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ABSTRACT 

This thesis work evaluates our proposed methodology for automated detection of sleep 

events from Polysomnographic (PSG) data. The sleep data was collected during real 

sleep studies using Profusion PSG3. The event detection tasks used a Hidden Markov 

Model (HMM) to achieve signal classification for sleep event detection. The Hilbert 

transform (envelope) was used to extract features for input to the HMM. HMM was 

selected as our classification method of choice, due to the fact that it was able to capture 

the temporal variations of the biosignals collected through PSG. In this work, we detected 

sleep motion events, such as rapid eye movements (REM) and leg movements, and 

breathing events like obstructive apnea, hypopnea and snore. The task of detecting events 

of interest was achieved using a sliding window approach, and classifying each signal 

segment as containing an event or not, hence, leading to a binary classification problem 

for each type of event. Our experimental results show that our proposed approach can be 

successfully used for sleep event detection, to assist experts in sleep quality assessment, 

however, the big imbalance between the number of segments that contain a positive event 

and the ones that do not, often negatively affects the performance of our classification 

method.
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I. INTRODUCTION 

 
The American Academy of Sleep Medicine estimates that 22 million Americans 

suffer from sleep disorders, the vast majority of which remain undiagnosed due to 

inconvenience and high cost associated with sleep studies using PSG. With an estimated 

25-30% of the general adult population and a comparable percentage of adolescents and 

children in the US experiencing fragmented and inefficient sleep, the incidence of 

disability, morbidity, and mortality is on the rise (NHLBI National Center on Sleep 

Disorders Research, 2011). Most of the adults suffer from most common sleep disorders 

such as insomnia, REM behavior disorder, restless legs syndrome (RLS) or periodic limb 

movements in sleep (PLMS), and obstructive sleep apnea. Sleep medicine is still at its 

early stages of development, and new technologies promise to enable new research and 

further understanding of sleep disorders and their connection with other medical 

conditions.  

PSG is considered the diagnostic standard for diagnosis of sleep disorders; there 

are drawbacks to its use. The PSG is uncomfortable for the patient and involves a 

considerable investment for the healthcare system requiring equipment, bed space and 

specialized technical support (Baraglia et al., 2005).  Sleep disorder detection is more 

complex and tedious because of the involvement of multiple bio-signals such as six 

Electroencephalograms (EEG), four Electromyograms (EMG), two Electrooculograms 

(EOG), Oxymeters (SpO2), etc. Moreover, sleep disorder detection is highly dependent 

on interpretation of data (event detection), which is quite inconvenient process requiring 

a qualified sleep technician and significant amount of manual analysis. Thus, automation 

of task involved in sleep studies is highly desirable goal. The advantages of an automated 
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system for diagnosis include speed, reliability, economic saving and improved reliability 

of diagnosis (Baraglia et al., 2005). In this thesis, we tried to detect sleep events 

employing sequence-labeling algorithm Hidden Markov Model (HMM). We used the 

envelope of a signal as a feature for our analysis, which goes through segmentation 

process and is converted into sequences of observations. We attempted to classify sleep 

events: rapid eye movements, limb movements, and breathing events, like obstructive 

apnea, hypopnea and snoring.  

Sleep events classification was achieved with an average accuracy of around 80% 

with some events being accurately scored and others partially scored. The Limb 

movements and rapid eye movements were detected with 81% and 68% accuracy 

respectively. The two breathing events hypopnea and apnea were scored with closely 

varying degrees of accuracy with the highest scores being around 78% and 75%. While 

snore event detection was more precise with the precision of 95% and accuracy of around 

88%.  

The main contribution of this thesis is to develop and evaluate a methodology that 

can be used to detect a variety of sleep events associated with different human bio 

signals. The proposed method is independent of the specific hardware used to collect 

those signals, and it is robust to noise, artifacts, and sensor setup variations. 
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II. BACKGROUND 

Before we head towards implementation and methodology, let us first have a look 

at how Polysomnography (PSG) is used for detection of sleep disorders. We will be 

further discussing related work which inspired this thesis. 

Understanding Polysomnography (PSG) 

 PSG is a multi-parametric test used in the study of sleep as a diagnostic tool in 

sleep medicine. PSG records brain waves, the oxygen level in blood, heart rate and 

breathing, as well as eye and leg movements during the study. PSG capturers EEG, EMG 

and EOG data. In addition, other signals related to respirations are also captured.  

These signals are time series waveforms, and detection of a disorder can be associated 

with the occurrence of an event in a particular signal. Let us have a look on how disorders 

can be visually seen in a signal as an event. 

1. Limb movements can be detected by observing the EMG signal, produced by 

muscle activity, from electrodes placed on the right and left legs. Figure 1: shows leg 

electrode placement for capturing the EMG signal, and a sample visualization of a signal 

snapshot. 
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Figure 1: An event (muscle activity) of leg movement observed at EMG signals. 

 
2. Rapid eye movements can be detected by observing the EOG signal captured 

from muscle activity, using electrodes placed on the upper and lower parts of someone’s 

eyes. Figure 2: shows eye electrode placement for capturing the EOG signal, and a 

snapshot of a signal sample. 

 

 

3. Obstructive sleep apnea and Hypopnea are repertory events, In order to detect 

these, the following three signals are observed: 

Rapid Eye Movements 

Figure 2: Rapid eye movements observed in EOG signal of both eyes. 
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 a) Continuous Positive Airway Pressure (CPAP Flow), 

 b) Thoracic (chest) belt pressure 

c) Abdomen belt pressure  

Figure 3 shows obstructive apnea detected at CPAP flow and hypopnea detected at chest 

and abdomen belt. You can observe that there is an abrupt change in signals.                                                                      

  

 

 

 

Figure 3: Observation that CPAP flow, chest and abdomen belt exhibits change in a 

signal waveform. 

 
4. Snoring is the low frequency sound produced by vibration of the upper airway 

during sleep. A Microphone can simply record the sound produced when patient is 

snoring shown in Figure 4. 

        

CPAP 

Flow 
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Figure 4: Shows sound wave as intervals if snores in sleep study. 

 
Why HMM 

Hidden Markov models have been used for at least three decades in signal-

processing applications, especially in the context of automatic speech recognition 

(Rabiner and Juang, 1986), but interest in their theory and application has expanded to 

other fields, e.g.:  

• All kinds of recognition: face, gesture, handwriting, signature;  

• Bioinformatics: biological sequence analysis;  

• Environment: wind direction, rainfall, earthquakes;  

• Finance: series of daily returns;  

• Biophysics: ion channel modelling.  

Attractive features of HMMs include their simplicity, their general mathematical 

tractability, and specifically the fact that the likelihood is relatively straightforward to 

compute (MacDonald and Zucchini, 2009). It is a traditional statistical tool for modeling 

a generative sequence, which can learn from input pairs, each consisting of a sequence of 

observations and a sequence of labels (Nguyen and Edu, 2004). HMM is a type of pattern 
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matching technique, which is widely practiced especially in time series analysis. 

Weigend and Shi have previously applied HMMs to financial time series analysis (Shi 

and Weigend, 1997). There have been other fields of interest where HMMs have been 

utilized for computational biology, biomedical signal interpretation (Wu and Xie, 2009). 

Their application has also been extended to EEG, EMG and EOG for particular event 

detection (Huang et al., 1996).  The data collected from Profusion PSG in this research 

are physiologic signals from overnight sleep studies, which is a time series measurement 

of certain physiological indicators. That makes HMM suitable for our task. 

Related Work 

When it comes to sleep event detection or sleep disorder detection, the majority of 

research works focus on the detection of sleep apnea. Other important events such as 

limb movement and eye movements are less considered. In (Baraglia et al., 2005), the 

author investigates the automated detection of the patients’ breathing rate and heart rate 

from their skin conductivity as well as sleep stage, scoring and breathing event detection 

from their EEG. The sleep scoring and breathing event detection tasks used neural 

networks to achieve signal classification. The Fourier transform and the Higuchi fractal 

dimension were used to extract features for input to the neural network. Sleep stage 

classification was achieved with accuracy of around 65% with some stages accurately 

scored, and others poorly scored. The two breathing events hypopnea and apnea were 

scored with varying degrees of accuracy with the highest scores being around 75% and 

30%. However, the skin conductivity experiment only used filtering on the skin 

conductivity. It is possible that more advanced signal processing techniques could 

produce better results. 
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 In (Nakano et al., 2007), single-channel airflow monitors developed for screening 

of sleep-disordered breathing (SDB) have conflicting results for accuracy. Three hundred 

ninety nine polysomnography (PSG) records were employed, including a thermal sensor 

signal. The algorithm was designed to obtain a time series (flow-power) using power 

spectral analysis, which expressed fluctuation in the airflow signal amplitude. From the 

time series the algorithm detected transient falls of the flow-power and calculated flow-

respiratory disturbance index (RDI), defined as the number of falls per hour. The 

diagnostic sensitivity/specificity ratios of the flow-RDI were 96/76, 88/80 and 97/77 

percent, respectively. The presented results suggested that a single-channel airflow 

monitor could be used to detect sleep-disordered breathing automatically if the analytic 

algorithm was optimized. By reading above related work, we realized that CPAP flow 

would be a good choice to detect breathing events. 

 For limb movements, in (Alessandria and Provini, 2013) author mentioned that 

event started when the EMG amplitude exceeded 8 mV above baseline and ended when 

the amplitude remained below 2 mV above baseline for at least 0.5 s. The movements 

must be 0.5–10 s in duration. A sequence of four or more such movements during any 

sleep stage separated by an interval of at least 5 s and not more than 90 was considered as 

PLMS. For rapid eye movements, in (Kempfner et al., 2011), the authors found that REM 

sleep detection without the use of chin electromyography (EMG) was useful. This was 

addressed by analyzing the classification performance when implementing two automatic 

REM sleep detectors. The first detector used the electroencephalography (EEG), 

electrooculography (EOG) and EMG to detect REM sleep, while the second detector only 
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used the EEG and EOG.  By referring (Kempfner et al., 2011) we considered EOG for 

REM detection.  

Other previous works which were helpful during our research include non-

invasive analysis of sleep patterns via multimodal sensor input (Metsis et al., 2012) and 

recognition of sleep patterns using a bed pressure mat (Metsis et al., 2011). The related 

research focused on the importance of sleep patterns for detection and treatments of sleep 

disorders. The author used data collected from FSA bed pressure mat and Kinect for 

motion sensing. The author classified some of the basic motions and body postures such 

as changing body posture, moving arms or legs, getting in bed or out of bed, making bed, 

left side and right side.  The classification of the sequences of motion frames are 

performed using Template Matching (TM), k- Nearest Neighbors (KNN), Support Vector 

Machines (SVM) and HMM. They evaluated their classification algorithms for body 

posture recognition and motion recognition combining pressure data (pressure mat) and 

depth sensing data (Kinect). Their experiment resulted showing, HMM achieved 

accuracy of 97.87% for motion recognition. The classification accuracy results are 

promising and the proposed methods could be used for detection of sleep disorders 

(Metsis et al., 2011).   

A previous work, which attempted to detect sleep events in PSG data (Espiritu 

and Metsis, 2015) used EEG signals and extracted features from each segments such as 

power spectral density estimate peaks, energy of a discrete-time signal and zero-crossing 

rate. The supervised learning algorithms used for classification are Naive Bayes, Logistic 

Regression and Decision Trees.  Results of (Espiritu and Metsis, 2015) shows that the 

highest accuracy obtained from leg movement event detection was achieved by the 
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decision tree around 88.39%. However, this results were achieved using static classifier 

and can be used to compare with our results achieved using continues HMM in this 

research. 
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III. METHODOLOGY 

We followed a supervised learning approach for detecting events of interests from 

PSG data. Following standard procedures, anonymous Polysomnography (PSG) data 

were acquired during sleep studies at the Texas State Sleep Lab, using a PSG system 

called Profusion, build by Compumedics. This raw data needed some pre-processing 

before we could use it for experimental purposes with MATLAB. The pre-processed data 

was then imported to MATLAB, and we selected a number of signals, such as EEG, EOG 

and EMG to continue our research. We produced features of these signals using the 

traditional signal processing techniques. These features were further reduced to a 

manageable size using down sampling procedures. We used the Gesture Recognition 

Toolkit (GRT) a cross-platform, open-source, C++ machine learning library for building 

our event predictor HMM model. The dataset was divided into train and test samples 

using a K-fold cross validation approach. Finally, we trained a HMM model with a 

labeled training dataset and validated the classification performance on the labeled test 

dataset. We generated confusion matries to understand accuracy and precision of the 

model. We have extensively developed MATLAB scripts for importing data, feature 

extraction, data transformation and performing statistical analysis. Figure 5 shows the 

schematic representation of the methodology. 

Data Collection and Pre-processing 

Our data source are prerecorded sleep studies; we selected 10 subjects’ sleep 

study to carry out our research. As I mentioned earlier, these sleep studies were recorded 

using a PSG system. The Profusion PSG system consisted of a set of hardware sensors 

attached to human subjects during sleep studies, as well as a specialized software 
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package, fine-tuned for these specific set of sensors. The software package provided 

some basic visualization of the acquired signals and could also automatically analyze the 

data to provide information to sleep experts, such as sleep staging and detection of sleep 

events related to certain sleep disorders.  We installed the Profusion PSG3 to access the 

sleep studies and export them. Figure 6 shows a working screenshot of a PSG. Each sleep 

study consisted of 28 channels; we chose Leg EMG, EEG, and EOG to perform 

experiments. 
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Figure 5: Schematic representation of the methodology. 
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A Raw data from the selected channels was exported, which was in EDF format and 

which could only process through an EDF browser (Freeware). After installing EDF 

browser, we were able to view the above mentioned signals and were able to convert 

them to an ASCII format. We built scripts to load data in the desired format on 

MATLAB. At the same time, we exported event labels for our raw data from ProFusion 

PSG3.  

The labels provided automatically by Profusion PSG, generally do not achieve 

manual ground truth levels of accuracy. However due to the extremely tedious process of 

manually examining the entire duration of the signal for events of interest, therefore, 

sleep experts often trust these labels during sleep quality assessments. In the absence of 

manually annotated PSG datasets, we also used the labels provided by Profusion PSG as 

ground truth for our experiments. 

Feature Generation 

Sleep disorders are associated with a set of physiological events occurring during 

sleep time. Often, the order in which events occur can be even more important than the 

events themselves. Therefore, we were interested in a technique that would provide the 

ability to recognize sequence of events. When extracting features from a signal, our 

primary goal was to detect event in a signal using temporal pattern recognition (Sung and 

Priebe, 1988). While working with time series data, Hilbert transform (envelope) was 

useful in calculating instantaneous attributes of a signal (Luo, Fang, and Ertas, 2009).  

The instantaneous envelope is the amplitude of the complex Hilbert transform; the 

instantaneous frequency is the rate of change of the phase angle. These properties were 

applied to identify dynamic characteristics of acquired signals. 
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Figure 6: Working screen shot of a profusion PSG3. Right side of the column shows all 

28 channels and left side is list of events on each of them. 

 
The conventional Fourier transform, has shown the lack of accuracy for time-

derivative calculation (Luo, Fang, and Ertas, 2009). (Zhang et al., 1991) provides a useful 

information that linear envelope was used successfully to classify the EMG signals. The 

envelope of a signal is the appearance of a signal in the time domain. Qualitatively, the 

envelope of a signal is that boundary within which the signal is contained when viewed in 

the time domain.  This boundary has an upper and lower part. In practice, when speaking 
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of the envelope, it is customary to consider only one of them as ‘the envelope’ (typically 

the upper boundary).  

The classical amplitude envelope technique, root-mean square (RMS) is the most 

popular method for estimating the temporal evolution of the signal energy (Caetano and 

Rodet, 2011). It can be easily used to obtain an estimate of the amplitude envelope by 

simply applying it with a sliding window.                                                                                                           

Figure 7: Shows an example of an upper envelope in a raw data EMG. 

 

Figure 7: Green signal is the raw data leg EMG and red signal is the generated 

upper envelope of the signal. 

 
Generating Feature Matrix 

Once we had the envelope of a signal, we transformed it to a 2-Dimenstional 

matrix of sequences. In order, to get a 2D Matrix we employed a segmentation process, in 

which the envelope was divided into small segments of vectors. Deciding the length of a 

segment was a complex part. We initially started with length of 10-second window but 

that was not a good choice and we ended up with lots of misclassification. We were 
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trying out with different window sizes and number of features per segments based on 

random choice to achieve better results, but constant misclassification persisted. After 

thorough study and analysis, we found out that most of the events in a signal lasted for 

between 0.5 seconds to 4 seconds (figure 8). Therefore, we decided to keep the segment 

size of 3 seconds with an overlapping of 0.25 seconds. Figure 9 Illustration of the process 

of  feature matrix generation.  

 

Figure 8: Histogram of a limb movement durations. X - axis represents duration in 

seconds and Y - axis No. of events. The maximum number of event is 311 with duration of 

0.6 seconds. 

 
Labeling Feature Matrix 

After converting the envelope to a 2D matrix where each row was a single 

sequence and each column was a single feature, we progressed further to a labeling 

process. By the time we started labeling we were aware that the duration of most of the 
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events was mostly 0.5 seconds, Figure 8 shows Limb movement events duration 

histogram. It was a clear indication to label a sequence with 1 (Positive) if it has an event 

of duration 0.5 seconds or more. the rest of the sequences were labelled as 0 (Negative).   

 

 

Figure 9: Illustration of converting generated envelope of a signal to a sequence/feature 

matrix using fixed length segmentation. 

 
Down Sampling the Feature Matrix 

We used Down Sampling method to avoid a biased distribution of positive and 

negative samples for training. As per the observation, a normal sleep study is a 7-8 hours 

of human bio-signal acquisition at the sampling rate of 128 Hz. The occurrences of a 

particular event signals are very few in compared to the total duration of the signal. 
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Therefore, most of the time a negative labeled data is in higher proportion. While 

experimenting we experienced a biased result. So, we decided randomly trimming down 

the negative labeled data to twice the size of positive labeled data, keeping 2:1 ratio 

respectively. 

Hidden Markov Model Training and Validation        

We started working with Hidden Markov Model (HMM) Toolbox for MATLAB 

written by Kevin Murphy, because it had libraries for continuous HMM. There were a 

number of other available libraries and even MATLAB had one, but they all were for 

discrete HMM. We were interested in continuous HMM because our data was not a 

discrete observation and we were trying to employ temporal pattern recognition 

technique. Unfortunately, HMM Toolbox was not appropriate in building HMM state 

transition matrix and produced erroneous model. We made many attempts to change 

dataset format and libraries in Toolbox, but did not get desired results. At the same time, 

we started looking for alternatives and found Gesture Recognition Toolkit (GRT), open-

source, C++ machine learning library that had been specifically designed for real-time 

gesture recognition. GRT had libraries for continuous HMM, we extracted the core C++ 

HMM implementation and started working with our dataset available on MATLAB. GRT 

libraries did work with our training and testing dataset and resulting appropriate HMM 

model. We continued training and validating with rest of the samples. Figure 10 shows a 

training and testing process of a HMM. 
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Figure 10: Representation of training and validation process of HMM built from GRT 

libraries. After learning phase model accurately desired events given by validation 

dataset. 

Performance Measure 

We performed 10 fold – cross validation on our samples.  For each event 

detection, we performed 10 trials and in each round, we selected nine datasets for training 

and excluded one dataset for testing. We generated a confusion matrix for each trial and 

calculated the accuracy, recall, specificity and precision. Accuracy measures the overall 

correctness of the classifier. Recall measures true positive rate, also known as sensitivity 

that is when it's actually an event, how often does the classifier predicts an event. 
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Specificity measures the true negative rate that is when it's actually a non-event, how 

often does the classifier predict a non-event. Finally, precision is the measure of 

closeness that is when the classifier predicts an event, how often is it correct. Find 

tabulated results below for comparison. 
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IV. RESULTS 

This section shows the results of our experiments. We have classified five sleep 

events and their results are in Tabular, chart and confusion matrix form.  

Limb Movements 

Table 1: Limb movement results. 

Subjects Accuracy Recall Precision Specificity 

User1 83.89 61.29 86.43 83.1 

User2 84.3 58.75 90.96 82.48 

User3 82.17 55.23 86.36 81.03 

User4 73.41 34.32 70.9 73.89 

User5 86.71 72.18 85.71 87.1 

User6 77.6 53.12 72.34 79.31 

User7 85.21 78.93 77.21 89.35 

User8 81.45 88.67 66.68 93.21 

User9 83.5 58.92 87.5 82.34 

User10 80.8 65.81 73.77 83.78 

Average  81.90 62.72 79.78 83.55 
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Figure 11: Limb movement representation of accuracy, recall, precision and specificity. 

 

  

Figure 12: In the confusion matrix Class-1 represents as a no movement and Class-2 

represent as movement. 
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Obstructive Apnea 

Table 2: Obstructive apnea results. 

Subjects Accuracy Recall Precision Specificity 

User1 76.72 55.17 68.81 79.6 

User2 80.51 72.3 70.14 85.93 

User3 78.57 64.28 69.23 82.75 

User4 76.51 52.27 69.69 78.78 

User5 78.33 60 70.58 81.39 

User6 74.5 64.7 61.11 81.81 

User7 81.81 68.18 75 84.78 

User8 80.95 64.28 75 83.33 

User9 79.48 61.53 72.72 82.14 

User10 76.66 60 66.66 80.95 

Average 78.40 62.27 69.89 82.14 
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Figure 13: Obstructive apnea representation of accuracy, recall, precision and 

specificity. 

 
 

 

Figure 14: In the confusion matrix Class-1 represent as a no apnea event and Class-2 

represent as apnea event. 
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Hypopnea 

Table 3: Hypopnea results. 

Subjects Accuracy Recall Precision Specificity 

User1 80 87.5 64.81 92.42 

User2 75 59.78 77.78 80.72 

User3 76.51 60.45 62.89 78.96 

User4 75.21 52.9 55.87 78 

User5 77.88 63.44 74.64 78.18 

User6 74.89 62.11 62.72 76.66 

User7 73.33 71.85 70.13 73.96 

User8 74.5 73.06 77.05 76.08 

User9 68.48 66.87 53.488 73.77 

User10 75 68.21 64.86 78.94 

Average 75.08 66.62 66.42 78.77 
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Figure 15: Hypopnea representation of accuracy, recall, precision, and specificity. 

 
 

 

Figure 16: In the confusion matrix Class-1 represent as a no hypopnea event and Class-2 

represent as hypopnea event. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

100

User1 User2 User3 User4 User5 User6 User7 User8 User9 User10 Average

Hypopnea

Acurracy Recall Precision Specificity



 
 

 28 

Rapid Eye Movements (REM) 

Table 4: Rapid eye movements results. 

Subjects Accuracy Recall Precision Specificity 

User1 74.33 63.77 61.05 81.44 

User2 61.95 44.63 47.51 69.44 

User3 72.22 74.58 78.57 66.3 

User4 65.25 63.38 87.49 37.95 

User5 50.77 85.17 39.077 81.9 

User6 77.13 63.92 66.3 82.69 

User7 78.43 71.88 66.27 85.32 

User8 64.56 57.64 65.78 63.64 

User9 68.33 55.5 53.11 77.23 

User10 76.51 67.24 71.91 79.23 

Average 68.94 64.77 63.70 72.51 
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Figure 17: REM representation of accuracy, recall, precision and specificity. 

 
 

 

Figure 18: In the confusion matrix Class-1 represent as a no REM and Class-2 represent 

as RME 
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Snore Detection 

Table 5: Snore detection results. 

Subjects Accuracy Recall Precision Specificity 

User1 80.39 41.17 100 77.27 

User2 77.77 33.33 100 75 

User3 90.19 72.05 98 87.66 

User4 96.92 95.23 95.25 97.72 

User5 91.11 85.18 87.78 92.7 

User6 87.93 67.24 95.12 85.71 

User7 88 74 88.09 87.96 

User8 91.02 82.69 89.58 91.66 

User9 90.88 72.41 100 87.87 

User10 90.9 75 97.05 88.77 

Average 88.51 69.83 95.09 87.23 
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Figure 19: Snore representation of accuracy, recall, precision and specificity. 

 

 

 

Figure 20: In the confusion matrix Class-1 represent as a no snore event and Class-2 

represent as snore event. 
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Comparison 

Table 6: Comparing results. 

 Avg. 

Accuracy 

Avg. 

Recall 

Avg. 

Precision 

Avg. 

Specificity 

Limb Movement 81.90 62.72 79.78 83.55 

Rapid Eye 

Movement 68.94 64.77 63.70 72.51 

Obstructive Apnea 78.40 62.27 69.89 82.14 

Hypopnea 75.08 66.62 66.42 78.77 

Snore 88.51 69.83 95.09 87.23 

 

 

Figure 21: From (Espiritu and Metsis, 2105), shows the leg movement classification 

using Decision Tree (DT), Linear regression (LR) and Naïve Bayes (NB). 
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Discussion  

Results shown in Table 6 Indicate that the highest Avg. Accuracy 88% was 

achieved in snore detection, along with highest Avg. Recall, Avg. Precision, and Avg. 

Specificity is 69%, 95%, and 87% respectively. Snore signal is a sound wave (audio 

signal) and provides clear variation in its amplitude, which can be easily detected in 

envelope. Considering Obstructive Apnea and Limb movements, CPAP air flow is 

widely used in apnea detection and EMG signal for leg movements. However, 78% of 

accuracy was achieved in Obstructive apnea and 81% in Limb movements. These results 

could have been improved by introducing more accurately labeled data.  

For Hypopnea detection, let us have a look at the table 3, which clearly indicates 

that recall is low and precision is higher. That means model considered some of the 

Hypopnea events as normal breathing and most of the time wrongly classified to no 

events. Looking at figure 18 REM confusion matrix, we can see that out of the total 6908 

events, 2221 have been classified as non-REM events. The reason for the low recall is 

that the REM pattern is slightly different from eye blinks pattern. Hence, most of the eye 

blinks are classified to REM events. We also got a chance to compare our results with the 

results of (Espiritu and Metsis, 2015), which have also been obtained using the same data 

source Profusion PSG. The result of the above mentioned comparison indicated that the 

accuracy of fixed window segmentation for leg movements is around 74%, which is 81% 

in our experiment. We did not apply adaptive segmentation but it is clear from figure 21 

that accuracy could have been improved if adaptive segmentation method had been 

applied. 
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Conclusion 

To conclude my observation, the results of the study show that the HMM is capable of 

detecting the different sleep events with multi-channeled features. However, the 

performance in Rapid eye movements and Hypopnea shows that more work is required to 

produce reliable event scoring. Due to higher variation in the EOG signal, we found that 

envelope might not be a good choice for classifying rapid eye movements, Normal eye 

blinks are more often falsely classified to REM. While classifying breathing events there 

is little difference between the performances. It was found that snores were consistently 

easier to detect than apneas. We even found that Hypopneas are more often falsely 

classified to normal breathing. It is possible that more advanced signal processing 

techniques could produce better results. Another issue is the labeling of the signals, we 

used labels provided from Profusion PSG3, which is already an automated system and 

could provide inaccurate labels. The results of this experiment may have turned out more 

accurate if the labels used for training were manually scored (hand-labelled) and quality 

of the signals was superior. 
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