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CHARACTERIZATION OF A HOMOGENEOUS ORLICZ SPACE

WALDO ARRIAGADA, JORGE HUENTUTRIPAY

Communicated by Vicentiu Radulescu

Abstract. In this article we define and characterize the homogeneous Orlicz

space D1,Φ
o (RN ) where Φ : R → [0,+∞) is the N -function generated by an

odd, increasing and not-necessarily differentiable homeomorphism φ : R→ R.

The properties of D1,Φ
o (RN ) are treated in connection with the φ-Laplacian

eigenvalue problem

− div
“
φ(|∇u|)

∇u
|∇u|

”
= λ g(·)φ(u) in RN

where λ ∈ R and g : RN → R is measurable. We use a classic Lagrange rule

to prove that solutions of the φ-Laplace operator exist and are non-negative.

1. Introduction

Let N ≥ 2 be an integer. A broad subclass of maximization problems in an open
domain Ω ⊂ RN involves critical Sobolev exponents. Several articles are motivated
by the ideas and methods in the seminal paper by Brezis and Nirenberg [5], mainly
when Ω is bounded. The case Ω unbounded is treated in [3, 21]. The reference
[2] contains significant results on semilinear problems also in the unbounded case,
which are largely treated via concentration-compactness methods. In that reference
the authors introduce the space

D1,p(Ω) = {u ∈ Lp
∗
(Ω) : |∇u| ∈ Lp(Ω)} (1.1)

where 1 < p < N and p∗ = pN/(N − p) is the conjugate exponent. This space
is equipped with the norm ‖u‖1,p = ‖u‖p∗ + ‖|∇u|‖p where ‖ · ‖p is the norm in
Lp(Ω). On the other hand, the completion of the space D(Ω) of C∞-functions with
compact support in Ω with respect to the norm ‖ · ‖1,p is denoted by D1,p

o (Ω).
Equivalently,

D1,p
o (Ω) = clD1,p(Ω)D(Ω)

where clX(Y ) is the closure operator of Y in X. This space is endowed with
the gradient seminorm ‖u‖o, p = ‖|∇u|‖p. It can be easily proved that this is
actually a norm on D1,p

o (Ω) which is equivalent to ‖u‖1,p. It is moreover known
that the two spaces thus defined are reflexive and Banach for the respective norms.
Somewhat surprisingly, a fundamental characterization (see [2, Lemma 1.2]) in the
(unbounded) case Ω = RN asserts that D1,p

o (RN ) = D1,p(RN ). This equivalence
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motivates the problem whether this space is still meaningful in a larger context or
not and raises the issue about the use and place of this extended space in analysis,
particularly in optimization and differential equations. In this paper we answer
positively the former question and provide an application which well suits the latter
via a fundamental formulation in Orlicz spaces, see below. An exhaustive treatment
on the theory of these function spaces can be found in the classic textbook by
Krasnosel’skii and Rutic’kii [17] and, more recently, in references [16, 18, 24]. The
papers and monographs by Gossez [12, 13, 15] are particularly detailed and have
played a paramount role in the subject as well.

Orlicz spaces constitute a natural extension of the notion of an Lp space: the
function t 7→ |t|p entering the definition of Lp is replaced by a more general N -
function Φ : R → [0,+∞) (sometimes called a Young function). The typical
approach in the references mentioned above is mostly developed in RN with the
Lebesgue measure. One is naturally led to the question whether the properties and
structure of classic Orlicz spaces are preserved in a much more general measure
space (Ω,Σ, µ). The monograph by J. Musielak [20] studies the properties asso-
ciated with the generalized Orlicz space LΦ(Ω,Σ, µ) (such as embeddings of and
compactness in generalized Orlicz classes) in the setting of modular and parameter-
dependent families of Orlicz spaces.

An interesting source of research is given by the case of exponents p(x), where
p : Ω → (1,+∞) is a bounded function. The article [22] and excellent book [23]
are representatives in the case of nonhomogeneous differential operators containing
one or more power-type nonlinearities with variable exponents. The theory there
is developed in great generality including many possible pathologies of the Young
function. As a yet another significant contribution, the paper by Fu and Shan
[9] gives sufficient conditions for removability of isolated singular points of elliptic
equations in the Sobolev space W 1,p(x), which was first studied by Kováčik and
Rákosńık.

In this manuscript we consider the homogeneous Orlicz space D1,Φ
o (RN ). It

corresponds to the completion of D(RN ) with respect to a suitable norm, see Section
4. If additional hypotheses are fulfilled this space constitutes a natural source
of solutions of minimization problems with constraints for a wide class of energy
functionals in the generalized-Laplacian form. For example, in the article [10] the
following quasilinear elliptic problem is considered,

− div (ϕ(|∇u|)∇u) = b(|u|)u+ λf(x, u) in RN (1.2)

where the function ϕ(t)t is non-homogeneous. The term b(|u|)u denotes a critical
Sobolev growth coefficient, f(x, u) is a subcritical term and λ > 0 is a parameter.
The authors prove that any non-negative solution of this problem can be regarded
as a critical point of the variational formulation

minimize
∫

RN

(
Φ(|∇u|)−B(u)− λF (x, u)

)
dx

such that u ∈ D1,Φ
o (RN )

where B(t) and F (x, t) are the primitives of b(t)t and f(x, t), respectively, and
Φ(t) =

∫ s
0
ϕ(t)tdt. Due to some topological restrictions on D1,Φ

o (RN ) standard
methods to prove convergence of minimizing sequences for this problem are useless.
The techniques employed in [10] consist of a modification of the concentration-
compactness principle for Mountain-pass problems.
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In this article we assume that φ : R→ R is an increasing, odd and not-necessarily
differentiable homeomorphism and define the associated N -function

Φ(t) =
∫ t

0

φ(s) ds. (1.3)

Motivated by the ideas discussed above, we provide a characterization of the homo-
geneous Orlicz space D1,Φ

o (RN ) generated by Φ. This characterization asserts that
the latter space is an extension of (1.1) in a precise sense and naturally leads to the
following application. Let g : RN → R be a measurable function and λ be a real
number. Under additional global restrictions on Φ and g, existence of nontrivial
solutions of the φ-Laplacian equation

− div
(
φ(|∇u|) ∇u

|∇u|

)
= λg(·)φ(u) in RN (1.4)

can be proved. We address this question and solve the associated optimization
problem by implementing a version of Lagrange multipliers rule [6] on the source
space D1,Φ

o (RN ). We prove that solutions of the φ-Laplace operator exist and are
non-negative.

2. N-functions

This is a brief overview on Orlicz spaces. Fundamental definitions and properties
can be found in several monographs, articles and books. For further details we refer
the reader to [17, 18, 20].

A convex, even and continuous function Φ : R → [0,+∞) satisfying Φ(t) = 0 if
and only if t = 0 and such that

Φ(t)
t
→ 0 as t→ 0 and

Φ(t)
t
→ +∞ as t→ +∞

is called an N -function. Equivalently [13], Φ can be represented in the integral form
(1.3), where φ : R→ R is a non-decreasing, odd function which is right-continuous
for t ≥ 0 and which satisfies φ(t) = 0 if and only if t = 0 and φ(t) → +∞ as
t → +∞. The N -function Φ satisfies a global ∆2-condition (see [1, pp. 266]) if
there exists C > 0 such that

Φ(2t) ≤ CΦ(t)
for all t ≥ 0.

Lemma 2.1 ([1]). The N -function Φ satisfies a global ∆2-condition if and only if

qΦ := sup
s>0

sφ(s)
Φ(s)

< +∞. (2.1)

2.1. Conjugates. The reciprocal function ψ(s) of φ is defined for s ≥ 0 by

ψ(s) = sup {t : φ(t) ≤ s} .
Both functions φ and ψ have the same properties. Hence the integral

Φ(t) =
∫ t

0

ψ(s) ds

is an N -function, called the conjugate (or complementary) N -function of Φ. The
pair Φ,Φ is called a pair of complementary N -functions. If φ is continuous and
increases monotonically then the reciprocal ψ is the ordinary inverse of φ.
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Lemma 2.2 ([10, Lemma 2.5]). The complementary N -function Φ satisfies a global
∆2-condition if and only if

pΦ := inf
s>0

sφ(s)
Φ(s)

> 1. (2.2)

The Sobolev conjugate N -function Φ∗ of Φ is defined as

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)
s1+ 1

N

ds

where Φ−1 denotes the inverse function of Φ|[0,+∞). It is known [24] that the
Sobolev conjugate exists if and only if∫ 1

0

Φ−1(s)
s1+ 1

N

ds < +∞ and lim
t→+∞

∫ t

0

Φ−1(s)
s1+ 1

N

ds = +∞. (2.3)

Moreover, it is known [11] that if conditions (2.3) are fulfilled then

lim
t→+∞

Φ(t)
Φ∗(kt)

= 0 (2.4)

for all k > 0.

Proposition 2.3 ([10]). If conditions (2.3) are met and qΦ < N then the following
estimates hold:

(a) min{ρpΦ , ρqΦ}Φ(t) ≤ Φ(ρt) ≤ max{ρpΦ , ρqΦ}Φ(t);
(b) min{rp∗Φ , rq∗Φ}Φ∗(t) ≤ Φ∗(rt) ≤ max{rp∗Φ , rq∗Φ}Φ∗(t);
(c) min{rp∗Φ/(p∗Φ−1), rq

∗
Φ/(q

∗
Φ−1)}Φ∗(t) ≤ Φ∗(rt)

≤ max{rp∗Φ/(p∗Φ−1), rq
∗
Φ/(q

∗
Φ−1)}Φ∗(t)

for r, t ≥ 0 and where p∗Φ = pΦN/(N − pΦ) and q∗Φ = qΦN/(N − qΦ) are the
conjugate exponents.

Note that Proposition 2.3 ensures that both the Sobolev conjugate N -function
Φ∗ and its complementary Φ∗ satisfy a global ∆2-condition provided qΦ < N .

Lemma 2.4. Let 1 < r < N be such that

0 < A = lim inf
s→0+

φ(s)
sr−1

≤ B = lim sup
s→0+

φ(s)
sr−1

< +∞. (2.5)

Then for ε > 0 sufficiently small there exists s0 = s0(ε) > 0 such that for all
0 < s < s0,

(a) (A−ε)
r sr ≤ Φ(s) ≤ (B+ε)

r sr,

(b)
(
s r∗

A

)1/r∗

≤ Φ∗(s) ≤
(
s r∗

B

)1/r∗

where B = r1/r/(B+ε)1/r, A = r1/r/(A−ε)1/r and r∗ = (N − r)/Nr is the Sobolev
conjugate exponent.

Proof. If ε > 0 is small then there exists s0 = s0(ε) > 0 such that if 0 < s < s0

then by definition

A− ε ≤ φ(s)
sr−1

≤ B + ε.

Denote t = Φ(s) and t0 = Φ(s0). The monotonicity of Φ and simple integration
yield

(A− ε)
r

(Φ−1(t))
r ≤ t ≤ (B + ε)

r
(Φ−1(t))

r
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provided 0 < t < t0. Hence B t1/r ≤ Φ−1(t) ≤ A t1/r for all 0 < t < t0. If s < t < t0
we integrate (from s to t) the latter inequalities with respect to a new variable.
This gives

B

r∗
(tr
∗
− sr

∗
) ≤ Φ−1

∗ (t)− Φ−1
∗ (s) ≤ A

r∗
(tr
∗
− sr

∗
).

Letting s→ 0+ we get
B

r∗
tr
∗
≤ Φ−1

∗ (t) ≤ A

r∗
tr
∗

provided 0 < t < t0. Finally, the change of variables s = Φ−1
∗ (t) and s0 = Φ−1

∗ (t0)
and the inequality above yield the estimate in (b) provided 0 < s < s0. �

3. Function spaces

3.1. Orlicz classes. Let Φ,Φ be a pair of complementary N -functions and let Ω
denote an open domain in RN . The Orlicz class LΦ(Ω) is the set of (equivalence
classes of) real-valued measurable functions u such that Φ(u) ∈ L1(Ω). In general,
LΦ(Ω) is not a vector space [13]. However, the linear hull LΦ(Ω) of LΦ(Ω) equipped
with the Luxemburg norm

‖u‖Φ,Ω = inf
{
k > 0 :

∫
Ω

Φ
(u
k

)
≤ 1
}

is a normed linear space, called the Orlicz space generated by the N -function Φ. It
is known [17] that the vector space thus defined is complete.

The closure in LΦ(Ω) of the space of bounded measurable functions with compact
support in Ω is denoted by EΦ(Ω). This space is separable and Banach with the
inherited norm. The following lemma gives a useful characterization of a particular
type of sequences in EΦ in the unbounded case Ω = RN .

Lemma 3.1. Let z ∈ EΦ(RN ) and fix an integer k > 1. Define the function

zk(x) =

{
z(x) if |x| > k

0 if |x| ≤ k.

Then ‖zk‖Φ,RN → 0 as k → +∞.

Proof. If ε > 0 is sufficiently small then z/ε ∈ EΦ(RN ) ⊆ LΦ(RN ). The latter
implies Φ(z/ε) ∈ L1(RN ) and then there exists a positive integer k0 such that if
k ≥ k0 then ∫

RN
Φ
(zk
ε

)
dx =

∫
RN\Bk(0)

Φ
(z
ε

)
dx ≤ 1

where Bk(0) denotes the ball of radius k and center at zero in RN . The definition
of the Luxemburg norm hence yields ‖zk‖Φ,RN ≤ ε provided k ≥ k0. �

In general, EΦ(Ω) ⊆ LΦ(Ω) ⊆ LΦ(Ω) but if Φ satisfies a global ∆2-condition
then EΦ(Ω) = LΦ(Ω) and vice-versa. In this case, a known result [1, Theorem 8.20]
ensures that LΦ(Ω) and LΦ(Ω) are reflexive and separable provided Φ satisfies a
global ∆2-condition as well. Since this result remains valid after replacing Φ by its
Sobolev conjugate Φ∗ (provided the latter exists), Proposition 2.3 guarantees the
validity of the following result.

Corollary 3.2. If (2.3) are satisfied and qΦ < N then the Orlicz space LΦ∗(Ω) is
reflexive.
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It is well known [1, 13] that one can identify the dual space of EΦ(Ω) with LΦ(Ω)
and the dual space of EΦ(Ω) with LΦ(Ω). Moreover, if u ∈ LΦ(Ω) and v ∈ LΦ(Ω)
then the inequality ∫

Ω

|uv| dx ≤ 2‖u‖Φ,Ω ‖v‖Φ,Ω (3.1)

holds. This estimate is an extension of Hölder’s inequality to Orlicz spaces.

An Orlicz-Sobolev space. The Orlicz-Sobolev space W 1LΦ(Ω) is the vector space
of functions in LΦ(Ω) with first distributional derivatives in LΦ(Ω). This space is
Banach with the norm

|||u|||Ω = ‖u‖Φ,Ω +
N∑
i=1

‖∂xiu‖Φ,Ω (3.2)

where ∂xi denotes the partial derivative ∂/∂xi. Usually, W 1LΦ(Ω) is identified
with a subspace of the product LΦ(Ω)N+1 = ΠLΦ(Ω). The space W 1LΦ(Ω) is not
separable in general.

3.2. Approximation properties. In what follows we consider Ω = RN in which
case further characterizations are possible. The Luxemburg norm ‖ · ‖Φ,RN will be
simply denoted by ‖ · ‖Φ. The symbol D(RN ) denotes the space of C∞-functions
with compact support in RN . We choose a mollifier ρ ∈ D(RN ); i.e. ρ is a real-
valued function such that

(a) ρ(x) ≥ 0, if x ∈ RN ;
(b) ρ(x) = 0, if |x| ≥ 1;
(c)

∫
RN ρ(x) dx = 1.

If ε is positive, it is clear that the function ρε(x) = ε−Nρ(x/ε) is non-negative,
belongs to D(RN ) and satisfies ρε(x) = 0 provided |x| ≥ ε. In addition,∫

RN
ρε(x) dx = 1. (3.3)

If u ∈ LΦ(RN ) we define the regularized function uε of u by the convolution

uε(x) = (ρε ∗ u)(x) =
∫

RN
u(x− y)ρε(y) dy.

It is easy to see that if u has compact support in RN then uε belongs to D(RN ).

Proposition 3.3. If u ∈ LΦ(RN ) then uε ∈ LΦ(RN ) and ‖uε‖Φ ≤ ‖u‖Φ.

Proof. Let λ = ‖u‖Φ. Jensen’s inequality [13, pp. 18] yields∫
RN

Φ
(uε(x)

λ

)
dx ≤

∫
RN

(∫
RN

Φ
(u(x− y)

λ

)
ρε(y) dy

)
dx. (3.4)

Define the function F (x, y) = Φ(u(x− y)/λ)ρε(y). It is clear from the definition of
λ that ∫

RN
F (x, y) dx = ρε(y)

∫
RN

Φ
(u(x− y)

λ

)
dx ≤ ρε(y). (3.5)

Integration of this inequality with respect to y and condition (3.3) imply F ∈
L1(RN × RN ). Hence Fubini’s theorem and (3.4) yield∫

RN
Φ
(uε(x)

λ

)
dx ≤

∫
RN

(∫
RN

Φ
(u(x− y)

λ

)
dx
)
ρε(y) dy ≤ 1
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and then uε ∈ LΦ(RN ). By definition of the Luxemburg norm, ‖uε‖Φ ≤ λ =
‖u‖Φ. �

Lemma 3.4 ([14]). If u ∈ EΦ(RN ) then ‖uε − u‖Φ → 0 as ε→ 0.

4. The homogeneous Orlicz space D1,Φ
o (RN )

In what follows we assume that φ : R → R is an odd, non-decreasing and not-
necessarily differentiable homeomorphism which generates theN -function (1.3). We
suppose that condition (2.1) is fulfilled; i.e. Φ satisfies a global ∆2-condition. We
will assume that (2.3) are met as well, so that the Sobolev conjugate Φ∗ is defined.
The set BR(x0) ⊆ RN will denote the ball of radius R with center at x0 ∈ RN .
As mentioned previously, the operator ∂xi will denote the partial derivative ∂/∂xi,
i = 1, . . . , N . We start out by defining the space

D1,Φ(RN ) =
{
u ∈ LΦ∗(RN ) : |∇u| ∈ LΦ(RN )

}
.

Proposition 4.1. The space D1,Φ(RN ) equipped with the norm

‖u‖1,Φ = ‖u‖Φ∗ + ‖|∇u|‖Φ. (4.1)

is complete.

Proof. Let {un} be a Cauchy sequence in D1,Φ(RN ); that is,

‖un − um‖Φ∗ → 0 and ‖|∇un −∇um|‖Φ → 0 (4.2)

as n,m → +∞. Since LΦ∗(RN ) is a Banach space we can find u ∈ LΦ∗(RN ) such
that un → u in LΦ∗(RN ). The second condition in (4.2) implies that {∂xiun}
is a Cauchy sequence in LΦ(RN ). Then for each index i = 1, . . . , N there exists
ωi ∈ LΦ(RN ) such that ∂xiun → ωi in LΦ(RN ). Since ∂xiun is the weak derivative
of un we have ∂xiun ∈ LΦ(RN ). Then

−
∫

RN
un ∂xiψ dx =

∫
RN

∂xiun ψ dx

for all ψ ∈ D(RN ). Hölder’s inequality (3.1) and uniqueness of limits yield

−
∫

RN
u ∂xiψ dx =

∫
RN

ωi ψ dx.

Thus, we get ∂xiu = ωi ∈ LΦ(RN ) and ‖un − u‖1,Φ → 0 as n→ +∞. �

Definition 4.2. The homogeneous Orlicz space D1,Φ
o (RN ) is the completion of

D(RN ) with respect to the norm (4.1). Equivalently,

D1,Φ
o (RN ) = clD1,Φ(RN )D(RN )

where clD1,Φ(RN ) denotes the closure operator.

The space D1,Φ
o (RN ) is endowed with the seminorm

‖u‖o,Φ = ‖|∇u|‖Φ. (4.3)

Lemma 4.3. On D1,Φ
o (RN ) the seminorm (4.3) defines a norm which is equivalent

to (4.1).
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Proof. By [8, Theorem 3.4], if u ∈ D(RN ) then

‖u‖Φ∗ ≤ C (N) ‖|∇u|‖Φ = C (N) ‖u‖o,Φ (4.4)

where C (N) is a positive constant. This inequality extends to all of D1,Φ
o (RN ) by

density. �

We remark that since D(RN ) ⊆ D1,Φ
o (RN ), the inclusions

W 1LΦ(RN ) ⊆ D1,Φ
o (RN ) ⊆ D1,Φ(RN ) (4.5)

hold. Example 4.7 below proves that there exist N -functions Φ for which the
inclusion W 1LΦ(RN ) ⊆ D1,Φ(RN ) is strict.

The following theorem is the main result in this article.

Theorem 4.4. Assume that there exists 1 < r < N such that estimates (2.5) are
fulfilled. If qΦ < N then the reversed inclusion D1,Φ(RN ) ⊆ D1,Φ

o (RN ) holds as
well. That is,

D1,Φ
o (RN ) = {u ∈ LΦ∗(RN ) : |∇u| ∈ LΦ(RN )}.

Proof. Take u ∈ D1,Φ(RN ) and define ω ∈ D(RN ) by

ω(x) =

{
0 if |x| ≥ 2,
1 if |x| ≤ 1.

Next, form the functions

ωk(x) = ω
(x
k

)
and uk(x) = u(x)ωk(x), k ∈ N.

For each fixed k ∈ N we consider the sequence of regularized functions vkn = ρ1/n ∗
uk, n ∈ N, where ρ1/n(x) = (1/n)−Nρ(nx) and ρ is the mollifier satisfying (a), (b)
and (c) in §3.2. Note that as uk has compact support the convolution vkn ∈ D(RN ).
Moreover, since ∂xiv

k
n = ρ1/n ∗ ∂xiuk ∈ EΦ(RN ), Lemma 3.4 implies

‖∂xivkn − ∂xiuk‖Φ → 0 as n→ +∞.

Then, for k ∈ N, we have

lim
n→+∞

‖|∇vkn −∇uk|‖Φ = 0.

For every natural number k, Cantor’s diagonalization method produces an integer
nk ∈ N (which depends only on k) such that if we set vk = vknk = ρ1/nk ∗ uk, then

‖|∇vk −∇uk|‖Φ ≤
1
k
, k ∈ N.

The triangle inequality thus implies

‖|∇vk −∇u|‖Φ ≤
1
k

+ ‖|∇uk −∇u|‖Φ.

We must prove that
lim

k→+∞
‖|∇uk −∇u|‖Φ = 0. (4.6)

We note that the product rule yields ∂xiuk = u ∂xiωk + ωk ∂xiu and hence

‖|∇uk −∇u|‖Φ ≤ ‖(1− ωk)|∇u|‖Φ + ‖|u∇ωk|‖Φ.
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Since Φ is increasing,∫
RN

Φ
(

(1− ωk)
|∇u|
λ

)
dx ≤

∫
RN\Bk(0)

Φ
( |∇u|

λ

)
dx

where the parameter λ > 0 is arbitrary. Note that LΦ(RN ) = LΦ(RN ) since Φ
satisfies a ∆2-condition. Therefore Φ(|∇u|/λ) ∈ L1(RN ). The definition of the
Luxemburg norm thus implies

‖(1− ωk)|∇u|‖Φ → 0 as k → +∞.

To prove (4.6) we need ‖|u∇ωk|‖Φ → 0 as k → +∞. This is the case. Indeed, if
ε > 0 is sufficiently small, there exists s0 = s0(ε) such that items (a) and (b) from
Lemma 2.4 will be satisfied for all 0 < s < s0. Also, note that (2.4) implies

C := sup
s≥s0

Φ(s)
Φ∗(s)

< +∞. (4.7)

We define the sets Ω1 = {x ∈ RN : |u(x)| < s0} and Ω2 = {x ∈ RN : |u(x)| ≥ s0}
and take the closed annulus Ak = B2k(0)\Bk(0) ⊆ RN . Choose λ positive and
denote by M = supRN ∂xiω. We take k sufficiently large such that k > M/λ. The
monotonicity of Φ and (4.7) yield∫

Ak

Φ
( 1
λ
|∂xiwk||u|

)
dx

=
∫
Ak∩Ω1

Φ
( 1
λk
|∂xiw||u|

)
dx+

∫
Ak∩Ω2

Φ
( 1
λk
|∂xiw| |u|

)
dx

≤
∫
Ak∩Ω1

Φ
(
M

λk
|u|
)
dx+

∫
Ak∩Ω2

Φ(|u|) dx

≤
∫
Ak∩Ω1

Φ
(M
λk
|u|
)
dx+ C

∫
Ak

Φ∗(|u|) dx.

(4.8)

Since u ∈ LΦ∗(RN ) it is evident that
∫
Ak

Φ∗(|u|) dx→ 0 as k → +∞.
Note that the choice of k above implies that M |u|/λk < s0 on Ω1. Item (a) in

Lemma 2.4 yields the following estimate for the integral on the right-hand side in
(4.8), ∫

Ak∩Ω1

Φ
(M
λk
|u|
)
dx ≤ (B + ε)

Mr

rλrkr

∫
Ak∩Ω1

|u|r dx. (4.9)

Since Φ∗ satisfies a global ∆2-condition, Φ∗(|u|) ∈ L1(Ak∩Ω1). Item (b) in Lemma
2.4 yields

A (r, ε)|u|
Nr
N−r ≤ Φ∗(|u|)

where A (r, ε) is positive. Therefore |u|r ∈ L
N
N−r (Ak ∩ Ω1) and then Hölder’s

inequality, with p = N/(N − r) and q = N/r, implies∫
Ak∩Ω1

|u|r dx ≤
(

meas(Ak ∩ Ω1)
)r/N(∫

Ak∩Ω1

|u|
Nr
N−r dx

)N−r
N

≤
(

meas(B2k(0))
)r/N(∫

Ak∩Ω1

|u|
Nr
N−r dx

)N−r
N
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where meas(B2k(0)) = πN/2(2k)N/Γ(N/2 + 1) is the volume of the closed ball
B2k(0) and Γ is Euler’s gamma function. Thus, we obtain∫

Ak∩Ω1

|u|r dx ≤ Bkr
(∫

Ak∩Ω1

|u|
Nr
N−r dx

)N−r
N

where B = B(r,N) is a positive constant. Therefore, estimate (4.9) yields∫
Ak∩Ω1

Φ
(M
λk
|u|
)
dx ≤ B · (B + ε)

Mr

rλr

(∫
Ak∩Ω1

|u|
Nr
N−r dx

)N−r
N

.

Since the integral on the right tends to 0 as k → +∞, from (4.8) we obtain∫
Ak

Φ
( 1
λ
|∂xiwk||u|

)
dx→ 0 as k → +∞.

The definition of the Luxemburg norm thus ensures ‖|u∇ωk|‖Φ → 0 as k → +∞
and hence (4.6) holds.

To conclude the proof we must show that ‖vk − u‖Φ∗ → 0 as k → +∞. Notice
that vk−u ∈ D1,Φ(RN )∩L1(RN ) and hence inequality (4.4) does not apply in this
case. We proceed as follows, instead. The triangle inequality and Proposition 3.3
yield

‖vk − u‖Φ∗ = ‖ρ1/nk ∗ uk − u‖Φ∗
≤ ‖ρ1/nk ∗ (ωk u− u)‖Φ∗ + ‖ρ1/nk ∗ u− u‖Φ∗
≤ ‖ωk u− u‖Φ∗ + ‖ρ1/nk ∗ u− u‖Φ∗ .

Since Φ∗ satisfies a global ∆2-condition we have ωku−u ∈ D1,Φ(RN ) ⊆ LΦ∗(RN ) =
EΦ∗(RN ). Lemma 3.1 (with zk = ωku−u) produces ‖ωk u−u‖Φ∗ → 0 as k → +∞.
Lemma 3.4 in turn implies that ‖ρ1/nk ∗ u− u‖Φ∗ → 0 as k → +∞ and hence the
inequality above ensures that vk → u in LΦ∗(RN ). Along with (4.6), the latter
implies ‖vk − u‖1,Φ → 0 as k → +∞. The proof of the theorem is complete. �

Example 4.5. We define

φ1(s) =
|s|p−2s

log(1 + |s|)
,

where p > 2. In this case,

Φ1(s) =
∫ s

0

φ1(t) dt =
|s|p

p log(1 + |s|)
+

1
p

∫ |s|
0

tp

(1 + t)(ln(1 + t))2
dt.

If we take α = p− 1 and β = 1 in [7, Example III], then we obtain

pΦ1 = inf
s>0

sφ1(s)
Φ1(s)

= p− 1 and qΦ1 = sup
s>0

sφ1(s)
Φ1(s)

= p.

By Lemma 2.1, Φ1 satisfies a ∆2-condition. Since p > 2 estimate (2.2) is also
fulfilled (i.e. the complementary N -function Φ1 satisfies a ∆2-condition). On the
other hand, the choice r = p− 1 and L’Hôpital’s rule yield

lim inf
s→0+

φ1(s)
sr−1

= lim sup
s→0+

φ1(s)
sr−1

= lim
s→0+

φ1(s)
sr−1

= lim
s→0+

s

log(1 + s)
= 1.

Conditions (2.5) are met in this case and hence Theorem 4.4 implies D1,Φ1(RN ) =
D1,Φ1

o (RN ).
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Example 4.6. Consider the function φ2(s) = |s|p−2s log(1 + µ+ |s|) where p > 1
and µ > 0 is a parameter. A simple calculation shows that

Φ2(s) =
∫ s

0

φ2(t) dt =
|s|p

p
log(1 + µ+ |s|)− 1

p

∫ |s|
0

tp

1 + µ+ t
dt.

For values s > 0 we consider the differentiable function

gµ(s) =

∫ s
0

tp

1+µ+tdt

sp log(1 + µ+ s)
.

A simple application of L’Hôpital’s rule proves that gµ(s) → 0 as s → 0 and also
gµ(s)→ 0 as s→ +∞. Since

sp log(1 + µ+ s) = p

∫ s

0

tp−1 log(1 + µ+ t)dt+
∫ s

0

tp

1 + µ+ t
dt

it is evident that 0 < gµ(s) < 1 if s > 0. It follows that

sφ2(s)
Φ2(s)

=
p

1− gµ(s)
≥ lim
s→0+

sφ2(s)
Φ2(s)

= p

for all s > 0. Therefore

pΦ2 = inf
s>0

sφ2(s)
Φ2(s)

= lim
s→0+

sφ2(s)
Φ2(s)

= p. (4.10)

On the other hand, the implicit function theorem allows to determine a local max-
imum of gµ at s = s∗ > 0 from the equation

sp+1 log(1 + µ+ s) =
(∫ s

0

tp

1 + µ+ t
dt
)(
p(1 + µ+ s) log(1 + µ+ s) + s

)
.

The condition gµ(s)→ 0 as s→ +∞ ensures that s∗ is also global. Therefore,

qΦ2 = sup
s>0

sφ2(s)
Φ2(s)

= max
s>0

sφ2(s)
Φ2(s)

=
p

1− gµ(s∗)
< +∞.

By Lemma 2.1, Φ2 satisfies a ∆2-condition. Bound (4.10) implies that estimate
(2.2) is also fulfilled in this case (i.e. Φ2 satisfies a ∆2-condition). Furthermore, if
we choose r = p then

0 < lim inf
s→0+

φ2(s)
sr−1

= lim sup
s→0+

φ2(s)
sr−1

= lim
s→0+

φ2(s)
sr−1

= log(1 + µ) < +∞.

Hence conditions (2.5) are fulfilled. Theorem 4.4 yields D1,Φ2(RN ) = D1,Φ2
o (RN ).

Example 4.7. This example proves that there exists an N -function Φ for which
the corresponding Orlicz-Sobolev space W 1LΦ(RN ) is in general a proper subset of
D1,Φ(RN ). Consider p > 1 and set the real homeomorphism φ(t) = |t|p−2t. Let us
define a function

u(x) = (1 + ‖x‖2)−s

where ‖x‖ is the Euclidean norm of x ∈ RN and s is a positive quantity to be fixed
later. It is easy to see that

|∇u(x)| = 2s‖x‖
(1 + ‖x‖2)s+1

.
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We take spherical coordinates F : (x1, . . . , xN ) → (ρ, ϕ1, . . . , ϕN−1) in RN defined
by

x1 = ρ cosϕ1

xi = ρ sinϕ1 sinϕ2 . . . sinϕi−1 cosϕi, i = 2, . . . , N − 1
xN = ρ sinϕ1 sinϕ2 . . . sinϕN−2 sinϕN−1

where ρ = (x2
1 + . . .+x2

N )1/2 and ϕi ∈ [0, π] for i = 1, . . . , N−2 and ϕN−1 ∈ [0, 2π].
A simple computation yields the Jacobian:

JF(ρ, ϕ1, . . . , ϕN−1) =
∂(x1, x2, . . . , xN )
∂(ρ, ϕ1, . . . , ϕN−1)

= ρN−1(sinϕ1)N−2 (sinϕ2)N−3 . . . (sinϕN−3)2 sinϕN−2.

Let us define the integral

I :=
∫

RN\B1(0)

dx

(1 + ‖x‖2)sr

where 1 < r < N . (Obviously, ur ∈ L1(RN ) if and only if I is finite). Change to
spherical coordinates and further integration yields

I =
∫ +∞

1

∫ 2π

0

∫ π

0

. . .

∫ π

0

JF(ρ, ϕ1, . . . , ϕN−1)
(1 + ρ2)sr

dϕ1 . . . dϕN−2 dϕN−1 dρ

= C

∫ +∞

1

ρN−1

(1 + ρ2)sr
dρ

where C depends on
∫ π

0
sink ϕN−k−1 dϕN−k−1, for all index k = 1, . . . , N − 2. The

limit comparison test for improper integrals yields∫ +∞

1

ρN−1

(1 + ρ2)sr
dρ < +∞

if and only if N < 2sr. If we set r = p in the latter inequality, we obtain that
convergence of the integral is equivalent to the condition s > N/2p. Thus if s ≤
N/2p we get u 6∈ Lp(RN ). Likewise, in the particular case r = p∗ = Np/(N − p),
convergence of the integral means s > (N − p)/2p. Therefore,

u 6∈ Lp(RN ) and u ∈ Lp
∗
(RN ) if and only if s ∈

(N − p
2p

,
N

2p

]
.

The same argument we employed above proves that

J :=
∫

RN\B1(0)

|∇u|p dx = (2s)pC
∫ +∞

1

ρN+p−1

(1 + ρ2)(s+1)p
dρ.

Hence, the integral J is finite if and only if N + p− 2sp− 2p < 0. That is,

|∇u| ∈ Lp(RN ) if and only if s ∈
(N − p

2p
,+∞

)
.

We conclude that u ∈ D1,Φ(RN ) and u 6∈W 1LΦ(RN ) (with Φ(t) = |t|p/p) provided
the parameter s ∈

(
(N − p)/2p,N/2p

]
.
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5. Application

In this section the number pΦ defined in (2.2) plays a paramount role. We
prove existence of nontrivial and non-negative solutions of equation (1.4) under the
assumptions made at the beginning of Section 4. Additionally we will require the
following hypotheses:

(H0) Condition (2.2) is fulfilled (i.e. Φ satisfies a ∆2-condition);
(H1) qΦ < N and qΦ < p∗Φ = pΦN/(N − pΦ) (the conjugate exponent);
(H2) g ∈ Lq∗Φ/(q∗Φ−pΦ)(RN ) ∩ L∞(RN ) and the positive part g+ 6≡ 0.

We define functionals

I(u) =
∫

RN
Φ(|∇u|)dx and G(u) =

∫
RN

g(x)Φ(u)dx.

Since Φ satisfies a global ∆2-condition, the functional I is well-defined on D1,Φ
o (RN )

and real-valued there. Further, [10, Lemma A.3] ensures that I is of class C1 with
Fréchet derivative

I ′(u)(v) =
∫

RN
φ(|∇u|) ∇u

|∇u|
· ∇vdx.

Application of the same lemma (with the term f(x, t) = g(x)φ(t) in (1.2)) shows
that G is real-valued on D1,Φ

o (RN ) and that G : D1,Φ
o (RN ) → R is of class C1 as

well with Fréchet derivative

G′(u)(v) =
∫

RN
g(x)φ(u)vdx

where u, v ∈ D1,Φ
o (RN ).

Proposition 5.1. Let {un} be a sequence in D1,Φ
o (RN ) such that un ⇀ u (weak

convergence). Then there exists a subsequence denoted again by {un} such that
G(un)→ G(u).

Proof. By definition there exists d′ > 0 such that ‖un‖Φ∗ ≤ C (N) ‖un‖o,Φ ≤ d′ for
all n ∈ N, where C (N) is the constant in (4.4). Choose R > 0 and let BR be a ball of
radius R centered at 0. For each natural number n we have G(un)−G(u) = IRn +JRn ,
where

IRn =
∫
BR

g(x) (Φ(un)− Φ(u)) dx, JRn =
∫

RN\BR
g(x) (Φ(un)− Φ(u)) dx.

Let us define AR,n = {x ∈ RN\BR : 0 ≤ un(x) ≤ 1} and CR,n = {x ∈ RN\BR :
un(x) ≥ 1}. Let σ = q∗Φ/(q

∗
Φ − pΦ). Items (a) and (b) in Proposition 2.3 applied

with ρ = un ∈ AR,n and t = 1 yield

|Φ(un)|q
∗
Φ/pΦ ≤ |upΦ

n Φ(1)|q
∗
Φ/pΦ = |un|q

∗
Φ(Φ(1))q

∗
Φ/pΦ ≤ (Φ(1))q

∗
Φ/pΦ

Φ∗(1)
Φ∗(un).

Hence Holder’s inequality produces∫
AR,n

|gΦ(un)| dx ≤ Φ(1)
(∫

AR,n

|g|σ dx
)1/σ(∫

AR,n

|un|q
∗
Φ dx

)pΦ/q
∗
Φ

≤ C1

(∫
RN\BR

|g|σ dx
)1/σ(∫

RN
Φ∗(un) dx

)pΦ/q
∗
Φ
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where C1 = Φ(1)/(Φ∗(1))pΦ/q
∗
Φ . Since σ ≤ p∗Φ/(p

∗
Φ − qΦ) by interpolation we have

g ∈ Lp
∗
Φ/(p

∗
Φ−qΦ)(RN ) as well. If u ∈ CR,n then analogue arguments as the ones

used above yield∫
CR,n

|gΦ(un)| dx ≤ C2

(∫
RN\BR

|g|σ
∗
dx
)1/σ∗(∫

RN
Φ∗(un) dx

)qΦ/p∗Φ
where σ∗ = p∗Φ/(p

∗
Φ−qΦ) and C2 > 0. Since ‖un‖Φ∗ ≤ d′ the integral

∫
RN Φ∗(un) dx

is bounded and then the two inequalities above imply∫
RN
|gΦ(un)| dx < +∞.

Thus, given ε > 0, there exists R0 = R0(ε) > 0 such that∫
RN\BR0

|gΦ(un)| dx < ε/4.

One can similarly prove that∫
RN\BR1

|gΦ(u)| dx < ε/4

for R1 large enough. Thus, if R2 = max{R0, R1} then we have |JR2
n | < ε/2 for

n ∈ N.
Let us study now IR2

n . Since the injection LΦ∗(BR2) ↪→ LΦ(BR2) is continuous
(see [1, Theorem 8.16]) the inclusions (4.5) yield un, u ∈ W 1LΦ(BR2) and hence
there exist d, d̃ > 0 such that

|||un|||BR2
≤ d‖un‖o,Φ ≤ d̃

for all n ∈ N where ||| · |||BR2
is the norm (3.2) on the ball BR2 . Since the imbedding

W 1LΦ(BR2) ↪→ LΦ(BR2) is compact (see [11, Theorem 2.2]) we have un → u in
LΦ(BR2). Thus, passing to a subsequence (denoted by {un} again) we can further
assume that un → u, a.e. in BR2 and that there exists w ∈ LΦ(BR2) such that
|un| ≤ w, a.e. in BR2 , for all n ∈ N. By Lebesgue’s dominated convergence on BR2 ,

lim
n→+∞

∫
BR2

|Φ(un)− Φ(u)| dx = 0.

Thus, for n sufficiently large, |IR2
n | ≤ ‖g‖∞‖Φ(un) − Φ(u)‖L1(BR2 ) ≤ ε/2. Since

|G(un)−G(u)| ≤ |IR2
n |+ |JR2

n | the result is proved. �

Lemma 5.2 (Lagrange multipliers rule [6]). Let v0 ∈ D1,Φ
o (RN ) be such that

G′(v0) 6= 0. If I has a local minimum at v0 with respect to the set {v : G(v) = G(v0)}
then there exists λ ∈ R such that I ′(v0) = λG′(v0).

Lagrange multipliers rule motivates the following definition. A pair (λ, u) ∈
R×D1,Φ

o (RN ) is a solution of (1.4) if φ(|∇u|) ∈ LΦ(RN ) and∫
RN

φ(|∇u|) ∇u
|∇u|

· ∇θ dx = λ

∫
RN

g(x)φ(u) θ dx

for all θ ∈ D1,Φ
o (RN ). If (λ, u) is a solution of (1.4) and u 6≡ 0 we call λ an eigenvalue

of (1.4) with corresponding eigenfunction u. That is, λ is the eigenvalue associated
to the eigenfunction u. Note that the inclusion on the right in (4.5) ensures that
any solution u belongs to LΦ∗(RN ) and |∇u| ∈ LΦ(RN ).
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Theorem 5.3. The optimization problem

inf
G(u)=µ>0

I(u)

has a nontrivial solution uµ ∈ D1,Φ
o (RN ). Define the nonzero number

λµ =

∫
RN φ(|∇uµ|)|∇uµ|dx∫
RN g(x)φ(uµ)uµ dx

. (5.1)

Then uµ is a non-negative eigenfunction of equation (1.4) with associated eigenvalue
λ = λµ.

Proof. The first part is motivated by the ideas in the proof of [16, Theorem 3.1].
Compare also with the proof of [19, Theorem 2.2]. We prove that for any µ > 0, the
set Mµ = {u ∈ D1,Φ

o (RN ) : G(u) = µ} is not empty. Since G(0) = 0, by continuity
of G, it will be sufficient to find u ∈ D(RN ) such that G(u) ≥ µ.

Since g+ 6≡ 0 in RN there exists a compact subset K of RN , with meas(K) > 0,
such that g > 0 on K. If r ∈ R we define ur(x) = rχK(x) where χK : RN → R is
the characteristic function

χK(x) =

{
1 if x ∈ K,
0 if x ∈ Kc.

We choose r0 > 0 such that the number µ0 = G(ur0) − µ = Φ(r0)
∫
K
g dx − µ be

strictly positive. Let Ω ⊂ RN be a bounded domain such that K ⊂ Ω. Since the
function

u ∈ LΦ(Ω) 7→ Φ(u) ∈ L1(Ω)

is continuous, we have that Φ(uε) converges to Φ(r0χK) in L1(Ω), as ε→ 0+ where
uε ∈ D(Ω) is the regularized function of r0χK and D(Ω) denotes the space of C∞-
functions with compact support in Ω. Hölder’s inequality yields G(uε) → µ + µ0

and hence we can choose ε0 sufficiently small such that G(u) = G(uε0) ≥ µ.
Denote by β = infMµ I and let {un} be a sequence in Mµ such that

lim
n→+∞

I(un) = β.

Hence, there exists C > 1 such that for each n ∈ N,

I(un) =
∫

RN
Φ(|∇un|)dx ≤ C.

Since Φ(u/t) ≤ Φ(u)/t for t ≥ 1 (convexity), we get∫
RN

Φ
( |∇un|
C

)
dx ≤

∫
RN

Φ(|∇un|)
C

dx ≤ 1

and by definition of the Luxemburg norm, ‖un‖o,Φ = ‖|∇un|‖Φ ≤ C. That is, the
minimizing sequence {un} is bounded in D1,Φ

o (RN ). Inclusions (4.5) imply that
this space is a closed subspace of LΦ∗(RN ). Corollary 3.2 proves that D1,Φ

o (RN )
is itself reflexive. Then there exists uµ ∈ D1,Φ

o (RN ) and a subsequence in Mµ,
denoted again by {un}, such that un ⇀ uµ in the weak topology. As the function
G is sequentially continuous with respect to this weak topology, Proposition 5.1
yields

G(uµ) = lim
n→+∞

G(un) = µ
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and hence uµ ∈ Mµ. Since the convex functional I is continuously Fréchet-
differentiable on D1,Φ

o (RN ) we obtain by [4, Corollary III.8],

β ≤ I(uµ) ≤ lim inf
n→+∞

I(un) = β

which is what we wanted to prove.
On the other hand, as |gΦ(uµ)| ≤ |gφ(uµ)uµ| and µ 6= 0, we obtain both

gφ(uµ)uµ 6≡ 0 and gφ(uµ) 6≡ 0 in RN . The latter implies that there exists K ′ ⊆ RN ,
with meas(K ′) > 0, such that gφ(uµ) 6= 0 on K ′ and the sign of gφ(uµ) on K ′ is
constant. Thus, for a suitable r ∈ R,∫

RN
g(x)φ(uµ)rχK′ dx >

∫
RN

g(x)φ(uµ)uµ dx

where χK′ is the characteristic function on K ′. Since gφ(uµ) ∈ LΦ∗
(RN ) and as

the regularized function (r χK′)ε ∈ D(RN ) converges to rχK′ in LΦ∗(RN ),

G′(uµ)(u1) =
∫

RN
g(x)φ(uµ)u1 dx >

∫
RN

g(x)φ(uµ)uµ dx = G′(uµ)(uµ)

where u1 = (r χK′)ε for ε > 0 sufficiently small. Notice that G′(uµ) 6≡ 0 (otherwise,
0 > G′(uµ)(uµ) = 0 in the above strict inequality). By Lemma 5.2 there exists
λu ∈ R such that∫

RN
φ(|∇uµ|)

∇uµ
|∇uµ|

· ∇u dx = λµ

∫
RN

g(x)φ(uµ)u dx (5.2)

for all u ∈ D1,Φ
o (RN ). Thus, uµ is a weak solution of (1.4). We then set u = uµ in

(5.2) and we obtain the value of the eigenvalue in (5.1).
Since Φ is even it is clear that G(|uµ|) = G(uµ). Moreover, the chain rule

implies |∇|uµ|| = |∇uµ| and hence the equivalence I(|uµ|) = I(uµ) follows as well.
Therefore, we can take uµ(x) ≥ 0 for a.e. x ∈ RN . The proof of the theorem is
complete. �
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