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Positive solutions and nonlinear multipoint

conjugate eigenvalue problems ∗

Paul W. Eloe & Johnny Henderson

Abstract

Values of λ are determined for which there exist solutions in a cone of
the nth order nonlinear differential equation, u(n) = λa(t)f(u), 0 < t < 1,
satisfying the multipoint boundary conditions, u(j)(ai) = 0, 0 ≤ j ≤ ni−1,

1 ≤ i ≤ k, where 0 = a1 < a2 < · · · < ak = 1, and
∑k

i=1
ni = n,

where a and f are nonnegative valued, and where both lim
|x|→0+

f(x)/|x|

and lim
|x|→∞

f(x)/|x| exist.

1 Introduction

Let n ≥ 2 and 2 ≤ k ≤ n be integers, and let 0 = a1 < a2 < · · · < ak = 1 be

fixed. Also, let n1, . . . , nk be positive integers such that
k∑
i=1

ni = n.

We are concerned with determining eigenvalues, λ, for which there exist
solutions, that are positive with respect to a cone, of the nonlinear multipoint
conjugate boundary value problem,

u(n) = λa(t)f(u), 0 < t < 1, (1.1)

u(j)(ai) = 0, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k, (1.2)

where

(A) f : R→ [0,∞) is continuous,

(B) a : [0, 1] → [0,∞) is continuous and does not vanish identically on any
subinterval, and

(C) f0 = lim
|x|→0+

f(x)
|x| and f∞ = lim

|x|→∞

f(x)
|x| exist.
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This work constitutes a complete generalization, in the conjugate problem
setting, of the paper by Henderson and Wang [16] which was devoted to the
eigenvalue problem (1.1), (1.2) for the case n = 2 and k = 2. While the paper
[16] arose from a cornerstone paper by Erbe and Wang [12], which was devoted
to n = 2 and k = 2 for the cases when f is superlinear (i.e., f0 = 0 and f∞ =∞)
and when f is sublinear (i.e., f0 = ∞ and f∞ = 0), the development since has
been rapid. For example, Eloe and Henderson [6] gave a most general extension
of [16] for (1.1), (1.2) in the case of arbitrary n and k = 2. Other partial
extensions have been given for higher order boundary value problems, as well
as results for multiple solutions, in both the continuous and discrete settings;
see for example [1, 2, 4, 8, 9, 11, 15, 17, 21, 22, 23]. Foundational work for this
paper is the recent study by Eloe and McKelvey [10] of (1.1), (1.2), for arbitrary
n, k = 3 and n1 = n3 = 1.

For the case of n = 2 and k = 2, (1.1), (1.2) describes many phenomena in
the applied mathematical sciences such as, to name a few, nonlinear diffusion
generated by nonlinear sources, thermal ignition of gases, and chemical concen-
trations in biological problems where only positive solutions are meaningful; see,
for example [13, 14, 20, 27]. Higher order boundary value problems for ordinary
differential equations arise naturally in technical applications. Frequently, these
occur in the form of a multipoint boundary value problem for an nth order or-
dinary differential equation, such as an n-point boundary value problem model
of a dynamical system with n degrees of freedom in which n states are observed
at n times; see Meyer [24]. It is noted in [24] that, strictly speaking, boundary
value problems for higher order ordinary differential equations are a particular
class of interface problems. One example in which this is exhibited is given by
Keener [18] in determining the speed of a flagellate protozoan in a viscous fluid.
Another particular case of a boundary value problem for a higher order ordinary
differential equation arising as an interface problem is given by Wayner, et al.
[28] in dealing with a study of perfectly wetting liquids.

We now observe that, for n = 2, positive solutions of (1.1), (1.2) are concave.
This concavity was exploited in [12, 16] and in many of the extensions cited
above in defining a cone on which a positive operator was defined. A fixed point
theorem due to Krasnosel’skii [19] was then applied to yield positive solutions
for certain intervals of eigenvalues. In defining an appropriate cone, inequalities
that provide lower bounds for positive functions as a function of the supremum
norm have been applied. The inequality to which we refer may be stated as
follows:

If y ∈ C(2)[0, 1] is such that y(t) ≥ 0, 0 ≤ t ≤ 1, and y′′(t) ≤ 0, 0 ≤ t ≤ 1,
then

y(t) ≥
1

4
max

0≤s≤1
|y(s)|,

1

4
≤ t ≤

3

4
. (1.3)

Inequality (1.3) was recently generalized by Eloe and Henderson [5] in the fol-
lowing sense:
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Let n ≥ 2 and 2 ≤ ` ≤ n− 1. If y ∈ C(n)[0, 1] is such that

(−1)n−`y(n)(t) ≥ 0, 0 ≤ t ≤ 1,

y(j)(0) = 0, 0 ≤ j ≤ `− 1,

y(j)(1) = 0, 0 ≤ j ≤ n− `− 1,

then

y(t) ≥
1

4m
‖y‖,

1

4
≤ t ≤

3

4
, (1.4)

where ‖y‖ = max
0≤s≤1

|y(s)| and m = max{`, n− `}.

An inequality analogous to (1.4) for a Green’s function was also given in [6].
In a later paper, Eloe and Henderson [7] obtained a further generalization of

(1.4) for solutions of differential inequalities satisfying the multipoint conjugate
boundary conditions (1.2). In that same paper [7], an analogous inequality was
also derived for a Green’s function associated with y(n) = 0 and (1.2). It is that
generalization of (1.4) as it applies to solutions of (1.1), (1.2) which eventually
leads to the main results of this paper.

In Section 2, we state the generalization of (1.4) as it applies to solutions
of (1.1), (1.2). We also state the analogous inequality for a Green’s function
that will be used in defining a positive operator on a cone. The Krasnosel’skii
fixed point theorem is also stated in that section. Then, in Section 3, we give
an appropriate Banach space and construct a cone on which we apply the fixed
point theorem to our positive operator, thus yielding solutions of (1.1), (1.2),
for open intervals of eigenvalues.

2 Preliminaries

In this section, we state the Krasnosel’skii fixed pointed theorem to which we
referred in the introduction. Prior to this, we will state the generalization of
(1.4) as given in [7]. For notational purposes, set αi =

∑k
j=i+1 nj , 1 ≤ i ≤ k−1,

let Si ⊂ (ai, ai+1), 1 ≤ i ≤ k − 1, be defined by

Si = [(3ai + ai+1)/4, (ai + 3ai+1)/4],

let
a = min

1≤i≤k−1
{ai+1 − ai},

and let
m = max{n− n1, n− nk}.

Theorem 2.1 Assume y ∈ C(n)[0, 1] is such that y(n)(t) ≥ 0, 0 ≤ t ≤ 1, and y
satisfies the multipoint boundary conditions (1.2). Then, for each 1 ≤ i ≤ k−1,

(−1)αiy(t) ≥ ‖y‖(
a

4
)m, t ∈ Si, (2.1)
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where ‖y‖ = max
0≤t≤1

|y(t)|.

The Krasnosel’skii fixed point theorem will be applied to a completely con-
tinuous integral operator whose kernel, G(t, s), is the Green’s function for

y(n) = 0, 0 ≤ t ≤ 1, (2.2)

satisfying (1.2). It is well-known [3] that

(−1)αiG(t, s) > 0 on (ai, ai+1)× (0, 1), 1 ≤ i ≤ k − 1. (2.3)

For the remainder of the paper, for 0 < s < 1, let τ(s) ∈ (0, 1) be defined by

|G(τ(s), s)| = sup
0≤t≤1

|G(t, s)|, (2.4)

so that, for each 1 ≤ i ≤ k − 1,

(−1)αiG(t, s) ≤ |G(τ(s), s)| on [ai, ai+1]× [0, 1]. (2.5)

Then in analogy to (2.1), Eloe and Henderson [7] proved the following in-
equality for G(t, s).

Theorem 2.2 Let G(t, s) denote the Green’s function for (2.2), (1.2). Then,
for 0 < s < 1 and 1 ≤ i ≤ k − 1,

(−1)αiG(t, s) ≥ (
a

4
)m|G(τ(s), s)|, t ∈ Si. (2.6)

We mention that inequality (2.6) is closely related to inequalities derived
for G(t, s) by Pokornyi [25, 26]. Inequalities (2.5) and (2.6) are of fundamental
importance in defining positive operators to which we will apply the following
fixed point theorem [19].

Theorem 2.3 Let B be a Banach space, and let P ⊂ B be a cone in B. Assume
Ω1, Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2, and let

T : P ∩ (Ω̄2\Ω1)→ P

be a completely continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω̄2\Ω1).
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3 Solutions in a Cone

In this section, we apply Theorem 2.3 to the eigenvalue problem (1.1), (1.2).
The keys to satisfying the hypotheses of the theorem are in selecting a suitable
cone and in inequalities (2.5) and (2.6). As is standard, u ∈ C[0, 1] is a solution
of (1.1), (1.2) if, and only if,

u(t) = λ

∫ 1

0

G(t, s)a(s)f(u(s))ds, 0 ≤ t ≤ 1,

where G(t, s) is the Green’s function for (2.2), (1.2).
We let B = C[0, 1], and for y ∈ B, define ‖y‖ = sup0≤t≤1 |y(t)|. Then

(B, ‖ · ‖) is a Banach space. The cone, P , in which we shall exhibit solutions is
defined by

P = {x ∈ B | for 1 ≤ i ≤ k − 1, (−1)αix(t) ≥ 0 on [ai, ai+1],
and mint∈Si(−1)αix(t) ≥ (a4 )m‖x‖}.

Theorem 3.1 Assume that conditions (A), (B) and (C) are satisfied. Then,
for each λ satisfying,

4m

am
∑k−1
i=1

∫
Si
|G(1

2 , s)|a(s)dsf∞
< λ <

1∫ 1

0 |G(τ(s), s)|a(s)dsf0

, (3.1)

there is at least one solution of (1.1), (1.2) belonging to P.

Proof We remark that a special case in the arguments result when f∞ =∞.
However, the modifications required for that case, in the following proof, are
straightforward, and so we omit those details.

Let λ be given as in (3.1), and let ε > 0 be such that

4m

am
∑k−1
i=1

∫
Si
|G(1

2 , s)|a(s)ds(f∞ − ε)
≤ λ ≤

1∫ 1

0
|G(τ(s), s)|a(s)ds(f0 + ε)

.

We seek a fixed point of the integral operator T : P → B defined by

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f(u(s))ds, u ∈ P . (3.2)

First, let u ∈ P and let t ∈ [0, 1]. Then, for some 1 ≤ i ≤ k − 1, we have
t ∈ [ai, ai+1], and by (2.3) and (2.5),

0 ≤ (−1)αiTu(t) = λ

∫ 1

0

(−1)αiG(t, s)a(s)f(u(s))ds

≤ λ

∫ 1

0

|G(τ(s), s)|a(s)f(u(s))ds,



6 Positive Solutions EJDE–1997/03

so that

‖Tu‖ ≤ λ

∫ 1

0

|G(τ(s), s)|a(s)f(u(s))ds. (3.3)

Moreover, for u ∈ P and t ∈ Si, 1 ≤ i ≤ k − 1, we have from (2.6) and (3.3),

min
t∈Si

(−1)αiTu(t) = min
t∈Si

λ

∫ 1

0

(−1)αiG(t, s)a(s)f(u(s))ds

≥ (
a

4
)mλ

∫ 1

0

|G(τ(s), s)|a(s)f(u(s))ds

≥ (
a

4
)m‖Tu‖.

As a consequence T : P → P . The standard arguments can also be used to
verify that T is completely continuous.

We begin with f0. There exists an H1 > 0 such that f(x) ≤ (f0 + ε)|x|, for
0 < |x| < H1. So, if we choose u ∈ P with ‖u‖ = H1, then from (2.5)

|Tu(t)| ≤ λ

∫ 1

0

|G(τ(s), s)|a(s)f(u(s))ds

≤ λ

∫ 1

0

|G(τ(s), s)|a(s)(f0 + ε)|u(s)|ds

≤ λ

∫ 1

0

|G(τ(s), s)|a(s)ds(f0 + ε)‖u‖

≤ ‖u‖, 0 ≤ t ≤ 1.

So, ‖Tu‖ ≤ ‖u‖. We set

Ω1 = {x ∈ B | ‖x‖ < H1}.

Then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.4)

Next, we consider f∞. There exists an H̄2 > 0 such that f(x) ≥ (f∞− ε)|x|,
for all |x| ≥ H̄2. Let H2 = max{2H1, (

4
a
)mH̄2}, and define

Ω2 = {x ∈ B | ‖x‖ < H2}.

Let u ∈ P with ‖u‖ = H2. Then, for each 1 ≤ i ≤ k − 1, mint∈Si(−1)αiu(t) ≥
(a4 )m‖u‖ ≥ H̄2. Moreover, there exists 1 ≤ i0 ≤ k− 1 such that 1

2 ∈ [ai0 , ai0+1].
Then, by (2.3),
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(−1)αi0Tu(
1

2
) = λ

∫ 1

0

(−1)αi0G(
1

2
, s)a(s)f(u(s))ds

= λ

∫ 1

0

|G(
1

2
, s)|a(s)f(u(s))ds

≥ λ

k−1∑
i=1

∫
Si

|G(
1

2
, s)|a(s)f(u(s))ds

≥ λ

k−1∑
i=1

∫
Si

|G(
1

2
, s)|a(s)(f∞ − ε)|u(s)|ds

≥ λ(
a

4
)m

k−1∑
i=1

∫
Si

|G(
1

2
, s)|a(s)ds(f∞ − ε)‖u‖

≥ ‖u‖.

Thus, ‖Tu‖ ≥ ‖u‖. Hence,

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.5)

We apply part (i) of Theorem 2.3 in obtaining a fixed point, u, of T that belongs
to P ∩ (Ω̄2\Ω1). The fixed point, u, is a desired solution of (1.1), (1.2), for the
given λ. The proof is complete. 2

Remark 3.1 It follows from Theorem 3.1, if f is superlinear (i.e., f0 = 0 and
f∞ =∞), then (1.1), (1.2) has a solution, for each 0 < λ <∞.

Theorem 3.2 Assume that conditions (A), (B) and (C) are satisfied . Then,
for each λ satisfying

4m

am
∑k−1
i=1

∫
Si
|G(1

2 , s)|a(s)dsf0

< λ <
1∫ 1

0 |G(τ(s), s)|a(s)dsf∞
, (3.6)

there is at least one solution of (1.1), (1.2) belonging to P.

Proof Let λ be as in (3.6), and choose ε > 0 such that

4m

am
∑k−1
i=1

∫
Si
|G(1

2 , s)|a(s)ds(f0 − ε)
≤ λ ≤

1∫ 1

0 |G(τ(s), s)|a(s)ds(f∞ + ε)
.

Let T be the cone preserving, completely continuous operator that was defined
by (3.2).
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Beginning with f0, there exists an H1 > 0 such that f(x) ≥ (f0 − ε)|x|, for
0 < |x| ≤ H1. Choose u ∈ P with ‖u‖ = H1. As in Theorem 3.1, there exists
1 ≤ i0 ≤ k − 1 such that 1

2 ∈ [ai0 , ai0+1]. Then

(−1)αi0Tu(
1

2
) = λ

∫ 1

0

(−1)αi0G(
1

2
, s)a(s)f(u(s))ds

= λ

∫ 1

0

|G(
1

2
, s)|a(s)f(u(s))ds

≥ λ

k−1∑
i=1

∫
Si

|G(
1

2
, s)|a(s)f(u(s))ds

≥ λ

k−1∑
k=1

∫
Si

|G(
1

2
, s)|a(s)(f0 − ε)|u(s)|ds

≥ λ(
a

4
)m

k−1∑
i=1

∫
Si

|G(
1

2
, s)|a(s)ds(f0 − ε)‖u‖

≥ ‖u‖.

Therefore, if we let
Ω1 = {x ∈ B | ‖x‖ < H1},

then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.7)

We now consider f∞. There exists an H̄2 > 0 such that f(x) ≤ (f∞ +
ε)|x|, for all |x| ≥ H̄2. There are the two cases, (a) f is bounded, or (b) f is
unbounded.

For (a), suppose N > 0 is such that f(x) ≤ N , for all x ∈ R. Let H2 =
max{2H1,

Nλ
∫ 1

0
|G(τ(s), s)|a(s)ds}. Then, for u ∈ P with ‖u‖ = H2,

|Tu(t)| ≤ λ

∫ 1

0

|G(t, s)|a(s)f(u(s))ds

≤ λN

∫ 1

0

|G(τ(s), s)|a(s)ds

≤ ‖u‖, 0 ≤ t ≤ 1.

Thus, ‖Tu‖ ≤ ‖u‖. So, if

Ω2 = {x ∈ B | ‖x‖ < H2},

then
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‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.8)

For case (b), let H2 > max{2H1, H̄2} be such that f(x) ≤ f(H2), for 0 <
|x| ≤ H2. Let u ∈ P with ‖u‖ = H2, and choose t ∈ [0, 1]. Then, for some
1 ≤ i ≤ k − 1, t ∈ [ai, ai+1], and by (2.5),

(−1)αiTu(t) = λ

∫ 1

0

(−1)αiG(t, s)a(s)f(u(s))ds

= λ

∫ 1

0

|G(t, s)|a(s)f(u(s))ds

≤ λ

∫ 1

0

|G(τ(s), s)|a(s)f(H2)ds

≤ λ

∫ 1

0

|G(τ(s), s)|a(s)ds(f∞ + ε)H2

= λ

∫ 1

0

|G(τ(s), s)|a(s)ds(f∞ + ε)‖u‖

≤ ‖u‖,

so that ‖Tu‖ ≤ ‖u‖. For this case, if we let

Ω2 = {x ∈ B | ‖x‖ < H2},

then
‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2.

Thus, regardless of the cases, an application of part (ii) of Theorem 2.3 yields
a fixed point of T which belongs to P ∩ (Ω̄2\Ω1). This fixed point is a solution
of (1.1), (1.2) corresponding to the given λ. The proof is complete. 2

Remark 3.2 We observe that, if f is sublinear (i.e., f0 = ∞ and f∞ = 0),
then Theorem 3.2 yields a solution of (1.1), (1.2), for all 0 < λ <∞.
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