left(\frac{x}{k}\right)$$
 and $u_k(x) = u(x)\,\omega_k(x), \quad k \in \mathbb{N}.$

For each fixed $k \in \mathbb{N}$ we consider the sequence of regularized functions $v_n^k = \rho_{1/n} * u_k$, $n \in \mathbb{N}$, where $\rho_{1/n}(x) = (1/n)^{-N}\rho(nx)$ and ρ is the mollifier satisfying (a), (b) and (c) in §3.2. Note that as u_k has compact support the convolution $v_n^k \in \mathcal{D}(\mathbb{R}^N)$. Moreover, since $\partial_{x_i} v_n^k = \rho_{1/n} * \partial_{x_i} u_k \in E_{\Phi}(\mathbb{R}^N)$, Lemma 3.4 implies

$$\|\partial_{x_i} v_n^k - \partial_{x_i} u_k\|_{\Phi} \to 0 \text{ as } n \to +\infty.$$

Then, for $k \in \mathbb{N}$, we have

$$\lim_{n \to +\infty} \||\nabla v_n^k - \nabla u_k|\|_{\Phi} = 0.$$

For every natural number k, Cantor's diagonalization method produces an integer $n_k \in \mathbb{N}$ (which depends only on k) such that if we set $v_k = v_{n_k}^k = \rho_{1/n_k} * u_k$, then

$$\||\nabla v_k - \nabla u_k|\|_{\Phi} \le \frac{1}{k}, \quad k \in \mathbb{N}.$$

The triangle inequality thus implies

$$\||\nabla v_k - \nabla u|\|_{\Phi} \le \frac{1}{k} + \||\nabla u_k - \nabla u|\|_{\Phi}.$$

We must prove that

$$\lim_{k \to +\infty} \||\nabla u_k - \nabla u|\|_{\Phi} = 0. \tag{4.6}$$

We note that the product rule yields $\partial_{x_i} u_k = u \, \partial_{x_i} \omega_k + \omega_k \, \partial_{x_i} u$ and hence

$$\||\nabla u_k - \nabla u|\|_{\Phi} \le \|(1 - \omega_k)|\nabla u|\|_{\Phi} + \||u \nabla \omega_k|\|_{\Phi}.$$

Since Φ is increasing,

$$\int_{\mathbb{R}^N} \Phi\Big((1 - \omega_k) \frac{|\nabla u|}{\lambda} \Big) \, dx \le \int_{\mathbb{R}^N \setminus \overline{B_k(0)}} \Phi\Big(\frac{|\nabla u|}{\lambda} \Big) \, dx$$

where the parameter $\lambda > 0$ is arbitrary. Note that $L_{\Phi}(\mathbb{R}^N) = \mathcal{L}_{\Phi}(\mathbb{R}^N)$ since Φ satisfies a Δ_2 -condition. Therefore $\Phi(|\nabla u|/\lambda) \in L^1(\mathbb{R}^N)$. The definition of the Luxemburg norm thus implies

$$||(1-\omega_k)|\nabla u||_{\Phi} \to 0 \text{ as } k \to +\infty.$$

To prove (4.6) we need $||u\nabla\omega_k|||_{\Phi} \to 0$ as $k \to +\infty$. This is the case. Indeed, if $\varepsilon > 0$ is sufficiently small, there exists $s_0 = s_0(\varepsilon)$ such that items (a) and (b) from Lemma 2.4 will be satisfied for all $0 < s < s_0$. Also, note that (2.4) implies

$$\mathsf{C} := \sup_{s > s_0} \frac{\Phi(s)}{\Phi_*(s)} < +\infty. \tag{4.7}$$

We define the sets $\Omega_1 = \{x \in \mathbb{R}^N : |u(x)| < s_0\}$ and $\Omega_2 = \{x \in \mathbb{R}^N : |u(x)| \ge s_0\}$ and take the closed annulus $A_k = \overline{B_{2k}(0)} \backslash B_k(0) \subseteq \mathbb{R}^N$. Choose λ positive and denote by $M = \sup_{\mathbb{R}^N} \partial_{x_i} \omega$. We take k sufficiently large such that $k > M/\lambda$. The monotonicity of Φ and (4.7) yield

$$\begin{split} &\int_{A_{k}} \Phi\left(\frac{1}{\lambda}|\partial_{x_{i}}w_{k}||u|\right) dx \\ &= \int_{A_{k}\cap\Omega_{1}} \Phi\left(\frac{1}{\lambda k}|\partial_{x_{i}}w||u|\right) dx + \int_{A_{k}\cap\Omega_{2}} \Phi\left(\frac{1}{\lambda k}|\partial_{x_{i}}w||u|\right) dx \\ &\leq \int_{A_{k}\cap\Omega_{1}} \Phi\left(\frac{M}{\lambda k}|u|\right) dx + \int_{A_{k}\cap\Omega_{2}} \Phi(|u|) dx \\ &\leq \int_{A_{k}\cap\Omega_{1}} \Phi\left(\frac{M}{\lambda k}|u|\right) dx + \mathsf{C} \int_{A_{k}} \Phi_{*}(|u|) dx. \end{split} \tag{4.8}$$

Since $u \in L_{\Phi_*}(\mathbb{R}^N)$ it is evident that $\int_{A_k} \Phi_*(|u|) dx \to 0$ as $k \to +\infty$.

Note that the choice of k above implies that $M|u|/\lambda k < s_0$ on Ω_1 . Item (a) in Lemma 2.4 yields the following estimate for the integral on the right-hand side in (4.8),

$$\int_{A_k\cap\Omega_1} \Phi\Big(\frac{M}{\lambda k}|u|\Big)\,dx \leq (\mathsf{B} + \varepsilon)\frac{M^r}{r\lambda^r k^r}\int_{A_k\cap\Omega_1} |u|^r\,dx. \tag{4.9}$$

Since Φ_* satisfies a global Δ_2 -condition, $\Phi_*(|u|) \in L_1(A_k \cap \Omega_1)$. Item (b) in Lemma 2.4 yields

$$\mathscr{A}(r,\varepsilon)|u|^{\frac{Nr}{N-r}} \le \Phi_*(|u|)$$

where $\mathscr{A}(r,\varepsilon)$ is positive. Therefore $|u|^r \in L^{\frac{N}{N-r}}(A_k \cap \Omega_1)$ and then Hölder's inequality, with p = N/(N-r) and q = N/r, implies

$$\int_{A_k \cap \Omega_1} |u|^r dx \le \left(\max(A_k \cap \Omega_1) \right)^{r/N} \left(\int_{A_k \cap \Omega_1} |u|^{\frac{Nr}{N-r}} dx \right)^{\frac{N-r}{N}}$$

$$\le \left(\max(\overline{B_{2k}(0)}) \right)^{r/N} \left(\int_{A_k \cap \Omega_1} |u|^{\frac{Nr}{N-r}} dx \right)^{\frac{N-r}{N}}$$

where $\operatorname{meas}(\overline{B_{2k}(0)}) = \pi^{N/2}(2k)^N/\Gamma(N/2+1)$ is the volume of the closed ball $\overline{B_{2k}(0)}$ and Γ is Euler's gamma function. Thus, we obtain

$$\int_{A_k \cap \Omega_1} |u|^r dx \le \mathscr{B}k^r \left(\int_{A_k \cap \Omega_1} |u|^{\frac{Nr}{N-r}} dx \right)^{\frac{N-r}{N}}$$

where $\mathscr{B} = \mathscr{B}(r, N)$ is a positive constant. Therefore, estimate (4.9) yields

$$\int_{A_k\cap\Omega_1}\Phi\Big(\frac{M}{\lambda k}|u|\Big)dx\leq \mathscr{B}\cdot (\mathsf{B}+\varepsilon)\frac{M^r}{r\lambda^r}\Big(\int_{A_k\cap\Omega_1}|u|^{\frac{N_r}{N-r}}\,dx\Big)^{\frac{N-r}{N}}.$$

Since the integral on the right tends to 0 as $k \to +\infty$, from (4.8) we obtain

$$\int_{A_k} \Phi\left(\frac{1}{\lambda} |\partial_{x_i} w_k| |u|\right) dx \to 0 \quad \text{as } k \to +\infty.$$

The definition of the Luxemburg norm thus ensures $||u\nabla\omega_k|||_{\Phi} \to 0$ as $k \to +\infty$ and hence (4.6) holds.

To conclude the proof we must show that $\|v_k - u\|_{\Phi_*} \to 0$ as $k \to +\infty$. Notice that $v_k - u \in \mathscr{D}^{1,\Phi}(\mathbb{R}^N) \cap L^1(\mathbb{R}^N)$ and hence inequality (4.4) does not apply in this case. We proceed as follows, instead. The triangle inequality and Proposition 3.3 yield

$$||v_k - u||_{\Phi_*} = ||\rho_{1/n_k} * u_k - u||_{\Phi_*}$$

$$\leq ||\rho_{1/n_k} * (\omega_k u - u)||_{\Phi_*} + ||\rho_{1/n_k} * u - u||_{\Phi_*}$$

$$\leq ||\omega_k u - u||_{\Phi_*} + ||\rho_{1/n_k} * u - u||_{\Phi_*}.$$

Since Φ_* satisfies a global Δ_2 -condition we have $\omega_k u - u \in \mathcal{D}^{1,\Phi}(\mathbb{R}^N) \subseteq L_{\Phi_*}(\mathbb{R}^N) = E_{\Phi_*}(\mathbb{R}^N)$. Lemma 3.1 (with $z_k = \omega_k u - u$) produces $\|\omega_k u - u\|_{\Phi_*} \to 0$ as $k \to +\infty$. Lemma 3.4 in turn implies that $\|\rho_{1/n_k} * u - u\|_{\Phi_*} \to 0$ as $k \to +\infty$ and hence the inequality above ensures that $v_k \to u$ in $L_{\Phi_*}(\mathbb{R}^N)$. Along with (4.6), the latter implies $\|v_k - u\|_{1,\Phi} \to 0$ as $k \to +\infty$. The proof of the theorem is complete. \square

Example 4.5. We define

$$\phi_1(s) = \frac{|s|^{p-2}s}{\log(1+|s|)},$$

where p > 2. In this case,

$$\Phi_1(s) = \int_0^s \phi_1(t) dt = \frac{|s|^p}{p \log(1+|s|)} + \frac{1}{p} \int_0^{|s|} \frac{t^p}{(1+t)(\ln(1+t))^2} dt.$$

If we take $\alpha = p - 1$ and $\beta = 1$ in [7, Example III], then we obtain

$$p_{\Phi_1} = \inf_{s>0} \frac{s\phi_1(s)}{\Phi_1(s)} = p-1$$
 and $q_{\Phi_1} = \sup_{s>0} \frac{s\phi_1(s)}{\Phi_1(s)} = p$.

By Lemma 2.1, Φ_1 satisfies a Δ_2 -condition. Since p>2 estimate (2.2) is also fulfilled (i.e. the complementary N-function $\overline{\Phi_1}$ satisfies a Δ_2 -condition). On the other hand, the choice r=p-1 and L'Hôpital's rule yield

$$\liminf_{s \to 0^+} \frac{\phi_1(s)}{s^{r-1}} = \limsup_{s \to 0^+} \frac{\phi_1(s)}{s^{r-1}} = \lim_{s \to 0^+} \frac{\phi_1(s)}{s^{r-1}} = \lim_{s \to 0^+} \frac{s}{\log(1+s)} = 1.$$

Conditions (2.5) are met in this case and hence Theorem 4.4 implies $\mathscr{D}^{1,\Phi_1}(\mathbb{R}^N) = \mathscr{D}^{1,\Phi_1}_o(\mathbb{R}^N)$.

Example 4.6. Consider the function $\phi_2(s) = |s|^{p-2} s \log(1 + \mu + |s|)$ where p > 1 and $\mu > 0$ is a parameter. A simple calculation shows that

$$\Phi_2(s) = \int_0^s \phi_2(t) dt = \frac{|s|^p}{p} \log(1 + \mu + |s|) - \frac{1}{p} \int_0^{|s|} \frac{t^p}{1 + \mu + t} dt.$$

For values s > 0 we consider the differentiable function

$$g_{\mu}(s) = \frac{\int_0^s \frac{t^p}{1+\mu+t} dt}{s^p \log(1+\mu+s)}.$$

A simple application of L'Hôpital's rule proves that $g_{\mu}(s) \to 0$ as $s \to 0$ and also $g_{\mu}(s) \to 0$ as $s \to +\infty$. Since

$$s^{p}\log(1+\mu+s) = p\int_{0}^{s} t^{p-1}\log(1+\mu+t)dt + \int_{0}^{s} \frac{t^{p}}{1+\mu+t}dt$$

it is evident that $0 < g_{\mu}(s) < 1$ if s > 0. It follows that

$$\frac{s\phi_2(s)}{\Phi_2(s)} = \frac{p}{1 - g_{\mu}(s)} \ge \lim_{s \to 0^+} \frac{s\phi_2(s)}{\Phi_2(s)} = p$$

for all s > 0. Therefore

$$p_{\Phi_2} = \inf_{s>0} \frac{s\phi_2(s)}{\Phi_2(s)} = \lim_{s\to 0^+} \frac{s\phi_2(s)}{\Phi_2(s)} = p. \tag{4.10}$$

On the other hand, the implicit function theorem allows to determine a local maximum of g_{μ} at $s=s^*>0$ from the equation

$$s^{p+1}\log(1+\mu+s) = \left(\int_0^s \frac{t^p}{1+\mu+t} dt\right) \left(p(1+\mu+s)\log(1+\mu+s) + s\right).$$

The condition $g_{\mu}(s) \to 0$ as $s \to +\infty$ ensures that s^* is also global. Therefore,

$$q_{\Phi_2} = \sup_{s>0} \frac{s\phi_2(s)}{\Phi_2(s)} = \max_{s>0} \frac{s\phi_2(s)}{\Phi_2(s)} = \frac{p}{1 - g_{\mu}(s^*)} < +\infty.$$

By Lemma 2.1, Φ_2 satisfies a Δ_2 -condition. Bound (4.10) implies that estimate (2.2) is also fulfilled in this case (i.e. $\overline{\Phi_2}$ satisfies a Δ_2 -condition). Furthermore, if we choose r=p then

$$0 < \liminf_{s \to 0^+} \frac{\phi_2(s)}{s^{r-1}} = \limsup_{s \to 0^+} \frac{\phi_2(s)}{s^{r-1}} = \lim_{s \to 0^+} \frac{\phi_2(s)}{s^{r-1}} = \log(1+\mu) < +\infty.$$

Hence conditions (2.5) are fulfilled. Theorem 4.4 yields $\mathscr{D}^{1,\Phi_2}(\mathbb{R}^N) = \mathscr{D}_0^{1,\Phi_2}(\mathbb{R}^N)$.

Example 4.7. This example proves that there exists an N-function Φ for which the corresponding Orlicz-Sobolev space $W^1L_{\Phi}(\mathbb{R}^N)$ is in general a proper subset of $\mathcal{D}^{1,\Phi}(\mathbb{R}^N)$. Consider p>1 and set the real homeomorphism $\phi(t)=|t|^{p-2}t$. Let us define a function

$$u(x) = (1 + ||x||^2)^{-s}$$

where ||x|| is the Euclidean norm of $x \in \mathbb{R}^N$ and s is a positive quantity to be fixed later. It is easy to see that

$$|\nabla u(x)| = \frac{2s||x||}{(1+||x||^2)^{s+1}}.$$

We take spherical coordinates $\mathbf{F}:(x_1,\ldots,x_N)\to(\rho,\varphi_1,\ldots,\varphi_{N-1})$ in \mathbb{R}^N defined by

$$x_1 = \rho \cos \varphi_1$$

$$x_i = \rho \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{i-1} \cos \varphi_i, \quad i = 2, \dots, N-1$$

$$x_N = \rho \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{N-2} \sin \varphi_{N-1}$$

where $\rho = (x_1^2 + \ldots + x_N^2)^{1/2}$ and $\varphi_i \in [0, \pi]$ for $i = 1, \ldots, N-2$ and $\varphi_{N-1} \in [0, 2\pi]$. A simple computation yields the Jacobian:

$$\mathbf{J}_{\mathbf{F}}(\rho,\varphi_1,\ldots,\varphi_{N-1}) = \frac{\partial(x_1,x_2,\ldots,x_N)}{\partial(\rho,\varphi_1,\ldots,\varphi_{N-1})}$$
$$= \rho^{N-1}(\sin\varphi_1)^{N-2}(\sin\varphi_2)^{N-3}\ldots(\sin\varphi_{N-3})^2\sin\varphi_{N-2}.$$

Let us define the integral

$$I := \int_{\mathbb{R}^N \setminus B_1(0)} \frac{dx}{(1 + ||x||^2)^{sr}}$$

where 1 < r < N. (Obviously, $u^r \in L^1(\mathbb{R}^N)$ if and only if I is finite). Change to spherical coordinates and further integration yields

$$I = \int_{1}^{+\infty} \int_{0}^{2\pi} \int_{0}^{\pi} \dots \int_{0}^{\pi} \frac{\mathbf{J}_{\mathbf{F}}(\rho, \varphi_{1}, \dots, \varphi_{N-1})}{(1+\rho^{2})^{sr}} d\varphi_{1} \dots d\varphi_{N-2} d\varphi_{N-1} d\rho$$
$$= \mathscr{C} \int_{1}^{+\infty} \frac{\rho^{N-1}}{(1+\rho^{2})^{sr}} d\rho$$

where \mathscr{C} depends on $\int_0^{\pi} \sin^k \varphi_{N-k-1} d\varphi_{N-k-1}$, for all index $k = 1, \dots, N-2$. The limit comparison test for improper integrals yields

$$\int_{1}^{+\infty} \frac{\rho^{N-1}}{(1+\rho^2)^{sr}} \, d\rho < +\infty$$

if and only if N < 2sr. If we set r = p in the latter inequality, we obtain that convergence of the integral is equivalent to the condition s > N/2p. Thus if $s \le N/2p$ we get $u \notin L^p(\mathbb{R}^N)$. Likewise, in the particular case $r = p^* = Np/(N-p)$, convergence of the integral means s > (N-p)/2p. Therefore,

$$u \not\in L^p(\mathbb{R}^N)$$
 and $u \in L^{p^*}(\mathbb{R}^N)$ if and only if $s \in \left(\frac{N-p}{2p}, \frac{N}{2p}\right]$.

The same argument we employed above proves that

$$J := \int_{\mathbb{R}^N \setminus B_1(0)} |\nabla u|^p \, dx = (2s)^p \mathscr{C} \int_1^{+\infty} \frac{\rho^{N+p-1}}{(1+\rho^2)^{(s+1)p}} \, d\rho.$$

Hence, the integral J is finite if and only if N + p - 2sp - 2p < 0. That is,

$$|\nabla u| \in L^p(\mathbb{R}^N)$$
 if and only if $s \in \left(\frac{N-p}{2p}, +\infty\right)$.

We conclude that $u \in \mathcal{D}^{1,\Phi}(\mathbb{R}^N)$ and $u \notin W^1L_{\Phi}(\mathbb{R}^N)$ (with $\Phi(t) = |t|^p/p$) provided the parameter $s \in ((N-p)/2p, N/2p]$.

5. Application

In this section the number p_{Φ} defined in (2.2) plays a paramount role. We prove existence of nontrivial and non-negative solutions of equation (1.4) under the assumptions made at the beginning of Section 4. Additionally we will require the following hypotheses:

- (H0) Condition (2.2) is fulfilled (i.e. $\overline{\Phi}$ satisfies a Δ_2 -condition);
- (H1) $q_{\Phi} < N$ and $q_{\Phi} < p_{\Phi}^* = p_{\Phi} N/(N p_{\Phi})$ (the conjugate exponent); (H2) $g \in L^{q_{\Phi}^*/(q_{\Phi}^* p_{\Phi})}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ and the positive part $g^+ \not\equiv 0$.

We define functionals

$$I(u) = \int_{\mathbb{R}^N} \Phi(|\nabla u|) dx$$
 and $G(u) = \int_{\mathbb{R}^N} g(x) \Phi(u) dx$.

Since Φ satisfies a global Δ_2 -condition, the functional I is well-defined on $\mathscr{D}_o^{1,\Phi}(\mathbb{R}^N)$ and real-valued there. Further, [10, Lemma A.3] ensures that I is of class C^1 with Fréchet derivative

$$I'(u)(v) = \int_{\mathbb{D}^N} \phi(|\nabla u|) \frac{\nabla u}{|\nabla u|} \cdot \nabla v dx.$$

Application of the same lemma (with the term $f(x,t) = g(x)\phi(t)$ in (1.2)) shows that G is real-valued on $\mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$ and that $G:\mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N})\to\mathbb{R}$ is of class C^{1} as well with Fréchet derivative

$$G'(u)(v) = \int_{\mathbb{R}^N} g(x)\phi(u)vdx$$

where $u, v \in \mathcal{D}^{1,\Phi}_{0}(\mathbb{R}^{N})$.

Proposition 5.1. Let $\{u_n\}$ be a sequence in $\mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^N)$ such that $u_n \rightharpoonup u$ (weak convergence). Then there exists a subsequence denoted again by $\{u_n\}$ such that $G(u_n) \to G(u)$.

Proof. By definition there exists d'>0 such that $||u_n||_{\Phi_*}\leq \mathscr{C}(N) ||u_n||_{o,\Phi}\leq d'$ for all $n \in \mathbb{N}$, where $\mathscr{C}(N)$ is the constant in (4.4). Choose R > 0 and let B_R be a ball of radius R centered at 0. For each natural number n we have $G(u_n) - G(u) = I_n^R + J_n^R$, where

$$I_n^R = \int_{B_R} g(x) \left(\Phi(u_n) - \Phi(u) \right) dx, \quad J_n^R = \int_{\mathbb{R}^N \setminus B_R} g(x) \left(\Phi(u_n) - \Phi(u) \right) dx.$$

Let us define $A_{R,n}=\{x\in\mathbb{R}^N\backslash B_R:0\leq u_n(x)\leq 1\}$ and $C_{R,n}=\{x\in\mathbb{R}^N\backslash B_R:u_n(x)\geq 1\}$. Let $\sigma=q_\Phi^*/(q_\Phi^*-p_\Phi)$. Items (a) and (b) in Proposition 2.3 applied with $\rho = u_n \in A_{R,n}$ and t = 1 yield

$$|\Phi(u_n)|^{q_{\Phi}^*/p_{\Phi}} \le |u_n^{p_{\Phi}}\Phi(1)|^{q_{\Phi}^*/p_{\Phi}} = |u_n|^{q_{\Phi}^*}(\Phi(1))^{q_{\Phi}^*/p_{\Phi}} \le \frac{(\Phi(1))^{q_{\Phi}^*/p_{\Phi}}}{\Phi_*(1)} \Phi_*(u_n).$$

Hence Holder's inequality produces

$$\int_{A_{R,n}} |g\Phi(u_n)| \, dx \le \Phi(1) \left(\int_{A_{R,n}} |g|^{\sigma} \, dx \right)^{1/\sigma} \left(\int_{A_{R,n}} |u_n|^{q_{\Phi}^*} \, dx \right)^{p_{\Phi}/q_{\Phi}^*} \\
\le C_1 \left(\int_{\mathbb{R}^N \setminus B_R} |g|^{\sigma} \, dx \right)^{1/\sigma} \left(\int_{\mathbb{R}^N} \Phi_*(u_n) \, dx \right)^{p_{\Phi}/q_{\Phi}^*}$$

where $C_1 = \Phi(1)/(\Phi_*(1))^{p_{\Phi}/q_{\Phi}^*}$. Since $\sigma \leq p_{\Phi}^*/(p_{\Phi}^* - q_{\Phi})$ by interpolation we have $g \in L^{p_{\Phi}^*/(p_{\Phi}^* - q_{\Phi})}(\mathbb{R}^N)$ as well. If $u \in C_{R,n}$ then analogue arguments as the ones used above yield

$$\int_{C_{R,n}} |g\Phi(u_n)| \, dx \le C_2 \Big(\int_{\mathbb{R}^N \setminus B_R} |g|^{\sigma^*} \, dx \Big)^{1/\sigma^*} \Big(\int_{\mathbb{R}^N} \Phi_*(u_n) \, dx \Big)^{q_\Phi/p_\Phi^*}$$

where $\sigma^* = p_{\Phi}^*/(p_{\Phi}^* - q_{\Phi})$ and $C_2 > 0$. Since $||u_n||_{\Phi_*} \le d'$ the integral $\int_{\mathbb{R}^N} \Phi_*(u_n) dx$ is bounded and then the two inequalities above imply

$$\int_{\mathbb{R}^N} |g\Phi(u_n)| \, dx < +\infty.$$

Thus, given $\varepsilon > 0$, there exists $R_0 = R_0(\varepsilon) > 0$ such that

$$\int_{\mathbb{R}^N \backslash B_{R_0}} |g\Phi(u_n)| \, dx < \varepsilon/4.$$

One can similarly prove that

$$\int_{\mathbb{R}^N \setminus B_{R_1}} |g\Phi(u)| \, dx < \varepsilon/4$$

for R_1 large enough. Thus, if $R_2 = \max\{R_0, R_1\}$ then we have $|J_n^{R_2}| < \varepsilon/2$ for $n \in \mathbb{N}$.

Let us study now $I_n^{R_2}$. Since the injection $L_{\Phi^*}(B_{R_2}) \hookrightarrow L_{\Phi}(B_{R_2})$ is continuous (see [1, Theorem 8.16]) the inclusions (4.5) yield $u_n, u \in W^1L_{\Phi}(B_{R_2})$ and hence there exist $d, \tilde{d} > 0$ such that

$$|\!|\!|\!| u_n |\!|\!|\!|_{B_{R_2}} \le d |\!|\!| u_n |\!|\!|_{\mathrm{o},\Phi} \le \tilde{d}$$

for all $n \in \mathbb{N}$ where $\|\cdot\|_{B_{R_2}}$ is the norm (3.2) on the ball B_{R_2} . Since the imbedding $W^1L_{\Phi}(B_{R_2}) \hookrightarrow L_{\Phi}(B_{R_2})$ is compact (see [11, Theorem 2.2]) we have $u_n \to u$ in $L_{\Phi}(B_{R_2})$. Thus, passing to a subsequence (denoted by $\{u_n\}$ again) we can further assume that $u_n \to u$, a.e. in B_{R_2} and that there exists $w \in L_{\Phi}(B_{R_2})$ such that $|u_n| \leq w$, a.e. in B_{R_2} , for all $n \in \mathbb{N}$. By Lebesgue's dominated convergence on B_{R_2} ,

$$\lim_{n \to +\infty} \int_{B_{R_2}} |\Phi(u_n) - \Phi(u)| \, dx = 0.$$

Thus, for n sufficiently large, $|I_n^{R_2}| \leq ||g||_{\infty} ||\Phi(u_n) - \Phi(u)||_{L^1(B_{R_2})} \leq \varepsilon/2$. Since $|G(u_n) - G(u)| \leq |I_n^{R_2}| + |J_n^{R_2}|$ the result is proved.

Lemma 5.2 (Lagrange multipliers rule [6]). Let $v_0 \in \mathscr{D}_o^{1,\Phi}(\mathbb{R}^N)$ be such that $G'(v_0) \neq 0$. If I has a local minimum at v_0 with respect to the set $\{v : G(v) = G(v_0)\}$ then there exists $\lambda \in \mathbb{R}$ such that $I'(v_0) = \lambda G'(v_0)$.

Lagrange multipliers rule motivates the following definition. A pair $(\lambda, u) \in \mathbb{R} \times \mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$ is a solution of (1.4) if $\phi(|\nabla u|) \in L_{\overline{\Phi}}(\mathbb{R}^{N})$ and

$$\int_{\mathbb{R}^N} \phi(|\nabla u|) \frac{\nabla u}{|\nabla u|} \cdot \nabla \theta \, dx = \lambda \int_{\mathbb{R}^N} g(x) \phi(u) \, \theta \, dx$$

for all $\theta \in \mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$. If (λ, u) is a solution of (1.4) and $u \not\equiv 0$ we call λ an eigenvalue of (1.4) with corresponding eigenfunction u. That is, λ is the eigenvalue associated to the eigenfunction u. Note that the inclusion on the right in (4.5) ensures that any solution u belongs to $L_{\Phi_*}(\mathbb{R}^N)$ and $|\nabla u| \in L_{\Phi}(\mathbb{R}^N)$.

Theorem 5.3. The optimization problem

$$\inf_{G(u)=\mu>0} I(u)$$

has a nontrivial solution $u_{\mu} \in \mathcal{D}_{0}^{1,\Phi}(\mathbb{R}^{N})$. Define the nonzero number

$$\lambda_{\mu} = \frac{\int_{\mathbb{R}^N} \phi(|\nabla u_{\mu}|) |\nabla u_{\mu}| dx}{\int_{\mathbb{R}^N} g(x) \phi(u_{\mu}) u_{\mu} dx}.$$
 (5.1)

Then u_{μ} is a non-negative eigenfunction of equation (1.4) with associated eigenvalue $\lambda = \lambda_{\mu}$.

Proof. The first part is motivated by the ideas in the proof of [16, Theorem 3.1]. Compare also with the proof of [19, Theorem 2.2]. We prove that for any $\mu > 0$, the set $\mathcal{M}_{\mu} = \{u \in \mathscr{D}_{o}^{1,\Phi}(\mathbb{R}^{N}) : G(u) = \mu\}$ is not empty. Since G(0) = 0, by continuity of G, it will be sufficient to find $\overline{u} \in \mathcal{D}(\mathbb{R}^{N})$ such that $G(\overline{u}) \geq \mu$.

Since $g^+ \not\equiv 0$ in \mathbb{R}^N there exists a compact subset K of \mathbb{R}^N , with meas(K) > 0, such that g > 0 on K. If $r \in \mathbb{R}$ we define $u_r(x) = r\chi_K(x)$ where $\chi_K : \mathbb{R}^N \to \mathbb{R}$ is the characteristic function

$$\chi_K(x) = \begin{cases} 1 & \text{if } x \in K, \\ 0 & \text{if } x \in K^c. \end{cases}$$

We choose $r_0 > 0$ such that the number $\mu_0 = G(u_{r_0}) - \mu = \Phi(r_0) \int_K g \, dx - \mu$ be strictly positive. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain such that $K \subset \Omega$. Since the function

$$u \in L_{\Phi}(\Omega) \mapsto \Phi(u) \in L^{1}(\Omega)$$

is continuous, we have that $\Phi(u_{\varepsilon})$ converges to $\Phi(r_0\chi_K)$ in $L^1(\Omega)$, as $\varepsilon \to 0^+$ where $u_{\varepsilon} \in \mathcal{D}(\Omega)$ is the regularized function of $r_0\chi_K$ and $\mathcal{D}(\Omega)$ denotes the space of C^{∞} -functions with compact support in Ω . Hölder's inequality yields $G(u_{\varepsilon}) \to \mu + \mu_0$ and hence we can choose ε_0 sufficiently small such that $G(\overline{u}) = G(u_{\varepsilon_0}) \geq \mu$.

Denote by $\beta = \inf_{\mathcal{M}_{\mu}} I$ and let $\{u_n\}$ be a sequence in \mathcal{M}_{μ} such that

$$\lim_{n \to +\infty} I(u_n) = \beta.$$

Hence, there exists C > 1 such that for each $n \in \mathbb{N}$,

$$I(u_n) = \int_{\mathbb{R}^N} \Phi(|\nabla u_n|) dx \le \mathcal{C}.$$

Since $\Phi(u/t) \leq \Phi(u)/t$ for $t \geq 1$ (convexity), we get

$$\int_{\mathbb{R}^N} \Phi\left(\frac{|\nabla u_n|}{\mathcal{C}}\right) dx \le \int_{\mathbb{R}^N} \frac{\Phi(|\nabla u_n|)}{\mathcal{C}} dx \le 1$$

and by definition of the Luxemburg norm, $\|u_n\|_{o,\Phi} = \||\nabla u_n||_{\Phi} \leq \mathcal{C}$. That is, the minimizing sequence $\{u_n\}$ is bounded in $\mathscr{D}_o^{1,\Phi}(\mathbb{R}^N)$. Inclusions (4.5) imply that this space is a closed subspace of $L_{\Phi_*}(\mathbb{R}^N)$. Corollary 3.2 proves that $\mathscr{D}_o^{1,\Phi}(\mathbb{R}^N)$ is itself reflexive. Then there exists $u_{\mu} \in \mathscr{D}_o^{1,\Phi}(\mathbb{R}^N)$ and a subsequence in \mathcal{M}_{μ} , denoted again by $\{u_n\}$, such that $u_n \rightharpoonup u_{\mu}$ in the weak topology. As the function G is sequentially continuous with respect to this weak topology, Proposition 5.1 yields

$$G(u_{\mu}) = \lim_{n \to +\infty} G(u_n) = \mu$$

and hence $u_{\mu} \in \mathcal{M}_{\mu}$. Since the convex functional I is continuously Fréchetdifferentiable on $\mathcal{D}_{0}^{1,\Phi}(\mathbb{R}^{N})$ we obtain by [4, Corollary III.8],

$$\beta \le I(u_{\mu}) \le \liminf_{n \to +\infty} I(u_n) = \beta$$

which is what we wanted to prove.

On the other hand, as $|g\Phi(u_{\mu})| \leq |g\phi(u_{\mu})u_{\mu}|$ and $\mu \neq 0$, we obtain both $g\phi(u_{\mu})u_{\mu} \not\equiv 0$ and $g\phi(u_{\mu}) \not\equiv 0$ in \mathbb{R}^N . The latter implies that there exists $K' \subseteq \mathbb{R}^N$, with meas(K') > 0, such that $g\phi(u_{\mu}) \not\equiv 0$ on K' and the sign of $g\phi(u_{\mu})$ on K' is constant. Thus, for a suitable $r \in \mathbb{R}$,

$$\int_{\mathbb{R}^N} g(x)\phi(u_\mu)r\chi_{K'}\,dx > \int_{\mathbb{R}^N} g(x)\phi(u_\mu)u_\mu\,dx$$

where $\chi_{K'}$ is the characteristic function on K'. Since $g\phi(u_{\mu}) \in L_{\overline{\Phi}_*}(\mathbb{R}^N)$ and as the regularized function $(r\chi_{K'})_{\varepsilon} \in \mathcal{D}(\mathbb{R}^N)$ converges to $r\chi_{K'}$ in $L_{\Phi_*}(\mathbb{R}^N)$,

$$G'(u_{\mu})(u_1) = \int_{\mathbb{R}^N} g(x)\phi(u_{\mu})u_1 dx > \int_{\mathbb{R}^N} g(x)\phi(u_{\mu})u_{\mu} dx = G'(u_{\mu})(u_{\mu})$$

where $u_1 = (r \chi_{K'})_{\varepsilon}$ for $\varepsilon > 0$ sufficiently small. Notice that $G'(u_{\mu}) \not\equiv 0$ (otherwise, $0 > G'(u_{\mu})(u_{\mu}) = 0$ in the above strict inequality). By Lemma 5.2 there exists $\lambda_{\mu} \in \mathbb{R}$ such that

$$\int_{\mathbb{R}^N} \phi(|\nabla u_{\mu}|) \frac{\nabla u_{\mu}}{|\nabla u_{\mu}|} \cdot \nabla u \, dx = \lambda_{\mu} \int_{\mathbb{R}^N} g(x) \phi(u_{\mu}) \, u \, dx \tag{5.2}$$

for all $u \in \mathcal{D}_{o}^{1,\Phi}(\mathbb{R}^{N})$. Thus, u_{μ} is a weak solution of (1.4). We then set $u = u_{\mu}$ in (5.2) and we obtain the value of the eigenvalue in (5.1).

Since Φ is even it is clear that $G(|u_{\mu}|) = G(u_{\mu})$. Moreover, the chain rule implies $|\nabla |u_{\mu}|| = |\nabla u_{\mu}|$ and hence the equivalence $I(|u_{\mu}|) = I(u_{\mu})$ follows as well. Therefore, we can take $u_{\mu}(x) \geq 0$ for a.e. $x \in \mathbb{R}^{N}$. The proof of the theorem is complete.

Acknowledgements. We are grateful to the anonymous referee who made several remarks and improved the list of references.

References

- [1] R. A. Adams, John J.F. Fournier; Sobolev Spaces, 2nd edition, Academic Press, 2003.
- [2] A. Ben-Naoum, C. Troestler, M. Willen; Extrema Problems with Critical Sobolev Exponents on Unbounded Domains, Nonlinear Analysis, Theory, Methods and Applications, Vol. 26, No 4, (1996), 823–833.
- [3] V. Benci, G. Cerami; Existence of positive solutions of the equation $-\Delta u + a(x)u = u^{(N+2)/(N-2)}$ in \mathbb{R}^N , J. Func. Analysis, 88, (1990), 90–117.
- [4] H. Brezis; Analyse Functionnelle, Théories et Applications, Masson, Paris, 1983.
- [5] H. Brezis, L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Communs. pure appl. Math., 36, (1983), 437–477.
- [6] F. Browder; Variational Methods For Nonlinear Elliptic Eigenvalues Problems, Bull. Amer. Math. Soc., 71, (1965), 176–183.
- [7] Ph. Clément, B. de Pagter, G. Sweers, F. de Thélin; Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1, (2004), 241–267.
- [8] T. Donaldson and N. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, Journal Funct. Anal., 8, (1971), 52–75.
- [9] Y. Fu, Y. Shan; On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal., 5, no. 2, (2016), 121–132.
- [10] N. Fukagai, M. Ito, K. Narukawa; Positive solutions of Quasilinear Elliptic Equations with Critical Orlicz-Sobolev Nonlinearity on \mathbb{R}^N , Funkcialaj Ekvacioj, **49**, (2006), 235–267.

- [11] M. García-Huidobro, V. Le, R. Manásevich, K. Schmitt; On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, Nonlinear Differential Equations and Applications (NoDEA), 6, (1999), 207–225.
- [12] J.-P. Gossez; On a property of Orlicz-Sobolev spaces, Trends in theory and practice of nonlinear differential equations, (Arlington, Tex., 1982), 197–200, Lecture Notes in Pure and Appl. Math., 90, Dekker, New York, (1984).
- [13] J.-P. Gossez; Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, In: Svato-pluk Fučík and Alois Kufner (eds.): Nonlinear Analysis, Function Spaces and Applications, Proceedings of a Spring School held in Horní Bradlo, 1978, [Vol 1]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979. Teubner Texte zur Mathematik, pp. 59–94.
- [14] J.-P. Gossez; Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 (1982), no. 1, 17–24.
- [15] J.-P. Gossez, R. Manásevich; On a nonlinear eigenvalue problem in Orlicz-Sobolev Spaces, Proc. R. Soc. Edinburg, 132A, (2002), 891–909.
- [16] J. Huentutripay, R. Manásevich; Nonlinear eigenvalues for a Quasilinear Elliptic System in Orlicz-Sobolev Spaces, Journal of Dynamics and Differential Equations, 18, (2006), 901–929.
- [17] M. Krasnosel'skii, J. Rutic'kii; Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961
- [18] A. Kufner, O. John, S. Fuch; Function spaces, Academia, Praha, 1977.
- [19] M. Mihăilescu, V. Rădulescu, D. Repovš; On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appl. (9) 93 (2010), no. 2, 132-148.
- [20] J. Musielak; Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983.
- [21] X. Pan; Positive solutions of the elliptic equation $\Delta u^{(N+2)/(N-2)} + K(x)u^q = 0$ in \mathbb{R}^N and balls, J. math. Analysis Applic., 172, (1993), 323–338.
- [22] V. Rădulescu; Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336–369.
- [23] V. Rădulescu, D. Repovš; Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
- [24] M. M. Rao, Z. D. Ren; Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250 Marcel Dekker, New York, 2002.

Waldo Arriagada

DEPARTMENT OF APPLIED MATHEMATICS AND SCIENCES, KHALIFA UNIVERSITY, AL ZAFRANAH, P.O. BOX 127788, ABU DHABI, UNITED ARAB EMIRATES

 $E ext{-}mail\ address: waldo.arriagada@kustar.ac.ae}$

JORGE HUENTUTRIPAY

Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile

E-mail address: jorge.huentutripay@uach.cl