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ABSTRACT 

Excessive power consumption and cooling costs in computing centers as well as 

limited battery life in mobile devices make energy optimization an important area of 

research. In CMOS technology, dynamic energy is primarily consumed when switching 

from one state to another. In particular, the charging and discharging of long wires 

consume a significant amount of energy. GPU-based accelerators are widely used to 

solve many complex data-intensive problems, which tend to transfer large amounts of 

data to/from main memory. Therefore, GPU data buses contribute a significant portion of 

the total energy expenditure. As a consequence, encoding the data to minimize bit flips 

has the potential to greatly reduce the amount of energy consumed by data buses. The 

existing commercially available solution to reduce bit flips is called Data Bus Inversion 

(DBI). This thesis introduces more effective bit-flip minimization algorithms, which can 

eliminate about 9% more bit flips than DBI
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1. INTRODUCTION 

High reliability and low energy consumption was a major driving force behind the 

development of CMOS technologies. Power consumption of CMOS circuits can be 

classified into static power and dynamic power. Static power is always consumed when 

the power is on, irrespective of any activity, and dynamic power is consumed when the 

circuits are actively switching. I only target dynamic power in this thesis. 

1.1 Dynamic power consumption of CMOS 

The dynamic power consumption of a CMOS circuit is due to the current that 

flows through the device when transistors are switching from one logic state to another. 

The dynamic power consumption is given by 

Pdynamic = CL • V2 • N • f 

Here, Pdynamic represents the dynamic power, CL the capacitance, V the voltage, N 

the switching activity, and f the frequency [5]. 

The rate of switching has a direct impact on the current flow through the 

transistors and the power is dissipated due to the flow of that current, which is why 

Pdynamic is proportional to both N and f. So, the higher the number of bit flips, the more 

energy is consumed. This thesis focuses on reducing such switching activity by encoding 

data on buses to improve energy efficiency, in particular of GPU memory buses. 

1.2 Bit flips on data buses 

In most computing devices, buses are used to transfer data from one component to 

another. The transfer of data over buses can consume a significant amount of energy due 

to the high capacitance of the long wires. A bit flip on a bus is a transition between one 

logic state and another. A significant amount of power is consumed in data buses due to 
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charging and discharging of long off-chip data bus wires, such as the ones that connect 

the GPU to its memory. GPU-based accelerators are used to solve data-intensive 

problems, many of which require lots of data transfers over the data bus. Thus, 

minimizing the bit flips by encoding data on these buses has the potential to significantly 

reduce the energy consumption of GPUs. 

1.3 Data Bus Inversion 

The existing solution to minimize the number of bit flips on a data bus is called 

Data Bus Inversion (DBI). DBI evaluates parallel data bits on the bus, and, depending on 

the flips between the current and previous data on the bus, a decision is made to invert or 

not invert all of the bits of the current data prior to transmission. A DBI bit is sent in 

parallel with the data over a dedicated bus line to specify whether the data has been 

inverted. 

Figure 1 shows a Data Bus Inversion example. T1 through T4 represent time 

intervals. D0 through D3 represent the bits of the data to be transmitted. The data bus bits 

are assumed to be 0 before transmission. The bits highlighted in red are the bit flips, i.e., 

a transition from 0 to 1 or 1 to 0. The last row highlighted in grey is the dedicated extra 

wire for DBI. The overall number of bit flips in this example is reduced from 11 to 8, 

where 11 and 8 are the total number of red entries. 
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Figure 1: Data Bus Inversion Example 

The DBI reduces the maximum number of transitions from n to n/2 where “n” is 

the bus width, thereby reducing the peak dynamic power consumption by half. This thesis 

includes a detailed study of DBI for different inputs and comparing it against my new 

solution. The reduction of bit flips using DBI for all inputs is ~22%. This thesis proposes 

a better bit flip minimization algorithm using a new approach called ECL-BFM, which 

can reduce bit flips up to ~20% on all input types. 

1.4 ECL-BFM Algorithms 

Data Bus Inversion is a fixed solution for all input types. This has obvious 

drawbacks and may be of help only for certain inputs. Moreover, DBI performs a very 

simple transformation on data, which is not necessarily effective for all input types. 

ECL-BFM improves upon DBI by applying additional transformations on the 

input data before DBI, thereby reducing more bit flips than DBI does by itself. The 

additional transformations on the input data are built from simple algorithmic 



 

4 

 

components taken from various encoding algorithms. ECL-BFM approach is to link 

multiple such components together to generate an efficient algorithm for reducing the 

number of bit flips on various input data types. The reverse operations are performed to 

decode the data. DBI requires adding an extra bit to the hardware, which is very 

expensive. Hence, I also propose a solution that does not require any extra bit lines. 

1.5 Contributions 

This thesis makes the following contributions. 

1. It proposes chaining of individual algorithmic components to generate effective 

algorithms to reduce the number of bit flips on data bus. The inverse of the 

individual algorithmic components can be applied in reverse order to decode the 

data. 

2. It proposes to improve DBI by adding additional transformations as a 

preprocessing step to DBI. This approach can effectively reduce the number of bit 

flips for most inputs. 

3. It proposes a low-cost bit-flip minimization algorithm that does not require 

additional bit lines. 

1.6 Outline 

The rest of the thesis is organized as follows: Chapter 2 presents the related work, 

Chapter 3 explains the design and implementation of the proposed approaches, Chapter 4 

presents the evaluation methods, Chapter 5 explains the results and Chapter 6 concludes 

with summary and future work. 
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2. RELATED WORK 

 CMOS is a low-power technology, which is why it is widely used in computer 

systems. As explained in Section 1.1, Pdynamic represents the dynamic power and is 

directly proportional to the switching activity N. Therefore, the energy consumption of a 

GPU, for example, can be reduced by reducing N. Low-power CMOS design are of 

particular interest to portable devices [7]. In this thesis, the “data” value is the data that 

has to be transmitted on the bus and the actual data on the bus is referred to as the “bus” 

value [7]. 

 Low-power coding method called Bus Invert Coding or Data Bus Inversion 

(DBI) [7] was developed to reduce the switching activity on data buses. The DBI method 

requires one extra control bit called “invert” bit [7]. If the invert bit is zero, the bus value 

will be equal to the data value. If the invert bit is one, bus value will be the inverted data 

value. The number of bit flips can be decreased by DBI as follows: 

 Compute the Hamming distance between the present bus value (including 

the current value of the invert bit) and the next data value. 

 If the Hamming distance is larger than n/2, where n is the data bus width 

in bits, set the invert bit to one and make the next bus value equal to the 

inverted next data value. 

 Otherwise, set the invert bit to zero and make the next bus value equal to 

the next data value. 

 At the receiving end, the data must be decoded back to the original value 

based on the value on the invert bit. 

 The main disadvantages of DBI are: 
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 DBI is a fixed solution for all input data types. 

 DBI is based on a very simple inverse transformation. 

 DBI requires an extra bit line, i.e., hardware changes throughout the 

system. 

The Bus Regrouping with Hamming Distance [8] method encodes data to reduce 

both the number of self and coupled transitions. A self-transition on the data bus is 

defined as a bit flip on the same bus line. A coupling transition on the data bus is defined 

as a bit flip between adjacent bus lines [8]. This method requires two extra bit lines. Its 

implementation is as follows: 

 Calculate the number of coupled transitions and self-transitions on the data 

value and the bus value. 

 If the number of coupled transitions is greater than half of the bus width, 

find the Hamming distance between the odd bits and the even bits in the 

data value and the bus value. 

 If the odd hamming distance is greater than the even hamming distance, 

flip the data value in the odd bit positions and append a ‘1’ bit on the left 

and a ‘0’ bit on the right side of the encoded data. 

 If the odd hamming distance is less than the even hamming distance, flip 

the data value in the even bit positions and append a ‘0’ bit on the left and 

a ‘1’ bit on the right side of the encoded data. 

 If the odd hamming distance equals the even hamming distance, flip the 

entire data value and append a’1’ bit on the left as well as on the right side 

of the encoded data. 
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 If the coupled transitions are less than the bus width divided by two, 

transmits the data value as it is and append a ‘0’ bit on the left as well as 

on the right side of the encoded data. 

 The main disadvantage of this method is that it introduces two extra bit lines on 

the data bus. 

The Limited Weight Code (LWC) and transition encoding [10] is a low-power 

encoding system to limit the number of 1’s on the data bus. This encoding assumes that 

the energy needed to transmit a 1 is greater than the energy to transmit a 0. DBI is a 

special case of LWC code where the number of 1’s is restricted to n/2 on an n bit input. 

Bus Invert Transition Signaling (BITS) [11] is a low-power encoding technique 

for narrow buses. BITS is a combination of Bus Invert Coding [7] and transition 

signaling. In transition signaling, 1 is encoded as a transition (from low to high or from 

high to low) and 0 is encoded as a lack of transition. BITS requires an extra bit. Bus 

Invert Coding works best for randomly distributed data [11]. When the data patterns are 

not randomly distributed, as is often the case for telecommunication and image 

processing, the BITS algorithm performs better. BITS works as follows: 

 If the number of 1’s in the data value is greater than n/2 (n is the data bus 

width), then each bit of data value is inverted (set invert bit =1) and then 

transition encoded. a transition (from high to low or from low to high) is 

encoded as 1 and then transition encoded. 

 Otherwise, set the invert bit = 0 and each bit of the data value is transition 

encoded without any alterations. 
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 At the receiving end, the data must be decoded back to original value 

based on the value of the invert bit. 

The main disadvantage of this method is that it is focused only on specific 

applications like speech and image processing, which often use narrow buses for 

transmission. 
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3. DESIGN AND IMPLEMENTATION 

 

 This chapter describes the design of ECL-BFM’s automatically generated 

algorithms to minimize the number of bit flips on data. 

The goal of encoding data is to transform input data into output or encoded form 

such that the number of bit flips between the previous and current data value is reduced. 

The reverse transformations are performed to decode the data. 

To find effective bit-flip minimization algorithms for GPU data buses, I started 

with a detailed study of the Data Bus Inversion Algorithm and other previously proposed 

bit flip minimization algorithms/encodings and identified small individual algorithmic 

parts, which perform simple transformation on data. This yielded a number of algorithmic 

components for building effective algorithms. I use a tool called FLIPPY to implement 

each component using a common interface. Each component in FLIPPY can be given a 

block of data as input and transform it into an output block of data. This makes it possible 

to chain components together, thereby allowing us to generate a vast number of potential 

bit-flip minimization algorithms from a given set of components. Every component 

includes an inverse that performs the opposite transformation to get original data back. 

Therefore, for a given set of components, FLIPPY can generate a matching decoder. 

 I used FLIPPY to do an exhaustive search to determine the most effective bit-flip 

minimization algorithm from the given set of components. Based on a detailed analysis, I 

found the best one-, two-, and three-stage minimization algorithms for two types of input 

data, integer and floating-point, as well as the best overall algorithm that works for both 

input types. 
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Figure 2 represents a three-component encoder, where the last transformation is DBI. The 

decoder comprises of corresponding inverse components in reverse order to get back the 

original data. 

 

Figure 2: n-component bit-flip minimization algorithm, where the last component is 

followed by DBI, and the corresponding inverse components that make up the 

decoding algorithm 

3.1 Algorithmic components 

 I identified the following algorithmic components for my thesis. Each component 

takes a block of data as input, transforms the data, and outputs it to the next component. 

All the algorithmic components work at byte granularity. 

NUL 

 The NULL component does nothing to the data, it simply outputs the input data. 

Due to the presence of NUL component, the exhaustive search for three stage algorithm 

also includes all one- and two-stage algorithms. FLIPPY gives preference to shorter 

chains over longer chains. 

INV 
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 The INV component flips all the input bits. 

INVe 

 The INVe component flips all even input bits. 

INVo 

 The INVo component flips all odd input bits. 

SMS 

 The SMS component converts each value from sign-magnitude (as used in the 

IEEE 754 floating-point format) into signed twos-complement representation. It does this 

by inverting all but the most significant bit if the most significant bit is set. This 

component may be important to reduce flips in signed data. 

BIT 

 The BIT component shuffles the input data by creating a new sequence that 

contains the most significant bits of all bytes followed by the second most significant 

bits, etc. 

DIMn 

 The DIMn takes an input n that specifies the dimensionality of the input sequence. 

For example, a dimension of three changes the linear sequence x1, y1, z1, x2, y2, z2, x3, 

y3, z3 into x1, x2, x3, y1, y2, y3, z1, z2, z3. In my thesis, n can take values of 2, 4, 8, 12, 

16, 32, 64. 

ROTn 

 The ROTn component takes a parameter n that specifies by how many units to 

rotate left the bits of each byte in the input sequence. There are seven versions of this 

component; n can take values from 1 to 7. 
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GRAYl and GRAYr 

 The GRAYd component converts the input bytes to Gray codes[12]. The GRAY 

component takes a parameter d, which is the direction at which the gray code is applied. 

The parameter d can take two values l (left) or r (right). 

LVs and LVx 

The LVs and LVx are predictors. Predictors guess the current value based on 

previous values in the input sequence, subtract the predicted from the current value, and 

emit the result of the subtraction, that is, the residual sequence. The subtraction to 

compute the residual sequence can be performed using byte level conventional 

subtraction (LVs) or at bit granularity using XOR (LVx). 

NEG 

The NEG component calculates the 2’s complement of a number. 

BIp0 

 The BIp0 checks the bit in position 0, if it is set, then inverts all other bits. It 

leaves the data as is if the bit is not set. 

BIn0 

 The BIp0 checks the bit in position 0, if it is zero, then inverts all other bits. It 

leaves the data as is if the bit is set. 

PREp 

 The PREp component calculates the number of bit flips in the previous byte. If 

there are more than four flips, it inverts all the bits in the current byte. Otherwise, it 

leaves the current byte as it is. 

PREn 
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 The PREn component calculates the number of bit flips in the previous byte. If 

there are fewer than four flips, it inverts all the bits in the current byte. Otherwise, it 

leaves the current byte as is. 

Every component in FLIPPY has an inverse component that performs the inverse 

transformation to get back the original data. FLIPPY has 29 components in total 

excluding DBI. It evaluates 24,389 combinations by chaining three components together 

to find the best minimization algorithm for a given input data. 

Since FLIPPY has 29 algorithmic components, performing an exhaustive search 

to identify the best algorithm is too expensive for chains with more than three 

components, i.e., algorithms with more than three stages. 
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4. EVALUATION METHODS 

4.1 Generation of traces used for evaluation 

 

Figure 3: Generation of input traces used for evaluation 

Figure 3 shows the generation of traces used for evaluation. The first step is to 

collect all data transfers between memory and GPU processor. Next the collected data is 

passed through a cache simulator. The cache simulator removes all data transfers that hit 

in the cache and only emits cache misses and write back transfers to the main memory. 

The output from the cache simulator is stored in a trace file, which contains all data 

transfers on the memory bus for a given program. The generated trace file is used by the 

FLIPPY tool and by a DBI simulator for evaluation. 
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4.2 Traces 

 I collected 30 trace files for the evaluation. Each trace file contains all 

memory data transferred between the GPU and off-chip memory during a program 

execution. In other words, a trace file contains all data transfers on the data bus to and 

from global memory. GPUs have different memory spaces: global, cache, shared, and 

texture. This thesis focuses on data transfers between the GPU processor and global 

memory. I used the following steps to collect the traces. 

 Collect a list of all data transfers on data bus during the program 

execution. 

 Pass the collected list to a cache simulator. The output from the cache 

simulator only contains cache miss and write back transfers that go to the 

GPU’s global memory. 

 The cache simulator output is put in a trace file, which is used for the 

evaluation. 

4.3 Memory trace function 

 In GPUs, 32 threads are executed in parallel, which is called a “warp”. All 

memory access are split into 128 byte transfers, how many ever transfers are needed. 

 To collect these 128-byte memory transfers, I wrote a memory trace function in 

CUDA, called by all threads in a warp. The function takes memory address and type of 

transfer as input. The active threads in a warp are calculated using __ballot() and __ffs() 

functions. The lowest active thread in the warp is used to collect all 128 bytes of data for 

all memory accesses. 
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4.4 Cache simulation 

 A cache is a fast and small memory between the processor and global memory 

that stores some of the most recently accessed data. Most GPUs contains two levels of 

caches, L1 cache and L2 cache. In this thesis I used two 4-way set associative caches of 

size 16KB (L1 cache) and 2MB(L2 cache) to filter out the cache hits and record only data 

transfers of accesses that go to global memory. Output from the cache simulator is called 

as a trace file. 

The trace files from L1 cache and L2 cache were similar and L2 trace files also 

include L1 miss and write-backs that go to global memory. Therefore, for the algorithm 

evaluation I used the trace file generated from L2 cache. 

4.5 Input programs 

 I used the following algorithms to collect traces for the evaluation. 

Integer programs: 

 Fractal - Mandelbrot Set 

 Mandelbrot set is a set of complex numbers c for which the sequence zn+1 = zn
2 + 

c; z0 = 0 is bounded. This set creates a complex pattern that is called “fractal”. 

The number of iterations before reaching a given maximum determines the 

brightness of each pixel in the fractal. 

 Maximal Independent Set (MIS) 

The MIS algorithm calculates the maximal independent sets for a given input 

graph based on Luby’s algorithm. We use three input graphs to collect traces from 

MIS. 

 Delaunay Mesh Refinement (DMR) 
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A 2D Delaunay mesh is a triangularization of a set of points with the following 

property: the circumcircle of any triangle in the mesh must contain no other point 

from the mesh. A refined Delaunay mesh is a Delaunay mesh with the additional 

constraint that no triangle have an angle of less than 30 degrees. The algorithm 

takes an input Delaunay mesh, containing triangles that contain angles that do not 

meet the above constraints and produces a refined mesh by iteratively re-

triangulating the affected portions of the mesh. 

  Minimum Spanning Tree (MST) 

The MST algorithm calculates a subset of edges that connects all the vertices 

together. This algorithm computes a minimum spanning tree in a weighted graph 

using Boruvka’s algorithm. 

 Massively Parallel Compression (MPC) 

MPC is a parallel data compression algorithm for scientific data. It is a GPU-

based compressor for single- and double-precision floating-point values. 

Floating-point programs: 

 N-Body Simulation 

N-body simulation is a simulation of stars under the influence of physical forces 

like gravity. 

 Barnes Hut Algorithm 

This algorithm simulates the gravitational forces acting on a galactic cluster using 

the Barnes-Hut n-body algorithm. The program calculates the motion of each star 

through space for a number of time steps. 

 Travelling Salesman Problem (TSP) 
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This graph algorithm uses a heuristic to find a short route that visits each set of 

points exactly once. 

 Binomial Options 

This algorithm evaluates the fair call price for a given set of European options 

under a binomial model. 

 Fast Walsh Transform 

This algorithm simulates the naturally (hadamard)-ordered Fast Walsh Transform 

for batching vectors of arbitrary eligible lengths that are power of two in size. 

4.6 Measuring bit flips 

 To measure the number of bit flips on the GPU data bus, we created a data bus 

simulator. The width of the bus is 64 bits. Data is transferred in 128 byte chunks (32 

words), this is same as the cache block size in GPUs. The bus is initialized to zero at the 

start of the simulation. The bit flips are counted between the current value (to be 

transmitted over the bus) and the previous value (on the bus) using the popcount function.  

4.7 DBI simulation 

 For my thesis, I created a DBI simulation to compare my algorithms to DBI. The 

implementation is written in C. I implemented DBI for a 64 bit data bus. The 64 bit data 

bus is divided into eight 8-bit data buses with an extra bit line for each byte. Thus, the 64 

bit input data from the trace is split into eight 8-bit parallel data sets. If there are more 

than four bit flips between the previous data and the current data, then the extra bit is set 

and the current data is inverted before sending it over the bus. Otherwise, the data is sent 

as it is. 
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5. RESULTS 

 This chapter presents the main results. The results are divided based on number of 

algorithmic components as well as integer and floating point input data. It also includes 

the customized bit flip reduction algorithm for a specific input data. 

5.1 Bit-flip minimization algorithms with extra bit line 

5.1.1. One-component algorithm 

 Based on an exhaustive search using the 29 algorithmic components in FLIPPY, 

the most efficient one-component bit-flip minimization algorithm with DBI for all input 

traces is DIM64 DBI. The DIM64 component rearranges the data in such a way that the 

interval between two consecutive bytes is 64, i.e., byte 0 and byte 64 are grouped 

together, then byte 1 and byte 65, etc., in each 128-byte chunk. DBI is then applied to the 

transformed data. The algorithm uses the DIM64 component to separate different byte 

positions. This component is useful for both integers and floating point values, as their 

topmost bits are often the same. By grouping them together, DBI becomes more 

effective. 

5.1.2. Two-component algorithm 

 The most efficient two-component algorithm for all input traces is GRAY DIM64 

DBI. The GRAY component converts the input into Gray code [12], in which the number 

of bit changes between two consecutive integers is always one. The output of the GRAY 

component is the input to DIM64, which is explained above. Chaining the two 

components together further reduces the bit flips. The addition of GRAY component is 

useful for all inputs, particularly floating-point data as their topmost bits in Gray code is 



 

20 

 

grouped together by DIM64 to reduce 9% more bit flips than DBI and 1.5% more bit 

flips than one-component algorithm. 

5.1.3. Three-component algorithm 

 The best three-component algorithms for all input traces is SMS GRAY DIM64 

DBI. The SMS component inverts the seven least significant bits in a byte if the most 

significant bit is set. If it is not set, the remaining bits are not inverted. The output of the 

SMS component is the input to GRAY. The GRAY component transforms the data into 

Gray code [12], which is the input for the DIM64 component. The SMS component 

specifically helps to reduce bit flips in sign-magnitude data, i.e., floating-point 

representation. The addition of the SMS component results in a 0.5% higher bit-flip 

reduction than the best two-component algorithm. 

5.1.4. The reduction of bit flips using ECL-BFM 

 The below graph in Figure 4, shows the average reduction in bit flips compared to 

the existing solution of Data Bus Inversion. The first bar in blue represents the average 

number of bit flips in the input files, i.e., the inputs files naturally contain 27% bit flips. 

The second bar shows the average reduction in bit flips after applying DBI. DBI reduces 

the bit flips to about 21.79%. My solution reduces the bit flips up to 19.65%. In other 

words, my algorithm reduces 9% more bit flips than DBI. 
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Figure 4: Total number of bit flips (%) 

 

 We can see that the addition of the SMS component to the two-stage algorithm 

yields only a small reduction in bit flips over the two-component algorithm. Therefore, I 

believe the two-component algorithm GRAY DIM64 DBI to be the most efficient and 

cost-effective solution to reduce bit flips across integer and floating-point inputs. 

5.1.5. Customized bit-flip minimization algorithm for a given input 

 Based on an exhaustive search using FLIPPY, I found that the two-component 

algorithm GRAY DIM64 | DBI works very well across all inputs. However, for some of 

the inputs, I was able to identify an algorithm that works much better than GRAY DIM64 

| DBI. This algorithm is the Customized bit-flip-reduction algorithm FLIPPY can find for 

a given input. However, this solution is potentially different for every input trace. Tables 

1, 2, and 3 show the maximum bit-flip reduction algorithm (for one, two, and three 

components) for all tested inputs. 
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Table 1. Bit flip minimization ratios of DBI and ECL-BFM one-component 

algorithm 

Input trace 

DBI  DIM64 DBI 
Customized 

algorithm for 

the input 

Customized 

algorithm  

bit flip 

minimization 

ratio 

bit flip 

minimization 

ratio 

bit flip 

minimization 

ratio 

Fractal_30_512 1.189 1.509 DIM16 DBI 1.971 

Fractal_60_256 1.196 1.458 DIM16 DBI 2.077 

Fractal_60_512 1.191 1.461 DIM16 DBI 2.070 

MIS_internet 1.233 1.333 DIM64 DBI 1.333 

MIS_amazon 1.189 1.369 DIM64 DBI 1.369 

MIS_USAroadmap 1.166 1.220 DIM64 DBI 1.220 

MPC_7770102_10 1.294 1.403 DIM64 DBI 1.403 

MPC_13418496_10 1.225 1.266 DIM64 DBI 1.266 

MPC_33298679_1 1.243 1.271 DIM64 DBI 1.271 

MST_rmat12 1.166 1.160 NUL DBI 1.166 

MST_2d-2e20 1.148 1.148 NUL DBI 1.148 

MST_USA-road 1.153 1.206 DIM64 DBI 1.206 

DMR_input1 1.193 1.127 NUL DBI 1.193 

DMR_input2 1.223 1.310 DIM64 DBI 1.310 

DMR_input3 1.193 1.125 NUL DBI 1.193 

Binomialoptions_input1 1.299 1.415 DIM64 DBI 1.415 

Binomialoptions_input2 1.304 1.413 DIM64 DBI 1.413 

Binomialoptions_input3 1.302 1.409 DIM64 DBI 1.409 

Nbody_10000_10 1.205 1.205 DIM64 DBI 1.205 

Nbody_13500_10 1.205 1.205 DIM64 DBI 1.205 

Nbody_26650_10 1.206 1.205 INV DBI 1.206 

TSP_225_1000 1.177 1.282 DIM64 DBI 1.282 

TSP_575_100 1.174 1.218 DIM64 DBI 1.218 

TSP_100_10000 1.189 1.241 DIM64 DBI 1.241 

FWT_input1 1.191 1.192 DIM64 DBI 1.192 

FWT_input2 1.305 1.310 DIM4 DBI 1.603 

FWT_input3 1.191 1.192 DIM64 DBI 1.192 

BH_10000_100 1.397 1.444 DIM64 DBI 1.444 

BH_30000_50 1.396 1.443 DIM64 DBI 1.443 

BH_15000_25 1.422 1.473 DIM64 DBI 1.473 
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Table 2. Bit flip minimization ratios of DBI and ECL-BFM two-component 

algorithm 
 

Input trace 

DBI 
GRAY 

DIM64 DBI Customized 

algorithm for the 

input 

Customized 

algorithm 

bit flip 

minimiza

tion ratio 

bit-flip 

minimization 

ratio 

bit-flip 

minimization 

ratio 

Fractal_30_512 1.196 1.645 GRAYr DIM16 DBI 2.106 

Fractal_60_256 1.191 1.579 GRAYr DIM16 DBI 2.242 

Fractal_60_512 1.189 1.574 GRAYr DIM16 DBI 2.237 

MIS_internet 1.233 1.391 GRAYr DIM64 DBI 1.391 

MIS_amazon 1.166 1.250 GRAYr DIM64 DBI 1.250 

MIS_USAroadmap 1.189 1.407 GRAYr DIM64 DBI 1.407 

MPC_7770102_10 1.294 1.280 GRAYr DIM64 DBI 1.280 

MPC_13418496_10 1.243 1.298 GRAYr DIM64 DBI 1.298 

MPC_33298679_1 1.225 1.430 NEG DIM64 DBI 1.438 

MST_rmat12 1.148 1.178 GRAYr DIM64 DBI 1.178 

MST_2d-2e20 1.166 1.178 GRAYr DIM64 DBI 1.178 

MST_USA-road 1.153 1.281 GRAYr DIM64 DBI 1.281 

DMR_input1 1.193 1.314 GRAYr DIM64 DBI 1.314 

DMR_input2 1.223 1.113 NUL NUL DBI 1.223 

DMR_input3 1.193 1.111 NUL NUL DBI 1.193 

Binomialoptions_input1 1.299 1.443 GRAYr DIM64 DBI 1.443 

Binomialoptions_input2 1.302 1.447 GRAYr DIM64 DBI 1.447 

Binomialoptions_input3 1.304 1.440 GRAYr DIM64 DBI 1.440 

Nbody_10000_10 1.205 1.159 INV NEG DBI 1.210 

Nbody_13500_10 1.206 1.160 INV NEG DBI 1.211 

Nbody_26650_10 1.205 1.160 INV NEG DBI 1.211 

TSP_225_1000 1.189 1.211 NUL DIM64 DBI 1.241 

TSP_575_100 1.177 1.184 NUL DIM64 DBI 1.218 

TSP_100_10000 1.174 1.297 GRAYl DIM64 DBI 1.317 

FWT_input1 1.191 1.182 ROTl6 NEG DBI 1.219 

FWT_input2 1.191 1.293 GRAYr DIM4 DBI 1.650 

FWT_input3 1.305 1.182 ROTl6 NEG DBI 1.219 

BH_10000_100 1.397 1.411 NUL DIM64 DBI 1.444 

BH_30000_50 1.396 1.411 NUL DIM64 DBI 1.443 

BH_15000_25 1.422 1.440 NUL DIM64 DBI 1.473 
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Table 3. Bit flip minimization ratios of DBI and ECL-BFM three-component 

algorithm 
 

Input trace 

DBI  
SMS GRAY 

DIM64 DBI 
Customized algorithm for 

the input 

Customize

d 

algorithm  

bit-flip 

minimiza

tion ratio 

bit-flip 

minimization 

ratio 

bit- flip 

minimizati

on ratio 

Fractal_30_512 1.196 
2.106 

GRAYr BIn0 DIM16 DBI 
2.242 

Fractal_60_256 1.191 2.242 NEG GRAYr DIM16 DBI 2.245 

Fractal_60_512 1.189 2.237 NEG GRAYr DIM16 DBI 2.107 

MIS_internet 1.233 1.391 GRAYr BIn0 DIM64 DBI 1.391 

MIS_amazon 1.166 1.250 DIM4 LVs DIM32 DBI 1.279 

MIS_USAroadmap 1.189 1.407 GRAYr BIn0 DIM64 DBI 1.407 

MPC_7770102_10 1.294 1.280 SMS NEG DIM64 DBI 1.440 

MPC_13418496_10 1.243 1.298 DIM4 LVs DIM32 DBI 1.315 

MPC_33298679_1 1.225 1.438 GRAYr BIn0 DIM64 DBI 1.280 

MST_rmat12 1.148 1.178 DIM16 BIT DIM4 DBI 1.263 

MST_2d-2e20 1.166 1.178 BIn0 ROTl7 GRAYr DBI 1.185 

MST_USA-road 1.153 1.281 GRAYr BIn0 DIM64 DBI 1.281 

DMR_input1 1.193 1.314 NEG ROTl2 NEG DBI 1.211 

DMR_input2 1.223 
1.193 

GRAYr GRAYr DIM64 

DBI 1.326 

DMR_input3 1.193 1.193 NEG ROTl2 NEG DBI 1.210 

Binomialoptions_input1 1.299 1.443 BIn0 NEG DIM64 DBI 1.457 

Binomialoptions_input2 1.302 1.447 DIM16 BIT DIM16 DBI 1.455 

Binomialoptions_input3 1.304 1.440 DIM16 BIT DIM16 DBI 1.462 

Nbody_10000_10 1.205 1.210 INV ROTl7 NEG DBI 1.210 

Nbody_13500_10 1.206 1.211 INV NEG BIn0 DBI 1.211 

Nbody_26650_10 1.205 1.211 INV NEG BIn0 DBI 1.211 

TSP_225_1000 1.189 1.241 INV NEG DIM64 DBI 1.253 

TSP_575_100 1.177 1.218 BIn0 NEG DIM64 DBI 1.326 

TSP_100_10000 1.174 1.317 BIn0 ROTl1 DIM64 DBI 1.218 

FWT_input1 1.191 1.219 ROTl6 NEG DIM64 DBI 1.220 

FWT_input2 1.191 1.650 ROTl6 NEG DIM64 DBI 1.220 

FWT_input3 1.305 1.219 GRAYr DIM4 BIT DBI 1.665 

BH_10000_100 1.397 1.444 INV NEG DIM64 DBI 1.447 

BH_30000_50 1.396 1.443 INV NEG DIM64 DBI 1.446 

BH_15000_25 1.422 1.473 INV NEG DIM64 DBI 1.481 
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 The bit-flip minimization ratio in tables 1, 2, 3 represent the number of existing 

bit flips on the input divided by the number of bit flips after applying the algorithm. It can 

be observed that the customized algorithm for a given input can reduce an average of 

11% higher bit flips than DBI. For some integer inputs like fractal, the customized 

algorithm is DIM16 DBI, which reduces 47% more bit-flips than DBI using just a one-

component algorithm. 

 The customized two-component algorithm for a given input can reduce up to 14% 

bit flips on an average than DBI. Therefore, if the nature of the input is known in 

advance, then my solution using the customized algorithm for that specific input can 

reduce significantly more bit flips than DBI. 

The below graphs shows the summary of results for one-, two-, and three-

component algorithms. The graph compares the bit flip minimization ratios of DBI and 

ECL-BFM algorithms for all input programs. The first five programs are integer type and 

the last five programs are floating-point type. Each input program was run with three 

inputs and the average performance of algorithms for three inputs is plotted. The last bar 

graph shows the geometric mean of DBI and ECL-BFM algorithms. 
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Figure 5: Comparison between DBI and ECL-BFM one-component algorithm 

 

 

 

Figure 6: Comparison between DBI and ECL-BFM two-component algorithm 
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Figure 7: Comparison between DBI and ECL-BFM three-component algorithm 

5.2 Bit-flip minimization algorithm without extra bit line 

 This thesis also proposes a low-cost solution to reduce bit flips without the need 

for an extra bit line. 

5.2.1. One-component algorithm 

 Based on an exhaustive search using the 29 algorithmic components in FLIPPY 

without an extra bit line, the most efficient one-component bit-flip minimization 

algorithm for all input traces is DIM64. The DIM64 component performs the 

transformation explained above before placing the data onto the bus. 

5.2.2. Two-component algorithm 

 The most efficient two-component algorithm for all input traces is GRAY DIM64. 

These two components perform the transformation explained above. 

5.2.3. Three-component algorithm 
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 The best three-component algorithm for all input traces is SMS GRAY DIM64. 

Again, this is the same algorithm as above when it is coupled with DBI. 

5.2.4. The reduction of bit flips using ECL-BFM algorithms without extra bit line 

 The below graph in Figure 4 shows the total number of bit flips compared to the 

existing solution, Data Bus Inversion. The first bar in blue represents the average number 

of bit flips in input files, i.e., 27%. The second bar shows the number of bit flips after 

applying DBI. The DBI reduces the bit-flips in a given file to about 21.79%. My solution 

reduces the overall bit flips to about ~24% but without the need for an extra bit line. In 

other words, my algorithm eliminates 11% of the bit flips without using the extra bit line. 

 

Figure 8: Total number of bit flips (%) 

 We can see that the addition of the SMS component to the two-stage algorithm 

reduces 3% more bit flips than the two-component algorithm. Therefore, the three-

component algorithm SMS GRAY DIM64 is probably the most cost effective solution to 

reduce bit flips for all integer and floating-point input types when no extra bit line is 

available. 

5.2.5. Customized bit-flip minimization algorithm for a given input 
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 The tables 4, 5, 6 show the customized bit flip-reduction algorithm with one-, 

two-, and three-components for all input traces without the need for an extra bit.  



 

30 

 

Table 4. Bit flip minimization ratios of DBI and ECL-BFM one-

component algorithm 
 

Input file 

DBI DIM64  Customized 

algorithm 

for the 

input 

Customized 

algorithm 

 

bit flip 

minimization 

ratio 

bit flip 

minimization 

ratio 

bit- flip 

minimizatio

n ratio 

Fractal_30_512 1.189 1.286 DIM16  1.697 

Fractal_60_256 1.196 1.233 DIM16  1.786 

Fractal_60_512 1.191 1.242 DIM16  1.787 

MIS_internet 1.233 1.084 GRAYr  1.090 

MIS_amazon 1.189 1.159 DIM64  1.047 

MIS_USAroadmap 1.166 1.047 DIM64  1.159 

MPC_7770102_10 1.294 1.080 NEG  1.087 

MPC_13418496_10 1.225 1.014 GRAYr  1.046 

MPC_33298679_1 1.243 1.024 GRAYr  1.032 

MST_rmat12 1.166 1.000 NUL  1.000 

MST_2d-2e20 1.148 1.048 NUL  1.000 

MST_USA-road 1.153 0.994 DIM64  1.048 

DMR_input1 1.193 0.939 SMS  1.003 

DMR_input2 1.223 1.073 DIM64  1.073 

DMR_input3 1.193 0.937 SMS  1.001 

Binomialoptions_input1 1.299 1.083 DIM16  1.134 

Binomialoptions_input2 1.304 1.080 DIM16  1.139 

Binomialoptions_input3 1.302 1.083 DIM16  1.134 

Nbody_10000_10 1.205 1.000 NUL  1.000 

Nbody_13500_10 1.205 0.999 NUL  1.000 

Nbody_26650_10 1.206 1.000 NUL  1.000 

TSP_225_1000 1.177 1.090 DIM64  1.090 

TSP_575_100 1.174 1.039 DIM64  1.039 

TSP_100_10000 1.189 1.050 DIM64  1.050 

FWT_input1 1.191 1.001 NEG  1.158 

FWT_input2 1.305 1.001 NEG  1.157 

FWT_input3 1.191 1.032 GRAYr  1.175 

BH_10000_100 1.397 1.093 DIM64  1.001 

BH_30000_50 1.396 1.092 DIM64  1.001 

BH_15000_25 1.422 1.101 DIM4  1.276 



 

31 

 

 

 

Table 5. Bit flip minimization ratios of DBI and ECL-BFM two-

component algorithm 
 

Input file 

DBI  
GRAY 

DIM64 Customized 

algorithm for 

the input 

Customiz

ed 

algorithm  

bit-flip 

minimization 

ratio 

bit-flip 

minimizati

on ratio 

bit- flip 

minimiza

tion ratio 

Fractal_30_512 1.189 1.448 GRAYr DIM16  1.849 

Fractal_60_256 1.196 1.385 GRAYr DIM16  1.993 

Fractal_60_512 1.191 1.389 GRAYr DIM16  1.998 

MIS_internet 1.233 1.216 GRAYr DIM64  1.216 

MIS_amazon 1.166 1.218 GRAYr DIM64  1.218 

MIS_USAroadmap 1.189 1.116 GRAYr DIM64  1.116 

MPC_7770102_10 1.225 1.178 NEG DIM64  1.186 

MPC_13418496_10 1.243 1.068 GRAYr DIM64 1.068 

MPC_33298679_1 1.294 1.069 GRAYr DIM64  1.069 

MST_rmat12 1.148 1.008 GRAYr DIM64  1.008 

MST_2d-2e20 1.166 1.016 GRAYr DIM64  1.016 

MST_USA-road 1.153 1.104 GRAYr DIM64  1.104 

DMR_input1 1.223 0.928 SMS INV  1.003 

DMR_input2 1.193 1.086 GRAYr DIM64  1.086 

DMR_input3 1.193 0.925 SMS INV  1.001 

Binomialoptions_input1 1.304 1.226 GRAYr DIM64  1.226 

Binomialoptions_input2 1.299 1.220 GRAYr DIM64  1.220 

Binomialoptions_input3 1.302 1.219 GRAYr DIM64  1.219 

Nbody_10000_10 1.205 0.976 SMS GRAYr  1.011 

Nbody_13500_10 1.205 0.976 SMS GRAYr  1.011 

Nbody_26650_10 1.206 0.976 SMS GRAYr  1.011 

TSP_225_1000 1.189 1.041 DIM64 BIT  1.090 

TSP_575_100 1.174 1.040 GRAYr DIM64  1.040 

TSP_100_10000 1.177 1.064 NEG DIM64  1.075 

FWT_input1 1.191 0.990 SMS GRAYr  1.006 

FWT_input2 1.305 1.091 GRAYr DIM4  1.336 

FWT_input3 1.191 0.990 SMS GRAYr  1.006 

BH_10000_100 1.397 1.201 NEG DIM64  1.195 

BH_30000_50 1.396 1.200 GRAYr DIM64  1.219 

BH_15000_25 1.422 1.220 NEG DIM64  1.196 
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Table 6. Bit flip minimization ratios of DBI and ECL-BFM three-component 

algorithm 
 

Input file 

DBI  
SMS GRAY 

DIM64  
Customized algorithm 

for the input 

Customized 

algorithm  

bit flip 

minimizati

on ratio 

bit flip 

minimization 

ratio 

bit flip 

minimization 

ratio 

Fractal_30_512 1.196 1.448 GRAYr DIM16 BIT  1.849 

Fractal_60_256 1.191 1.385 GRAYr DIM16 BIT  1.993 

Fractal_60_512 1.189 1.389 LVs BIT DIM16  2.013 

MIS_internet 1.233 1.216 GRAYr DIM64 BIT  1.216 

MIS_amazon 1.166 1.218 GRAYr DIM64 BIT  1.218 

MIS_USAroadmap 1.189 1.116 GRAYr SMS DIM64  1.125 

MPC_7770102_10 1.294 1.178 ROTl1 NEG DIM64  1.186 

MPC_13418496_10 1.243 1.068 GRAYr DIM64 BIT  1.068 

MPC_33298679_1 1.225 1.069 GRAYr DIM64 BIT  1.069 

MST_rmat12 1.148 1.008 BIp0 ROTl7 GRAYr  1.015 

MST_2d-2e20 1.166 1.016 DIM64 BIT GRAYr  1.036 

MST_USA-road 1.153 1.104 GRAYr DIM64 BIT  1.107 

DMR_input1 1.193 0.928 GRAYr INVe GRAYl  1.012 

DMR_input2 1.223 1.086 GRAYr DIM64 BIT  1.090 

DMR_input3 1.193 0.925 GRAYr INVe GRAYl  1.011 

Binomialoptions_inpu

t1 
1.299 

1.209 
GRAYr DIM64 BIT  1.226 

Binomialoptions_inpu

t2 
1.302 

1.205 
GRAYr DIM64 BIT  1.220 

Binomialoptions_inpu

t3 
1.304 

1.204 
GRAYr DIM64 BIT  1.219 

Nbody_10000_10 1.205 1.011 SMS GRAYr DIM64  1.011 

Nbody_13500_10 1.206 1.011 SMS GRAYr DIM64  1.011 

Nbody_26650_10 1.205 1.011 SMS GRAYr DIM64  1.011 

TSP_225_1000 1.189 1.048 GRAYr GRAYr DIM64  1.134 

TSP_575_100 1.177 1.055 SMS GRAYr DIM64  1.055 

TSP_100_10000 1.174 1.068 NEG DIM64 BIT  1.075 

FWT_input1 1.191 1.006 SMS GRAYr DIM64  1.009 

FWT_input2 1.191 1.116 GRAYr BIT DIM4  1.402 

FWT_input3 1.305 1.006 SMS GRAYr DIM64  1.009 

BH_10000_100 1.397 1.201 SMS GRAYr DIM64  1.204 

BH_30000_50 1.396 1.200 SMS GRAYr DIM64  1.204 

BH_15000_25 1.422 1.220 ROTl2 SMS DIM64  1.228 
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It can be observed that the customized algorithm for unsigned integer inputs like 

fractal can reduce up to 47% more bit flips than DBI without the need for an extra bit and 

even though DBI uses an extra bit. For some of the integer inputs, the best performing 

algorithm using my solution reduces almost as many bit flips as DBI but without the need 

of any additional cost in terms of extra bits (one per byte on the bus). However, for 

floating-point inputs, DBI performs 10% better than my best algorithm. 

 The below graphs summarize the results for the one-, two-, and three-

component algorithms. The graph compares the bit-flip minimization ratios of DBI and 

the ECL-BFM algorithms for all input programs. The first five programs are of integer 

type and the last five programs are of floating-point type. Each input program was run 

with three inputs and the average performance of algorithms for three inputs is plotted. 

The last bar graph shows the geometric mean of DBI and ECL-BFM algorithms. 

 

Figure 9: Comparison between DBI and ECL-BFM one-component algorithm 
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Figure 10: Comparison between DBI and ECL-BFM two-component algorithm 

 

 

Figure 11: Comparison between DBI and ECL-BFM three-component algorithm 
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6. SUMMARY  

 This thesis introduces new bit-flip minimization algorithms for GPU memory 

buses. My solution is a chain of simple algorithmic components linked together to form 

an effective algorithm to reduce bit flips. Every component includes an inverse that 

performs the opposite transformation to get the original data back. 

This thesis proposes two solutions using ECL-BFM approach: 

1. Bit-flip minimization algorithms with extra bit line 

This solution improves DBI by introducing a preprocessing step for DBI 

to reduce more bit flips. It proposes three new algorithms, which reduce 

9% more bit flips than DBI. Also, this thesis identifies the customized 

algorithm for a given input that can on average reduce the bit flips up to 

14% over DBI. 

2. Bit-flip minimization algorithms without extra bit line 

Adding an extra bit line for DBI is very expensive, therefore ECL-BFM 

introduces low-cost one-, two-, and three- component algorithms to reduce 

bit flips without the need for extra bit lines. The new algorithms’ 

performance for some integer inputs reaches that of DBI even without the 

extra bit line. However, for floating-point inputs, DBI reduces 10% more 

bit flips. 

6.1 Future Work 

 Based on the results from this thesis, future work aims at the following. 

1. Identifying more algorithmic components for reducing bit flips. 
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2. Identifying more input programs and extend the results to include double-

precision floats. 

3. Extending the algorithmic components to identify an effective 

minimization algorithm for CPU and other data buses. 

4. Implement the algorithm and measure the energy saving in GPUs and 

other devices. 
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