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SOLVABILITY OF A SYSTEM OF TOTALLY CHARACTERISTIC
EQUATIONS RELATED TO KÄHLER METRICS

JOSE ERNIE C. LOPE, MARK PHILIP F. ONA

Abstract. We consider a system of equations composed of a higher order
singular partial differential equation of totally characteristic type and several

higher order non-Kowalevskian linear equations. This system is a higher order

version of a system that arose in Bielawski’s investigations on Kähler metrics.
We first prove that this system has a unique holomorphic solution. We then

show that if the coefficients of the system are in some formal Gevrey class,

then the unique solution is also in the same formal Gevrey class.

1. Introduction

In 2002, Bielawski considered the system

t∂tu = f(t, x, u, ∂xu,w1, . . . , wN )

∂twi = `i(x; ∂x)u+ hi(x) for i = 1, . . . , N,
(1.1)

where the function f is holomorphic with respect to all its variables and each `i
is a second order linear differential operator whose coefficients are functions of x.
He showed that it has a unique holomorphic solution (u,w1, . . . , wN ) that satisfies
u(0, x) ≡ 0 and wi(0, x) ≡ 0 for all i. This unique solvability result was necessary
in showing that it is possible to extend a Kähler metric on a complex manifold X
to a Ricci-flat Kähler metric in a neighborhood of X in a line bundle L, under the
condition that the canonical S1-action on L is Hamiltonian [1].

The first equation in this system is very similar to the one studied by Gérard
and Tahara in [3] and in several succeeding papers in the 1990s. In fact, in proving
the unique existence of a holomorphic solution to (1.1), Bielawski first converted
it into an integro-differential equation and then suitably modified the method of
Gérard-Tahara to tackle the resulting equation.

Suppose that the function g(t, x, u, v) is holomorphic in a neighborhood of the
origin (0, 0, 0, 0) ∈ Ct × Cnx × Cu × Cnv and satisfies g(0, x, 0, 0) ≡ 0. The equation
of Gérard and Tahara is the nonlinear singular partial differential equation

t∂tu = g(t, x, u, ∂xu)

= a(x)t+ b(x)u+ c(x)∂xu+ g2(t, x, u, ∂xu),
(1.2)
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where we have denoted by g2(t, x, u, v) the collection of all nonlinear terms of
g(t, x, u, v) with respect to the variables t, u and v. Under the assumptions that
c(x) ≡ 0 and b(0) is not a positive integer, Gérard and Tahara showed that (1.2)
has a unique solution u(t, x) that satisfies u(0, x) ≡ 0. This is also known as the
nonlinear Fuchsian case of (1.2).

In 1999, Chen and Tahara considered the totally characteristic case of (1.2),
that is, instead of assuming that c(x) ≡ 0, they assumed that c(x) vanishes at the
origin but not identically zero. More precisely, they assumed that c(x) = xc̃(x)
with c̃(0) 6= 0. Under some Poincaré condition involving b(0) and c̃(0), they were
able to show that the totally characteristic case also has a unique solution u(t, x)
that satisfies u(0, x) ≡ 0.

In [4], we extended the unique solvability result of Bielawski to the following
higher order version of (1.1):

(t∂t)mu = F
(
t, x, {(t∂t)j∂αx u}j+|α|≤m,j<m, {wi}i=1,...,N

)
∂qtwi = Li(t, x; ∂x)u+Hi(t, x), i = 1, . . . , N,

(1.3)

where m, q ≥ 1 and each Li is a linear differential operator of order q + 1 having
coefficients which are dependent on both x and t. Note that the first equation
of the system is an mth order singular nonlinear Fuchsian equation. We used a
family of majorant functions used in [5] and [6] to show that the formal solution is
convergent.

In this article, we revisit Bielawski’s system of equations, this time under the
assumption that the first equation is a singular equation of totally characteristic
type. We shall show that the higher order version of the system possesses a unique
holomorphic solution under some Poincaré condition. Finally, we generalize our
results to the case when the coefficients of the partial Taylor expansion of (1.3)
are not holomorphic functions of x but rather belong in some formal Gevrey class.
This generalization is inspired by the work of Pongérard [6].

2. Holomorphic Solutions

2.1. Main results. We denote the set of all nonnegative integers by N, and set
N∗ = N \ {0}. For any v = (v1, . . . , vn) and α = (α1, . . . , αn), we define vα =
vα1

1 · · · vαnn and |α| = α1 + · · · + αn. Let (t, x) ∈ Ct × Cx and fix m, q ∈ N∗.
Consider the system of differential equations

(t∂t)mu = F
(
t, x,

{
(t∂t)j∂αx u

}
(j,α)∈Λ

, {wi}Ni=1

)
,

∂qtwi = Li(t, x; ∂x)u+Hi(t, x) for i = 1, . . . , N,
(2.1)

where the function F (t, x, Y, Z) satisfies F (0, x, 0, 0) ≡ 0 and is holomorphic in
some neighborhood containing

{(t, x, Y, Z) ∈ C2+]Λ+N : |t| ≤ r0, |x| ≤ R0, |Yj,α| ≤ R1, |Zi| ≤ R1},

for some positive constants r0, R0 and R1. The index set Λ is defined by Λ =
{(j, α) ∈ N2 : j + α ≤ m, j < m} and its cardinality is denoted by ]Λ. The linear
differential operator Li is of order q +m and of the form

Li(t, x; ∂x) =
∑

γ≤q+m

Li,γ(t, x)∂γx , (2.2)
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where for all i = 1, . . . , N and γ ≤ q + m, the functions Li,γ(t, x) and Hi(t, x) are
holomorphic in some neighborhood of {(t, x) : |t| ≤ r0, |x| ≤ R0}.

We define the set Λ0 = {(j, α) ∈ Λ : ∂Yj,αF (0, x, 0, 0) 6≡ 0}. Under the above
assumptions, we can expand F (t, x, Y, Z) as

F (t, x, Y, Z) = a(x)t+
∑

(j,α)∈Λ0

bj,α(x)Yj,α +
∑

1≤i≤N

di(x)Zi

+
∑

p+|ν|+|µ|≥2

gp,ν,µ(x)tpY νZµ.

Now suppose that for all (j, α) ∈ Λ0, we have bj,α(x) = xαλj,α(x) for some holomor-
phic function λj,α that satisfies λj,α(0) 6= 0. In other words, we are assuming that
the first equation of (2.1) is of totally characteristic type as defined by Chen-Tahara
in [2]. Let

P (τ, ξ) = τm −
∑

(j,α)∈Λ

λj,α(0)τ jξ(ξ − 1) · · · (ξ − α+ 1). (2.3)

We have the following result on the existence and uniqueness of a holomorphic
solution.

Theorem 2.1. If P (τ, ξ) 6= 0 for all (τ, ξ) ∈ N∗ × N, then (2.1) has a unique
holomorphic solution (u,w1, . . . , wN ) that satisfies u(0, x) ≡ 0 and ∂kt wi(0, x) ≡ 0
for k = 0, 1, . . . , q − 1 and i = 1, . . . , N .

2.2. Existence of a unique formal solution. Under the assumption that bj,α =
xαλj,α, we can rewrite each bj,α(t∂t)j∂αx u as λj,α(t∂t)j(x∂x)(x∂x−1) · · · (x∂x−α+
1)u. Thus if we let xλ∗j,α(x) = λj,α(x)−λj,α(0), then the first equation of (2.1) can
be written as

P (t∂t, x∂x)u = a(x)t+
∑

(j,α)∈Λ0

x
(
xαλ∗j,α(x)

)
(t∂t)j∂αx u+

∑
1≤i≤N

di(x)wi

+
∑

p+|ν|+|µ|≥2

gp,ν,µ(x)tp
∏

(j,α)∈Λ

(
(t∂t

)j
∂αx u)νj,α

∏
1≤i≤N

wµii ,
(2.4)

where P is the polynomial defined in (2.3).
We wish to find a formal solution (u,w1, . . . , wN ) of the form u(t, x) =

∑
j≥1,k≥0

uj,kt
jxk and wi(t, x) =

∑
j≥q,k≥0 wi,j,kt

jxk that satisfy (2.1). Let us expand
the coefficients as follows: a(x) =

∑
k≥0 akx

k, λ∗`,α(x) =
∑
k≥0 λ

∗
`,α,kx

k, di(x) =∑
k≥0 di,kx

k and gp,ν,µ(x) =
∑
k≥0 gp,ν,µ,kx

k for the first equation, and Li,γ(t, x) =∑
j≥0,k≥0 Li,γ,j,ktjxk and Hi(t, x) =

∑
j≥0,k≥0Hi,j,kt

jxk for the second equation
of the system. Under the assumption that P (τ, ξ) 6= 0, for any (τ, ξ) ∈ N∗ × N, we
see that

u1,0 =

{
P (1, 0)−1a0 if q > 1
P (1, 0)−1(a0 +

∑
1≤i≤N di,0wi,1,0) if q = 1

wi,q,0 = (q!)−1Hi,0,0.
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In addition, for J ≥ 1 and K ≥ 0, there exists functions FJ,K and GJ,K such that

wi,J+q,K =
J !

(J + q)!
FJ,K

(
{Li,γ,j,k}i≤N,j≤J,k≤K,γ≤q+m,{ (k + γ)!

k!
uj,k+γ

}
j≤J,k≤K,γ≤q+m

, HJ,K

)
uJ,K =

1
P (J,K)

GJ,K
(
aK , {λ∗`,α,k}k<K ,

{ J`k!
(k − α)!

uJ,k

}
k<K,(`,α)∈Λ0

,

{di,k}i≤N,k≤K , {wi,J,k}i≤N,k≤K , {gp,ν,µ,k}k≤K,p+|ν|+|µ|≥2,{J`(k + α)!
k!

uj,k+α

}
j<J,k<K,(`,α)∈Λ

, {wi,j,k}j<J,k≤K
)
.

Observe that for any k ≥ 0, the coefficients wi,q,k are uniquely determined by the
function Hi. These will enable us to solve for u1,k. We move forward by solving for
wi,q+1,k for any k ≥ 0, which will allow us to solve for u2,k. We follow these steps
to recursively and uniquely determine all the coefficients of the formal solution.

We have thus shown that there exists a unique formal solution to (2.1). It
remains to show that this formal solution is convergent.

2.3. Convergence of the formal solution. To show convergence, we use the
majorant method. For power series a(z) =

∑
|α|≥0 aαz

α and A(z) =
∑
|α|≥0Aαz

α,
we say that A majorizes a, written as a� A, if for all |α| ≥ 0, we have |aα| ≤ Aα.
We construct a system of majorant relations whose solution majorizes the formal
solution to (2.1).

For simplicity suppose that constants r0, R0 and R1 are all less than 1. We
choose M large enough such that the functions F (t, x, Y, Z), Li,γ(t, x) (for i =
1, . . . , N, γ ≤ q + m), Hi(t, x) (for i = 1, . . . , N) and λ∗j,α(x) (for (j, α) ∈ Λ0)
appearing in (2.1), (2.2) and (2.4), are bounded by M for all |x| ≤ R0, |t| ≤ r0,
|Yj,α| ≤ R1 and |Zi| ≤ R1. In addition, we fix a sufficiently large A > 0 such that
for all (τ, ξ) ∈ N∗ × N, we have

1
|P (τ, ξ)|

≤ A

1 + τm + ξm
. (2.5)

We can choose such a constant since P (τ, ξ) 6= 0 for all (τ, ξ) ∈ N∗ × N and since
the polynomial P (τ, ξ) is of degree m in τ and ξ.

Proposition 2.2. Consider the system of majorant relations[
(t∂t)m + (x∂x)m + 1

]
U(t, x)

� AM

1− x/R0

[ t
r0

+ x
∑

(j,α)∈Λ0

xα(t∂t)j∂αxU +
∑

1≤i≤N

Wi

R1

]
+

∑
p+|ν|+|µ|≥2

AM

1− x/R0

tp

rp0R
|ν|+|µ|
1

∏
(j,α)∈Λ

(
(t∂t)j∂αxU

)νj,α ∏
1≤i≤N

Wµi
i ,

(2.6)

∂qtWi �
M

1− x/R0 − t/r0

[ ∑
γ≤q+m

∂γxU + 1
]

for i = 1, . . . , N , (2.7)

U(0, x)� 0, ∂ktWi(0, x)� 0 for i = 1, . . . , N, k = 0, . . . , q − 1 . (2.8)
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Then for any (U,W1, . . . ,WN ) that satisfies the above relations, we have u � U
and wi �Wi for i = 1, . . . , N , where (u,w1, . . . , wN ) is the unique formal solution
of (2.1).

The above proposition implies that the task of proving the convergence of the
formal solution is reduced to finding holomorphic functions U(t, x) and Wi(t, x)
that satisfy the above relations. The proof of this proposition is an easy calculation
and will be omitted here.

2.4. Majorant functions. The same family of majorant functions found in [4]
will be used in the proof of our main result. Let S = 1 + 1/22 + · · · = π2/6. For
i ∈ N and s ∈ N∗, define the following family of functions:

ϕi(x) =
1

4S

∑
n≥0

xn

(n+ 1)2+i
and Φsi (t, x) =

∑
p≥0

tp
Dspϕi(x)

(sp)!
.

Note that for any i ∈ N and s ∈ N∗, ϕi(x) converges when |x| < 1, and Φsi (t, x/R)
converges when |t|1/s + |x| < R. We enumerate some useful properties of ϕi and
Φsi .

Proposition 2.3. The following hold for all i ∈ N, s ∈ N∗:
(1) ϕi(x)ϕi(x)� 2iϕi(x)
(2) ϕi+1(x)� ϕi(x)
(3) 2−3−iϕi(x)� ϕ′i+1(x)� ϕi(x)
(4) For any k ∈ N, xDkϕi(x)� 22+iDkϕi(x)
(5) Φsi (x)Φsi (x)� 2iΦsi (x)
(6) For any ε ∈ (0, 1), there exists a constant Bi,ε > 0 such that for all j ∈ N,

(1− εx)−1Djϕi(x)� Bi,εD
jϕi(x).

(7) For a sufficiently small R(< 2−2−i),
(a) (p+ q)!Dpϕi(x/R)� p!Dp+qϕi(x/R)
(b) ϕi(t+ x/R)� Φsi (t, x/R)
(c) For any ε ∈ (0, 1), there exists a constant Bi,ε > 0 such that

Φsi (t, x/R)
1− ε(t+ x/R)

� Bi,εΦsi (t, x/R).

Proof. The first four assertions easily follow from the definition of ϕi. The proof
for (5) may be found in [6] but essentially rests on (1) and the fact that

Dk(ϕ2
i )

k!
=

k∑
j=0

Dk−jϕi
(k − j)!

Djϕi
j!

.

Item (6) follows from the estimates 4Sεn(n + 1)2+i ≤ Bi,ε for any n ≥ 0, and
Dj [(1 − εx)−1ϕi(x)] � (1 − εx)−1Djϕi(x) for any j ≥ 0. The proof for (7a)
is also found in [6] where it was shown by induction that (p + 1)Dpϕi(x/R) �
Dp+1ϕi(x/R). This is equivalent in showing that for all k, p, i ∈ N,

R
(k + p+ 2
k + p+ 1

)2+i p+ 1
k + p+ 1

< 1

for some R. This is achieved when R is chosen to be less than 2−2−i. Item (7b)
easily follows from (7a), and (7c) follows from (6) and (7b). �
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We now present holomorphic functions that satisfy all the relations in Proposition
2.2.

Proposition 2.4. Let r ∈ (0, r0) and η = m+q. Then there exist positive constants
L1, L2, L3, c and R(< 2−2−ηR0) such that the functions

U(t, x) = L1tΦηη
( t
cr
,
x

R

)
, (2.9)

Wi(t, x) = L2(cr)q+1
∞∑
k=1

(k + 1)
( t
cr

)k+qDηkϕη(x/R)
(ηk)!

+ L3t
qΦηη

( t
cr
,
x

R

)
(2.10)

for i = 1, . . . , N satisfy (2.6), (2.7) and (2.8).

Proof. For brevity, assume that the argument of Φsi is always (t/cr, x/R) and the
argument of ϕi is always x/R, and thus omit these from our notations. We also
choose the constant K to be sufficiently large such that (1− x/R0 − t/r0)−1Φηi �
KΦηi and (1− x/R0)−1Djϕi � KDjϕi for all i ≤ η, 0 ≤ j and R < 2−2−ηR0.

Let us begin with (2.7). Using Proposition 2.3(3) and the fact that ∂jt (tjV )� V
for any V � 0, the left-hand side can be estimated as follows:

∂qtWi � L2cr

∞∑
k=0

(k + 2)(k + q + 1)!
(k + 1)!

( t
cr

)k+1Dηk+ηϕη
(ηk + η)!

+ L3Φηη

� L2t

2η(η+2)ηq+1

∞∑
k=0

( t
cr

)kDηkϕ0

(ηk)!
+ L3Φηη =

L2tΦ
η
0

2η(η+2)ηq+1
+ L3Φηη.

(2.11)

As for the corresponding right-hand side, we again use Proposition 2.3(3) to obtain

∂γxU �
L1t

Rγ

∞∑
k=0

( t
cr

)kDηk+γϕη
(ηk)!

� L1

Rη
tΦη0 .

Here, we used the fact that γ ≤ η. Since 1� 4SΦηη, the right-hand side of relation
(2.7) will be majorized by

KM
(L1η

Rη
tΦη0 + 4SΦηη

)
, (2.12)

where we used Proposition 2.3(7c) and K is the constant defined at the beginning
of the proof. Comparing (2.11) and (2.12), we obtain the following conditions for
the constants L1, L2, L3 and R:

KML1η

Rη
≤ L2

2η(η+2)ηq+1
and 4SKM ≤ L3. (2.13)
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Let us now turn our attention to (2.6). Since η ≥ m, we have

(t∂t)mU = L1cr

∞∑
k=0

(k + 1)m
( t
cr

)k+1Dηkϕη
(ηk)!

� L1cr

ηm

∞∑
k=1

( t
cr

)k+1 Dηkϕη
(ηk −m)!

� L1cr

2m(η+2)ηm

∞∑
k=1

( t
cr

)k+1Dηk−mϕη−m
(ηk −m)!

=
L1cr

2m(η+2)ηm

∞∑
k=0

( t
cr

)k+2Dηk−m+ηϕη−m
(ηk −m+ η)!

� L1cr

2m(η+2)ηm

∞∑
k=0

( t
cr

)k+2Dηkϕη−m
(ηk)!

=
L1t

2

2m(η+2)ηmcr
Φηη−m.

(2.14)

We used Proposition 2.3(3) in the third line, while in the last simplification, we used
Proposition 2.3(7a) and the fact that η −m ≥ 0. Now, consider the other terms
on the left-hand side. Since m ≥ 1 and (x∂x)mV � x∂xV for any holomorphic
function V � 0, we have

(x∂x)mU � L1t

R

∞∑
k=0

( t
cr

)k xDηk+1ϕη
(ηk)!

� L1t

2η+2R

∞∑
k=0

( t
cr

)k xDηkϕη−1

(ηk)!

� L1tx

2η+2R
Φηη−m.

(2.15)

To majorize the third summation on the right-hand side of (2.6), we will estimate
the term ((t∂t)m + 1)U in the following manner:(

(t∂t)m + 1
)
U � L1cr

∞∑
k=1

(k + 1)m
( t
cr

)k+1Dηkϕη
(ηk)!

+ L1tΦηη

� L1cr

∞∑
k=0

(k + 2)
( t
cr

)k+2Dηk+ηϕη
(ηk + η)!

+ L1tΦηη.

(2.16)

Therefore, using (2.14), (2.15) and (2.16), the left-hand side of (2.6) will majorize

1
2

( L1t
2

2m(η+2)ηmcr
Φηη−m + L1tΦηη

)
+

L1tx

2η+2R
Φηη−m

+
1
2

[
L1cr

∞∑
k=0

(k + 2)
( t
cr

)k+2Dηk+ηϕη
(ηk + η)!

+ L1tΦηη
]
.

(2.17)

We will deal separately with each summation on the right-hand side of (2.6).
Using Proposition 2.3 items (7a), (3) and (4) in this order, we have for any j+α ≤ m:

xα(t∂t)j∂αxU =
L1cr

Rα

∞∑
k=0

(k + 1)j
( t
cr

)k+1xαDηk+αϕη
(ηk)!
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� L1cr

Rα

∞∑
k=0

(k + 1)j
( t
cr

)k+1xαDηk+α+jϕη
(ηk + j)!

� L1cr

Rα

∞∑
k=0

( t
cr

)k+1xαDηkϕη−α−j
(ηk)!

� 2α(2+η)L1tΦ
η
η−m � 2m(2+η)L1tΦ

η
η−m,

and therefore by Proposition 2.3(7c),

AMx

1− x/R0

∑
(j,α)∈Λ0

xα(t∂t)j(∂x)αU � (2m(2+η)]Λ0AKM)L1txΦηη−m,

where ]Λ0 is the cardinality of Λ0. Comparing this to the term with txΦηη−m in
(2.17), we then see that we need to satisfy the inequality

2m(2+η)]Λ0AKM ≤
1

2η+2R
. (2.18)

Now, we consider the linear terms containing Wi. Using Proposition 2.3(7a), we
have

Wi � L2(cr)q+1
∞∑
k=0

(k + 2)
( t
cr

)k+q+1 Dη(k+1)+η(q−1)ϕη
(η(k + 1) + η(q − 1))!

+ L3t
qΦηη

= L2(cr)q+1
∞∑

k=q−1

(k − q + 3)
( t
cr

)k+2Dη(k+1)ϕη
(η(k + 1))!

+ L3t
qΦηη

� L2(cr)q+1
∞∑
k=0

(k + 2)
( t
cr

)k+2Dηk+ηϕη
(ηk + η)!

+ L3t
qΦηη.

(2.19)

Note that tq−1 � (1 − t/r0)−1 � (1 − t/r0 − x/R0)−1 � 4SKΦηη since r0 < 1.
Thus, the summation of the Wi’s on the right-hand side is majorized by

4AKMNS

R1

[
L2(cr)2

∞∑
k=0

(k + 2)
( t
cr

)k+2Dηk+ηϕη
(ηk + η)!

+KL3tΦηη
]
, (2.20)

and by comparing this with (2.17), we obtain the inequalities:

4AKMNSL2cr

R1
≤ L1

2
and

4AK2MNSL3

R1
≤ L1

2
. (2.21)

As for the nonlinear terms, note that for j + α ≤ m, j < m, we have

(t∂t)j(∂αx )U � L1cr

Rα

∞∑
k=0

(k + 1)j
( t
cr

)k+1Dηk+α+jϕη
(ηk + j)!

� L1cr

Rα

∞∑
k=0

(k + 1)j
( t
cr

)k+1Dηkϕη−α−j
(ηk + j)!

� L1cr

Rα

∞∑
k=0

( t
cr

)k+1Dηkϕη−m
(ηk)!

=
L1t

Rm
Φηη−m.
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Note that we again used (7a) and (3) of Proposition 2.3. Since cr < 1 and r0 < 1,
we see that

Wi � L2(cr)q+1
∞∑
k=1

( t
cr

)k+qDηk−1ϕη−1

(ηk − 1)!
+ L3t

qΦηη

� L2crt
q
∞∑
k=0

( t
cr

)kDηkϕη−m
(ηk)!

+ L3t
qΦηη−m

� 4KS(L2 + L3)tΦηη−m.

(2.22)

Using the above estimates for (t∂t)j(∂αx )U and Wi, we can now majorize the re-
maining terms on the right-hand side of (2.6). Setting κ = 2η−m max{]Λ, N}, the
remaining terms of the right-hand side will be majorized by

AM

1− x/R0

{ ∞∑
k=1

( t
r0

)k +
∑

k+|ν|+|µ|≥2
|ν|+|µ|≥1

( t
r0

)k(L1tΦ
η
η−m

RmR1

)|ν|

×
(4KS(L2 + L3)tΦηη−m

R1

)|µ|}
� AM

1− x/R0

{ 1
1− t/r0

· t
r0

+ Φηη−m
∑

k+i+j≥2
i+j≥1

( t
r0

)k( κL1t

RmR1

)i

×
(κ4KS(L2 + L3)t

R1

)j}
� AM

1− x/R0

{ 4StΦηη
r0(1− t/r0)

+
( 1
r0

+
κL1

RmR1
+
κ4KS(L2 + L3)

R1

)2

×
t2Φηη−m

1− t
r0
− κL1t

RmR1
− κ4KS(L2+L3)t

R1

}
� AMK

{4S
r0
tΦηη +

( 1
r0

+
κL1

RmR1
+
κ4KS(L2 + L3)

R1

)2

t2Φηη−m
}
,

(2.23)

where the last simplification is possible if

1
r0

+
κL1

RmR1
+
κ4KS(L2 + L3)

R1
≤ 1
cr0

. (2.24)

Comparing (2.17) and (2.23), we obtain the conditions

4SAMK

r0
≤ L1

2
, (2.25)

AMK
( 1
r0

+
κL1

RmR1
+
κ4KS(L2 + L3)

R1

)2

≤ L1

2m(η+2)+1ηmcr
. (2.26)

By choosing a small enough R and fixing it, and then choosing sufficiently large
L3, L1 and L2 in that order, and lastly choosing c small enough, we can satisfy
conditions (2.13), (2.18), (2.21), (2.24), (2.25) and (2.26) so that U and Wi satisfy
(2.6), (2.7) and (2.8). �

In view of Proposition 2.2, the functions U and Wi defined in (2.9) and (2.10)
are majorants of u and wi, respectively. Since Wi � 4KS(L2 + L3)tΦηη−m from
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(2.22), we know that the formal solution (u,w1, . . . , wn) converges on

{(t, x) : |t/(cr)|1/η + |x| ≤ R},

and this completes our proof for Theorem 2.1.

3. Gevrey class solutions

3.1. Formulation and result. In this section, we consider the case when the
coefficients of (2.1) are in some formal Gevrey class. This space is defined as
follows: for d ≥ 1, the formal Gevrey class Gdx of index d is defined to be the space
of all formal series u(x) =

∑
α≥0 uαx

α such that∑
α≥0

uαx
α

(α!)d−1

is a convergent power series. Similarly, we define the formal Gevrey class Gdx[Z] to
be the space of all formal expansions u(x, Z) =

∑
α≥0 uα(Z)xα such that∑

α≥0

uα(Z)xα

(α!)d−1

is a convergent power series. The function u(x, Z) is said to be (formal) Gevrey of
index d in the variable x and holomorphic in the variable Z.

We now state the problem. Fix d ≥ 1 and consider the system

(t∂t)mu = F
(
t, x,

{
(t∂t)j∂αx u

}
(j,α)∈Λd

, {wi}Ni=1

)
,

∂qtwi = Li(t, x; ∂x)u+Hi(t, x) for i = 1, . . . , N,
(3.1)

where Λd =
{

(j, α) ∈ N2 : j + |dα| ≤ m, j < m
}

and Li is a linear operator given
by

Li(t, x; ∂x) =
∑

|dγ|≤q+m

Li,γ(t, x)∂γx . (3.2)

In addition, assume that

F (t, x, Y, Z) ∈ Gdx[t, Y, Z]

Li,γ(t, x), Hi(t, x) ∈ Gdx[t].

Note that Λd is a subset of the index set Λ defined in Section 2 and is equal to
Λ if d = 1. In addition, the linear operator Li is of degree at most b(q + m)/dc,
where bxc is the floor function of x.

Define Λd0 = {(j, α) ∈ Λd; ∂Yj,αF (0, x, 0, 0) 6≡ 0}. Assume that for all (j, α) ∈ Λd0,
there exists λj,α(x) ∈ Gdx such that bj,α(x) = xαλj,α(x) and λj,α(0) 6= 0. Define
the polynomial

P d(τ, ξ) = τm −
∑

(j,α)∈Λd0

λj,α(0)τ jξ(ξ − 1) · · · (ξ − α+ 1).

We have the following result.

Theorem 3.1. If P d(τ, ξ) 6= 0 for all (τ, ξ) ∈ N∗×N, then (3.1) has a unique formal
solution (u,w1, . . . , wN ) of class Gdx[t] that satisfies u(0, x) ≡ 0 and ∂kt wi(0, x) ≡ 0
for k = 0, 1, . . . , q − 1 and i = 1, . . . , N .
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Under the assumptions on F and Li, (3.1) can be rewritten as

(t∂t)mu = a(x)t+
∑

(j,α)∈Λd0

bj,α(x)(t∂t)j∂αx u+
∑

1≤i≤N

di(x)wi

+
∑

p+|ν|+|µ|≥2

gp,ν,µ(x)tp
∏

(j,α)∈Λd

(
(t∂t

)j
∂αx u)νj,α

∏
1≤i≤N

wµii

∂qtwi =
∑

|dγ|≤q+m

Li,γ(t, x)∂γxu+Hi(t, x) for i = 1, . . . , N.

(3.3)

As in the holomorphic case, the existence of a formal solution directly follows from
the assumption that P d(τ, ξ) 6= 0 for all (τ, ξ) ∈ N∗ × N.

3.2. Preparatory lemmas. To study the formal series of class Gdx[Z], we use the
following notation: given u(x, Z) =

∑
j≥0 uj(Z)xj , define

u(d)(x, Z) =
∑
j≥0

uj(Z)(j!)d−1xj .

We have a similar definition for formal series of class Gdx. In view of this notation,
observe that if u(x, Z) is of class Gdx[Z], then there is a unique holomorphic function
w(x, Z) such that w(d) = u. We shall denote this w by û. We shall do the same for
formal series of class Gdx.

It is easy to show that for formal series u and w, u� w ⇐⇒ u(d) � w(d) and
u(d)w(d) � (uw)(d). These two results imply that by replacing ϕi and Φsi by (ϕi)(d)

and (Φsi )
(d) respectively, the results for Proposition 2.3 will all hold except for (4),

(6), (7a) and (7c). The next lemma states the modified results.

Lemma 3.2. The following hold for all i ∈ N:
(1) x(Dkϕi(x))(d) � 22+i(Dkϕi(x))(d);
(2) For any ε ∈ (0, 1), there exists a constant Bi,ε > 0 such that for all j ∈ N,

((1− εx)−1)(d)(Djϕi(x))(d) � Bi,ε(Djϕi(x))(d);
(3) For a sufficiently small R < 2−2−i,

(p+ q)!(Dpϕi(x/R))(d) � (p!)(Dp+qϕi(x/R))(d);

(4) Let p, q ∈ N. There exists a constant Cd (dependent on d but not on p and
q) such that

(Dp+qϕi)(d) � Dp(Dqϕi)(d) � Cd(Dddpe+qϕi)(d).

Here, dxe is the ceiling of x;
(5) For any ε ∈ (0, 1) and R < 2−2−i, there exists a constant Bi,ε > 0 such

that ( 1
1− ε(t+ x/R)

)(d)

(Φsi )
(d)(t, x/R)� Bi,ε(Φsi )

(d)(t, x/R).

Proof. The proofs for (2), (3) and (5) follow from our two previous assertions
and the proof for (1) uses the fact that x = (x)(d). To prove (4), we note that
(Dp+qϕi)(d) � Dp(Dqϕi)(d) by inspection. For the second majorant relation, it is
sufficient to show that for all j, p, q ≥ 0, the quantity

(j + p+ q)!
(j + ddpe+ q)!

(j + ddpe+ q + 1
j + p+ q + 1

)2+i( (j + p)!
j!

)d−1

is bounded, which easily follows from the definition of dxe. �
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Proof of Theorem 3.1. Let F̂ (t, x, Y, Z), L̂i,γ(t, x) and Ĥi(t, x) be the holomor-
phic functions derived from F (t, x, Y, Z), Li,γ(t, x) and Hi(t, x) in (3.1) and (3.2).
Define λ∗j,α by xλ∗j,α(x) = λj,α(x)−λj,α(0). Let λ̂∗j,α(x) be the holomorphic function
derived from λ∗j,α.

Suppose that the functions F̂ (t, x, Y, Z), L̂i,γ(t, x), Ĥi(t, x), and λ̂∗j,α(x) are
bounded by some constant M > 0 for |x| ≤ R0, |t| ≤ r0, |Yj,α| ≤ R1 and |Zi| ≤ R1.
In addition, fix a constant Ad > 0 such that

1
|P d(τ, ξ)|

≤ Ad
1 + τm + ξbm/dc

(3.4)

for all (τ, ξ) ∈ N∗ ×N. We present this proposition as a counterpart of Proposition
2.2.

Proposition 3.3. Consider the following majorant system:[
(t∂t)m + (x∂x)bm/dc + 1

]
U(t, x)

�
( AM

1− x/R0

)(d)[ t
r0

+ x
∑

(j,α)∈Λ0

xα(t∂t)j∂αxU +
∑

1≤1≤N

Wi

R1

]
+

∑
p+|ν|+|µ|≥2

( AM

1− x/R0

)(d) tp

rp0R
|ν|+|µ|
1

∏
(j,α)∈Λ

(
(t∂t)j∂αxU

)νj,α ∏
1≤i≤N

Wµi
i

(3.5)

∂qtWi �
( M

1− x/R0 − t/r0

)(d)[ ∑
|dγ|≤q+m

∂γxU + 1
]

(3.6)

U(0, x)� 0 and ∂ktWi(0, x)� 0 for i = 1, . . . , N, k = 1, . . . , q. (3.7)

If the formal series U(t, x) and Wi(t, x) (i = 1, . . . , N) satisfy the above relations,
then u � U and wi � Wi for i = 1, . . . , N , where (u,w1, . . . , wN ) is the formal
solution to (3.1).

The task of proving the Gevrey regularity of the formal solution is now reduced
to finding a formal solution (U,W1, . . . ,WN ) of class Gdx that satisfies the above
relations.

Proposition 3.4. Let r ∈ (0, r0) and η = m+q. Then there exist positive constants
L1, L2, L3, c and R(< 2−2−ηR0) such that

U(t, x) = L1t(Φηη)(d)
( t
cr
,
x

R

)
(3.8)

and

Wi(t, x) = L2(cr)q+1
∞∑
k=1

(k + 1)
( t
cr

)k+q (Dηkϕη(x/R))(d)

(ηk)!
+ L3t

q(Φηη)(d)
( t
cr
,
x

R

)
(3.9)

for i = 1, . . . , N , satisfy (3.5), (3.6) and (3.7).

The proof of this proposition is very similar to the proof of the holomorphic case.
The only notable difference is when we deal with derivatives of (ϕi)(d) and (Φsi )

(d).
For brevity, we shall omit the arguments of Φsi and ϕsi in our notations. Choose
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the constant K to be sufficiently large such that( 1
1− x/R0 − t/r0

)(d)

(Φηi )(d) � K(Φηi )(d),( 1
1− x/R0

)(d)

(Djϕηi )(d) � K(Djϕηi )(d),

for any i ≤ η, 0 ≤ j and R < 2−2−ηR0. Choose also a constant Cd to be sufficiently
large to satisfy Lemma 3.2(4).

As in the result for the holomorphic case, we have the following estimate for the
left-hand side of (3.6):

∂qtWi �
L2t(Φ

η
0)(d)

2η(η+2)ηq+1
+ L3(Φηη)(d). (3.10)

For the corresponding right-hand side, note that if |dγ| ≤ q+m = η then ddγe ≤ η.
By Lemma 3.2(4), we have

∂γxU �
CdL1t

Rγ

∞∑
k=0

( t
cr

)k (Dηk+ddγeϕη)(d)

(ηk)!

� CdL1t

Rη

∞∑
k=0

( t
cr

)k (Dηkϕ0)(d)

(ηk)!

� CdL1

Rη
t(Φη0)(d).

Therefore by Lemma 3.2(5), the right-hand side of (3.6) will be majorized by

KM
(CdL1bη/dc

Rη
t(Φη0)(d) + 4S(Φηη)(d)

)
. (3.11)

Comparing (3.10) and (3.11), we obtain the conditions

CdKML1bη/dc
Rη

≤ L2

2η(η+2)ηq+1
and 4SKM ≤ L3. (3.12)

Now for left-hand side of (3.5), we have a similar result as in the holomorphic
case given by

(t∂t)mU �
L1t

2

2m(η+2)ηmcr
(Φηη−m)(d). (3.13)

For the term with (x∂x)bm/dc, we use the same technique as in the previous section
to obtain

(x∂x)bm/dcU � L1t

∞∑
k=0

( t
cr

)k (x∂x)(Dηkϕη)(d)

(ηk)!

� L1t

R

∞∑
k=0

( t
cr

)k x(Dηk+1ϕη)(d)

(ηk)!

� L1tx

2η+2R
(Φηη−m)(d).

(3.14)

Thus by using (3.13) and (3.14), the left-hand side of (3.5) will majorize

L1t
2

2m(η+2)ηmcr
(Φηη−m)(d) +

L1tx

2η+2R
(Φηη−m)(d) + L1t(Φηη)(d). (3.15)
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Similarly, we will majorize the summation with Wi’s separately using a stronger
majorant derived from ((t∂t)m + 1)U which is given by(

(t∂t)m + 1
)
U � L1cr

∞∑
k=0

(k + 2)
( t
cr

)k+2 (Dηk+ηϕη)(d)

(ηk + η)!
+ L1t(Φηη)(d). (3.16)

For the corresponding right-hand side, note that for all j + ddαe ≤ m,

xα(t∂t)j∂αxU �
CdL1cr

Rα

∞∑
k=0

(k + 1)j
( t
cr

)k+1xα(Dηk+ddαeϕη)(d)

(ηk)!

� CdL1cr

Rα

∞∑
k=0

( t
cr

)k+1x
α(Dηkϕη−ddαe−j)(d)

(ηk)!

� 2α(2+η)CdL1t(Φ
η
η−m)(d) � 2m(2+η)CdL1t(Φ

η
η−m)(d),

where we applied Lemma 3.2(1) to obtain the last line. Thus the linear terms with
xα will have the estimate( AM

1− x/R0

)(d)

x
∑

(j,α)∈Λ0

xα(t∂t)j(∂x)αU � (2m(2+η)]Λ0ACdKM)L1tx(Φηη−m)(d).

Comparing this to the term with tx(Φηη−m)(d) in (3.15), we have the necessary
condition:

2m(2+η)]Λ0ACdKM ≤
1

2η+2R
. (3.17)

For the linear terms containing Wi, we follow a similar process as in the previous
section by using tq−1 � 4SK(Φηη)(d) to obtain

4AKMNS

R1

(
L2(cr)2

∞∑
k=0

(k + 2)
( t
cr

)k+2 (Dηk+ηϕη)(d)

(ηk + η)!
+KL3t(Φηη)(d)

)
. (3.18)

By comparing this to (2.16), we obtain the following requirements:

4AKMNSL2cr

R1
≤ L1

2
and

4AK2MNSL3

R1
≤ L1

2
. (3.19)

For the nonlinear terms, we have similar results given by

(t∂t)j(∂αx )U � CdL1t

Rm
(Φηη−m)(d)

Wi � 4SK(L2 + L3)t(Φηη−m)(d).

Therefore by again setting κ = 2η−m max{]Λ, N}, the remaining terms of the right-
hand side of (3.5) will be majorized by( AM

1− x/R0

)(d){ ∞∑
k=1

( t
r0

)k +
∑

k+|ν|+|µ|≥2
|ν|+|µ|≥1

( t
r0

)k(CdL1t(Φ
η
η−m)(d)

RmR1

)|ν|

×
(4SK(L2 + L3)t(Φηη−m)(d)

R1

)|β|}
� AMK

{4S
r0
t(Φηη)(d) +

( 1
r0

+
κCdL1

RmR1
+
κ4SK(L2 + L3)

R1

)2

t2(Φηη−m)(d)
}
,

(3.20)



EJDE-2017/51 SYSTEM OF TOTALLY CHARACTERISTIC EQUATIONS 15

where the last simplification is possible if
1
r0

+
κCdL1

RmR1
+
κ4SK(L2 + L3)

R1
≤ 1
cr0

. (3.21)

Therefore, by (3.15) and (3.20), we obtain the conditions
4SAMK

r0
≤ L1

2

AMK
( 1
r0

+
κCdL1

RmR1
+
κ4KS(L2 + L3)

R1

)2

≤ L1

2m(η+2)+1ηmcr

Finally, similar to the previous section, we may choose constants L1, L2, L3, c
and R that will satisfy conditions (3.12), (3.17), (3.19), (3.21), (3.2) and (3.2) so
that U and Wi satisfy the majorant system in Proposition 3.3.
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