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Abstract: Fraudulent billing of health care insurance programs such as Medicare is in the billions of
dollars. The extent of such overpayments remains an issue despite the emerging use of analytical
methods for fraud detection. This motivates policy makers to also be interested in the provider
billing characteristics and understand the common factors that drive conservative and/or aggressive
behavior. Statistical approaches to tackling this problem are confronted by the asymmetric and/or
leptokurtic distributions of billing data. This paper is a first attempt at using a quantile regression
framework and a variable selection approach for medical billing analysis. The proposed method
addresses the varying impacts of (potentially different) variables at the different quantiles of the
billing aggressiveness distribution. We use the mammography procedure to showcase our analysis
and offer recommendations on fraud detection.

Keywords: health care fraud; medicare; quantile regression; upcoding; Bayesian information criterion

1. Introduction

The global average health care overpayment loss is estimated to be more than 6 % of
overall spending, or more than $450 billion. In the U.S., national health care spending reached
$3.6 trillion in 2018, or $11,172 per person [1]. The Federal Bureau of Investigation estimates
that up to ten percent of annual health care spending is lost to fraud, waste and abuse. De-
spite the increasing attention and resources for fraud detection, the extent of health care fraud
remains an issue. For instance, in Florida, in 2012 a whistle blower exposed billing fraud in
the millions of dollars at seven major hospitals (https://www.radiologybusiness.com/topics/
business-intelligence/whistleblower-saw-imaging-billing-fraud-7-florida-hospitals, accessed
on 13 August 2019). In 2016, a $1 billion alleged Medicare fraud, money laundering scheme,
led to many arrests after its detection, using analytical methods (https://www.cnbc.com/20
16/07/22/1-billion-alleged-medicare-fraud-money-laundering-scheme-leads-to-florida-arrests.
html, accessed on 13 August 2019). In September 2020, nineteen more defendants were
charged in Florida as part of a national crackdown on fraudulent submissions to private
insurers and federal health programs to the tune of $6 billion (https://www.justice.gov/usao-
mdfl/pr/national-health-care-fraud-and-opioid-takedown-results-largest-enforcement-action,
accessed on 13 August 2019).

Health care overpayments are generally classified into three categories—provider,
patient and insurer. Among these, overpayments as a result of provider activities, involving
fraudulent protocols by hospitals and physicians, are the most common. Examples include,
but are not limited to, the submission of false claims, kickback payments, self-referrals,
etc.; see [2] for a comprehensive discussion. This paper focuses on upcoding, which is
also referred to as overcharging or aggressive billing. Examples of upcoding include
the following: (a) exaggerating the time to perform a procedure; (b) deliberately mis-
specifying the equipment needed in the procedure; (c) misrepresenting the credentials of
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the staff performing the procedure in order to increase payment rates; and (d) lying that
the procedure happened when in fact it did not.

Upcoding is a concern for both private and government insurance programs. The most
straightforward way to detect potential upcoding is through manual audits by using the
medical charts. However, the size and complexity make comprehensive audits challenging,
if not impossible [3]. Therefore, statistical methods are widely used to detect fraudulent
transactions; see [4–6] for overviews. Standard practice of upcoding detection typically
uses outlier detection to isolate providers with more aggressive billing patterns as potential
audit targets. For any procedure and/or provider, one could compare suspicious billings
with historical claims data. For instance, Silverman and Skinner [7] show that profit driven
hospitals biased their claims toward higher-paying diagnoses to maximize reimbursement
while [8] discuss cases of upcoding at non-profit hospitals. However, as [9] noted, identify-
ing upcoding in claims data is difficult due to confounding variables such as patient risk. Kc
and Terwiesch [10] argue that patient selection bias is a potential issue in such studies. In-
deed, Ata et al. [11] show that payment models could offer incentives to hospitals to admit
short-lived patients. Particular payment plan characteristics could also motivate providers
toward aggressive billing. Brunt [12] show that drastic changes in the Medicare fee dif-
ferentials for similar procedures increase the likelihood of upcoding. Zafari and Ekin [13]
and Ekin et al. [14] propose a combination of Bayesian hierarchical and outlier detection
approaches to group and detect unusual provider billings. Zafari et al. [15] present an
integrated multivariate outlier detection and decision modeling framework.

While identification is crucial and helps with recovery of overpayments, it does not
change the overall culture of upcoding; hence, long term system integrity is compromised.
This motivates policy makers to be interested in the provider billing characteristics as well
as understanding the common factors that drive conservative and/or aggressive behavior.
For instance, Cooper et al. [16] point out the low correlation between the growth in hospital
referral region-level private health spending and growth in fee-for-service Medicare spend-
ing; they argue that different factors may be driving the growth in spending for different
systems. This study focuses on U.S. Medicare fee for services systems and uses claims
data to study the key factors that can explain differences in billing patterns. Many factors
contribute to determination of payment amounts for Medicare Part B fee for services. These
include, but are not limited to, the 20% co-payment; non-participating status and limiting
charge; facility & non-facility rates; geographic adjustments; and multiple procedure pay-
ment reductions. Among these, geographical adjustments are one of the main reasons for
payment differences since, typically, urban areas have 5% to 10% higher payment rates
than national averages. Medicare allowed payment amounts for each procedure in each
geographical region are publicly available at [17]; see, for instance, [18] for a county level
analysis. Although these payment amounts are determined with respect to well-specified
fixed formulas that account for geographic and billing type variations, the billing patterns
among providers may still differ even for the same procedure. For instance, underlying
common factors for providers that request higher reimbursement for same set of services
could be different than the providers with conservative billing behaviors. Even if the factors
are similar, their marginal impact could be different. Understanding such differences in
billing patterns could enable policy makers offer specific policies. This, in turn, can also
lead to better upcoding detection by decreasing the amount of false positives.

A variety of statistical approaches are proposed to study the common factors under-
lying billing patterns, see [19] for a discussion. Linear regression models are often used.
Jürges and Köberlein [20] use regression to determine relationships between upcoded
cases and expected payment differences; Bowblis and Brunt [21] analyze the impact of
geographic adjustments on profit margins; Fang and Gong [22] attempt to detect poten-
tial overbilling in Medicare reimbursement. Such oft-use of linear models is somewhat
surprising, given the complexity of the data. Indeed, since billing data distributions are
asymmetric and/or leptokurtic, the use of ordinary least square regression could lead
to serious biases in fraud detection. A limited number of hybrid studies use regression
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methods along with unsupervised methods [23]. Lorence and Spink [24] analyze survey-
based variations in billing patterns via descriptive analytics. A logistic Bayesian model is
developed to detect questionable claims and estimate probability of upcoding [25].

We introduce quantile regression models to the domain of health care fraud detection.
The use of quantile regression in health care utilization and fraud assessment has been
limited. The only relevant quantile regression based application examines health care
expenditures during the Great Recession [26]. To the best of our knowledge, our paper
is the first study that investigates the underlying characteristics of both aggressive and
conservative billing by providers in health care systems via quantile regression and variable
selection methods. Under this approach, providers at lower quantiles of the aggressiveness
distribution could be argued to be more conservative or efficient, or even potentially
underpaid. Their efficient behavior can serve as a benchmark for other providers. On the
other hand, providers at the higher quantiles of the aggressiveness distribution could be
upcoding the system. Characteristics unique to this latter group may help improve our
understanding of their billing behavior. A related issue is the set of covariates that could
influence aggressive billing could be quite large and may have differing impacts on the
data distribution’s quantiles. We propose using the Bayesian Information Criterion (BIC)
to select key variables at several quantiles of the billing distribution. This quantile variable
selection framework is a first in the statistical modeling of fraud detection.

In order to conduct the empirical analysis; in addition to using the fee for service
payment data from Medicare Part B, we construct a large database by combining a number
of public data sources. With these data, for the mammography procedure, we find that the
variables which impact the various quantiles of the billing aggressiveness distribution are
very different than those obtained from a linear regression. Moreover, the set of variables
differ across the various quantiles of the billing distribution. We discuss how our findings
can be used in health care fraud prevention and detection. The paper proceeds as follows.
Section 2 discusses the data, quantile regression and variable selection methodologies.
This is followed by an empirical analysis in Section 3. A discussion and an overview in
Sections 4 and 5 conclude the paper.

2. Materials and Methods
2.1. Data

Data Sources. The major data set of use is the The Physician and Other Supplier Public
Use File [27], which contains 100% final-action physician Medicare Part B services and
procedures provided to fee for service (FFS) beneficiaries. It includes measurements for
utilization, payment and submitted charges organized by the National provider identifier
(NPI), Healthcare common procedure coding system (HCPCS) code, and place of service. We
chose the year 2014 to take into account the major payment reduction adjustment after April
1, 2013, and the addition of the variable “standardized payment”. For fair comparison, we
only use observations for individual entities that have facility as place of services.

The raw health care claims data has 9,316,307 observations in which each row cor-
responds to the billing summary of a given procedure by a particular provider. It is
straightforward to use our approach for data of any procedure, as well as any given
provider or provider-procedure pairs. We focus on the fee for service claim billings for
Procedure 77055, which corresponds to computer-aided detection applied to a diagnostic
mammogram, in order to illustrate the proposed method. Following the recent Affordable
Care Act, starting 1 January 2020, mammography was reclassified as a preventive, not
diagnostic, screening procedure. Developing a dataset for the analysis of fraudulent billing
behavior is a formidable challenge due to the complexity and size of the source databases.
In the following, we describe how we accomplished this task in general, keeping in mind
we used the process to isolate the upcoding practice for Procedure 77055.

The characteristics of a given procedure-provider pair (with a unique HCPCS service
code and a unique NPI) are the focal variables. These include the average Medicare allowed
payment amount (the Medicare payment, deductible and copay averaged over procedure);
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average submitted charge amount; average Medicare payment amount after deduction of
deductible and coinsurance; and average Medicare standardized payment amount that
removes geographical differences in payment rates. The claims data also include number of
unique beneficiaries served; number of services provided; and number of distinct Medicare
beneficiary/per day services. Provider-specific information, such as the state, zip-code,
address and provider type, are also used. In order to measure the impact of provider type
for claims on a given procedure, we computed the mean and standard deviation of the
aggressiveness ratios that capture the relative frequency and deviation.

Next utilized data source is the Fee Schedules to map the zip codes to locality in-
formation [28]. The current Physician Fee Schedule locality structure was developed and
implemented in 1997. At present, there are 89 localities of which 34 are statewide areas,.
which account for the geographical variation in payment patterns; see [29] for details.
Then, we extract the geographical practice cost indices for each locality [17]. In particular,
the relative costs of physician work, practice expense, and malpractice expense in a specific
area, compared to the national average costs, for each component are retrieved; see [30]
for details. Lastly, we employ a public use file that provides demographic, spending,
utilization, and quality indicators at the state level. This can help evaluate geographic
variation in the utilization and quality of health care services for the Medicare fee for
service population; see [31] for details.

Response variable. “Billing aggressiveness of the provider” for the mammography
procedure is defined as a non-negative measurement for which larger values potentially
reflect upcoding for the same procedure. It is the ratio of the average submitted charged
amount and average payment amount for all claims submitted for a given procedure [9].
The first row of Table 1 displays the skewness of the standardized payments for Procedure
77055. There are a total of 685 providers that billed for this procedure. It can be seen
that the standard deviation of standardized payments is approximately ten percent of
the mean amount for all providers. The skewness and kurtosis values are high. Per our
earlier discussions, such discrepancies in the standardized average payment amounts
could be explained by geographical variations and patient related factors. However, we
should emphasize that our focus is not on payments per se, rather our analysis aims to
investigate the potential reasons for differences in the aggressiveness of providers for the
same procedure. The second row of Table 1 exhibits the right skew in the distribution
of the aggressiveness of the providers. Both skewness and kurtosis values are very high.
The skewness and the existence of outliers are also displayed in the box-plot and histogram
of billing aggressiveness; see Figure 1. The table and graphs point to the non-normality of
the billing distribution for this procedure.

Table 1. Summary statistics for Average Standardized (Std) Payment Amounts and Aggressiveness for Procedure 77055.

Variable Mean SD Skewness Kurtosis 1stP 5thP 25thP 50thP 75thP 95thP 99thP

Std. Payment 25.58 2.61 −1.79 9.67 17.19 21.07 24.13 26.12 27.88 28.09 28.52
Aggressiveness 4.00 2.32 8.91 156.52 1.34 1.53 2.65 3.86 4.82 6.83 9.29
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Figure 1. Boxplot and histogram of provider billing aggressiveness for Procedure 77055.
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Covariates. We consider the following covariates.

• Line Service Count: This corresponds to the number of services provided by the
particular provider of interest for that procedure.

• Unique Beneficiary Count: This is the number of distinct Medicare beneficiaries
receiving the service. This is expected to be related to the Line Service Count, however
it can provide additional insights especially for fraudulent and/or aggressive provider
billing behavior.

• Average Medicare Allowed Payment: This is the sum of payment amount by Medicare,
the deductible and coinsurance amounts paid by the beneficiary, and any amounts
that a third party is responsible for paying.

• Average Medicare Standardized Payment: This variable captures the average stan-
dardized payment amount by Medicare after the deduction of beneficiary deductible
and coinsurance amounts and geographical standardization. Standardization removes
geographic differences in payment rates for individual services due to local prices
and makes Medicare payments across geographic areas comparable. This allows to
reflect variations and capture underlying factors of providers’ billing patterns [32].

• GPCI Work: The Geographical Practice Cost Index (GPCI) has been established for
every Medicare payment locality for each of the three components of a procedure’s
relative value unit (RVU) for work, practice expense, and malpractice. Since these are
highly correlated, we picked the RVU for work.

• MA Participation Rate: These are state rates for the Medicare Advantage (MA) partici-
pation. This is chosen since it can provide a glimpse of the billing patterns within that
state, in particular of the aggressiveness of provider billing.

• Average Age: This is the numerical variable of age, which is mostly above 65 given the
nature of Medicare program. In general, the older patients are taken more advantage
of, so this can help understand billing patterns.

• Percent Female: This is coded as a numerical variable that provides the ratio of female
out of all beneficiaries. We aim to investigate if the gender of the beneficiaries has an
association with billing patterns.

• Percent non-Hispanic White: We aim to investigate if the racial demographic of the
beneficiaries has an association with billing patterns.

• Percent Eligible for Medicaid: This is the state rate for the percent of Medicare benefi-
ciaries that are eligible for Medicaid. Dual Medicare-Medicaid (Medi-Medi) access
are available to those who meet certain criteria. This has been an area of upcoding,
and hence motivated the initation of Medi-Medi Data Match Program [33].

• Average HCC Score: The Hierarchical Condition Category (HCC) score is a risk-
adjusted value that ranks diagnoses into categories which represent conditions with
similar cost patterns. Higher categories represent higher predicted health care costs,
resulting in higher risk scores. Average HCC Score represents the averaqe risk score
for Medicare beneficiaries of all ages in each region. The national average is 1.0.

• Standardized Risk-adjusted Per Capita Costs: This corresponds to the cost of Medicare
procedures adjusted to reflect all beneficiaries for each state.

• Mean Aggressiveness of Provider Type: This is defined as the average ratio of the
average submitted charged amount and average payment amount for that particular
provider type. Billing for certain procedures are expected to be more aggressive for
some provider types, so we aim to capture that.

• Standard Deviation of Aggressiveness of Provider Type: This is defined as the standard
deviation of the average submitted charged amount and average payment amount
for that particular provider type. Some provider types could include various distinct
types of provider billing patterns, so this variable aims to help capture that volatility.
It can be expected that a provider with a type that has low standard deviation of
aggressiveness, would behave within billing norms associated with that provider type.

The asymmetric and/or leptokurtic distributions of billing data need to be considered
while modeling the the underlying characteristics of provider billing patterns. Our first
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hypothesis is that different quantiles of the distribution of billing aggressiveness may be
affected by different covariates. Our second hypothesis is that the magnitude of the impact
of the covariates differ at quantiles of the distribution of billing aggressiveness. In order
to check for those hypotheses, we use the statistical methods of quantile regression and
quantile variable selection, which are described in the following.

2.2. Quantile Regression

A practical option for upcoding detection is to flag any provider with aggressiveness
higher than a certain threshold as an outlier for audits. However, in order to ensure program
integrity, we also need to understand the underlying characteristics of aggressive providers
and upcoding. Health care billing is a complex phenomena, and causality is difficult to
attain. We emphasize that we do not claim causal relationships between the response
and independent variables in our model. A major limitation of existing classical linear
regression models is their inability to quantify the differing impacts of explanatory variables
on different parts of the data distribution. They might provide acceptable explanatory
power “on average” but may be poor at modeling abnormal swings. Consider Table 1.
The factors that impact the lower quantiles of the aggressiveness distribution may be
different than those at the upper quantiles. And even if the factors coincide, their marginal
impacts at the lower and upper quantiles could be different. A change in the “payment
amount” may have little impact if billing aggressiveness is low, but it could result in a great
impact in billing aggressiveness in case it is already high. These varying relationships,
and differing impacts of variables, on different levels of aggressiveness cannot be captured
by mean linear regression models. For settings with many variables, a variable selection
method can be valuable to identify the best possible subset of covariates in the quantile
regression model. In addition to handling non-normal data distributions, the contextual
relevance of understanding what covariates influence the entire data distribution motivates
us to employ quantile regression variable selection techniques.

Following [34–37], the linear quantile regression model for the ith observation of the
response variable y is given by:

yi = Xi
Tfi∗ + ei i = 1, · · · , n, (1)

where the error terms, ei are i.i.d; P(e ≤ 0|X = x) = τ for almost every independent
variable x; Xi = (Xi1, · · · , Xip)

T ; and fi∗ = (β∗1, · · · , β∗p)
T .

Given that our aggressive billing data is highly asymmetric and heavy-tailed, following [38],
we assume that each ei follows an asymmetric Laplace distribution with density function

f (e) = τ(1− τ)σ−1exp(−ρτ(e)(2σ)−1), (2)

where ρτ(e) = e(2τ − 2I(e < 0)), ei is independent of Xi, and I is the indicator function.
Thus, the conditional τ-quantile of yi given Xi = xi is xi

Tfi∗.

2.3. Quantile Variable Selection

The Bayesian Information Criterion (BIC) method [39] is known to provide best
subset selection as it identifies the true model consistently [40]. Modified forms of the
BIC to account for large model spaces and large sample sizes are presented to have sound
statistical properties [41,42]. These improvements to BIC are based on embedding robust
shrinkage estimation methods such as the least absolute shrinkage and selection operator
(LASSO) and smoothly clipped absolute deviation (SCAD); see [38,43].

The aim is to consider only d∗ independent variables among the Xijs, implying p− d∗ co-
variates to be set as zero in Equation (1). Adapting the notation from [38], let S = {j1 · · · , jd} ⊂
{1, · · · , p} denote a candidate model corresponding to the independent variables Xj1, · · · , Xjd:
denote Xs = (Xj1, · · · , Xjd)

T; |S| to be the cardinality d of S; (β̂S, σ̂) to be the maximum
likelihood estimator of (βS, σ). Then, the BIC for linear quantile regression is given by:
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BIC(S) = log
(
Σn

i=1ρτ(yi − XT
iS β̂S)

)
+ |S|log n(2n)−1Cn, (3)

where Cn is a positive constant that diverges to infinity as n increases. A discussion related to the
theoretical properties of Equation (3) can be found in [38]; these authors also demonstrate how
the BIC successfully identifies the true model in high-dimensional quantile regression models.

Let β̂λ = (β̂λ,1, · · · , β̂λ,p)
T . The process of selecting the best subset model proceeds

by choosing λ > 0 as follows:

λ̂ = arg min
λ

(
log

(
Σn

i=1ρτ(yi − XT
iS β̂λ)

))
+|Ŝλ|log n(2n)−1Cn. (4)

The selected subset Ŝλ ≡ {j : β̂λ,j 6= 0, 1 ≤ j ≤ p} includes the variables that are selected
at the τth quantile of the distribution of the dependent variable y. In order to find the
estimators for β̂λ, we use the LASSO procedure in R [44]. We let λ vary between 0.01 and 1.
If a particular independent variable’s coefficient estimate is less than 0.001, that is set to
zero, which means it is not selected in the model. For the optimal λ, the module presents
the corresponding estimates for β̂λ and the BIC values at each of the selected quantiles.
The following quantiles, τ, are selected: 0.01, 0.05, 0.25, 0.50, 0.75, 0.95 and 0.99; collectively,
these quantiles better capture the impact of the covariates at various positions along the
entire distribution of aggressiveness; importantly, the impact at the tails of the aggressive
billing distribution are also accounted for in the process.

3. Results

We first estimate the parameters corresponding to the covariates via the OLS mean
regression model which could be used in fraud detection. We then employ the proposed
methodology on the same data and variables.

3.1. OLS Estimation

Consider Table 2. Average Medicare standardized payment amount and mean aggres-
siveness of the provider type are significant factors. Most of the providers that are billing
for this procedure are diagnostic radiologists; this is crucial in understanding upcoding.
For instance, the average aggressiveness of general surgeons is 6.06, which is higher than the
overall mean of 4.00. The billing pattern of a general surgeon is likely to be more aggressive
than average. Another finding is that providers exhibit higher aggressiveness when the
amount of average standardized payment is lower (p = 0.000). Lastly, it should be noted
that an increase in average HCC score, which indicates aggregate sickness level of patients,
also increases billing aggressiveness (p = 0.082).

Table 2. OLS regression statistics where billing aggressiveness for Procedure 77055 is the depen-
dent variable.

Variable Name Estimate s.e. p-Value

(Intercept) 4.845 17.389 0.781
line service count −0.009 0.045 0.847
unique beneficiary count 0.006 0.047 0.906
average Medicare allowed payment amount 0.130 0.085 0.126
average Medicare standardized payment amount −0.312 0.032 0.000
GPCI Work 15.490 10.712 0.149
MA participation rate 0.986 1.284 0.443
average age −0.243 0.231 0.293
percent female −13.678 13.174 0.300
percent non-Hispanic white 1.489 1.351 0.271
percent eligible for Medicaid −2.916 3.648 0.424
average HCC Score 5.749 3.306 0.082
standardized risk-adjusted per capita costs 0.000 0.000 0.554
mean aggressiveness of provider type 1.356 0.349 0.000
std. dev. of aggressiveness of provider type −0.159 0.862 0.854
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However, not surprisingly, the residuals from the OLS analysis violate the normality
and iid assumptions. The Lilliefors test for non-normality is significant (p = 2.133 × 10−13),
which is also evidenced in the q-q plot shown in Figure 2. In short, the analysis shown in
Table 2 could lead to a poor understanding of providers that overcharge.
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Figure 2. Q-Q plot for the OLS regression.

3.2. Quantile Estimation

Setting aside variable selection for the moment, consider Table 3 which presents the
quantile regression coefficients and their significance levels at the quantiles {0.01, 0.05,
0.25, 0.5, 0.75, 0.95, 0.99}. The varying impacts of variables at the different quantiles of the
aggressive billing distribution are evident. While average Medicare standardized payment
amount is significant for every quantile of interest, please note that the mean aggressiveness
of the provider type is only significant for three quantiles. Let us examine just a few of
these relationships below in the interests of brevity.

First, the average Medicare standardized payment amount is significant for all quan-
tiles, albeit with varying beta coefficients at different quantiles. For higher percentiles
of aggressiveness, the relationship becomes stronger and more negative. The providers
with increasing aggressive billing patterns become less aggressive for higher standardized
payment amounts. Second, average HCC score, has a positive impact on aggressive billing,
but is only significant at percentiles of 0.05 and 0.95. Similarly, the variable GPCI Work,
which measures the geographic variation adjustment of practice expense, is only significant
at 25th percentile. Third, consider the impact of standard deviation of aggressiveness for
each provider type. This variable’s marginal effect trends from negative to positive with
increasing values. Fourth, upcoding tends to be higher among less aggressive providers
that bill in states where patient populations have higher proportions of dual eligibility—
those that are eligible for Medicaid and Medicare. This relationship becomes inverse for
providers with increasing aggressiveness. Upcoding is also higher in states with more
non-Hispanic, white demographic patients; although this is not significant.

To further demonstrate the value of quantile regressions in this context, we graph-
ically compare the confidence intervals and the point estimates given in Tables 2 and 3.
Consider Figure 3 that presents the parameter estimates for the variables “average Medicare
standardized payment amount”, “GPCI Work”, “average HCC score”, and “mean aggressiveness
of provider type”.
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Table 3. Quantile regression coefficient estimates for each variable for the percentiles of {0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99}
(Significance: [0, 0.001): ***, [0.001, 0.01): **, [0.01, 0.05): *).

Variable/Quantiles 0.01 0.05 0.25 0.50 0.75 0.95 0.99

Intercept 14.615 21.606 2.269 12.837 19.458 35.301 38.981
line service count −0.024 −0.037 −0.002 −0.005 −0.018 0.047 0.029

unique beneficiary count 0.028 0.043 0.001 0.006 0.015 −0.062 −0.049
average Medicare allowed payment amount 0.018 0.019 0.1 0.168 0.156 0.035 −0.258

average Medicare standardized payment amount −0.054 *** −0.045 * −0.095 ** −0.096 * −0.197 *** −0.688 ** −1.754 **
GPCI Work −2.646 −1.136 29.248 ** 7.858 11.645 24.215 46.94

MA participation rate −1.713 −3.604 * −0.499 1.945 2.477 −1.062 3.801
average age −0.102 −0.161 −0.461 * −0.362 −0.443 * −0.432 −0.559

percent female −13.551 −21.868 −7.706 −0.228 −9.378 −49.686 * 3.091
percent non-Hispanic white 0.751 −0.044 2.131 * 0.233 1.069 2.368 2.816
percent eligible for Medicaid 3.275 0.23 −1.798 −2.479 −2.919 −3.881 −4.46

average HCC score 4.459 8.314 * 4.577 1.194 2.958 13.875 * 4.741
standardized risk-adjusted per capita costs 0 0 0 0 0 0 0

mean aggressiveness of provider type 0.571 0.57 0.731 1.443 * 1.691 *** 1.779 ** 1.815
std. dev. of aggressiveness of provider type −1.168 −0.922 0.007 −0.065 0.234 1.54 1.775
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Figure 3. OLS and quantile regression estimates for select variables. Notes: x-axis depicts quantiles
of the dependent variable; y-axis represents parameter estimates. The solid black line and dashed red
lines are the OLS and 95% confidence interval estimates, the dotted black line and gray shaded areas
are the quantile functional and 95% confidence band estimates, respectively.

The first takeaway is the non-linear, non-constant nature of the relationship between
the covariates and aggressive billing data; the linear OLS estimation misses these true
relationships entirely. Second, at first glance, it would seem that since some quantile
estimates for each of the covariates are contained in the corresponding OLS-based 95%
confidence intervals, there is no major difference in the OLS and quantile estimates. This
inference would be misguided. The 95% OLS-based interval is always equidistant from
the OLS mean estimate of a parameter. The quantile estimates are localized regression
values. To illustrate this, consider the top right panel for the GPCI Work estimates. Most
of the quantile estimates are within the 95 % confidence interval of the OLS estimate but
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consider, for instance, the quantile regression point estimate of GPCI Work at the first
quartile. The localized marginal effect of GPCI Work on the billing data that fall at this
quantile is twice as large as the OLS mean effect; the latter’s effect on billing data is always,
on average, 15.49 from Table 2, no matter where the data are on the billing distribution.
Practically speaking, the impact of the relative cost of physicians’ work is, in fact, twice as
large at the lower spectrum of the aggressive billing distribution; the OLS estimate grossly
underestimates the impact of this covariate on a sizable number of billing data. A similar
argument can be made for average HCC score. Thus, even if the quantile estimates are
within the equal-tailed 95% confidence interval of the OLS estimate, they vary significantly
and non-linearly across the billing data distribution. Third, consider the top left panel for
the average Medicare standardized payment amount; see Table 3 for the corresponding
numerical values that quantify the varying nature of the marginal effect of this covariate.
In contrast, the linear mean effect for this covariate is fixed throughout the distribution of
aggressiveness. The numerical estimates only intersect slightly at the upper 95 % confidence
interval of the 75th percentile. This is also evident with the impact of “mean aggressiveness
of the provider type”. Although this mean effect is significant for OLS regression, for all
quantiles of the quantile regression method, its estimates vary across quantiles, and some
are not significant. Finally, the non-linear quantile interval estimates provide evidence of
changing standard errors at the different quantiles, but in the OLS estimation the standard
error is always fixed; this is implausible given the skew in the billing data distribution
shown in Table 1 as well as the plots in Figure 1.

Similar results hold for the other covariates; for brevity, we only present the plots for
the variables discussed above. These results validate our key empirical claim that mean
regressions are ill-suited to explore the impact of covariates on the billing aggressiveness
data as a whole.

3.3. Variable Selection

Our hypothesis is that different quantiles of the distribution of billing aggressiveness
may be affected by different covariates. To validate this, we investigate which of the
14 covariates are selected by the BIC procedure at each of the quantiles (τ = 0.01, 0.05, 0.25,
0.50, 0.75, 0.95, 0.99).

Table 4 presents the Maximum Likelihood Estimates (MLEs) for the selected variables
in the LASSO quantile regression, which quantifies the marginal effects of each variable.
As expected, average standardized payment amount (avg. std. payment amount) is kept in
each model. The coefficients for avg. std. payment amount display a negative relationship
with aggressiveness, which gets stronger for increasing quantiles. The directions of the
relationships for other MLE estimates are also in line with previous results. The MA partic-
ipation rate is kept in models at five quantiles, while its value is larger for higher quantiles.
The mean aggressiveness of provider type (mean agg PT) is significant and positive with
increasing values for percentiles starting at 0.50. The average allowed payment amount
is always positively related to aggressiveness. The marginal effects of the “GPCI Work”,
“percent efmal” “services provided” (line service count) vary among quantiles where they
are significant. These findings emphasize the advantages of using Quantile Regression
versus OLS results in Table 2.
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Table 4. MLE’s for chosen variables for LASSO Quantile Regression (Note: All the other variables
are not selected, and hence have MLEs of 0).

Variables/Quantiles 0.01 0.05 0.25 0.5 0.75 0.95 0.99

(Intercept) 1.765 2.438 −1.424 2.547 0.921 −0.114 26.903
line service count 0 0 0 0 −0.002 0 0

avg. allowed payment amount 0.005 0 0.139 0.135 0.103 0.156 0
avg. std. payment amount −0.019 −0.032 −0.032 −0.053 −0.136 −0.160 −0.834

GPCI Work 0 0 0 0 3.125 8.870 0
MA participation rate −0.192 −0.121 0 0.447 0.546 0.156 0

percent female 0 0 0 −5.091 −6.508 0 0
mean agg PT 0 0 0 0.145 1.043 0.509 0.765

4. Discussion

The primary impact of our study is to enable auditors understand billing behav-
ior more accurately by an improved siphoning of providers of each medical procedure.
Consider the OLS estimate for “standardized payment amount”. While this variable is neg-
atively (and significantly) associated with billing aggressiveness as displayed by both OLS
and quantile regression outputs; the amount of its effect varies over the quantiles of billing
distribution. A unit change in the average standardized payment amount has more than
30 times impact for highly aggressive billing data compared to very low aggressiveness.
Using OLS, an auditor will not be able to focus on providers accordingly considering their
billing aggressiveness; the focus would be on the impact on mean aggressiveness. The
second major impact is that mean aggressiveness of the provider type is not significant for
quantiles corresponding to conservatively billing providers. When the auditor uses OLS;
the assumption is that the whole billing distribution is impacted. Similar to the other vari-
ables, the magnitude of the impact also varies. These could result in a large number of false
positives. Based on the BIC selection, we can also glean insights about very conservative
providers. When the standardized payment amount for the procedure is high, its impact
on aggressiveness is lower at at low quantiles. Increasing standardized payment amount
have a higher negative impact at more aggressive providers. In other words, the most con-
servative providers, in terms of billing impact, affect provider payment systems differently.
This conclusion is glaringly absent in the OLS mean regression approach.

The analysis also points to potential differences on the impact of covariates on high
quantile payment amounts versus median and low quantile payment amounts. While the
significant covariates for highly aggressive providers may include mean aggressiveness of
provider type, average HCC score and percent of female beneficiaries; MA participation
rate is significant for low quantiles.

When we analyze the most aggressive individual providers, we would typically
merely red flag the top providers for audit, number depending on our resources. But now,
our analysis can include the crucial insight of the (statistically significant) patients with low
average HCC score offered by this provider when compared to the rest of the providers
at that quantile. Moreover, this provider may be providing services in a state with high
percent of female beneficiaries. In conjunction with the mean aggressiveness values among
that provider type (diagnostic radiologists), such information could be used as potential
clues to detect cases of upcoding.

5. Conclusions

The proposed quantile regression and variable selection framework is utilized on a
combined CMS Medicare data set to determine the key factors that reveal billing aggres-
siveness patterns with respect to the geography, provider and procedure type. It can also
help with potential audits of suspicious providers, decrease the amount of false positives,
and identify the underlying determinants of upcoding.

We used data from Medicare Part B, which is a fee for service (FFS) payment system.
In FFS systems, the insurer reimburses the provider for every procedure or test done on the
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patient. CMS has been actively experimenting with novel payment models. For instance,
the alternative of bundled payments are utilized in programs such as Medicare Advantage:
these plans receive a fixed monthly payment-per-beneficiary to cover potential health care
costs. They are incentivized to improve the patients’ health at minimum cost. With these
policy changes and novel experiments, it will be even more important to understand
the billing patterns of providers in payment systems. It could be worthwhile to extend
our methodology to other programs’ payment data. For instance, Medicare Advantage
programs employ risk adjustment payment systems. These also have cases of upcoding;
see [45].

Our approach can also be extended for a type-procedure pair to see the differences
among billing relationships. For instance, we can take a subset of all cardiologists who
billed for a particular procedure (say 99213—office outpatient visit). The skewness for such
billings and non-linear nature of the varying impacts of the covariates can be captured
with the proposed methods.

One of the main limitations of our paper is the lack of patient-specific characteristics
and data for quality of care. Although we tried to capture that impact by using average
HCC scores, it is still only at an aggregate level and may not reflect a patient’s well-being.
In order to capture the impact of quality of care, CMS has established a budget-neutral
“value modifier”. This measure provides differential payments to providers based on the
quality of care compared to the cost of care furnished to Medicare FFS beneficiaries during
a performance period. Incorporating that to our analysis can improve the results.
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