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ABSTRACT

Cyber-Physical Systems (CPS) is a term describing a broad range of complex,

multi-disciplinary, physically-aware next generation engineered systems that in-

tegrate embedded computing technologies (cyber part) into the physical world.

CPS are engineered systems that are built from, and depend upon, the seam-

less integration of computational algorithms and physical components [2]. Gener-

ally speaking, they are sensor-based communication-enabled autonomous systems.

Wireless sensor network for environmental control, smart grid system and indus-

trial robotics systems can be a good example of CPS. With the exponential growth

of CPS, new security challenges have emerged. Various vulnerabilities, threats,

and attacks have been detected for the new generation of CPS. Additionally, the

heterogeneity of CPS components and the diversity of CPS systems have made it

very difficult to study the security problem with one generalized model.

This thesis focuses on the development of effective deterministic and stochastic

mathematical programming approaches to protect the CPS against a wide range

of cyber attacks. The primary goal of this work is to orchestrate an optimization

methodology based on a game theoretic framework to protect the CPS and eval-

uate its results using a simulation model and a real world testbed. To assert that

the game theoretic framework yields to an optimized performance, three other

heuristic approaches (i.e. Greedy, Greedy-LP, Random) are formulated and their

results are compared to the outcome from the game theory approach. The game

theoretic model was further extended to include stochastic number of signals and

stochastic effectiveness. A two-stage stochastic model was formulated and the re-

sults were compared. Further investigations included simulation of a real world

system. The simulation model was coded in MatLab Simulink to emulate a real

xiii



world CPS. As a final step in this thesis, a real life CPS testbed was constructed

with functioning cyber and physical components and the results from the different

approaches studied are tested and compared. It has been found that the two-satge

stochastic programming (two-SSP) model gives most optimized result to protect

CPS.

xiv



1. INTRODUCTION

Advances in CPS enable capability, adaptability, scalability, resiliency, safety, se-

curity and usability that far exceed the simple embedded systems of today. CPS

technology has transformed the way people interact with engineered systems – just

as the Internet has transformed the way people interact with information. New

smart CPS have driven innovation and competition in sectors such as agriculture,

energy, transportation, building design and automation, health care, and manu-

facturing [3]. According to a report published in Forbes magazine in 2015, the

total value of global cyber security market was $75 billion in 2015 and expected

to reach $170 billion by 2020 [4]. Acording to another report published in 2017 in

famous statistical portal Statista the global cyber security market is 137 billion

USD in 2017 and will reach to 231 billion USD by 2022 [5].

The next generation technologies in the field of communication and IoT (Inter-

net of Things) are expected to play an important role on CPS research. All of

the CPS applications need to be designed considering the cutting-edge technolo-

gies, necessary system-level requirements, and overall impact on the real world.

Fig: 1.1 shows an illustration of a CPS. Sensors collect data from physical system

and send the signal to the control module which resides in a cyber domain via

communication network (WAN, LAN or standard Internet protocol). The control

module takes decision based on the signal it receives and sends the control sig-

nal via communication network again to the physical system actuators.The whole

system operates under closed feedback loop.

1
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Figure 1.1: CPS holistic view.

Figure 1.2 shows a block diagram of a CPS that continuously operates under

a feedback closed loop. Plant sensors send measurement signals through network

to decision and control entities that process such signals and emit controls (i.e.

control signals) that travel also over the network to the actuators to modify the

plant operation. Adversaries can attack measurement signals or control signals to

inflict damage on the plant.

Plant

Decision and 

control entities

Network

Control 

Signals (u)
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Network

Actuators

State

x Sensors

Noise (w)

Figure 1.2: CPS block diagram
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Protecting a CPS such as the one in Figure 1.2 from cyber attacks is a chal-

lenging problem as it requires orchestrating the control loop with various blocks

such as threshold checks, model predictors, assertions and action blocks to en-

sure the correctness, timing and integrity of the control and measurement signals.

The presence of these blocks must be within the time constraints dictated by the

process to be controlled. Given a wide range of blocks available, each one with

different processing time and effectiveness characteristics, it becomes challenging

for the owner of the CPS (i.e. the defender) to choose the right ones, specially

against a rational adversary (i.e. attacker) who is aware of the blocks that are

present and seeks to inflict the maximum damage.

3



2. SECURITY PROBLEMS IN CPS

This is a critical time in the design and deployment of CPS and IoT. Advances in

networking, computing, sensing and control systems have enabled a broad range

of new devices. These systems are being designed and deployed now, however,

security often is left for later. Industry is driven by functional requirements and

fast-moving markets. Designs are evolving rapidly and standards are only now

emerging. Many devices being deployed now have lifespans measured in decades,

so current design choices will impact the next several decades in transportation,

health care, building controls, emergency response, energy and other sectors.

To understand the scope of the security challenge on CPS and IoT, one has to

consider the recent advances in the modern autonomous/semi-autonomous cars,

the advanced medical devices, the systems that operate our buildings, the power

grid and a vast number of new IoT devices. Modern cars can automatically brake

to avoid a collision, modern medical devices can monitor conditions in real time

and adapt to changes, buildings and the energy grid are being enhanced with a

number of new smart services, and it is anticipated billions of new IoT devices

will be connected to the Internet. If security is overlooked, there is a risk of unin-

tentional faults or even malicious attacks changing how cars brake, how medical

devices adapt, and how buildings and the smart grid respond to events. Cyber

security only becomes more challenging if billions of devices with security vulner-

abilities are added. Addressing security issues by bolting solutions onto widely

deployed systems is not viable. Security issues must be analyzed, understood and

addressed in the early stages of design and deployment.

One of the major attacks on CPS in recent times is the Stuxnet incident in 2010

which reportedly compromised Iranian PLCs (Programmable Logic Controller),

collecting information on industrial systems and causing the fast-spinning cen-

4



trifuges to tear themselves apart. It was a targeted ‘Man in the Middle’ (MITM)

attack. This type of attack fakes process control sensor signals, so an infected

system does not shut down due to inability to detect abnormal behavior [6].

According to ICS-CERT [7], 198 security incidents related to industrial control

systems were reported in 2011. It is a great increase if compared to the numbers

presented for 2009 and 2010. Most of the security incidents took place in the areas

of energy resources, water conservancy, chemical industry, governmental agencies,

and nuclear facilities. Also, 52 security incidents have taken place in the energy

industry during the three years and they account for 21 % of the total security

incidents [7].

In 2013, American Black Hat displayed car attacks targeted at Ford Explorer,

Toyota Prius, and Tesla. In 2014, Singapore Black Hat attacks aimed at cardiac

pacemaker and smart television [7] and in the security protection field, seven in-

ternational renowned security institutions, Fireeye, Fortinet, Lancope, Neohapsis,

Symantec, Websense, and Zscaler, mentioned other kinds of attacks targeted at

CPS.
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3. THESIS GOAL AND OBJECTIVES

The goal of this thesis is to build valid stochastic programming models that extend

the deterministic model in [8] to model CPS security problems as more realistic

Stackelberg games. The goodness of the stochastic models will be assessed though

a computer simulation and the construction of a realistic testbed.

The objectives of this research are:

i. Construct a two stage stochastic programming model when the number of sig-

nals arriving per target is known only through a probability distribution instead

of being a single known value.

ii. Construct a two stage stochastic programming model that considers the time

to run an assertion as a piecewise linear function of the assertion.

iii. Study if other parameters (i.e. effectiveness)in deterministic model can be

modeled as probability distribution.

iv Assess the superiority of the game theoretic framework over other methods to

assign the assertions such as a random method and a greedy assignment method.

v. Use discrete event simulation to validate the solutions obtained from the deter-

ministic model in [8] and the proposed stochastic models in (i) and (iii).

vi. Implement the solutions obtained from the mathematical programming models

in a real world CPS comprised of functioning physical and cyber components.

6



4. LITERATURE REVIEW

Research in the domain of CPS was not very extensive. However, over the past

few years the domain of CPS has expanded dramatically with the integration of

IoTs, cloud computing, smart and connected devices and SCADA systems, among

others. Therefore, security and safety concerns of CPS have started to receive a lot

of attention from researchers. The biggest challenge that researchers face regard-

ing securing a CPS is the heterogeneity of such systems if considering that they

are vulnerable to a wide range of cyber attacks on the network components such

as jamming (A kind of Denial of Service attack, which prevents other nodes from

using the channel to communicate by occupying the channel that they are commu-

nicating on [9]), spoofing (a situation in which a person or program successfully

masquerades as another by falsifying data, to gain an illegitimate advantage [10])

and delaying critical information the receivers expect. The published research

also differ in their assumptions about the attacker’s knowledge of the system and

whether the state of the system can be observed by the proposed defense mecha-

nisms.

This Literature Review chapter focuses on previous work on CPS from three dif-

ferent perspectives: (1) General work on cyber security of CPS (2) Game theory

and application of game theory to CPS and cyber security (3) Stochastic program-

ming and its application to formulate and solve game theoretic problems in the

field of CPS.
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4.1 Previous research in the field of Cyber Security of CPS

The authors in [11] have discussed three key challenges for securing CPS: (1) un-

derstanding the threats and possible consequences of attacks, (2) identifying the

unique properties of CPS and their differences from traditional IT security, and

(3) discussing security mechanisms applicable to CPS. The authors have analyzed

security mechanisms for prevention, detection, recovery, resilience and deterrence

of attacks.

In [12], the authors show the effect of false data injection attacks (FDIA) on

state estimators in power grids. In FDIA, the idea is to craft the attack vector

is such a way that when combined with the state estimators it would still pass

detection. The authors assume the attacker knows the configuration of the power

system but may not have access to all the meters. The work in [13] generalizes

FDIA on control systems using specific controllers (e.g., Kalman filters) and shows

that FDIA can cause the system to become unstable. In [14], the authors illustrate

a scheme in which the control signals can be spoofed, while at the same time the

measurement signals are replaced by other ones to hide the effect of the attack.

This scheme, in effect, hijacks the operation of the CPS. The authors performed

the analysis in Simulink, using Simulink design verifier as the verification engine.

A small case study is presented to illustrate the results using simple temperature

control system.

In [15], the authors construct a safety envelope from the measurements ob-

tained under normal operation of the system. Safety envelopes are highly non-

deterministic and abstract models of the system that is formed by collecting data

during normal operation of the system. Attack detectors are constructed to com-

pare the measurements received during the real operation of the system to the ones

maintained by the safety envelope. The authors have presented a learning-based

procedure for detecting sensor attacks in a cyber-physical system.

8



The authors in [16] have used a new relation-graph-based detection scheme using

alternation vectors with state relation graph to defeat false data injection attacks

at the SCADA system. They also have evaluated the system using a real world

power plant simulator. In [17], the authors prevent an adversary from finding

attack vectors through identifying two sets: a set of sensors to protect and a set

of state variables that can be independently verified. The authors chose a set

of sensors and a set of state variables using statistical estimation and topology

matrix such that, when the measurements from the sensors in the chosen set are

protected and when the values of state variables from the chosen set can be verified

independently, then an adversary cannot find attack vectors that can inject false

data without being detected

There has been a lot of work on the impact of loss and delay of control and

measurement signals on the overall stability of CPS. Research studies vary in

their assumptions about the process involved in delaying and/or dropping packets

as illustrated in [18, 19]. The authors in [20] study the performance of a linear

control system subject to various Denial of Service (DoS) attack models on the

measurements and control signals (e.g., random Bernoulli, constrained and gen-

eral). The effect of wireless jamming has been shown to cause severe effects that

may cripple the whole system (e.g., [21, 22]). The work in [23] describes a frame-

work that can identify stealthy attacks on CPS in which the decision to jam a

signal is based on the observed state of the system and on the cost of the attack

(e.g., risk of being detected).

In cyber security, a man-in-the-middle attack (MITM) is an attack where the

attacker secretly relays and possibly alters the communication between two par-

ties who believe they are directly communicating with each other. One example

of man-in-the-middle attacks is active eavesdropping, in which the attacker makes

independent connections with the victims and relays messages between them to

make them believe they are talking directly to each other over a private connec-

9



tion, when in fact the entire conversation is controlled by the attacker. In [24],

the authors shows ways of thwarting MITM attacks by using authentication and

tamper detection.

10



4.2 Application of game theory in the field of CPS and cyber security

Game theory (GT) is "the study of mathematical models of conflict and coopera-

tion between intelligent rational decision-makers" [25]. Originally, GT addressed

zero-sum games, in which one person’s gains result in losses for the other partici-

pants. Today, GT applies to a wide range of behavioral relations from economics

to political science as well as logic, computer science and biology [25].

Game-theoretic approaches have been previously employed in the research area

of network security as well as in CPS [26, 27, 28, 29, 30]. A reason is that GT

allows modeling multiple ways of interaction between an attacker and a defender,

assuming different defender and attacker characteristics and thus building models

with diverse dynamics. One of the games used is the Stackelberg Game in which

a leader moves first and then the followers move sequentially. The authors in [26]

propose a Stackelberg Security Game of three player to protect an oil pipeline. The

players are the system administrator acting as the leader and cyber and physical

attackers performing as followers. The game has two types of targets attacked by

two distinct types of adversaries with different motives. The game can coordinate

the players to maximize their rewards. The solution to this game assists the sys-

tem administrator of the oil pipeline CPS to allocate the cyber security controls

for the cyber targets.

The authors in [27] present a model to enhance the reliability of wireless com-

munications systems. They develop a zero-sum stochastic game to capture the

interactions between a transmitter and a jammer in a communication-based train

control (CBTC) system [27]. They also present analytical results and apply dy-

namic programming to find the equilibrium of the stochastic game.

11



In [28, 29, 30], the authors follow similar game theoretic frameworks to model

and solve security problems for different CPS. In [31], the authors show that be-

cause of the imperfect performance of automated detection techniques, responses

to such attacks are highly dependent on human-driven decision-making processes.

In this work, to secure the system, the authors propose Q-Learning to react auto-

matically to the adversarial behavior of a suspicious user. The authors presents an

experimental result showing the possibility of applying Naive Q-Learning for effec-

tively learning the opponentâs behavior and making a proper decision. Comparing

the performance of different decision making algorithms, they present simulation

results that show Naive Q-Learning performing better than algorithms with re-

stricted assumptions, especially against irrational attackers.

12



4.3 Application of stochastic programming in formulating and solving security

problems in the field of CPS

In the field of mathematical optimization, stochastic programming is a framework

for modeling optimization problems that involve uncertainty. Real world problems

almost invariably include some unknown parameters. Here the goal is to find a

solution which is feasible for all such data and optimal in some sense. Stochas-

tic programming models take advantage of the fact that probability distributions

governing the data are known or can be estimated [32].

The most widely applied and studied stochastic programming models are two-

stage (linear) programs. Here the decision maker takes some action in the first

stage, after which a random event occurs affecting the outcome of the first-stage

decision. A recourse decision can then be made in the second stage to compensate

for any bad effects that might have been experienced as a result of the first-stage

decision [33]. The optimal policy from such a model is a single first-stage decision

and a collection of recourse decisions (a decision rule) defining which second-stage

action should be taken in response to each random outcome [34]. The basic idea

of two-stage stochastic programming is that (optimal) decisions should be based

on data available at the time the decisions are made and should not depend on

future observations [35].

The authors in [36] develop a stochastic network interdiction model based on a

probabilistic attack graph with uncertain attack success probabilities on the arcs

and formulate it as a two-stage stochastic mixed-integer linear program. They

have employed the sample average approximation scheme along with the Bender’s

decomposition approach to solve the resulting problem. The model provides an

optimal recommendation for countermeasure deployment in a stochastic environ-

ment.

In [37], the author uses two stage stochastic programming to solve non-cooperative

games in the field of electric power systems and network communication systems.

13



The authors combine stochastic programs with Nash equilibrium to deal with cer-

tain multi-agent competition problems under uncertainty.

The work presented in this thesis is different from the works mentioned in this

chapter in several ways. Firstly, this thesis takes a holistic approach to tackle

the security problem in CPS rather than working with a specified area like sensor

network or power grid system. This thesis tries to find an optimized framework

to defend the CPS against a wide array of possible threats and attacks. This

thesis combines game theory and two stage stochastic program to build a robust

mathematical model and at the same time compares and validates the results using

extensive simulation and implementation on a real world physically functioning

testbed which to the best of our knowledge has not been done before.
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5. PREVIOUS WORK

The inspiration of this thesis comes from the game theoretic framework in [8]

where the problem of protecting the CPS is modeled as a Stackelberg game in

which the defender commits first to an assignment of blocks (i.e. assertions) that

seeks to minimize the attacker’s best response. In [8], a 2-player game between a

defender and an adversary is considered. The targets to protect are the different

measurement and control signals in the CPS and they will be named as the target

signals or the targets in the reminder of this thesis. To illustrate, if we consider an

air-conditioning system, the temperature and humidity reading will be measure-

ment signals, the signal to turn on/off the cooler or heater is the control signal.

The defender seeks to protect the CPS against various attacks through enabling

a set of blocks (i.e. assertions). The adversary seeks to attack the CPS through

selecting a target signal to attack and a particular attack method (e.g., spoof,

jam, delay). A cost is incurred with each enabled block since it would operate on

incoming signals to detect attacks. Such cost is represented by the time to per-

form the block. Given a certain maximum time performances that the target can

tolerate with the presence of all enabled blocks, the defender seeks to assign the

blocks to maximize its utility subject to the adversary choosing its best response.

The mathematical programming model in [8] is presented here to help the reader

follow the reminder sections of this thesis. Let nst be a binary decision variable

that denotes if assertion s is assigned to target signal t. The other decision vari-

ables are sθ (defender’s utility for attack type θ) and xc (probability of an assertion

of thwarting and attack). The solution to the following optimization model leads

to find an optimal assignment. Table 5.1 lists all the model parameters and Table

5.2 lists all the model decision variables.
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Table 5.1: Parameters notation.

Parameter Definition

zθ Probabilities of encountering an adversary type θ
Ud
t Utility of target t when defended

Uu
t Utility of target t when undefended
Es
a Effectiveness of assertion s against attack a
S Total number of assertions
Nt Number of signals to check per target t
Ts Time to assign assertion s
Ct Maximum delay capacity for target t

Table 5.2: Decision variables notation.

Decision Variable Definition

sθ Defenders Utility for adversary type θ
xc Probability of an assertion of thwarting an attack
nst Amount of assertion s assigned to target t

max F =
∑

θ∈Θ zθsθ (5.1)

sθ ≤ xcU
d
t + (1− xc)Uu

t ∀θ, c (5.2)

xc = 1− Πs∈S(1− Ea
s × nst) ∀c (5.3)∑

s∈S

nst ×Nt × Ts ≤ Ct ∀t (5.4)

nst ∈ {0, 1} ∀s, t (5.5)

The objective function 5.1 maximizes the defender’s worst case possible utility,

sθ, given the probability zθ of encountering an adversary of type θ. Constraint 5.2

enforces that the defender’s utility, sθ, is the worst possible over all possible attack

categories c (over all a and t), that the adversary could choose from. Equation 5.3

calculates the probability xc of thwarting an attack of category c, given the as-

signment of blocks to targets nst. Given that a subset of blocks are used to detect
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an attack a, the attack will go undetected only if all the blocks fail on detecting

the attack and hence, the product is used in 5.3 making the program non-linear.

The term Ea
s is the effectiveness of assertion s against attack a. Constraint 5.4

enforces that the performance of the set of enabled assertions to protect target t

would not exceed the capacity Ct for any target t. Equation 5.5 ensures a valid

assignment of each block as being enabled (i.e. 1) or disabled (i.e. 0).

Two relaxations were done to linearize the above model. Constraint 5.3 was re-

laxed to xc = maxs∈S E
a
snst. The relaxation means the probability of defeating

an attack is approximately computed as the probability of thwarting the attack

with the most effective block. Sign constraint 5.5 was relaxed to become a contin-

uous variable between [0, 1]. Equation 5.5 makes the optimization model a Mixed

Integer Program (MIP) and by replacing constraint 5.5 with 0 ≤ nst ≤ 1 ∀st,

we obtain a marginal assignment of blocks to targets. This marginal assignment

is implementable in two ways: (1) The check blocks are not operating at their full

scales (e.g., encrypting a signal with fewer bits, averaging over a smaller number

of signals, or watermarking with fewer resolution), and (2) the block is using a

sampling approach to only check a subset of the signals and that percentage is

given by nst directly. To solve the above model, a small system with one adversary

type, six targets, three assertions, three attacks and particular parameter values

was artificially generated. For this sample problem, this deterministic model had

114 constraints and 127 decision variables.
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6. OVERVIEW OF GAME THEORY AND MIXED INTEGER

PROGRAMMING

This chapter presents an overview of the operations research methodologies applied

in this research work. Firstly, it provides a synopsis of game theory. Secondly,

it describes a branch of optimization named mixed integer programming and the

branch and cut algorithm, the exact discrete optimization method the software

uses to solve the deterministic and stochastic models researched in this work.

6.1 Overview of Game Theory and Stackelberg Game

Game theory is the process of modeling the strategic interaction between two or

more players in a situation containing a set rules and outcomes [38]. Here, we will

provide an introduction to game theory, its terminology,and a short description of

a Stackelberg Game.

6.1.1 Definition of Game Theory

Game theory is the science of strategy, or at least the optimal decision-making of

independent and competing actors in a strategic setting [39]. It is also defined as

the study of mathematical models of conflict and cooperation between intelligent

rational decision-makers [25]. Game theory is mainly used in economics, political

science, and psychology, as well as in logic and computer science.The key pioneers

of game theory were the mathematicians John von Neumann and John Nash, as

well as the economist Oskar Morgenstern.

Prisoners’ Dilemma is a classic example of a game in a game theoretic context.

It shows why two completely rational individuals might not cooperate, even if

it appears that it is in their best interests to do so. It was originally proposed
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by Merrill Flood and Melvin Dresher while working at RAND (Research ANd

Development Corporation) in 1950. Albert W. Tucker formalized the game with

prison sentence rewards and named it "prisoner’s dilemma" (Poundstone, 1992).

Tucker presented

Powered by TCPDF (www.tcpdf.org)

Figure 6.1: A graphic representation of prisoners’ dilemma [1].

Two members of a criminal gang are arrested and imprisoned. Each prisoner

is in solitary confinement with no means of communicating with the other. The

prosecutors lack sufficient evidence to convict the pair on the principal charge.

They hope to get both sentenced to a year in prison on a lesser charge. Simulta-

neously, the prosecutors offer each prisoner a bargain. Each prisoner is given the

opportunity either to betray the other by testifying that the other committed the

crime, or to cooperate with the other by remaining silent. The offer is:

• If A and B each betray the other (i.e. if they both confess), each of them

serves 5 years in prison.

• If A betrays B but B remains silent, A will be set free and B will serve 20

years in prison (and vice versa).
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• If A and B both remain silent, both of them will only serve 1 year in prison

(on the lesser charge).

It is implied that the prisoners will have no opportunity to reward or punish

their partner other than the prison sentences they get and that their decision

will not affect their reputation in the future. Because betraying a partner offers

a greater reward than cooperating with them, all purely rational self-interested

prisoners will betray the other, meaning the only possible outcome for two purely

rational prisoners is for them to betray each other. The interesting part of this

result is that pursuing individual reward logically leads both of the prisoners to

betray when they would get a better reward if they both kept silent.

The prisoner’s dilemma game can be used as a model for many real world sit-

uations involving cooperative behavior. The label "prisoner’s dilemma" may be

applied to situations not strictly matching the formal criteria of the classic or

iterative games; for instance, those in which two entities could gain important

benefits from cooperating or suffer from the failure to do so, but find it difficult

or expensive but not necessarily impossible to coordinate their activities.

6.1.2 Different Types of Game in Game Theory

There may be several types of games depending on: i. number of players, ii. strate-

gies per player, iii. number of pure strategy Nash Equilibria, iv. game sequence,

v. information availability etc. Different types of games and their examples are

given below.

• Cooperative vs. Non Cooperative Games: A game is cooperative, if the play-

ers are able to form binding commitments externally enforced (e.g. through

contract law). A game is non-cooperative, if players cannot form alliances or

if all agreements need to be self-enforcing (e.g. through credible threats) [25].

Cooperative game theory provides a high-level approach as it only describes
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the structure, strategies and payoffs of coalitions, whereas non-cooperative

game theory also looks at how bargaining procedures will affect the distri-

bution of payoffs within each coalition. As non-cooperative game theory is

more general, cooperative games can be analyzed through the approach of

non-cooperative game theory provided that sufficient assumptions are made

to encompass all the possible strategies available to players due to the pos-

sibility of external enforcement of cooperation. However, non-cooperative

games cannot be analyzed as cooperative ones.

• Symmetric vs. Asymmetric Games: A symmetric game is a game where the

payoffs for playing a particular strategy depend only on the other strategies

employed, not on who is playing them. If the identities of the players can

be changed without changing the payoff to the strategies, then a game is

symmetric. Many of the commonly studied 2X2 games are symmetric. The

standard representations of the prisoner’s dilemma are symmetric games.

Most commonly studied asymmetric games are games where there are not

identical strategy sets for both players. For instance, the ultimatum game

and similarly the dictator game [40] have different strategies for each player.

• Zero-sum vs. Non-zero-sum Games: Zero-sum games are a special case of

constant-sum games, in which choices by players can neither increase nor

decrease the available resources [41]. In zero-sum games the total benefit

to all players in the game, for every combination of strategies, always adds

to zero (more informally, a player benefits only at the equal expense of

others). Poker exemplifies a zero-sum game (ignoring the possibility of the

house’s cut), because one wins exactly the amount one’s opponents lose.

Many games studied by game theorists (including prisoner’s dilemma) are

non-zero-sum games, because the outcome has net results greater or less

than zero. Informally, in non-zero-sum games, a gain by one player does
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not necessarily correspond with a loss by another. A two-person constant-

sum game is a two-player game in which, for any choice of both player’s

strategies, the row player’s reward and the column player’s reward add up

to a constant value c.

• Simultaneous vs. Sequential Games: Simultaneous games are games where

both players move simultaneously, or if they do not move simultaneously,

the later players are unaware of the earlier players’ actions (making them

effectively simultaneous). Sequential games (or dynamic games) are games

where later players have some knowledge about earlier actions. This need

not be perfect information about every action of earlier players; it might be

very little knowledge. For instance, a player may know that an earlier player

did not perform one particular action, while he does not know which of the

other available actions the first player actually performed.

• Perfect Information vs. Imperfect Information Games: An important subset

of sequential games consists of games of those under perfect information.

A game is one of perfect information if all players know the moves previ-

ously made by all other players [42]. Most games studied in game theory

are imperfect-information games. Examples of perfect-information games

include tic-tac-toe, checkers, infinite chess etc. Many card games are games

of imperfect information, such as poker and bridge.

6.1.3 Stackelberg Game

A special form of game theoretic approach has been taken for the mathemati-

cal formulation of this thesis which is called Stackelberg Game. The Stackelberg

Game (also known as Stackelberg leadership model) is a strategic game in eco-

nomics in which the leader moves first and then the followers move sequentially.

It is a non-cooperative, sequential game. It is named after the German economist
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Heinrich Freiherr von Stackelberg who published a book named Market Struc-

ture and Equilibrium (Marktform und Gleichgewicht) in 1934 which described the

model [43].

In game theory terms, the players of Stackelberg game are a leader and a fol-

lower, and they compete on quantity. The Stackelberg leader is sometimes referred

to as the Market Leader. There are some further constraints upon the sustaining

of a Stackelberg equilibrium. The leader must know ex ante (before the event) that

the follower observes its action. The follower must have no means of committing

to a future non-Stackelberg follower action and the leader must know this. Indeed,

if the ‘follower’ could commit to a Stackelberg leader action and the ‘leader’ knew

this, the leader’s best response would be to play a Stackelberg follower action.
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6.2 Overview of Mixed Integer Programming (MIP) and Branch and Cut

Method

Mixed Integer Linear Programs maximize a linear objective function subject to

linear inequalities and integer sign constraints on some of the decision variables.

This chapter presents how Mixed Integer Linear Programs are solved using the

Branch and Cut (B&C) algorithm. A B&C algorithm relies on the advantages of a

pure Branch and Bound Scheme and incorporates a new idea that makes it faster

than Branch and Bound. The idea behind B&C algorithm and its effectiveness is

illustrated after providing brief descriptions of the terminology used.

• Mixed Integer Programming (MIP): A mixed-integer programming

(MIP) problem is one where some of the decision variables are constrained

to be integer values (i.e. whole numbers such as -1, 0, 1, 2, etc.) at the

optimal solution. The use of integer variables greatly expands the scope of

useful optimization problems.

Even with highly sophisticated algorithms and modern supercomputers,

there are models with just a few hundred integer variables that have never

been solved to optimality. This is because many combinations of specific in-

teger values for the variables must be tested, and each combination requires

the solution of a regular linear or nonlinear optimization problem. The num-

ber of combinations rises exponentially with the size of the problem.

A mixed-integer program with n variables and m constraints has the form:
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Minimize : CTx (6.1)

Subject to : Ax ≤ b (6.2)

x ≥ 0 (6.3)

x ∈ Zn (6.4)

where A is am∗n matrix. If all the variables are rational, this is a linear pro-

gramming (LP) problem, which can be solved in polynomial time. In prac-

tice linear programs can be solved efficiently for reasonable-sized problems,

or even for big problems with special structure. However when some or all of

the variables must be integer, corresponding to mixed integer programming

or pure integer programs, respectively, the problem becomes NP-complete

or formally intractable since not all instances solve in polynomial time.

• Branch and Cut Method (B&C): Branch and cut [44] is a method of

combinatorial optimization for solving integer linear programs (ILPs), that

is, linear programming (LP) problems where some or all the unknowns are

restricted to integer values. Branch and cut involves running a branch and

bound algorithm and using cutting planes to tighten the linear programming

relaxations [45].

• Idea behind a B&C Algorithm: The development of the B&C algorithm

begins with an understanding of what new constraints may be suitable and

helpful to more accurately describe the integer or mixed integer problem

feasible region. The following definition is very important to understand the

B&C method.
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Definition: A linear inequality is a valid inequality for given discrete opti-

mization model if it holds for all (integer) feasible solutions to the model [46].

Relaxations can often be strengthened dramatically by including valid in-

equalities that are not needed for a correct discrete model. Not every valid

inequality strengthens a relaxation. For example, all inequality constraints

of the original formulation are trivially valid because they are satisfied by ev-

ery feasible solution. To strengthen a relaxation, a valid inequality must cut

off (render infeasible) some feasible solutions to the current LP relaxation

that are not feasible in the full ILP model. This need to cut off non-integer

relaxation solutions is why valid inequalities are sometimes called cutting

planes.

• B&C Algorithm

The steps for the Branch and Cut algorithm for 0-1 Integer Linear Programs

are described below and they follow the presentation in [46]:

Step 0: Initialization. Make the only active partial solution the one with all

discrete variables free, and initialize solution index t← 0. If any feasible so-

lutions are known for the model, also choose the best as incumbent solution

x̂ with objective value v̂. Otherwise, set v̂ ← −∞ if the model maximizes

and v̂ ← +∞ if it minimizes.

Step 1: Stopping. If active partial solutions remain, select one as x(t), and

proceed to step 2. Otherwise, stop. If there is an incumbent solution x̂, it

is optimal, and if not, the model is infeasible.
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Step 2: Relaxation. Attempt to solve the linear programming (LP) relax-

ation of the candidate problem corresponding to x(t).

Step 3: Termination by Infeasibility. If the LP relaxation proved infeasible,

there are no feasible completions of partial solution x(t). Terminate x(t), in-

crement t← t+ 1, and return to Step 1.

Step 4: Termination by Bound. If the model maximizes and LP relaxation

optimal value ṽ satisfies v̂ ≤ ṽ, or it minimizes and v̂ ≥ ṽ, the best feasible

completion of partial solution x(t) cannot improve on the incumbent. Ter-

minate x(t), increment t← t+ 1, and return to Step 1.

Step 5: Termination by Solving. If the LP relaxation optimum x(t) satisfies

all binary constraints of the model, it provides the best feasible completion

of partial solution x(t). After saving it as new incumbent solution by x̂← x̃(t)

and v̂ ← ṽ, terminate x(t), incumbent t← t+ 1, and return to Step 1.

Step 6: Valid Inequality. Attempt to identify a valid inequality for the full

ILP model that is violated by the current relaxation optimum x̃(t). If suc-

cessful, make the constraint a part of the full model, increment t ← t + 1,

and return to Step 2.

Step 7: Branching. Choose some free binary-restricted component Xp that

was fractional in the last LP relaxation optimum, and branch x(t) by creating

two new actives. One is identical to x(t) except that Xp is fixed = 0, and

the other is the same except Xp is fixed = 1. Then increment t← t+ 1 and

return to Step 1.
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Before turning the current partial solution into two, the branch and cut

algorithm would try to improve the relaxation. The idea is to find an in-

equality satisfied by every binary solution to the full model but violated by

x̃(t). Methods used to find such cutting inequalities vary enormously from

one model to another. They can be cuts derived from the observation of

problem specific characteristics or cuts from specialized models that also

apply to the problem to solve. Besides the cuts can come from families of

known valid inequalities such as the Gomory Cuts.
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7. RESEARCH METHODOLOGY

This thesis follows a comprehensive methodology to model and solve the cyber

security problem and analyze, simulate and validate the model’s solution. A three

step process that includes: (1) models’ design, (2) experimentation and analysis

and (3) validation is proposed and described in this chapter.

7.1 Step 1: Design of Mathematical Programming Models

7.1.1 Two-Stage Stochastic Programming (Two-SSP) Model with stochastic number

of signals

In the deterministic mathematical programming model presented in Chapter IV

(equations 5.1 to 5.5), the number of signals arriving per target in the time hori-

zon T for which the CPS will be protected is assumed to be known. However,

in a real situation the number of arriving signals might be known only through

a certain probability distribution due to the fact that sometimes multiple signals

are sent because of loss of data packets during transmission. Therefore, to solve

the problem of protecting a CPS in a more realistic way, a two-stage stochastic

programming approach is investigated.

In this Two-SSP, the recourse action a defender take is to modify the initial as-

signment of assertions considering each scenario (i.e. outcome) for the probability

distribution of the number of signals. For instance, if the number of arriving

signals ends high, given that there is a maximum delay capacity the CPS needs

to abide, the defender would like to modify the original assignments to properly

respond to the surge of signals. On the other hand, if the number of arriving sig-

nals is low, the defender would like to use the extra capacity available to allocate

a higher amount of assertions to those targets where such increase improves the

problem’s objective function.
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Recourse actions are then the fractional amounts of assignment that can be added

to or subtracted from the initial assignments for each target in each scenario. A

new decision variable Zste is introduced to represent the recourse action to take

for assertion s and target t under scenario e. Note that this decision variable is

capitalized to differentiate it from the parameter zθ, the probability of encounter-

ing an attack of type θ. The value of Zste is restricted to be between ±k,where

k is a constant fixed by the model’s user. Table 7.1 lists all the parameters and

Table 7.2 lists all the decision variables used in this two-stage stochastic model.

Table 7.1: Parameters notation.

Parameter Definition

Ud
t Utility of a target t when defended d

Uu
t Utility of a target t when undefended u
Es
a Effectiveness of assertion s against an attack a

Pe Probability of receiving the number of signals estimated for scenario e
Nte Estimated number of signals arriving to target t under scenario e
Ts Time to assign and run the initial amount of assertion s assigned
Ta Time to perform the recourse action
Ct Delay capacity (i.e. total time available to run all assertions on target t)
k Maximum value allowed for the recourse action Zste

(i.e. limit on the amount of change on initial assignment
implemented by the recourse action)

Table 7.2: Decision variables notation.

Decision Variable Definition

sθ Defenders utility for adversary type θ
xc Probability an assertion thwarts an attack category c

where c is defined by specifying target and attack
(i.e. c is the tuple <t,a>)

nst Fraction of assertion s assigned to target t
Zste Second stage decision variable that represents the recourse action

as described in previous paragragh
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The mathematical program for the proposed Two-SSP model is shown below.

This model corresponds to the extensive form of the stochastic program also known

as the deterministic equivalent model. For more details on the stochastic program-

ming models the reader can consult [46].

max F =
∑
θ∈Θ

E(zθSθ) (7.1)

E(sθ) ≤ E(xc)U
d
t + [1− E(xc)]U

u
t ∀θ, c (7.2)

E(xc) = max
s∈S
{nstEa

s +
∑
e

Ea
s peZste} ∀c (7.3)

∑
s∈S

nstNteTs +
∑
s∈S

|Zste|NteTa ≤ Ct ∀t, e (7.4)

nst + Zste ≤ 1 ∀s, t, e (7.5)

nst + Zste ≥ 0 ∀s, t, e (7.6)

0 ≤ nst ≤ 1 ∀s, t (7.7)

− k ≤ Zste ≤ k ∀s, t, e (7.8)

Expression 7.1 is the objective function that maximizes the expected worstcase

utility for the defenders. Constraint 7.2 calculates the expected worstcase utility

over all the attack categories based on the given utility of each target and the

expected probability of thwarting an attack. Constraint 7.2 enforces that the ex-

pected utility computed is in fact the worstcase one the defender can experience.

Equation 7.3 determines the expected probability of thwarting an attack for each

target and each attack under each scenario. Constraint 7.4 is the main constraint

that controls the amount of first-stage, nst, and second-stage, Zste assignment of

assertion s that can be assigned, given the number of signals, and the times to

assign the first and second stage amounts of assertions. The absolute value for Zste

in this constraint ensures that the addition or subtraction of a certain amount of
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the original assertion always implies the use of some of the available capacity Ct.

Constraints 7.5 and 7.6 ensure that the sum of initial and additional assignments

does not exceed 1 or is less than 0 under any probability scenario. Constraint 7.5

permits that zste be lower or higher than nst meaning that additions of assignment

over the original fraction are valid as long as they do not exceed 1. The set of

constraints 7.5 and 7.6 are critical since 7.5 permits increases on the amount of as-

signment that may exceed the first stage assignment as long as they do not exceed

1. Constraint 7.6 assures that decreases on the amount of assignment exceeding

the first stage assignment are not permitted. Constraints 7.7 and 7.8 restrict the

upper and lower limits for the initial and additional assignment of assertions.
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7.1.2 Two-Stage Stochastic Programming (Two-SSP) Model with stochastic number

of signals and stochastic effectiveness

The model presented in section 7.1.1 is also adapted to solve the case in which two

parameters in the model are random. Here it is assumed that not only the number

of signals arriving under each target is known through a probability distribution,

but also the effectiveness of a block against an attack, Ea
b . The reason behind

this consideration is to make the model more agile and fit more realistic scenarios.

Because in a real setting, the effectiveness of a block assignment may vary with the

sampling frequency, complexity of encryption etc. The new number of scenarios

e′ in the model continues to be finite but it is larger. Since the effectiveness of the

blocks and the number of arriving signals are two independent random events, the

new number of scenarios e′ is found through the probability tree of all possible

outcome values for these two parameters. The probabilities associated with each

scenario are the product of the branches in the probability tree. The new Two-SSP

model has same notation as the one in subsection 7.1.1 except for equation 7.2

which changes as shown in equation 7.9. In this new equation, Es
ae′ represents the

effectiveness of block s to attack a under realization or scenario e′.

E(xc) = max
s∈S
{Ea

se′nst +
∑
e′

Ea
se′pe′Zste′} ∀c (7.9)
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7.1.3 Piecewise Linear Model

In the model in subsection 7.1.1 the time to assign an assertion, Ts, and the time

to perform the recourse action on the assertion, Ta were considered constant. It

means that irrespective of a full assignment (i.e. nst = 1;Zste = ±k) or a partial

assignment (i.e. nst < 1;Zste = ±k) of an assertion s to a target t, the unit time

required is the same. This assumption fails if there is an overhead to assign the

blocks or if the block’s setting time depends on the amount of marginal blocks

assigned, like in the assignment of machine learning blocks. In this section, a

new model is presented. Here, Ts is assumed to be defined by a piecewise linear

function of nst and Ta is assumed to be defined by a piecewise linear function of

Zste.

In a general form, the piecewise linear function used for Ts has n slopes equal

to T1, T2, T3, ..., Tn at breakpoints x1, x2, x3, ..., xn that are fractional values of nst.

Similarly, the piecewise linear function for Ta has slopes equal to T ′1, T ′2, T ′3, ..., T ′n

at breakpoints x1, x2, x3, ..., xn that are fractional values of Zste. Here it is consid-

ered that the time required to assign second stage block assignment, Ta is greater

than time required to assign first stage block assignment, Ts

The objective function and the constraints for the piecewise linear model are

the same as in the stochastic model described by the equations 7.1 to 7.8. The

only difference is that, the time Ts and Ta are piecewise functions of nst and Zste

expressed as following.
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Ts =



T1 if 0 < nst ≤ x1

T2 if x1 < nst ≤ x2

...

Tn if xn−1 < nst ≤ xn

Ta =



T ′1 if 0 < Zste ≤ x1

T ′2 if x1 < Zste ≤ x2

...

T ′n if xn−1 < Zste ≤ xn
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7.2 Step 2. Experimentation and Analysis

The three models presented in subsection 7.1.1, subsection 7.1.2 and subsec-

tion 7.1.3 were solved with the same small CPS used to solve the deterministic

model presented in chapter 5. The numerical results and analysis will be presented

in the next chapter. Such small CPS had one adversary type, six targets, three

assertions, three attacks, and the remaining particular parameter values were ar-

tificially generated. For this small sample problem, the model had 114 constraints

and 127 decision variables. The small CPS allowed us to easily construct the

model and compare the performance of the different models.

However, in reality a much larger problem may arise and the success of the

proposed stochastic approach will lie in the ability of solve the model within an

acceptable time limit. As it is expected that solving time grows exponentially with

the increase in size of the problem, the model presented in the subsection 7.1.1

was progressively expanded to include more targets, assertions or check blocks and

attacks and to find if these expansions would permit to observe the hypothesized

effect of problem size on solving time . The first step of the expansion was to use

30 targets, 10 check blocks, and 6 attacks. The second step was to increase the

number of targets to 50 and the number of check blocks and attacks to 10 and 6

respectively. In the final step, an even larger problem was constructed using 100

targets, 20 check blocks, and 20 attacks.
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7.3 Step 3a: Validation of Mathematical Models through the Development of a

Discrete Event Simulation Model

In the third step of this research, a simulation model in Matlab Simulink is devel-

oped to simulate the block assignments obtained from solving the deterministic

model and the one with stochastic number of signals. The simulation approach

gives an opportunity to compare the results obtained from mathematical model

and also assess the quality of the solution. Matlab simulink is a very strong sim-

ulation tool that has a wide range of built-in functions as well as the flexibility of

using user defined functions. The Matlab Simulink model simulates the solution

from the two stage stochastic model on a small CPS subject to different attack

categories. The Simulink model provides the opportunity to validate mathemati-

cal model and compare the expected worstcase utility of the defender.

Figure 7.1 represents a simplified diagram of the developed Simulink model. It

consist of four target signals (two measurement and two control signals). The

Simulink model simulates a simple adaptive cruise control system used in an au-

tonomous driving component to maintain a specified cruise speed as well as a safe

distance from the vehicle in front of it. The system has a signal builder block that

generates an input signal to the lead vehicle and causes it to accelerate or break.

This input signal regulates the velocity of the lead vehicle. The host vehicle has

to follow the lead vehicle with a preset cruise speed and also maintain a preset

minimum distance. The host vehicle distance from the lead vehicle is the second

measurement signal in this CPS. If the distance between the vehicles is greater

than a set distance, the host vehicle will accelerate until it reaches cruise speed.

Then the host vehicle will maintain the cruise speed unless the distance from the

lead vehicle becomes less than the set distance. If the host vehicle reaches the

set distance, it will reduce its speed. A control signal for the host vehicle is the
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acceleration and it allows to increase or decrease host vehicle speed. Such signal

is controlled by a PID controller block and a feedback loop.

The measurement signals and control signals are listed in Table-7.3

Table 7.3: Signal definition of simulink model.

Sl. Signal Name Signal Definition

1 Measurement Signal-1 Speed of host vehicle

2 Measurement Signal-2 Distance of host vehicle from lead vehicle

3 Control Signal-1 Signal to host to accelerate

4 Control Signal-2 Signal to host to brake
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Figure 7.1: Simulation of an adaptive cruise control system.
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This proof-of-concept CPS model has four target signals (two measurement sig-

nals [Mes_Signal−1,Mes_Signal−2] and two control signals [Control_Signal−

1, Control_Signal − 2]). The stochastic number of signals is generated through

conditional rate transition blocks that follow a probability distribution for the

number of signals per target and scenario Nte defined as Nte = [5, 7, 10] with

probabilities pe = [0.2, 0.3, 0.5]. The conditional rate transition block is a built

in simulink function block that is able to generate signals at different rates which

can be set by user.

The following three types of cyber-attack functions were programmed in the

Simulink model to manipulate the measurement and control signals and to prevent

the CPS from operating optimally. The attack functions are:

• Minimum Value Attack (MVA):

ȳ =


y if y > k

k if y ≤ k

(7.10)

MVA fixes the input signal y to an arbitrary minimum k. If the value of

incoming signal y is less than k, it denies the signal and sends the minimum

value which creates a temporary instability in the CPS because for a certain

time the system will receive the same value.

• Offset Attack (OA):

ȳ = y + rand[−y, y] (7.11)
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OA adds an arbitrary random number in the range [−y, y], where y is the

value of the incoming signal. Then, this attack abruptly changes a signal

and tends to change the behavior of the CPS.

• Random Noise Attack (RNA):

ȳ = y +N(µ, σ2) (7.12)

RNA adds a noise to the original signal, it is assumed that the signal follows

a normal distribution with mean µ and variance σ2. Then this attack can

tweak the signal to deceive the check blocks and destabilize the CPS.

The Simulink model has three check blocks that are deployed to detect the

attacks and consequently protect the CPS.

• Parity-based Check Block: This check block marks even signal and odd sig-

nal differently and can detect the attack by reversing the marking procedure.

This check block has a high chance of catching a MVA and a fair chance to

protect the CPS against RNA and OA.

• Threshold-based Check Block: This check block compares the incoming sig-

nal with a preset value and decides that an attack has happened if the value

exceeds the threshold value. This check block is moderately effective against

MVA or OA where the attack function largely manipulates the signal. How-

ever, this check block is not very effective against RNA.

• Watermarking Block: This check block adds a checksum digit in the least

significant digit of the signal. It has a very negligible effect on the signal

property and behavior but can be checked for attack detection. Watermark-

ing is very effective against RNA because this attack adds a noise to the
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signal which changes the checksum digit in the signal. However, this check

block can be less effective against MVA or OA, as random attack can pick

values in a wider range meaning that MVA or OA can manipulate the signal

without changing the checksum digit of the signal thus preventing the check

block form detecting an attack.

The different parts of the CPS in Simulink are interconnected through a network

that can be subject to different cyber-attacks. The attack nodes have different

attack functions and will be activated when the attacker decides to attack. Check

blocks are employed before the signals enter the control module thus they can

detect whether a signal has been attacked or not.

For easier understanding of the readers a simplified version of the simulink model

is presented in figure-7.2
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Figure 7.2: A simplified version of simulink model presented in figure-7.1.

42



7.4 Step 3b: Validation of Models using a Real-World Testbed

To assert the outcome of this research and validate the applicability of the results

found via mathematical programming and simulation models, the author of this

thesis constructed a testbed to experiment on a realistic CPS. Such testbed is a

simplified version of a real world CPS that has an appropriate size to be managed

in a laboratory . It has all of the functional physical and cyber components of a

real world CPS. This CPS testbed allows to test and simulate cyber attacks and

observe their effect without compromising a real system.

The physical system of the testbed mainly consists of a small scale steam turbine

coupled with a boiler (steam generator). The turbine is subsequently coupled with

a DC generator. The steam from the boiler rotates the turbine and the turbine

rotates the generator shaft producing a DC voltage. The cyber component of the

testbed is emulated by interconnecting arduino boards (Uno and Mega 2560) and

a PC using the Matlab-Arduino interface. Some sensors and actuators bridge the

communication between the cyber system and physical system. Figure-7.3 shows

a simplified diagram of the CPS testbed. Steam temperature, steam pressure and

voltage are the measurement signals and PWM of heater on/off is the control

signal.

Plant
(Boiler +Turbine + 

Generator)

NetworkNetwork

Controller
(Arduino)

SensorsActuators
Measurement 
signals: 
Temperature, 
Pressure, Voltage

Control Signal: 
Heater on/off

Figure 7.3: A simplified diagram of CPS testbed.
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Static and dynamic data of different signals (temperature, pressure, voltage

etc.) are collected under different attack scenarios used in the mathematical pro-

gramming and simulation models. The data is analyzed to conclude about system

performance. The results from the mathematical approach and the testbed oper-

ation are compared to establish an optimized security framework for a real world

CPS. Figure 7.4 shows the block diagram of the testbed constructed and its dif-

ferent cyber and physical components. A short description of the components of

the CPS testbed is given immediately after the graph.

V

Electric 
Heating Coil

Temperature 
Sensor

Pressure 
Sensor

Figure 7.4: CPS testbed diagram.

• Boiler: The boiler is made of aluminum. Its length is 6.5 inches. Its diameter

is 3.5 inches and its volume is 500 ml. The boiler can generate steam up to

20 psi gauge pressure. It has two safety pressure release valves to avoid any

accident. The standard boiler comes with four alcohol lamps to generate

steam. However, for this experiment an electric heater was used instead

since it let a better control of the steam generation.
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Figure 7.5: Steam generator used to build the CPS tesbed.

• Steam Turbine and Generator: The standard steam turbine came coupled

with a DC generator. The turbine blades, shaft and gears are made of brass.

The DC generator has a rated voltage of 12V but since the Arduino can

handle a maximum of 5V, the generator ran at maximum 5V capacity.

Figure 7.6: Steam turbine and DC generator used to build the CPS testbed.

• Temperature Sensor: To measure the steam temperature, a K type thermo-

couple temperature sensor was used. The thermocouple is attached to an

Arduino compatible MAX6675 module that converts voltage generated by

the thermocouple into a digital signal that can be read using an Arduino

digital input pin. Its operating temperature range is 0 to 6000C.
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Figure 7.7: MAX6675 temperature sensor used to build the CPS tesbed.

• Pressure Sensor: The pressure sensor is an advanced strain gauge pressure

transducer that converts strain from liquid pressure into a DC voltage rang-

ing between 0.5V to 5.0V . This voltage is a linear function of the steam

pressure. The voltage can be read using the Arduino analog input pin and

converted into pressure in psi. The operating range of this pressure sensor

is 0 to 200 psi.

Figure 7.8: Pressure sensor used to build the CPS testbed.

• Arduino Boards: Arduino is an open source computer hardware and soft-

ware company, project, and user community that designs and manufactures

single-board micro-controllers and micro-controller kits for building digital

devices and interactive objects that can sense and control objects in the phys-
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ical and digital world [47]. The project’s products are distributed as open-

source hardware and software, which are licensed under the GNU Lesser

General Public License (LGPL) or the GNU General Public License (GPL),

permitting the manufacture of Arduino boards and software distribution by

anyone. Arduino boards are available commercially in pre-assembled form,

or as do-it-yourself (DIY) kits.

Arduino board designs use a variety of microprocessors and controllers. The

boards are equipped with sets of digital and analog input/output (I/O) pins

that may be interfaced to various expansion boards or Breadboards (shields)

and other circuits. The boards feature serial communications interfaces, in-

cluding Universal Serial Bus (USB) on some models, which are also used

for loading programs from personal computers. The micro-controllers are

typically programmed using a dialect of features from the programming lan-

guages C and C++. Matlab also has hardware support package for Arduino

and an Arduino can be controlled from the Matlab environment using Mat-

lab code. In addition to using traditional compiler toolchains, the Arduino

project provides an integrated development environment (IDE) based on the

Processing Language project.

Over the years Arduino has been the brain of thousands of projects, from ev-

eryday objects to complex scientific instruments. A worldwide community

of makers - students, hobbyists, artists, programmers, and professionals -

has gathered around this open-source platform and their contributions have

added up to an incredible amount of accessible knowledge that can be of

great help to novices and experts alike.
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Figure 7.9: Arduino board used to build the CPS testbed.

The heater heats up the water in the boiler and generates steam. The steam

passes through the pipe and is fed into the inlet of a steam turbine. The steam

rotates the turbine and exists through the outlet. The rotating turbine drives the

DC generator and generates electricity. Steam pressure and temperature are read

using a steam pressure transducer and k-type thermocouple temperature sensor.

The signal from both sensors are sent to an Arduino MEGA 2560 board. The

generated voltage is also read by Arduino directly using analog input pin. The

heater underneath the boiler is controlled by pulse width modulation using solid

state relay and output from Arduino digital output pin. The Arduino boards are

programmed to monitor and run the system in a closed loop feedback system au-

tonomously.

A Matlab script was written to simulate the attacks (Random noise attack,

Minimum value attack and offset attack) and implement the check blocks (Parity

based check block, Threshold based check block and Watermarking check block)

in the CPS testbed. The definition of the attack functions and the check blocks

are the same as presented in section- 7.3, chapter-7. All the readings from the

Arduino board were sent to a Matlab simulation model by using the Arduino add-

in in matlab and USB cable. The actual simulation of attacks and check blocks

happens inside the Matlab script and the command signal is then passed to the

Arduino to control the heater of the boiler. There are three measurement signals

(steam pressure, steam temperature, and generated DC voltage) and one control
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signal (boiler heater signal) in the CPS. First the signals are read from the analog

pin of Arduino. Then each of the signals may face one of the three attacks based

on random selection. After that check blocks are applied to the signals Zero, one

or more check blocks may be active based on the solution found from mathemati-

cal model. The check blocks checks each signal for any sign of potential attack. If

the check blocks can detect an attack then it is recorded. If the check blocks can

not detect an attack it is also recorded. The percentage of attack detection under

a certain policy or method contrasted (deterministic GT , two-stage stochastic,

greedy or random) determines the success of that policy.

Figure-7.10 shows the final set up of the CPS that has been built.

Powered by TCPDF (www.tcpdf.org)

Figure 7.10: Final setup of the CPS testbed.
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8. RESULTS

8.1 Results from the Deterministic Model

All the mathematical models were programmed in IBM Ilog CPLEX Studio 12.7.1

using OPL language and solved in a PC running on windows 10 professional op-

erating system with core i7 processor with 3.2 GHz clock speed and 16GB DDR3

RAM. To assess the superiority of the Game Theory formulation, the outcome

from the Game Theory approach is compared to the outcome of four other meth-

ods. The methods compared are:

1. Game theory- two relaxations, as explained in the chapter 5 are done in

equations-5.3 and 5.5 to the model given by equations 5.1-5.5.

2. Game theory Mixed Integer, that solves the model comprised of Equations

5.1-5.5 but with only one relaxation of Equation 5.3. It means nst is consid-

ered to be integer 0,1 for this model.

3. Random assignment, in which the assignment of blocks to targets is done

randomly while satisfying the capacity constraints given in Equation 5.4.

The randomly generated assignment is used to calculate the probability xc

and the worst case possible utility sθ.The procedure for randomly finding

the assignment of blocks to targets is repeated a pre-determined number of

times to assess the variability on the results.

4. Greedy assignment, in which the following procedure is followed. A relative

effectiveness for each assertion was calculated by dividing the effectiveness
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of each assertion by the time to assert the assertion. Then total effectiveness

of the assertions is computed by adding their relative effectiveness over the

different attacks. Then the blocks are sorted by total relative effectiveness

on descending order and kept on a list. The first ranked block is assigned

at the highest possible amount to the most valuable target first and consec-

utively to the remaining less valuable targets if the capacity constraints are

satisfied.The procedure continues attempting to assigning the next blocks

in the list if the capacity constraint is not violated. The resulting greedy

assignment permits to find xc and the worst case possible utility sθ.

5. Greedy-LP, in which the linear relaxation to the following mathematical pro-

gramming model is solved to find the assignment of blocks to targets nst and

subsequently this assignment is plugged into the model in chapter 5 to find

the resulting worst case utility

max
∑
t∈T

∑
c∈C

(xcU
d
t + (1− xc)Uu

t ) (8.1)

xc = max
s∈S

Ea
snst ∀c (8.2)∑

s∈S

nstNtTs ≤ Ct ∀t (8.3)∑
s∈S

Ea
snst ≥ k ∀t, a (8.4)

nst ∈ 0, 1 ∀s, t (8.5)

In the model above, the objective function 8.1 maximizes the utility of the de-

fender when the target is undefended. Equation 8.2 is the relaxed constraint of

Equation 5.3 that once the maximum function is transformed to a set of linear

constraints causes the model to become an IP Equation 8.3 is the same capacity

constraint as in the model in chapter 5. Equation 8.4 guarantees that for each
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target there is a minimum level of effective coverage or protection against each

attack. In Equation 8.4, k is a coverage constant whose value is set to a small

number in the experiments (i.e., 0.2). By relaxing Equation-8.5 we obtain a frac-

tional assignment of assertions to targets.

A 32 general full-factorial design was run to compare the performance of meth-

ods 1-5. The three different levels of effectiveness considered for the blocks S were

Low, Medium and High. The three different levels of defenders’ utility for the

targets were Low, Medium and High. The low level of effectiveness was a random

number less than or equal to 0.5 for all blocks against all attacks. The medium

level of effectiveness was a random number between 0.5 and 0.7 and the high level

of effectiveness was a random number greater or equal to 0.7.

The total utility (i.e. value) of the targets was set to add to 700. At the low ex-

perimental level, all the targets were considered to have equal value (i.e. 116.67).

At the medium experimental level, one of the targets had higher value randomly

chosen between 200 and 300 and the rest had equal value.At the high experimental

level one target had a higher value randomly chosen between 300 and 450 and the

remainder targets had equal value. The values for the rest of the parameters are

mentioned in Table 8.1

Table 8.1: Parameter values.

Parameter Value

Nt [10, 10, 10, 10, 10, 10]
Ts [2, 1, 1.5]
Ct [40, 40, 40, 40, 40, 40]

The random assignment procedure was performed 5 times over each one of the

nine experimental conditions. Besides, at each one of the conditions, the random

selection of values for effectiveness and utility was replicated 5 times. Then, the
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approaches 1, 2, 4,and 5 were run a total of 32 ∗ 5 = 45 times and the random

approach (i.e., approach 3) was run 32 ∗ 5 ∗ 5 = 225 times. Consequently, in each

experimental condition the resulting worst case utility is averaged over 5 runs for

approaches 1,2,4 and 5 ad over 25 runs for approach 3. A summary of these aver-

age worst case utility outcomes is presented in Figure 8.1.
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Figure 8.1: Average worstcase utility for different levels of Utility (top to bottom Low,
Medium and High).
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The graph in the top of Figure-8.1 presents the average worst case utility for

different effectiveness levels when the utility of the targets is low. As expected

from the linear programming theory, it can be seen that Game Theory two re-

laxation method has the best worstcase utility in all the scenarios. Greedy-LP

works better than Greedy or Random approach when the effectiveness is low but

for medium and high effectiveness Greedy gives better results than Greedy-LP or

Random approach. As expected. random approach gives the most negative worst

case utility in all the effectiveness levels.

The graph in the middle in Figure-8.1 shows the average worst case utility for

different effectiveness levels when utility is medium. Again, the Game Theory two

relaxation approach has the best worst case utility in all the scenarios; Greedy-LP

works better than Greedy or Random approach when the effectiveness is low but

for medium and high effectiveness Greedy gives better result than Greedy-LP or

Random approach. For all the scenarios in this figure, the Random approach gives

the less desirable worst case utility.

The graph in the bottom of Figure-8.1 represents the average worst case for

different effectiveness level when utility is high. It is evident that the Game The-

ory two relaxation approach has the best worst case utility in all the scenarios.

The Greedy approach gives the second highest worst case value. Note that for

medium and high effectiveness, the worst case utility for the Greedy approach is

very close to the one for Game Theory. Greedy-LP gives better worst case utility

than Random but less than Game Theory or Greedy.

A one way ANOVA test was done to determine whether there is any statistically

significant differences between the five approaches. The p-value of the ANOVA

test is 0.00 (figure-8.2), which means there is statistically significant difference

in means between different approaches. To further understand the difference in
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means, a Tukey pairwise comparison is performed and the results are presented

in figure-8.4. It can be seen from the pairwise comparison graph that our game-

theoretic approaches (GT and GT-MI) and Greedy, form a group that has the least

difference in means among themselves. Random and Greedy-LP form another

group.

Analysis of Variance

Source     DF   Adj SS  Adj MS  F-Value  P-Value

Approach    4   182400   45600     6.05    0.000

Error     220  1658279    7538

Total     224  1840680

Model Summary

S   R-sq R-sq(adj)  R-sq(pred)

86.8195  9.91%      8.27%       5.77%

Means

Approach         N    Mean  StDev 95% CI

Game Theory     45  -111.9   77.4  (-137.4,  -86.4)

Greedy          45  -128.2   91.1  (-153.7, -102.7)

Greedy-LP       45  -169.0   96.8  (-194.5, -143.5)

Random          45  -181.9   86.1  (-207.4, -156.4)

Game Theory-MI  45  -116.7   81.2  (-142.2,  -91.2)

Pooled StDev = 86.8195

Figure 8.2: One way ANOVA result
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Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% 

Confidence

Approach         N    Mean  Grouping

Game Theory     45  -111.9  A

Game Theory-MI  45  -116.7  A

Greedy          45  -128.2  A B

Greedy-LP       45  -169.0    B C

Random          45  -181.9      C

Means that do not share a letter are significantly 

different.

Figure 8.3: Tukey test Summary.
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Figure 8.4: Tukey pairwise graph.

In summary, Game Theory gives the best (i.e. largest negative value) worst case

utility among all the approaches compared and for all the test scenarios. Greedy-

LP gives second highest worst case when effectiveness is low but for medium and

high effectiveness Greedy gives better results. Random approach gives the worst

worstcase utility for all test scenarios.

The relative performance of the Greedy, Greedy-LP, Random, and Game The-

ory Mixed Integer approaches compared to Game Theory Linear Relaxation is
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presented in the following Performance Profile graph [48]. Figure-8.5 shows that

Random and Greedy LP gave the same worst case utility as Game Theory Linear

Relaxation only in less than 20% of the experimental runs performed while Greedy

did it in about 80% of them. Also, near 95% of the instances run for Greedy algo-

rithm have less than 50% error vs. the Game Theory Linear Relaxation approach.

For Greedy LP and Random the percentage of instances with error below 50%

vs. Game Theory Linear Relaxation is only about 40-50%, Game Theory Mixed

Integer gave 95% data points within 20% error compared to Game Theory Linear

relaxation
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Figure 8.5: Performance profile graph.
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8.2 Results from Two-Stage Stochastic Programming (Two-SSP) Model with

stochastic number of signals

The Two-SSP stated in section 7.1.1 was solved for nine different cases (three lev-

els of utility for targets and three levels of effectiveness for the assertions) as the

deterministic model in chapter 5. The value of the parameters are presented in

Table 8.2. To assert the effectiveness of the model, value of stochastic solution

(VSS) was calculated. VSS is defined by the difference between the worstcase of

two-stage stochastic programming model solved for first stage assignment along

with second stage recourse action and two-stage stochastic model where the first

stage assignment is given from previous deterministic model (presented in chap-

ter 5) and solved for only second stage recourse action. The worstcase utility

under each of the 9 experimental settings were averaged over the 5 runs and they

are presented in Figure 8.6 and the VSS is presented in figure-8.7

Table 8.2: Parameter values for Two-SSP.

Parameter Value

Pe [0.2, 0.3, 0.5]

Nte

 [7, 7, 7, 7, 7, 7]

[10, 10, 10, 10, 10, 10]

[11, 11, 11, 11, 11, 11]


Ts [2, 1, 1.5]
Ta [2.4, 1.2, 1.8]
Ct [40, 40, 40, 40, 40, 40]
k (−0.1, 0.1)

Figure-8.6 shows the comparison between the worstcase utility of the two-SSP

solution and the deterministic solution plugged into two-SSP model. It can be

seen that the worstcase utility improves when solved as two-SSP than when solu-

tion from deterministic model is plugged into two-SSP model. The gain in utility

when solved as two-SSP is the VSS. The VSS is presented in Figure 8.7. The inner

caption in the figure ‘Low’ ‘Mid’ and ‘High’ indicates low, medium and high effec-
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Figure 8.6: Worstcase comparison of two-SSP and two-SSP with solution plugged in from
deterministic model.

tiveness of assertions. It can be seen that the VSS increases with the increase in

effectiveness and utility. A two way ANOVA test was performed to study whether

changing the utility and effectiveness had a statistically significant effect on VSS.

The effect of both effectiveness of blocks and utility of targets on VSS was found

to be statistically significant. The details of ANOVA can be found in appendix B.
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Figure 8.7: VSS of different utility for targets and different effectiveness of blocks.

A sample solution of the two-SSP model is presented here-
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Worstcase Sθ = −40.0

nst=


1 1 1 1 1 1

0.086 0 0.1 0.1 0.1 0.1

1 0.9 1 0.81 0.94 0.82



Zste=




0 −0.1 −0.1 −0.1 −0.1 −0.1

−0.086 0 −0.1 −0.1 −0.1 −0.1

0 −0.1 −0.1 0 −0.1 −0.1




0 −0.1 −0.1 −0.1 −0.1 0

0 0 −0.1 −0.1 0 −0.1

0 −0.1 0 −0.1 −0.1 0




0 0 0 −0.1 0 −0.046

0.1 0 0 −0.1 −0.1 −0.1

0 0.1 0 −0.02 0 −0.1




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8.3 Results from the Piecewise Linear Model

The slopes and breakpoints for the piecewise linear functions that model the times

Ts to enable the 3 blocks in the first stage ( s = 1, 2, 3) and the times Ta to

implement recourse actions are in Table 8.3.

Table 8.3: Slopes and breakpoints for the piecewise linear functions.

Breakpoints Ts Ta

T1 T2 T3 Ta1 Ta2 Ta3

0.10 0.10 0.05 0.08 0.12 0.06 0.09
0.20 0.25 0.13 0.19 0.30 0.15 0.23
0.30 0.45 0.23 0.34 0.54 0.27 0.41
0.40 0.75 0.38 0.56 0.90 0.45 0.68
0.50 1.10 0.55 0.83 1.32 0.66 0.99
0.60 1.50 0.75 1.13 1.80 0.90 1.35
0.70 1.68 0.84 1.26 2.02 1.01 1.51
0.80 1.85 0.93 1.39 2.22 1.11 1.67
0.90 2.00 1.00 1.50 2.40 1.20 1.80

The piecewise model solves in about the same computational time as stochastic

model (80 to 100 ms). The worst-case utility and the matrices for the first-stage

marginal block assignments, nst and the second-stage recourse actions for the block

assignments, Zste, are given below.

Worstcase = −40.0

nst=


1 0.8 0.8 0.8 0.8 0.8

0 0 0.1 0.886 0 0.1

1 0.85 0.85 0.7 0.75 0.8


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Zste=




0 −0.1 −0.1 −0.1 −0.1 −0.1

0 0 −0.1 0 0 −0.1

0 −0.1 −0.1 0 −0.1 −0.1




0 −0.1 −0.1 −0.1 −0.1 −0.1

0 0 −0.1 0 0 −0.1

0 −0.1 −0.1 0 −0.1 −0.1




0 0 0 0 0 0

0 0 −0.1 0 0 −0.1

0 −0.1 −0.1 0.1 0.1 0





Additional experiments were performed to observe the effect of the ratio Ta/Ts

on the expected worstcase utility of model in subsection 7.1.3 with varying the

delay capacity Ct at 3 levels, 10, 20, and 40. Results are presented in figure-8.8.

The results show that when the second stage assignment takes less time than first

stage assignment (Ta/Ts < 1), the expected worstcase utility is better than when

Ta/Ts > 1. This trend is more observable if the system delay capacity Ct is low

(e.g. 10). This can be explained by the fact that at lower capacity levels the pro-

gram can assign a much lower fraction of assignments compared to higher capacity

level. So, the ratio of Zste/nst is lower at higher capacity levels and higher at lower

capacity levels. As the ratio of Zste/nst goes higher, the higher value of ta (time

to assign second stage assignment) affects the worstcase utility more.
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Figure 8.8: Effect of the ratio Ta/Ts on worstcase utility at 3 different capacity levels.
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8.4 Results from Two-Stage Stochastic Programming (Two-SSP) Model with

stochastic number of signals and stochastic effectiveness

The model presented in section 7.1.2 was solved considering three random scenar-

ios for the effectiveness of the blocks, Ea
se, and three different scenarios for the

number of signals,Nte. The values for Nte and its probabilities are the same as

in Section 8.2. Thus, the total number of scenarios in this model is e′ = 9. The

solution to this model is given below. The worstcase utility obtained is similar to

the one in section-8.2 but the assignment matrix is different. The reason is that

due to stochastic effectiveness of the blocks the program assigns them differently

to achieve maximum worstcase. As other parameters were same as section 8.2 the

worstcase utility is same.

Sθ=−40.374

nst=


1 1 1 0.99 1 1

0 0.12 0 0 0 0

1 0.88 0.84 0.86 0.95 0.91



65



Zste=




0 0 −0.1 −0.1 0 −0.1

0 −0.1 0 0 0 0

0 −0.1 −0.1 −0.1 −0.1 −0.1




0 0 −0.1 −0.1 0 −0.1

0 −0.1 0 0 0 0

0 −0.1 −0.1 −0.1 −0.1 −0.1




0 0 −0.1 −0.1 0 −0.1

0 −0.1 0 0 0 0

0 −0.1 −0.1 −0.1 −0.1 −0.1




0.1 −0.1 0 −0.1 0 −0.1

0 0 −0.1 −0.1 −0.1 0

0.1 −0.1 0 −0.1 −0.1 −0.1




0.1 −0.1 0 −0.1 0 0

0 −0.1 −0.1 0 0 −0.1

0.1 −0.1 −0.1 0 0 0




0.1 −0.1 −0.1 −0.1 0 0

0 0 −0.1 −0.1 0 0

0.1 −0.1 0 −0.1 0 0




0.05 0 −0.1 −0.068 0 0

0 0 0 0 −0.1 0

0.053 −0.1 −0.1 −0.1 −0.1 −0.1




0.08 0 −0.1 −0.1 0 0

0 0 0 0 −0.1 −0.1

0 −0.1 0 −0.1 0 −0.1




0.017 0 0 −0.1 0 0

0 −0.1 −0.1 −0.1 −0.1 0

0.1 −0.03 −0.052 0 −0.07 0




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The model was also run 45 times by doing 5 runs under 9 different experimental

settings that correspond to the 3 levels of utility or importance for the targets (low,

medium, high) and 3 levels of effectiveness for the blocks described in Section 8.1.

Figure 8.9 shows the worst case utilities for each experimental setting.

Figure 8.9 shows the average worstcase utilities over 45 runs for the different

mathematical programming models presented in this thesis. The figure shows that

the model including the piece-wise linear functions to model the times to enable

blocks, produces a better value for the worst case utility if compared to the ones

with fixed times to enable the block assignments. The explanation to this result

is that in piece-wise linear model for the fractional assignment the time required

to enable the block is lower than in two-SSP models. And if Nte is low, according

to equation-7.4, nst and Zste will be higher resulting in a better worstcase utility.
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Figure 8.9: Worstcase Utility for Two-SSP- Stochastic Number of Signals, Two-SSP -
Stochastic Effectiveness and Stochastic Number of Signals, and Two-SSP -
Stochastic Number of Signals with Piece-wise Linear Functions for the times
to enable blocks.
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8.5 Results from the Model Expansion

The success of the approach taken in this thesis largely depends on the processing

time the program takes to solve the optimization problem. To compare the pro-

cessing time of different problem sizes a problem expansion experiment was done.

With three different problem size and three different approaches (deterministic,

two stage stochastic with stochastic number of signal and two stage stochastic

with stochastic number of signal and stochastic effectiveness). The three different

problem sizes are-

Case-1: A model with 30 targets, 10 assertions and 6 attacks.

Case-2: A model with 50 targets, 10 assertions and 10 attacks.

Case-3: A model with 100 targets, 20 assertions and 20 attacks.

Table 8.4: Summary of Model Expansion experiments.

Deterministic Model
Two-SSP with Stochastic

Number of Signal
Two-SSP with Stochastic

Number of Signal ad Effectiveness

Case− 1 Case− 2 Case− 3 Case− 1 Case− 2 Case− 3 Case− 1 Case− 2 Case− 3

Time (s) 5.01 56.12 810.5 19.81 8.71 875.78 136 323 6606

# of Decision Variables 2642 7002 48002 4591 10251 59501 11642 22002 108002

# of Constraints 2970 6560 46100 5490 11750 66500 11790 22250 107500

# of Nodes Inspected
by B&C 2 15 41 250 141 2618 288 40685 187120

# of Iterations 312 1316 8370 103310 43785 448202 713813 2187890 8236412

The summary of the results for the model expansion test is presented in the

table-8.4. This table presents the computational times in seconds and other rele-

vant resulting features from the Branch and Cut solution method for each model

tested, such as the number of nodes inspected and the number of branch and

cut iterations performed. The computer used in the test was a PC running on a

64bit Windows 10 professional operating system with Intel core i7 processor with

3.2GHz of clock speed and 16GB of RAM. Each of the cases was run three times
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and average time was taken. The table confirms that it is possible to solve prob-

lems with up to 100 targets, 20 assertions and 20 attacks in 810, 876 and 6,606

seconds (110 minutes) for each one of the models compared.

The results show that in general, when the problem size is increased, the com-

putational time increases. One exception occurred for Case − 2 in the Two-SSP

with Stochastic Number of Signals model. The running time behavior in this case

is consistent with the fact that the program inspected less Nodes and went over

less Iterations. This may happen for various reasons; i.e. the B&C may termi-

nate a branch based on in-feasibility or the solution is not promising vs incumbent

solution etc. Thus, the experiment corroborates that the computational time for

the models is not only dependent of problem size (i.e. number of targets, attacks

and check blocks) but also related to the number of Nodes the program ends in-

specting and the number of branch and cut Iterations.

Figure 8.10 and figure 8.11 shows snapshots of the statistics window of the Cplex

IDE when the program was running a problem (case-3 of Two-SSP with stochastic

number of signals and effectiveness) and after it was solved, respectively. Figure

8.11 shows that the B&C searches through nodes to find integer solutions. If dur-

ing the exploration of active partial solutions (i.e. nodes pending to explore), an

integer solution is found, it is marked by the yellow dot on the green line. The

best integer solution found so far is also depicted (red line). When the best node

(red line) and best integer (green line) coincide it means there are no more nodes

to explore and the best integer solution to the problem is found. At that time,

the screen displays the cell "Remaining nodes" as zero. The cell "Nodes" presents

the total number of nodes explored.
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Figure 8.10: Statistics window of IBM OPL Cplex IDE when the program is running.
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Figure 8.11: Statistics window of IBM OPL Cplex IDE when the program is solved.
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8.6 Results from the Simulation Model

Figure 8.12 displays the behavior of the velocity of the lead vehicle (left graph),

velocity of the host vehicle (middle graph), and the distance of the host vehicle

from the lead vehicle (right graph) over time. The graphs contrast the behavior

of the system in under attack vs. under no attack. Under no attack, the model

behaves as designed. The host vehicle maintains a preset cruise speed of 30 mph

while maintaining a safe distance (200 ft) from the lead vehicle. However, when

the attack functions are activated the system no longer behaves as designed. The

speed of the host vehicle increases beyond the set speed and the distance also

goes below the set distance. In the graph, the point where the distance becomes

negative indicates an accident occurred.
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Figure 8.12: Behavior of the system under Cyber-Attack.

The Simulink model and the Two-Stage Stochastic Programming (Two-SSP)

model were calibrated to have similar values for the utility of the targets, time to

run the check blocks and delay capacity of the targets. The data in the models

is also similar for number of signals, number of attacks, number of check blocks,

and effectiveness matrix. The effectiveness matrix Ea
s of the simulation model

comes from simulating each attack against each of the check blocks and taking

the percentage of times the check blocks can detect an attack. This matrix was
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then used as Ea
s in solving the mathematical models. The block assignments come

from solving the following four different models/methods: (i) Two-SSP (ii) deter-

ministic model with known number of arriving signals, Nt to each target (iii) a

method where the check blocks are assigned randomly and (iv) a Greedy method

that seeks to protect the target with highest utility first using the most effective

check block available and then looks to protect the next most valuable target.

The block assignment matrix is then plugged into simulink model to simulate the

system.
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Figure 8.13: Rate of attack detection of Simulink model.

The Simulink model was run for 250 seconds with a discrete time step of 0.05

second which is sufficiently long time to observe the system behavior given that

in each time step an attack was simulated. While the simulation was running the

check blocks were active or inactive according to the assignments obtained from

the models. The Simulink model recorded the number of times the check blocks

detected an attack. These results are presented in Figure 8.13. The comparison

of the percentage of attacks detected by the different models indicates that the

Two-SSP provides the best results closely followed by Deterministic game theoretic

method. The Greedy approach seeks to protect the most valuable target but can

leave other targets vulnerable, thus failing to detect several attacks. The Random

method assigns the check blocks randomly and has the worst performance among

the four models.
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Further model comparisons were done by estimating the probability of thwarting

an attack through the percentage of times an attack was detected by the Simulink

model. This estimated probability permitted to calculate the worst-case utility in

each of the methods compared. Figure 8.14 presents the worst-case utility results.
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Figure 8.14: Worstcase comparison.

Figure 8.14 corroborates that in the Simulink model the assignment from the

Two-SSP gives the “best worst case utility” and that the assignment from the

random approach gives the worst “worst case utility” (see blue bars). This trend

is observed also when comparing the worstcase utility of the Two-SSP to the

worst case utilities from plugging into the Two-SSP as first-stage assignments the

Deterministic GT, Greedy and Random methods solutions (yellow bars). Figure

8.14 also shows a difference in the worst case utility provided by the Two-SSP

model and the Simulink model The difference between Simulink and Two-SSP

partly arises from the estimation of the probability of thwarting an attack done

in the Simulink model. In mathematical model the probability of thwarting an

attack comes from multiplying the assertions (nst) with the effectiveness (Ea
s ) of

check block from effectiveness matrix and taking the maximum of the results. But

in simulink simulation the probability of thwarting an attack is directly calculated

from the percentage of instances the check blocks can detect an attack. This

approximation in simulink model is responsible for the difference in the values of

worstcase utility.
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It was also tested how the different methods to assign blocks perform under

false attacks. The false positive percentage (i.e. the probability of saying that

the CPS is under attack when it is not) for different approaches is presented in

Fig-8.15. It can be seen that the Two SSP (i.e. Stochastic GT) approach gives the

least percentage of false positive among the different approaches compared. The

Deterministic Game Theory model is the second best.
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Figure 8.15: False positive percentage for the simulated methods.

74



8.7 Results from the CPS Testbed

Figure-8.16 shows the behavior of the CPS testbed under no-attack and under

attack situations (when no check blocks are applied). It can be seen that when

there is no attack the values of the signals are stable (i.e. the steam pressure re-

mains between 22 psi and 24 psi, steam temperature remains between 110 °C and

120 °C and generated voltage remains between 0.5V and 0.7V). However, when

the attacks are introduced it can be seen that the the attack functions intercept

the signals, change the values and feed the changed values to the control module.

Thus the cyber-attacks can destabilize a CPS and lead to catastrophic accident.

Further investigations were done on the CPS by implementing the different

check block assignments found from solving mathematical model for the different

policies or methods studied (i.e. Deterministic Game Theory, Two-Stage Stochas-

tic Game Theory, Greedy, and Random). The check block assignments were found

from solving the mathematical models using the parameters from the CPS testbed.

The model solutions (i.e. the resulting check block assignments) were implemented

while running the Matlab script used to simulate the attacks on the CPS testbed.

While the Matlab script was running along with the CPS testbed, if an attack was

detected by the check blocks it was recorded. A total of three runs were performed

and average values were taken. Figure 8.18 shows the percentage of attack detec-

tion for each one of the methods implemented in the CPS testbed. It can be seen

that Two-SSP model can detect highest percentage of attacks closely followed by

deterministic GT model. Greedy and random model follows subsequently. The

trend observed here is consistent with one found from the mathematical solution

of the models and also with the Simulink simulation. Figure-8.17 highlights the

time steps of detection of attack when check blocks are applied. In the figure black

circles indicate that an attack has been detected and the red dots indicate that

no-attack has been detected. It is also visible that non-detection pattern is fairly
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Figure 8.16: Behavior of CPS testbed under attack and no-attack condition.
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Figure 8.17: Attack detection on a target signal.
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Figure 8.18: Percentage of attack detection in CPS testbed.

To calculate the worstcase utility of the models, the attack detection percentage

can be used to approximate the probability of thwarting an attack, xc and such

estimated probability is plugged into equation 5.2 to finally compute the worscase

utility using the models objective function. Figure 8.19 shows the comparison for

worstcase utilities among the different models. It is evident that Two-SSP model

has the best worstcase utility than all other models. Deterministic GT closely

follow two-SSP and then greedy and random models occupy the third and fourth
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place. A gap between the worst case values from the mathematical models and

the ones from the CPS testbed is observed in the figure. The reason behind is that

the ‘percentage of attack detection’ was approximated as ‘probability of thwarting

an attack xc’ where as in mathematical model it was calculated differently.
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Figure 8.19: Worstcase comparison of CPS testbed.

Figure-8.20 shows the comparison of the type one error or percentage of false

positives for the models contrasted. The type one error or percentage of false

positives is the probability of rejecting the null hypothesis when it is true, and for

this cybersecurity problem it is the probability that the check blocks detect an

attack when there was no attack. The figure also shows that Two-SSP gives the

least percentage of false positives closely followed by deterministic GT.
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Figure 8.20: Percentage of false positives in CPS testbed .
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9. CONCLUSION

An important component in securing CPS is ensuring that the correct control and

measurement signals are propagated within the CPS control loop. This thesis

was intended to provide a rigorous game theoretic approach in which check blocks

can be integrated efficiently in the control loop. The approach considers delay

constraints of the control loop, effectiveness of the blocks, and uncertainty in the

number of signals through a two-stage stochastic Stackelberg model. The solutions

are evaluated through extensive numerical analysis and comparison with several

other mathematical approaches as well as numeric simulation using Simulink and

implementation on a real world CPS testbed.

The results demonstrate the superiority of the stochastic approach when com-

pared to a deterministic mathematical programming model, a greedy heuristic, and

a random method. Other in depth analysis like a variant of two stage stochastic

model with stochastic effectiveness, a piece-wise linear model, and an extended

model with larger number of targets and attacks was also performed to cement

the findings of the thesis. Further developments of this thesis includes to: (1)

assess the model results under multiple type of adversaries (2) put precedence

constraint on the way the blocks can be assigned (3) implement more complex

attack functions and check blocks to assess the performance of two-SSP model (4)

study how to integrate the models with algorithms that protect the CPS against

coordinated attacks (e.g. replay, covert, false data injection).

The Cyber-Physical System (CPS) is a promising paradigm for the design of

current and future engineered systems and is expected to make an important im-

pact on our interactions with the real world. But the success of this new era

of automation and engineering depends a lot on our ability to protect the CPS

against cyber attacks. This thesis would help to orchestrate some new approaches
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against cyber attacks and also help future researchers to find more efficient and

effective ways of cyber security.
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APPENDIX SECTION

APPENDIX A: Sample CPLEX Code

/*********************************************

* OPL 12.7.1.0 Model

* Author: Shafi Ahad

* Creation Date: Aug 13, 2017 at 5:29:50 PM

Title: Stochastic Two-SSP Model with High Utility and High

Effectiveness

*********************************************/

float Beffectiveness[1..3][1..3];

float Bcapacity[1..6]=[40,40,40,40,40,40];

int BN[1..3][1..6]=[[7,7,7,7,7,7],[10,10, 10, 10, 10, 10],

[11,11,11,11,11,11]];

float BU[1..6][1..4]=[[-200, 0, 200, 0],[-100, 0, 100, 0],

[-100, 0, 100, 0],[-100, 0, 100, 0],[-100, 0, 100, 0],[-100,

0, 100, 0]];

float BTs[1..3]=[2, 1, 1.5];

float tempU[1..6];

float Btemp[1..6];

float Bassignment[1..3][1..6]=[[0.5714, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 1, 1],

[0.5714, 0.625, 0.625, 0.625, 0.625, 0.625]];

float Bprobability[1..3]=[0.2,0.3,0.5];

float Bz[1..3][1..3][1..6];

float BTa[1..3][1..3]=
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[[1.5,0.8,1.2],[2,1,1.5], [2.2, 1.2,1.8]];

main

{ var time0=new Date();

var source = new IloOplModelSource

("Stch_New_W-Assignment.mod");

var cplex = new IloCplex();

var def = new IloOplModelDefinition(source);

for(var k=1;k<=5;k++)

{

var eff = new IloOplOutputFile

("Effectiveness-Stch_HU-HE_WA"+k+".txt");

var uty = new IloOplOutputFile

("Utility-Stch_HU-HE_WA"+k+".txt");

var ass = new IloOplOutputFile

("Assignment-Stch_HU-HE_WA"+k+".txt");

var prob = new IloOplOutputFile

("Probability-Stch_HU-HE_WA"+k+".txt");

var wor = new IloOplOutputFile

("Worstcase-Stch_HU-HE_WA"+k+".txt");

var Z_ste = new IloOplOutputFile

("Additional_Assignment-Stch_HU-HE_WA"+k+".txt");

var opl = new IloOplModel(def,cplex);

var data2= new IloOplDataElements();

data2.effectiveness=thisOplModel.Beffectiveness;

data2.capacity=thisOplModel.Bcapacity;
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data2.N=thisOplModel.BN;

data2.U=thisOplModel.BU;

data2.Ts=thisOplModel.BTs;

data2.assignment=thisOplModel.Bassignment;

data2.probability=thisOplModel.Bprobability;

data2.Ta=thisOplModel.BTa;

data2.temp=thisOplModel.Btemp;

for (var i=1; i<=3; i++)

for(var j=1; j<=3; j++)

while(1)

{ data2.effectiveness[i][j]=Opl.rand()/9999999999999999;

if(data2.effectiveness[i][j]>0.7)

break;

}

var totU=700

var tempU

for(var i=1;i<=1;i++)

{ while(1)

{ data2.temp[i]=Opl.rand(totU);

if(data2.temp[i]>=300)

if(data2.temp[i]<=450)

break;

}

totU=totU-data2.temp[i];

}
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for(var i=2;i<=6;i++)

data2.temp[i]=totU/5;

for(var i=1;i<=6;i++)

{

data2.U[i][1]=-data2.temp[i];

data2.U[i][3]=data2.temp[i];

}

opl.addDataSource(data2);

opl.generate();

if (cplex.solve())

{ writeln("OBJ = ",cplex.getObjValue());

writeln("Effectiveness= ", data2.effectiveness);

writeln(opl.assignment);

for(var i=1;i<=3;i++)

{

for(var j=1;j<=3;j++)

eff.write(data2.effectiveness[i][j]);

eff.write(" ");

eff.writeln();

}

for(var i=1;i<=6;i++)

{

for(var j=1;j<=4;j++)

uty.write(data2.U[i][j]);

uty.write(" ");
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uty.writeln(); }

for(var i=1;i<=6;i++)

{ for(var j=1;j<=3;j++)

ass.write(opl.assignment[j][i]);

ass.write(" ");}

ass.writeln();

}

for(var i=1;i<=6;i++)

{

for(var j=1;j<=3;j++)

prob.write(opl.x[i][j]);

prob.write(" ");

prob.writeln();

}

wor.writeln(cplex.getObjValue());

Z_ste.writeln(opl.z);

writeln("Z_ste= ",opl.z);

} else

{ writeln("No solution");

}

} var time1=new Date();

writeln("Solve Time 1= ", time1-time0);

}
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APPENDIX B: Two Way ANOVA results of section 8.2

General Linear Model: VSS versus Utility, Effectiveness

Analysis of Variance

Table 0.1: Summary of ANOVA

Source DF Adj SS Adj MS F-Value P-Value

Utility 2 26192 13096.0 50.80 0.000

Effectiveness 2 9206 4603.0 17.86 0.000

Utility*Effectiveness 4 2788 696.9 2.70 0.046

Error 36 9280 257.8

Total 44 47466

Model Summary

S R-sq R-sq(adj) R-sq(pred)

16.0555 80.45% 76.10% 69.45%
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Figure 0.1: Residual plots of VSS from ANOVA.
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APPENDIX C: How to Linearize "Max" function in MIP

The model presented in chapter 5 is non-linear because of equation-5.3. The

equation was relaxed to xc = maxs∈S E
a
snst to reduce the complexity of the

model. But the "max" function is also not linear but can be linearized to form a

MILP. The linearization process is described step-by-step below [49]-

Let’s consider a constraint,

y = max{x1, x2, x3, ...., xn} for continuous variables x1, x2, x3, ..., xn

• The upper and lower bound of the variables must have to be known

Li ≤ xi ≤ Ui [1.i]

• Introduce binary variables d1, d2, ...dn

di = 1 if xi is the maximum value, 0 otherwise

• MIP formulation

Li ≤ xi ≤ Ui [1.i]

y ≥ xi [2.i]

y ≤ xi + (Umax − Li)(1− di) [3.i]∑
i di = 1 [4]
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APPENDIX D: Arduino Code for CPS Control

// include the library code:

#include <LiquidCrystal.h>

#include <max6675.h>

// initialize the library by associating any needed

LCD interface pin with the arduino pin number

it is connected to

const int rs = 7, en = 8, d4 = 9, d5 = 10, d6 = 11, d7 = 12;

LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

int sensorPin=A0;

int sensorPin2=A2;

int sensorPin5=A5;

float sensorValue=0;

float pressure=0;

float voltValue=0;

float tempVolt=0;

float x=0;

int ktcSO = 5;

int ktcCS = 3;

int ktcCLK = 4;

MAX6675 ktc(ktcCLK, ktcCS, ktcSO);
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void setup()

{

// set up the LCD’s number of columns and rows:

Serial.begin(9600);

delay(500);

lcd.begin(16, 2);

// Print a message to the LCD.

lcd.print("Volt");

}

void loop()

{

//set the cursor to column 0, line 1

//(note: line 1 is the second row, since counting begins with

0):

//lcd.setCursor(0, 1);

// print the number of seconds since reset:

//lcd.print(millis() / 1000);

sensorValue=analogRead(sensorPin)*(5.0/1023.0);

pressure=(sensorValue-0.50)*(200.0/4.0)+14.70;

lcd.setCursor(5,0);

lcd.print("P(psi)");

lcd.setCursor(5, 1);

lcd.print(pressure,2);

voltValue=analogRead(sensorPin2)*(12.0/1023);

Serial.print("Voltage = ");
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Serial.println(voltValue,4);

lcd.setCursor(0, 1);

lcd.print(voltValue,2);

tempVolt=(analogRead(sensorPin5)*5.0/1023.0-1.34)/0.005;

Serial.print("Deg C = ");

Serial.print(ktc.readCelsius());

Serial.print("�Deg F = ");

Serial.println(ktc.readFahrenheit());

Serial.print("Pressure= ");

Serial.println(pressure,3);

Serial.println("Temp Voltage= ");

Serial.print(tempVolt);

//delay(1500);

lcd.setCursor(11, 0);

lcd.print("Temp");

lcd.setCursor(11, 1);

lcd.print(tempVolt,2);

delay(1000);

}
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