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ABSTRACT

This thesis researches on finding a production plan that minimizes the cost of a
manufacturing system facing uncertainties on the demand of its final products over a
horizon of multiple periods and considering adoption of renewable power as an energy
prosumer (i.e. consumer and seller). Researched energy sources are wind turbines and
solar photovoltaics coupled with energy storage systems (i.e. batteries). Renewable
generation varies because of daily changes in wind speed and weather conditions. To
account for the uncertainty on products demand and power supply, a multi-stage
stochastic programing model is proposed. First-stage decision variables are the size of the
renewable generation technologies, capacity of the batteries, and amount of production
for the first set of periods. Second-stage recourse actions to cope with the uncertainty
include: (1) storing final products in inventory or purchasing from vendors, as needed,
(2) using battery to discharge or store energy and (3) purchasing/selling energy to/from
the grid. In the second-stage, a new production decision for the second set of periods is
also determined considering the inventory levels, production and purchasing costs. The
third-stage includes deciding again on the best recourse actions to the second-stage
decision. The model is implemented using the scenario-tree approach, and it is solved
under two operation strategies: (1) factory and warehouse consolidated in Amarillo and
(2) factory in Amarillo and warehouse in Phoenix. Numerical experiments show that a
prosumer microgrid model is cost-effective (annual cost $7,052,410, levelized cost of

electricity (LCOE) $37/MWh) if compared to an island microgrid model (annual cost

XVi



$15,150,000, LCOE $70/MWh). Due to high battery costs, the prosumer option reduces

amount of battery capacity adopted and purchases some energy to the grid to save cost.
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1. INTRODUCTION

The estimated consumption of electricity by the manufacturing industry in the
United States is one-third of the total (The National Academy of Sciences, n.d.).
According to Carlton (2019), statistics for 2015 global energy consumption by sector
showed that industries consumed 54.9% of the energy. The energy consumed in the
industrial sector, mainly the manufacturing sector, is used for powering heavy duty
machines, lamination, ventilation, and other critical production processes.

Bakir and Byrne (1998) mentioned production planning is a key aspect in
manufacturing industries. These industries face multiple uncertainties in product demand,
processing times, suppliers’ availability, workstation failure and maintenance time.
Consequently, proper production planning should consider those uncertainties to
minimize costs by reducing the number of resources needed, including energy
consumption.

Presently, fossil fuels (natural gas, coals, and liquids) contribute to almost 84
percent of the global energy consumption while nuclear energy provides 4% (Ritchie,
2014). The former emits pollutants at high levels into the atmosphere and the latter
produces radioactive waste. Due to the high availability and low cost, fossil fuels, such
as coals, gas, and oil, still dominate the market (Sgobba and Meskell, 2019). Unless some
action is taken, fuel power stations and their generation will continue increasing as well
as the emission of CO2, which pollutes the air and causes climate change, ozone depletion
and emission of radioactive substances. To maintain a clean and green environment fuel

use should be diminished gradually, if not eliminated.



An accessible action manufacturing industry can take is the use of renewable
energy (RE) sources and technologies such as wind turbines (WT) and solar photovoltaic
(PV) systems. Primarily, all types of energy sources on earth are ultimately derived from
the sun. The sun provides streams of energy to warm humans and animals, grow crops
through photosynthesis and heat land and sea to create winds and waves, respectively.
The sun also produces rain used for hydropower generation that comes from water vapor
gotten from heat extracted of moisture from the earth (Dincer 2000).

Sinpetru (2014) mentioned quite a few examples of companies that have already
adopted RE in their supply chain systems, such as Honda, Apple, and Walmart. Honda
has the largest RE purchase in the auto industry; it entered into virtual power purchase
agreements for over 60% of its North America electricity coverage with renewable solar
and wind power (Honda, 2019). Apple has America’s largest onsite generation system
consisting of WT and PV to lower carbon footprint of their energy-intensive facilities and
offer green quality products to their customers. Since 2011, there has been a 54%
greenhouse gas emission decrease from Apple facilities due to the RE projects. Starting
on 2014, Apple has all its global data centers powered by 100% renewable energy
globally (Apple, 2018). Walmart is considered the largest onsite RE user in the US,
currently 28% of its global electricity comes from RE. The aim of Walmart is to reach a
state where people do not have to be stuck with the option of choosing between
affordable electricity and renewable electricity (Walmart, 2018).

Intel, Kohl’s, the National Hockey League, Walmart, and Apple were mentioned
as the top five businesses powered by RE (The Climate Reality Project, 2016). Intel has

been for eight consecutive years the US largest voluntary corporate purchaser of green



power. In 2015, 100% of Intel’s US electricity was met with the purchase of 3.4 billion
kilowatt-hour (kWh) of RE. Intel leads the US Environmental Protection Agency’s (EPA)
Green Power National Top 100 list, where the agency’s largest green power-using
partners are included. (The Climate Reality Project, 2016). Kohl’s has 1001 of its 1160
stores energy star-certified with 163 locations featuring on-site solar panels. Kohl’s was
recently ranked in the top 10 on the EPA Green Power Partnership’s Top 30 Retail List
(Kohl’s, 2018). These successful cases should inspire more manufacturing industries to
embrace RE. This initiative will reduce the reliance on fossil fuels, produce green quality
products and help to keep a cleaner environment. The motivation of this thesis is to
provide mathematical models that can be used by manufacturing industries to optimally
plan for the production and the adoption of distributed generation (DG) systems.

A DG system produces RE from dispersed or distributed energy resources (DER),
such as WT and PV, installed close to manufacturing, warehouse and commercial
facilities, where the energy will be used. A DG system distributes energy, helps to relieve
transmission bottlenecks, and reduce carbon emissions. The DG system can also store
energy using energy storage systems (ESS). As a type of DG system, a microgrid (MG),
typically consists of WT, PV, fuel cells, micro-turbines, and diesel engines (Golari et al.
2017). MG’s can operate disconnected from the main grid (i.e. island) or connected to the
main grid to mitigate the intermittency on the energy they can generate. Besides power,
the heat produced by the DER can be used by the facilities adopting MG’s. Seven
companies currently serving commercial and industrial needs for MG installation are
AlphaStruxure, Bloom Energy, Box Power, Eaton, Gridscape Solutions, Saft, and

Siemens (Haggerty, 2019)



The goal of this thesis is to formulate and solve multi-stage stochastic
programming (MSSP) models for planning a multi-period, multi-product production
facility with net-zero energy performance. The facility has its energy needs co-supplied
by the main grid and a MG system that uses WT, PV, and battery DER units. In addition,
the facility is an energy prosumer with the ability to purchase energy from the grid and
sell renewable energy to the grid. The objective of the models is to simultaneously
determine the renewable portfolio, generation capacity and production schedule to
minimize the expected total cost of the system, considering uncertainties in product
demand, wind speeds, and weather conditions.

This work contributes to the scarce literature on stochastic programming models
for production systems that incorporate variable RE. The contributions are: (1) assessing
the benefits of the implementation of prosumer energy and battery storage, (2)
demonstrating that the scenario tree approach can be tractable for solving a multi-stage
version of the production planning problem with multiple random parameters (i.e.
product demand and capacity factors of the WT and PV), (3) exemplifying the use of
data analytics to portrait the actual day-to-day variability on weather conditions in the
cities studied through multiple scenarios and (4) applying the rolling horizon approach
over a short-term (i.e. two-months) stochastic model and assessing its accuracy to plan
for a longer-term (i.e. twelve months) decision horizon. Thus, this research work extends
the one in Golari et al. (2017) by considering prosumer energy, battery storage and two
random parameters. This research also extends the work in Yu et al. (2019) by using a
multi-stage stochastic programming approach and incorporating detailed aspects of

production planning problems and energy prosumers.



The remaining chapters in this thesis are organized as follows. Chapter 2 presents
the problem researched on the thesis, the research questions and literature reviews on
production planning, production planning incorporating RE use, and multi-stage
stochastic models for solving RE integration problems. Chapter 3 discusses the
contribution of this thesis in comparison to previous works in the literature. Chapter 4
presents the methodology to solve the proposed problem. The methodology consists of
developing MSSP models considering three decision stages. Each stage comprises
several pre-defined periods. Chapter 5 elaborates on the scenario tree model used for
representing the stochastic demand and on the computations of the capacity factor to
model the daily utilization of WT and PV due to changes in the wind speed and weather
conditions. Chapter 6 presents numerical experiments for the models developed in
Chapter 4. The numerical results are mainly for the following three cases: (1) a stochastic
production planning model for a factory that does not consider the use of RE, (2) a
stochastic production planning model for a factory that has a warehouse in the same
location, uses RE and acts as prosumer (3) a stochastic production planning model for a
factory and a warehouse that are located in different places, use RE and act as energy
prosumers. Chapter 7 provides the discussions on the numerical results and makes further
comparisons and experimentation. Chapter 8 provides conclusions about this study and

mentions possible future work.



2. PROBLEM STATEMENT AND LITERATURE REVIEW
This chapter is divided in 3 sections. Section 2.1 defines the problem studied in
this thesis. Section 2.2 provides the research questions addressed by this thesis. Section
2.3 provides a literature reviews on relevant topics comprised by the proposed problem.

2.1 Problem Statement
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Figure 1. A production system (PS) with onsite renewables

Figure 1 illustrates the production system (PS) under study in this thesis. The PS
is comprised of multiple factories using a variety of resources, such as labor hours,
machine hours, energy, raw materials, etc. to produce different types of products on

multiple time periods. The finished products are shipped to warehouses for storage using



a fleet of electric vehicles (EV). The factories and warehouses generate on-site renewable
energy (RE) from microgrid (MG) systems they will adopt, which are comprised of wind
turbines (WT) and solar photovoltaics (PV), and that can be connected to the main grid.
RE is used for production, transportation, storage of products and for being sold to the
main grid. The MG system also uses batteries onsite for storing RE in days in which the
total energy generated by the WT and PV is greater than the consumption. The energy
stored in the battery can then be used on days when the onsite generation is insufficient
for meeting the electricity demand. The factories are energy prosumers and thus in days
when the available energy (i.e. energy generated and stored in the battery) is unable to
meet factory or warehouse demand, energy is purchased from the main grid. Besides,
when the MG generates more energy than the actual load (i.e. energy demand) this
surplus energy is either stored in the battery and/or sold to the grid.

The goal of the stakeholders of the PS described is to optimally plan for the
portfolio of renewables adopted and for the production over multiple time periods to
minimize the total expected net annual cost while considering stochastic demands for the
finished products, wind intermittency and variable solar output. The net annual cost
includes annualized costs of installing the MG, production, logistics and other
maintenance and operational energy costs, and revenues from selling extra energy. The
stakeholders also aim to ensure net-zero energy operation by requiring that the designed
system guarantees that the energy consumed by the facilities over the year be balanced
with the renewable energy generated. Besides, the PS has the option of storing finished

products in the inventory if product demand is low. Also, the PS can reach external



vendors to purchase finished product and satisfy any peaks on the product demands that

cannot be satisfied with onsite production.

2.2 Research questions

This thesis answers the following research questions regarding the PS described

in Section 2.1:

1. What is the annual cost impact of including energy requirements in a
production planning model for the PS described in Section 2.1?

2. What is the difference in levelized cost of energy (LCOE) if running the
PS with wind and solar energy and implementing battery instead of
purchasing energy to the grid?

3. ls it feasible to run the PS using only the MG onsite renewable energy
generated and battery storage and what would be the cost of this option?

4. What is the benefit of modeling the PS using stochastic models instead of
deterministic ones?

5. What are tractable modeling approaches to minimize the production and
energy costs of the PS over short-term (i.e. two-months) and long-term
(i.e. one-year) horizons?

6. What would be the energy costs elements (i.e. renewable energy
equipment costs, price from purchasing energy from the grid, revenues
from selling energy to the grid) affecting at the greater extent the total

cost of the PS?



2.3 Literature review

A variety of studies have been published on the topic of modelling and optimizing
production planning (PP) problems. Some of them have focused on assessing the effects
of uncertainty in demands or raw materials, while others have engaged on developing and
solving models for integrating renewable energy (RE) effectively to maintain an efficient
daily operation. The following four subsections of this section present literature reviews
on the following topics relevant to the problem studied in this thesis: (1) PP without RE,
(2) PP incorporating energy (i.e. mostly RE), (3) stochastic models for solving energy
generation planning problems, with emphasis on multi-stage stochastic programming
(MSSP) models for RE planning and (4) RE models considering prosumers. Under each
sub-section the contributions are listed in chronological order.

Because the literature on PP without RE is extensive, and because the problem
researched has stochastic product demands and renewable energy supply, the focus of the
literature review on Sub-section 2.3.1 is on presenting contributions that propose exact
methodologies that are suitable to tackle these stochastic aspects of the problem. Thus,
the survey in sub-section 2.3.1 includes papers using methodologies such as two-stage
stochastic programming, MSSP, and dynamic programming (DP). The survey is highly
oriented to research works using MSSP. This is because the author of this thesis and her
advisor were highly motivated to apply MSSP, a methodology that is known for being
appropriate to portrait highly flexible and dynamic production settings in which original
production decisions may be reviewed and modified several times in a year. The author

of this thesis acknowledges that dynamic programming is another methodology suitable



but less used to tackle the problem researched in this thesis; however, she found that her

background would permit her to apply MSSP more effectively than DP.

2.3.1 Production planning without renewable energy

PP relates to arranging the acquisition of raw materials and resources and the
production activities required to process raw materials into finished goods to satisfy
customer demands economically and efficiently (Pochet and Wolsey, 2011). This
subsection focuses on PP models dealing with any type of uncertainty.

Federgruen and Zipkin (1984) addressed a production inventory planning
problem. In this problem, a central depot faced random demands from different locations.
The authors considered inventory and backorders as recourse actions to fulfill the random
demands. Their model minimized the total expected inventory holding cost and
backorder cost over multiple time periods. The authors formulated the problem using DP
and reduced the state space demonstrating that the problem approximates to a single-
location inventory problem with multiple products. They validated the approximation by
comparing its results to the ones from simulating the system and found that the errors are
quite small in most of the cases studied.

Escudero et al. (1993) presented four different scenario-based MSSP models.

One of them determines the production amount to minimize the expected cost of holding
inventory and lost demand. Such model left the inventory as the only recourse action and
is classified as one with simple recourse. Similarly, a model with purchase of product in
which such decision and the production amount are fixed over the decision stages is
classified as having simple recourse since again inventory is the only recourse action to

cope with the uncertainty. In a third model the authors consider all decision variables,

10



production, inventory, and amount of product purchased as possible to alter over the
decision stages. Such model is classified as one with full-recourse. The last model aims
to determine the amounts of each product to produce, and to purchase from different
vendors to minimize inventory, vendor supply and lost demand costs. In the model,
production, inventory, and amount of lost demand vary over the stages but the amount
purchased does not. Thus, the last model is classified as one with partial recourse.
Authors highlighted that even if the scenario modeling formulations made the models
large, they still ended with a tractable solution from the computational perspective.
Authors also compared the cost of making decisions by using only one scenario in the
scenario three, the average demand, and the different types of recourse (simple, partial
and full) and demonstrated that the full-recourse model produced the lowest cost.
Escudero et al. (1995) researched on a stochastic PP problem with uncertainty in
the demand of products considering different types of recourse actions to meet demands.
Like the problem researched in this thesis, the production system considered can store
finished goods in inventory or purchase them, if needed. The problem was addressed
using a multi-stage stochastic programming (MSSP) model with non-anticipative (or
implementable) policies (Wets, 1989), which are defined as those that rely only on the
uncertainty realized up to the moment of the decision (Birge and Louveaux, 1997). The
demand uncertainty of the model was characterized by scenarios. The paper presented
several linear programs corresponding to the extensive formulation (i.e. the deterministic
equivalent model) for the stochastic program under two representations: splitting
variable and compact. The splitting variable representation was solved with the interior

point method while the compact representation was solved with the simplex method. The
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authors compared these different algorithmic approaches for the prescriptive models and
found the compact representation under the simplex solution methodology as the most
suitable in their experimentation. Prescriptive models are those that select the most
optimal solution for a decision-making problem (Gass and Fu, 2013). lyoob (2019)
defined prescriptive models as those that help to determine what change should be made
in the model parameters to improve one or several outcomes.

Mula et al. (2006) discussed the various uncertainties associated with the
modeling and optimization of PP problems. The authors reviewed previous works on PP
and classified them using two categories for the type of uncertainty: environmental and
system. Environmental uncertainty included demand uncertainty and supply uncertainty.
System uncertainty included operation, yield, production lead time and quality
uncertainty. The literature review concluded saying that stochastic programming was the
most used approach for modeling uncertainties in PP problems while the DP approach
remained mainly theoretical.

Zanjani et al. (2009) studied the uncertainty in the quality of raw materials,
process yields, and product demands and proposed a multi-stage stochastic model to
incorporate all these aspects. They addressed the uncertainty in the yield using a random
variable with stationary probability distribution. Depending on the availability of the
information on the uncertain parameters at the beginning of each stage in the scenario
tree, the type of defined recourse varied as explained in the next sentences. Since at the
beginning of each stage the decision maker had perfect insight on the demand scenario to
be observed, the production plan could be adjusted for demand scenarios (full recourse).

However, the yield scenarios revealed only after plan implementation and thus
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production plan was constant for yield scenarios (simple recourse). A dynamic-stochastic
process was used for modeling the uncertain demand and the compact formulation of the
stochastic program was solved. The authors’ results indicated that the solution from a
four-stage stochastic model was significantly better if compared to the solutions from
mean-value and two-stage stochastic models. As future research, they proposed to
consider seasonal demand and trend differences at the different stages of the stochastic
demand tree.

Korpeoglu et al. (2011) researched on generating a master production schedule
(MPS) for an auto manufacturer who was starting to produce a new model and thus
needed to consider different demand scenarios, limited capacity, and adjustable
processing times. The authors modeled the problem using multi-stage stochastic
programming and solved the model efficiently. The demand of the first period was
assumed known while the demand for the other periods was uncertain but its probability
distribution was known. The authors mentioned that very often in the MPS literature
uncertainty in demand was ignored and that MSSP models may give better results than
two-stage stochastic programming models because they allow more dynamic decision
making as future information is revealed. The quality of their stochastic solutions
compared favorably to those from solving the problem for a single-scenario. The authors
suggested that their model could be implemented under a rolling horizon approach where
the problem is solved multiple times assuming a fixed length planning horizon and only
the next period’s decision is implemented. A simple example of a rolling horizon
approach is given by Winston (2004). The rolling horizon approach permits refreshing

the product demand estimates and any other values for the parameters every time the
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model is solved. More references about applications of the rolling horizon approach can

be found in Li and lerapetritou (2010)

2.3.2 Incorporating energy in production planning

Energy demand has increased tremendously over the years and this also means an
increase in greenhouse gas emissions. Besides, fossil fuel resources used for energy
generation are diminishing and depleting (Vine, 2008). These problems have stimulated
the integration and utilization of RE especially in manufacturing and some logistics
sectors where there is a high usage of electricity. Another approach is carbon tax and cap-
and-trade policies with the aim of reducing greenhouse gas emissions. Evans et al. (2009)
assessed and compared the life cycle of different RE technologies, such as wind power,
photovoltaic, hydropower and geothermal energy and concluded that wind power has the
lowest greenhouse gas emission, consumes the least water and is most favorable in terms
of social impact. But on the downside, wind power has a relatively high capital cost,
requires more land space, creates noise, and kills wildlife animals, such as birds and bats
that fly and collide into the turbine blades. However, Saidur et al. (2011) mentioned that
if WT are carefully designed some of these downsides can be minimized.

Recently, Yu et al. (2020) investigated on how a retailer can maximize the profit
by managing the inventory of perishable products assuming deterministic demand and
considering that the demand of their products originates carbon emissions. In the models,
the authors assumed the retailer signed a carbon tax policy or a carbon cap-and-trade
policy. The models found the optimal selling price, ordering frequency and preservation
technology investment under such policies and demonstrated that the models have unique

solutions that help retailers to take more accurate decisions in each case.
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2.3.2.1 Deterministic models incorporating renewable energy in production planning

Jin et al. (2015) considered the integration of on-site and off-site renewable wind
and solar energy in a production facility. The paper proposed a multi-period production
inventory model with production, inventory, backorders, and energy consumption as
decision variables. It aimed at minimizing total manufacturing cost to achieve a pre-
defined green energy coefficient target. The numerical experiments showed that a
desirable green energy coefficient can be achieved if the manufacturer mixes onsite
generation with grid renewable energy. For future works, the authors proposed an
extension of the current model into a stochastic programming model that considers
uncertainty in production demands, power intermittency and other stochastic aspects.

Jin et al. (2017) investigated the feasibility of operating a net-zero-carbon supply
chain infrastructure comprised of multiple plants, warehouses, retail stores and electric
vehicle logistics. Each facility could install onsite wind and solar generation operating
under net metering, a special feed-in-tariff program where the rate the utility company
charges for the energy sold is equal to the price the utility company pays to a customer
feeding surplus energy. The supply chain system encompassed production, transportation,
warehousing, and retailing. The proposed model aimed to minimize the LCOE via
determining the optimal generation type and capacity. The authors assumed deterministic
demand at the facilities and solved the model using linear programming. The granularity
of the energy constraints was kept on a one-year basis. The results showed that wind
generation was cost-effective with consistent medium wind speed and that even though
PV systems ended less competitive than WT, they can be used if their cost is reduced by

50%.
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Pham et al. (2019) studied on designing a joint production net zero microgrid
system in a multi-facility system using linear and integer programming. The authors also
solved the model using a two-stage solution approach. In the first-stage, they solved a
deterministic model to schedule the production to meet a given y percentile of the product
demand. In the second-stage, a deterministic linear programming model found the sitting
and sizing of the WT and PV that satisfies the electricity load associated with the optimal
production plan found by the first model. Numerical results show that the model under
grid connected mode (i.e. no battery installed) is cost effective in certain areas where WT
and PV is above 0.25 and 0.45, respectively. The research also found that due to the high
cost of the battery, grid-connected microgrid with net metering has lower LCOE in
comparison to an island model.

Subramanyam et al. (2020) investigated the use of hourly climate analytics to size
a renewable microgrid in a flow shop manufacturing system using a two-stage solution
approach. The first-stage solved an integer programming model that minimizes the
annual energy required to satisfy the production needs of the flow shop. The second-stage
determined the sizing of WT, PV, and battery storage to meet the hourly electricity load
over a one-year period using linear programming. The paper addressed the minimization
of levelized cost of electricity (LCOE) and stated that wind generation is cost-effective
when wind speed at the tower height is above 8m/s. Besides, the paper found that battery
storage is not economically attractive to large scale use with its current capacity cost of
0.5M/MWh. However, if the battery capacity cost reduces to 0.25M/MWh, time-of-use

tariff can promote the use of battery.
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2.3.2.2 Stochastic models incorporating energy in production settings

lerapetritou et al. (2002) used a two-stage stochastic programming approach to
determine an optimal operation schedule for an energy-intensive air separation plant with
the aim of minimizing energy cost while considering random product demands and
random electricity prices from the utility company fluctuating over time. This fluctuation
in prices is common when an industry engages on real time pricing agreement with a
utility company. The manufacturing process used electric power to run an air separation
unit consuming about 20% total power and a liquefier using the remaining 80%. Every
hour and instantly, the plant could switch among three operation modes: regular,
shutdown (using just miscellaneous power), and assisted (stopping the liquefier and using
stored product for the refrigeration operation). The scenarios for the future power prices
(i.e. the ones beyond the next 3 days and running for a lapse between 2-5 days) were
generated using an autoregressive integrated moving average (ARIMA) model and
chosen at the upper and lower computed confidence intervals to accurately consider price
uncertainty. Two solution approaches were developed: generalized benders
decomposition and outer approximation. The results showed good accuracy if using the
ARIMA model for forecasting. The results also demonstrated the effectiveness of the
two-stage stochastic mode on accounting for the future energy price variability in present
time.

Tang et al. (2012) researched on a multi-product multi-period PP problem in the
iron and steel industry considering not only production and inventory costs but also
energy costs because the manufacturing processes in this type of industry are highly

energy consuming. They modeled the costs of energy consumption as a non-linear
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function of the production quantity and assumed stochastic product demands. The authors
took a scenario-based approach and approximated the mixed integer nonlinear
programming model with piecewise linear functions. A stepwise Lagrangean relaxation
method is proposed to solve the problem. The conclusion of the research was that the
proposed solution approach could be used to solve other stochastic PP problems with
non-linear costs.

Emec et al. (2013) presented a mixed integer programming formulation embedded
in a simulation framework to schedule the next-day production of a set of machines on a
manufacturing line in an automotive industry. The model jointly considered stochastic
orders, energy loads of each machine and the actual price of the energy needed. It was
assumed that the company could buy energy from a European electricity market. Two
machine stages with different associated energy consumptions were considered: waiting
and processing. The paper demonstrated large cost savings could be achieved if
comparing to the case in which the price of the electricity is constant. Authors suggested
as future work considering multi-criteria optimization: the joint minimization of the CO>
emissions and the energy costs.

Golari et al. (2017) researched on adopting onsite intermittent renewable power
and grid renewable for operating a multi-period, multi-plant, production-inventory
system. The problem was first modeled as a deterministic planning model before being
extended to a multistage stochastic optimization model that considers the uncertainty of
the renewable energy supply. The authors used a modified Benders decomposition
algorithm to create an optimal production schedule using the scenario tree approach. This

paper addressed the power intermittency issue and proposed the use of a green energy
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coefficient for the assessment of sustainable manufacturing. The results showed that it is
affordable for manufacturing companies to achieve a high level of green energy
coefficient with onsite and grid renewable energy integration.

Recently, Gao et al. (2020) compared the effect of two production strategies on
the optimal order policy of raw materials for a multi-period, multi-raw material inventory
management problem under carbon emission constraint in make-to-order foundry
enterprises. The authors assumed that the carbon cost was incurred only in transportation
and the raw material consumption was random. A probabilistic DP model was used to

solve the problem under the two different strategies.

2.3.3 Stochastic models for solving energy generation planning problems

Yu et al. (2019) investigated on the design of a hybrid renewable energy system
(HRES) which consist of renewable energy sources, loads, a fuel base generator and an
energy storage system (ESS) operating under uncertainty in energy supply and demand.
They developed a two-stage stochastic programming model to minimize the daily
expected cost of operating the HRES and investigated on effective scenario-generation
methods. The authors transformed the model into a mixed integer linear program with
multiple scenarios. In their results, the stochastic model was compared to a deterministic
one. As expected, the deterministic model resulted costlier than the stochastic model. The
authors stated that in future works, a better ESS design and operation can reduce the
overall cost of the HRES.

Subsection 2.3.3.1 focuses on reviewing work related to multi-stage stochastic
models for solving energy generation planning problems. All works except the one in

Ding et al. (2018) relate to RE.
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2.3.3.1 Multi-stage stochastic models for solving energy generation planning problems

Meibom et al. (2007) worked on a multi-stage stochastic linear model to optimize
the wind power capacity commitment considering four electricity markets and one
thermal market in five European countries. The aim of the model was to minimize the
cost of unit commitment. Due to the large number of time periods in the model, the use
of a single-scenario tree on hourly basis turned out to be intractable. Consequently, the
authors adopted a multi-stage recursion with rolling-horizon planning solution approach.
Each planning period is modeled using a three-stage scenario tree. The first-stage has 3-
hours length and occurs 12 hours before the delivery period (i.e. one day ahead). In this
stage, the power generators must decide on the amount of electricity bidding without
knowing the effective wind power production. The second-stage also has 3-hours length
and 5 scenarios and the third-stage covers the reminder number of hours in the planning
period and 10 scenarios. In the rolling horizon approach, the amount of power sold to or
bought from the day-ahead market is determined in the first planning period. In the
subsequent planning periods, the variables that represent the amounts of power traded on
the day- ahead market are fixed to the values found in the previous planning period, and
the optimization concerning other decisions for the intra-day market is done. The
research showed that the total operation cost of the model decreases if there is higher
wind power penetration. Also, this high penetration increases the saved water in hydro
storages.

Shafie-khah et al. (2014) proposed a model for optimal self-scheduling of wind
power producers (WPP) using MSSP and considering the establishment of forward

markets. Self-scheduling refers to the commitment of WPP to supply an energy
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production level, which must be delivered for an agreed period. The research focused on
the participation of multiple producers in the electricity service market for profit
maximization. Uncertain parameters, such as wind power, market prices and independent
system operator (ISO) quantity of activated reserve is modeled using a scenario-based
approach and the Monte Carlo method. The hourly market prices are fitted to a log-
normal distribution. The authors proposed a three-stage stochastic model that
incorporated the Conditional Value-at-Risk (CVaR) technique for risk management to
achieve a desirable tradeoff between the risk and the expected profit for WPP.
Experimentation was done in a 50MW wind farm operating on the Spanish electricity
market. It allowed to study the effect of participation in forward and ancillary service
markets on the optimal trading of WPP. In conclusion, the increase in expected profit of
WPP is led by an establishment of an optimal amount of participation in the forward
market.

A MSSP model for planning the expansion of combined power and natural gas
systems considering non-anticipativity constraints was presented by Ding et al. (2018).
The research had as objective to minimize total investment and operation cost of the
combined system over its several planning periods. The authors mentioned that the
deterministic formulation of the problem solves as a mixed integer linear program that
couples discrete investment variables of successive periods and uses continuous
operational variables. The authors proposed two-stage and a multi-stage stochastic
programming models for addressing the problem of considering stochastic net load
demand during the planning periods. They experimented with the stochastic models using

three different IEEE networks (6-bus, 24-bus, and 118-bus). In conclusion, the
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experiments showed that the multi-stage stochastic programming model will yield a
smaller total investment cost than the two-stage stochastic model because in the multi-
stage model the decisions are more flexible and adaptable as they are taken in a
sequential or wait and see manner. The authors found as a disadvantage of multi-stage
stochastic programming that the computational complexity of the problem grows as the
number of scenarios increases.

Yin et al. (2019) presented a research on wind generation that included decision-
dependent uncertainty in the WT power curve. The authors called this type of uncertainty
as endogenous. The study aimed at minimizing the total expected cost of the system
throughout its planning period including operation cost of the thermal generators and
investment cost of the wind generation. The authors presented a multi-stage stochastic
programming model that also considered the external uncertainties of load and wind
speed. The model used non-anticipativity constraints for the scenarios of power that at a
point in time have the same realizations of uncertainty in the scenario tree. Yin et al.
(2019) opted to model and approximately solve the Y-stages problem by decomposing it
into a set of Y mixed-integer linear programming models and updating the non-
anticipativity constraints according to the uncertainty that has been realized up to a
particular stage. The research concluded that planning with a multi-stage model reduces
the total cost if compared to using a single-stage model because the corrective actions can
be based on more accurate predictions. The authors also discovered that increases in
wind turbine power curve prediction error escalates the total expected cost.

loannou et al. (2019) used MSSP to determine the optimal generation mix for the

Indonesian power system considering randomness in energy demand, fuel prices and

22



capital cost of the RE. The uncertainty in the fuel prices was modeled through Monte
Carlo simulation. It permitted a representation using continuous probability distributions.
The uncertainty in the other factors was modeled through a scenario tree that considered a
finite number of possible of combined scenarios. The paper showed that coupling Monte
Carlo simulation with scenario tree approach better portraits the randomness in the model
parameters. From the practical point of view, the model permitted the country to foresee

the need for more investment on RE to meet the future CO; target levels.

2.3.4 Renewable energy (RE) models considering prosumers

RE models have started to incorporate the idea of energy prosumers, where the
energy consumer can act as both, a consumer, and a provider of energy to power
distributors or other consumers. The literature found on a single energy prosumer is
scarce. The works of Perkovic et al (2017) and Wongwut and Nuchprayoon (2017) fall in
the single prosumer category. The work of Choi and Min (2017) considers a prosumer
aggregator of a grid industrial complex comprised by multiple customers. The works of
Rathnayaka et al. (2011), Fice and Debousky (2016) and Liu et al. (2017) and consider
the operations of multiple prosumers.

Rathnayaka et al. (2011) presented a literature review on smart grid energy
sharing with attention to prosumer management and participation. The paper studied the
shortcomings of other published research works, such as lack of: (a) approach in
discussing energy sharing between prosumers and consumers, (b) methods for identifying
the risk associated with prosumer negative behaviors and (c) reward schemes that

consider the financial and non-financial incentives for prosumers. The paper also
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proposed the implementation of goal-oriented virtual prosumer communities and the
development of smart techniques or approaches to manage the prosumer communities.

Fice and Debowski (2016) studied the optimal management of an electric grid
prosumer system using solar PV generator and ESS. It was assumed that the grid is
embedded in a prosumer energy micro-infrastructure (PEM) that integrates electronic
energy counters, power grid, meter, control, and management systems. The PEM is
modeled as a control system working in a feedback loop and using a controlling
algorithm to schedule the switching on and off for several electrical devices, depending
on the weather forecast. The model objective is to minimize the flow of energy through
the connection points with the power grid system and balancing instantaneous power of
the PEM. The analysis of numerical experiments showed positive economic effects with
the increased usage of RE sources. Also, battery usage let to improve energy efficiency
and increased the energy usage rate defined as the ratio between energy send to the power
grid and energy generated by RE. For future works, the authors propose the use of
production forecast to automatically schedule electric devices in the PEM and introduce
multi-zone tariffs for managing the battery SOC.

Perkovi¢ et al. (2017) discussed and analyzed a hypothetical prosumer factory
using fuel (natural gas) as input to run a combined heat and power (CHP) system, electric
power purchased from the day-ahead electricity market and PV to run its operations. The
problem had multiple objectives which aimed at minimizing operation costs along with
investment costs related to equipment for minimizing energy generation cost, such as the
size of the thermal storage, capacity of the warehouse for storing the products, and

installed capacity of PV. The thermal storage keeps thermal energy directly from
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combined heat and power (CHP) and from the power to heat coming from the electricity
bus. Electric energy comes from the electricity market, from the CHP unit and from the
PV. Thermal and electric demands per product were assumed known and linear. Thus, the
total thermal and energy loads were determined through the multiplication of number of
products supplied per year and the unit demands. The price of the fuel, demand for
products and solar irradiance were assumed known in advance and thus the approach to
model the problem was through a deterministic linear programming model with weighted
objective function. Pareto frontiers were derived and the sensitivity of them ended higher
for the objective related to operating costs. The research concluded that, assuming that
the prices of electricity and fuel keep at the values used in this study, the increased
potential for saving in energy supply can be caused by a larger fluctuation in the
electricity market clearing price (MCP)..

Wongwut and Nuchprayoon (2017) optimized the daily costs of operation of a
single prosumer which can generate, consume, and store energy on an hourly basis. It
was assumed that the prosumer operated under the time-of-use pricing scheme. The
model found the prosumers daily generation schedule and determined if a battery should
be installed, its size and its charging and discharging condition. The problem was first
formulated as a linear programming problem but new binary variables for the battery
operation and on-site generation transformed the problem into a mixed integer
programming problem.

Choi and Min (2017) presented a model for a prosumer aggregator of a grid-
connected industrial complex with contracted customers and prosumers loads. The

microgrid implemented WT, solar PV, electric load and ESS. The aim was maximizing
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the prosumer aggregator profits by controlling the ESS in different operating conditions
and minimizing its operation cost while still fulfilling the contract of providing certain
amount of energy to its consumers. The paper studied the coordination between day-
ahead optimization and real- time operations. Two cases with a prosumer test-bed coming
from actual field data of a grid connected industrial complex were studied. Day-ahead
optimization was modeled as a quadratic program to determine the optimal charging and
discharging schedules of the ESS and minimize the operational cost of the system, given
by the electricity price paid to the utility company, and the rate of change of state of
charge (SOC). The real-time operation was modeled as a re-optimization that occurs if at
some point during the day, the real-time monitoring system detects large differences
between the forecasted RE produced and the actual throughput. If this happens, the
quadratic model is run again with adjusted values for the power produced by the RE
system during the remaining interval of the day. In conclusion, the study showed that
operating cost can be effectively saved by taking corrective actions based on the
information coming from real-time monitoring systems.

Liu et al. (2017) developed an energy sharing model among prosumers with price-
based demand response. Such paradigm seemed cost effective for prosumers in
comparison to purchasing energy from a distribution center. The model considered
prosumers adopting PV systems and it assumed that the PV used the maximum power
point tracking control to maximize the output. The authors configured a basic model of
the power consumption of the PV and an internal price model to fulfil supply and
demand. The authors also developed, a cost model of the PV prosumer that considers

changes in the profiles of power consumption of the prosumers, and an income model of
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the Energy Sharing Provider (ESP) related to the service fee charge. A distributed
iterative algorithm was proposed for solving model and the benefits of the energy sharing
among prosumers model were demonstrated. Including the power loss during the energy

sharing is mentioned as one of possible extensions of the research work.
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3. CONTRIBUTIONS OF THE PROPOSED THESIS

The literature reviews presented in Chapter 2 show that some authors have
focused on models to implement efficient production planning (PP) in manufacturing
industries and recognized the need for considering stochastic aspects of the problem, such
as product demands. More recently, there is evidence of a few works to minimize the
total cost of production and consider renewable energy (RE) implementation. However,
at the best of our knowledge no previous work have solved a PP problem considering
stochastic product demand and RE supply, battery storage, and energy prosumers. In the
RE aspect, efforts have been made to implement mostly wind turbine (WT) technology
and solar photovoltaic (PV) systems. Few studies have incorporated batteries and some
other RE technology to reduce the use of energy from the main-grid system.

This thesis, unlike the works presented in the literature review in the previous
chapter, proposes to use a multi-stage stochastic programming model to assess the cost
advantages of adopting on-site RE (WT and PV) and battery system in manufacturing
settings experiencing uncertainty in the product demands, wind speeds and climate
conditions, and operating as energy prosumers over a multi-period planning horizon.
Table 1 contrasts the contributions of the most closely related works discussed in the

literature review in the previous chapter and the contribution of this proposed thesis.
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Table 1. Contribution of this thesis vs. previous contributions in the topic

Author *PP | RE | Battery |P Uncertainty Model Solution
storage in the Model Type Approach
This thesis Yes | Yes | Yes Yes | Product demand, Multi-stage MSSP with
wind intermittency | stochastic multiple
and weather program scenarios and
conditions (MSSP) compared to a
deterministic
model
Escuderoetal. | Yes | No | No No |Demand of products | Multi-stage Deterministic
(1993) and and inventory stochastic equivalent
Escudero et al. holding cost program under a
(1995) splitting
variable and a
compact
representation
Zanjani et al. Yes | No | No No | Raw materials Multi-stage Solved
(2009) quality, process stochastic compact
yields program formulation of
and product (MSSP) the MSSP
demands
Golari et al. Yes | Yes | No No | Renewable energy | Multi-stage Modified
(2017) supply stochastic Benders
program decomposition
Multi-period
Multi-plant
Pham et al. Yes | Yes | Yes No | Single percentile Deterministic Integer and
(2019) for demand, single | Multi-period linear
set of capacity Multi-plant programming
Subramanayan [ No | Yes | Yes No | factors for WT and | Deterministic Integer and
et al. (2020) PV Multi-period linear
programming
Yuetal. No |Yes | Yes No | Energy supply and | Two-stage Mixed integer
(2019) demand stochastic programming
program
Choiand Min. | No | Yes | Yes Yes | State of charge Deterministic Day ahead
(2017) (SOC) Quadratic optimization
and real time
optimization
Perkovicetal. | No | Yes | No Yes | No considered Deterministic Linear program
(2017) with two
objectives
Wongwutand | No | Yes | Yes Yes | No considered Linear mixed Mixed integer
Nuchprayoon. integer programming
(2017) programming

PP = Production planning, P = Prosumer

* If problem was not a multi-period production-inventory second column answer is No.
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4. MODELING AND METHODOLOGY

The production planning (PP) with renewable energy (RE) problem described in
Chapter 2 is modeled as a multi-stage stochastic program (MSSP) with recourse. A
stochastic program is a mathematical program in which some of the parameters or input
data are random and this uncertainty is explicitly included in the program (Birge and
Louveaux, 1997; Gupta and Grossmann, 2011; Rardin, 2017). Thus, the exact values for
some of the input data are unknown, but their probability distributions are known. The
inclusion of the probability distributions helps to choose the best values for the decision
variables in the mathematical program. Stochastic programs with recourse are those in
which a corrective action can be taken after the uncertainty of the parameters is realized.
Stochastic programs with recourse are very well suited to model situations where there
are uncertain parameters, and it is the case in the PP problem proposed in Chapter 2. In
practice, most problems do have some form of uncertainty in the parameters at the time
of decision making.

Figure 2 provides a graphical representation of a two-stage stochastic program
with recourse. In problems modeled as two-stage stochastic programs with recourse, a
decision is made in the first-stage before the uncertainty about the random input data is
realized. It is assumed that once the realization of the random data occurs the decision
maker can take further decisions (i.e. recourse actions) that depend on the observed
realizations of the uncertain data (i.e. scenarios). The recourse actions look for recovering
feasibility at an associated cost. To seek feasibility for all possible scenarios of the
uncertainty, a two-stage stochastic program with recourse finds values for the first-stage

decision variables and the second-stage recourse actions that are feasible for all scenarios
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Second stage:

Way 1 in which outcomes for the

stochastic parameters may realize
over the horizon

Recourse actions for
decisions taken in first
stage™

Way 2 in which outcomes for the
stochastic parameters may realize
over the horizon

First stage:

Second stage:

Decisions for all the periods
considered in the horizon

Recourse actions for
decisions taken in first
stage™

Second stage:

Recourse actions for
decisions taken in first
stage™

Way n in which outcomes for the
stochastic parameters may realize
over the horizon

Second stage:

Recourse actions for
decisions taken in first
stage™

Time horizon comprised of
| | | | multiple periods

* The way the outcomes for the stochastic parameters reveal may be sequential over the periods and also the way
the recourse actions are taken. However, the critical part is that in two-stage stochastic programs the initial
decisions taken are not revisited or modified over the periods in the time horizon

Figure 2. A two-stage stochastic program

by optimizing simultaneously, the cost of the first-stage decisions and the expected cost
of second-stage decisions or actions (Beasley et al., n.d.; Shapiro and Philpot, 2007).
Since two-stage stochastic programs include the possible second-stage recourse actions

they are larger than deterministic programs. To keep stochastic programs tractable, the
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stochastic elements are usually assumed to follow discrete probability distributions and
the two-stage stochastic program is formulated on its extensive form (EF) (Birge and
Louveaux, 1997; Rardin, 2017; Novoa et al., 2018). The EF of a two-stage stochastic
program is often called the deterministic equivalent (NEOS, 2019).

A three-stage stochastic program with recourse is an extension of a two-stage
stochastic program. As in the two-stage stochastic program, the first-stage decisions
occur before all the uncertainty about the input data is realized. It is assumed that on a
second-stage, once some of the uncertainty is realized, recourse actions for the first-stage
decisions can be taken. The recourse actions depend only on the realizations of the
uncertain data for that stage and thus they assume no knowledge about the realizations of
the uncertain data for the next stages. Furthermore, in contrast to two-stage stochastic
programs, in the second-stage new decisions are taken before any uncertainty about the
input data for the next stage is realized. On the third-stage, recourse actions that depend
on and all the realization of the uncertainty (i.e. scenario) are taken. As in the two-stage
stochastic program, the cost of all the decisions and the expected cost of the recourse
actions are optimized with a single objective function.

A general extension of a three-stage stochastic program with recourse is known as
a MSSP. In a MSSP, the following events repeat in a sequential manner: (1) decisions for
a stage, (2) realizations or outcomes for some of the stochastic parameters occur, (3)
decisions about the values of the recourse variables to implement in each scenario and if
the stage is not the last one, new stage decisions that are also scenario dependent.
Repetition of events (2) and (3) occur until the last stage is reached. If the uncertain

parameters follow discrete probability distributions and the planning horizon has a fixed
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number of decision stages, the mathematical model for a MSSP can also written in its EF
and the randomness of the problem can represented graphically on a scenario tree that
will be discussed more in detail in Section 5.4. The EF of a MSSP is a large mathematical
program that explicitly includes all scenarios and their associated recourse actions.

The reminder of this chapter presents the EF for the two MSSP models (Model 1
and Model 2) proposed to solve the PP problem with RE depicted in Figure 1 in Chapter
2. The main difference between the models is the length of the time horizon and the
frequency of change in the random demands. For both models, the notation used is
general since it assumes that the production system may consist of multiple factories and
multiple warehouses. However, in this thesis, the numerical experimentation with the
models considers: (1) one factory and one warehouse in the same geographic location and

(2) one factory and one warehouse in different geographic locations.

4.1 Model 1

In the Model 1, the program is implemented as a three-stage stochastic one, as
presented and depicted in Beasley et al. (n.d.). The first-stage decisions correspond to the
size of the RE technologies (WT and PV) and battery capacity installed at the beginning
of the time horizon and the production decisions for the first period, which is assumed to
be of a length equal to one month. The second-stage decisions are the recourse actions to
the production decisions taken in the first-stage and the production decisions for the
second period. The third-stage decisions are only recourse actions to the production
decisions taken in the second-stage.

The reason for selecting the length of the periods elapsed between stages equal to

one month in Model 1 is to portrait production systems where the product demands are
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unknown and change often. It would be desirable to portrait such highly variable
production setting over a horizon of one year with decision stages occurring every month.
However, the scenario tree (see more explanations about a scenario tree in Section 5.4)
would grow significantly. It would make the problem difficult to solve with a commercial
solver without implementing any solution method to tackle the resulting large-scale
program, such as Bender’s decomposition.

Even if the planning horizon of Model 1 is two periods (i.e. months), the author in
this thesis uses the rolling horizon approach mentioned in Chapter 2 as a method to
optimize the production and energy decisions over an entire year. It is common in some
industry settings to have planning horizons of one year and this is the reason because the
author of this thesis chose one year as the planning horizon to perform the rolling horizon
method. A brief but more detailed description for how the rolling horizon approach was
implemented and its results are presented in Section 7.8. More details about a rolling
horizon approach can be found in Winston (2004) and Meibom (2007). The rolling
horizon method is also used by Li and lerapetritou. (2010) to address a production
planning and scheduling optimization problem. The authors mentioned as advantages of
the method the usually small-scale size of the model and its fast solutions. Li and
lerapetritou also proposed a parametric programming method for incorporating accurate
production capacity information and a heuristic network decomposition strategy to reduce
the computational complexity and showed that these strategies improved the solution
quality of the rolling-horizon method.

Notation used in Model 1 and Model 2 is given in Tables 2-7. Model 1 is

presented and explained immediately below Table 7. Then, Model 2 is introduced, and
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the additional notation used in Model 2 is given in Tables 8-10. Model 2 is presented and
explained below Table 10.

Table 2. Sets and indices in the models

Notation Description
I Set of products
T Set of production periods
R Set of resources needed to produce the products (i.e. labor hours, machine hours)
S Set of scenarios
G Set of renewable generation technologies
N Set of warehouses
K Set of factories
J Sets of days in all the production periods
n Set defining the scenarios that need to be equal up to period t to preserve the non-
! anticipativity or implementability constraints
i Index for product type
t Index for production period
s, s’ Indexes for scenarios
r Index for resources (i.e. labor hours, machine hours)
k Index for factory
n Index for warehouse
g Index for generation technology
j Index for the days of a month
Ji Set of days in the production period t
Table 3. Decision variables in the models
Notation Description Units
X,q Amount of product i produced at factory k in period t Items
|
X. Amount of product i produced at factory k in period t under Items
ks scenario s
. Amount of inventory of product i to store at warehouse n at theend | ltems
ints of period t under scenario s
7 Amount of product i purchased to satisfy the product demand at Items
ikts factory K in period t under scenario s
p¢ Capacity of generation technology g in factory k MW
kg
pe Capacity of generation technology g in warehouse n MW
ng
Bkc Battery storage capacity adopted in factory k MWh/day
B¢ Battery storage capacity adopted in warehouse n MWh/day
n

35



Table 4. Continuation of decision variables in the models

Bf Daily energy stored in battery at factory k at day j (here and in the MWh/day
kj next three entries of the table the superscript f is used to represent
storage)
Bf Daily energy stored in the battery at warehouse n at day j MWh/day
nj
Bf Daily energy stored in the battery at factory k at day j under MWh/day
is scenario s
Bf Daily energy stored in the battery at warehouse n at day j under MWh/day
ns scenario s
Q— Daily energy sold from factory k at day j under scenario s MWh/day
ks
Qj Daily energy sold from warehouse n at day j under scenario s MWh/day
njs
Q+ Daily energy purchased from factory k at day j under scenario s MWh/day
kjs
Q+_ Daily energy purchased from warehouse n at day j under scenario s | MWh/day
njs
Table 5. Parameters in the models
Notation | Description Units
git Production cost of product i in period t $/item
I Transportation cost of product i in period t $litem
it
p Probability of scenario s N/A
S
h Holding cost of product i in period t $/item/period
it
0 Purchasing cost of product i produced in period t $/item
it
0 Capital recovery factor of generation technology g N/A
g
a Capacity cost for generation technology g $IMW
g
0 Capital recovery factor of battery N/A
b
ab Capacity cost for battery $/MWh
b O&M cost of generation technology g $/MWh
g
C Penalty cost or tax incentive of generation technology g $/MWh
9
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Table 6. Continuation of parameters in the models (1)

Notation | Description Units
T Number of generation hours in day j for generation technology g | h/day
g
[* Total number of generation hours for generation technology g h
! over the entire production periods
eP Energy consumed for producing one unit of product i MWh/item
i
ef Energy consumed for storing one unit of product i MWh/item
i
Electric vehicle (EV) energy intensity rate (see detailed MWh/kg/km
qv explanation for this parameter in the glossary immediately after
the Appendix section)
dk Distance between facility k and warehouse nand d , being the km
! distance in between warehouse n and facility k
IB Number of daily trips trip/day
m Vehicle self-weight kg
Y
0 Daily operating hours of a facility (warehouse or factory) h/day
L Base electricity load of factory k (assumed the same under each MW
ks scenario s)
L Base electricity load of warehouse n (assumed the same under MW
ns each scenario s)
m Unit weight of product i kg/item
i
[J] Size of the set of days over the entire production period days
considered
‘]t Number of days in period t days
D Demand for product i in factory k in period t under scenario s item/period
ikts
W Amount or resource r available in period t at factory k h/period
krt
Amount or resource r needed to produce product i at factory k h/item
ikr
m Maximum battery capacity to adopt at factory k MWh/day
k
Bm Maximum battery capacity to adopt at warehouse n MWh/day
n
p max Maximum capacity of generation technology g at factory k MW
kg
p max Maximum capacity of generation technology g at warehouse n MW
ng
A Capacity factor of generation technology g in day j under N/A
ajs scenario s

37




Table 7. Continuation of parameters in the models (2)

Notation | Description Units

Q Maximum allowed energy sold daily from factory k at day j under | MWh/day
kis scenario s

Q Maximum allowed energy sold daily from factory k at day j under | MWh/day
kis scenario s

Ql\_/lax Maximum allowed energy sold daily from factory k at day j under | MWh/day
kis scenario s

Ql\_/lax Maximum allowed energy sold daily from warehouse n at day j MWh/day
ns under scenario s

u Selling price of extra RE generated $/MWh

u* Cost of purchasing energy $/MWh

Mathematical Model 1:

Minimize total expected cost:

L= Z Z (6 + £t Xy + z Z Z POinZiys + Z Z Z PP Yins

iel keK iel seS keK iel seS neN
+ Z ZZ ps Z +:u|t)xlkts +0 Zlkts + Z hlt ymts
teT\ iel seS keK neN
(Pbab X 0,38,
DR NTURH AL ) T I )
geG keK keK geG neN neN
QJS c ijs ijs
+Zzzps(bg_cg)T Z Pkg Zzz PU—= +ZZZ
keK geG seS jed | ‘] | keK jed seS keK jed seS
TR, €)Y R - Y Y by +ZZZ pai %
neN geG seS jed | ‘] | neN jeJ seS neN jed seS
Subject to:
— i = 4.2
Xi + Yintt = Yims  Zigs = Dis vielit=LvseS,vkeK,vneN “-2)
Xies T Yintas — Yints + Ziss = Dis Viel,teT\{l},VseS,vkeK,vneN (43)
o] —
avler,kt £ W VreR,t=1,VkeK (4.4)
i
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0<B! <B t=1jeJ \{},VkeK,VseS (4.17)
OrteT\{l}, jed, VkeK,vVse$S

0<Bf <B t={},jeJ,\LVneN,VseS (4.18)
OrteT\{l},jeJt,VneN,VSeS

0<PR; <R Vg eG,Vk e K (4.19)
0< |:>n0g < pnf;ax vgeG,vne N (4.20)
kao =B j=0,Vk e K (4.21)
B\, =BS j=0,vneN (4.22)
B <B/ vk e K (4.23)
B, <B' vneN (4.24)
Qg <Qi vkeK,jel,seS (4.25)
Qrﬁngr:?:X vneN,jeld,seS (4.26)

In the multi-stage stochastic Model 1 presented above, the first-stage has the
following strategic decisions: (a) the size of the generation technologies at the factories

and warehouse, B and By, respectively, and (b) the battery size to install at each

factory and warehouse, By and B, respectively. The first-stage also performs (c) the
operational decision of selecting the amount of finished product to produce in the first
period, x_, . In the experimentation with Model 1, a production period is considered

equal to a month which is comprised of a set of days and the production is assumed to be

spread evenly over the days.

40



The decisions on the remaining stages of Model 1 are operational. Recourse

actions assumed to occur in each scenario are purchases, Zy , or storages, Yiqs , of final

product, daily energy stored in the battery in the factory and warehouse , Blgsand anjs ,
respectively, daily energy sold in the factory and warehouse, Qk_js and Qn_jS , respectively,
and daily energy purchased from main grid in the factory and warehouse, ij-s and Q,T,-S ,
respectively .The amount to produce of each product under each scenario, X , as well as

.. g f — — ..
the recourse decisions Zjy, Yins » B];‘,S, Bus» Qus» Qnis » Qs and Q¢ are decisions

that must be taken in all stages (except the first one) based only on the information

known or realized.
The stochastic parameters in the model are the product demand, D, , and the RE
capacity factors, 4, that describe the daily utilization of the generation technologies

given the changes in the hourly wind speed and weather conditions experienced at the
geographical place the system will be installed. The capacity factors are defined as the
ratio of the average power generated divided by the rated peak power and they directly

affect the power output of the wind turbine (WT) and solar photovoltaic (PV) generation
technologies at factories and warehouses, Pkcg and Pncg , respectively.

In a nutshell, the objective function in equation (4.1) is to minimize the total
expected cost incurred to produce the product, transport finished goods between the
factory and warehouse, purchase finished products, if needed, hold inventory in the
warehouse and acquire and maintain generation technologies and batteries required to

produce and store renewable energy. The objective function also includes the expected
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profit of selling any extra energy generated in the factory and warehouses that ends not
being stored in the batteries and the expected cost of any purchases of energy to the grid.
Constraints (4.2) and (4.3) are the production-demand balance equations for the first and
the remaining periods, respectively. They ensure that on-hand product availability plus
any purchased product equal demands plus any leftover inventory. Constraints (4.4) and
(4.5) are the resource constraints which guarantee that for each particular resource r, the
sum of resource used to produce all the products does not exceed the total amount
available of such resource in a period t. Constraints (4.6) are the non-anticipativity
constraints which ensure that the production, inventory and purchasing decisions made in
a particular period t under a particular scenario s are influenced only by previous
decisions and outcomes. They ensure that in period t, all scenarios in the scenario tree
(see a detailed discussion of the scenario three in Section 5.4) branching out from the
same decision node will have the same decisions; this means they have stored the same
amount of product and will decide to produce and purchase the same number of products.
In the model presented above, the non-anticipativity constraints are written as presented
in Beasley et al. (n.d.) and Escudero et al. (1993) but they were implemented as proposed
in the Section 1.2 in Birge and Louveaux (1997). Constraints (4.7) and (4.8) are the sign
constraints for number of products to produce, amount of inventory and product
purchased.

Constraints (4.9) and (4.10) are the daily energy balance equations for the factory
in the first day of the first production period and on the remaining days, respectively.
They show that in each day and under a particular scenario, the sum of energy: (a)

consumed by the factory in production and electric vehicle transportation, (b) needed to
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satisfy a base load, (c) stored in the battery and (d) sold , must be equal to the RE
generated in conjunction with the energy stored in the battery from the previous day and
any energy purchased from the grid. Constraints (4.11) and (4.12) are the daily energy
balance equations for the warehouse in the first production day and the remaining ones,
respectively. They resemble to constraints (4.9) and (4.10) by showing that in each day
and scenario, energy needed to store the product, drive empty vehicles back to the
factories and satisfy the base load, plus energy to be stored in the battery and to be sold
must be equal to the RE generated in conjunction with the energy stored in the battery
from the previous day and any energy purchased from the grid.

Constraints (4.13) and (4.14) are also non-anticipativity constraints related to the
daily energy decisions. They ensure that for those scenarios that look the same up to a
particular point in time t, the decisions about energy stored in the battery, to be sold or
purchased to the grid are influenced only by previous decisions and outcomes. Thus,
these constraints ensure that if any two scenarios, s and s’, are identical up to a point in
time then all the decisions made for all the previous stages and the current one must be
identical.

Constraints (4.15) to (4.18) ensure that the daily energy stored in (or discharged
from) the battery should not exceed the battery capacity. The constraints are given for
day 1 and for the remaining ones at the factory and the warehouse, respectively.
Constraints (4.19) and (4.20) require that the generation capacity at the factory and
warehouse be non-negative. However, it is capped by a maximum power capacity.
Constraints (4.21) and (4.22) state that the initial state of the battery at the warehouse and

factory is fully charged. Constraints (4.23) and (4.24) require that the battery capacity to
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be adopted by the factory and warehouse does not exceed a certain pre-defined maximum
capacity. Similarly, constraints (4.25) and (4.26) require that the energy sold at the
factory and warehouse be capped by a pre-defined maximum value. Constraints (4.23) -
(4.26) were added mainly to avoid any unboundedness in the numerical experiments

performed in this research.

4.2. Model 2

Model 2 is also a three-stage stochastic program in the way presented and
depicted in Beasley et al. (n.d.) but the length of the planning horizon is a year. The first-
stage decisions correspond to the size of the RE technologies (WT and PV) and battery
installed at the beginning of the time horizon and a single production decision for the first
six months. The second-stage decisions are the monthly recourse actions to the
production decisions, the daily recourse actions to the energy decisions taken in the first-
stage, and the new production decision for the remaining of six months. The third-stage
decisions are the daily recourse actions to the energy decisions and the monthly recourse
actions to the production decision taken for the last six months.

Birge and Louveaux (1997) mention that the definition of stage relates to before
and after a random experiment and thus the stages may contain a series of decisions and
events that do not necessarily have to occur at the same point in time. In Model 2, those
decisions not occurring at a single time are of two types. Monthly recourse actions related
to production belong to the first type. and daily recourse actions related to energy
decisions belong to the second type. Recourse actions related to production include small
monthly adjustments (i.e. increases or decreases) to the first and second stage production

decisions, and monthly inventory and purchases of final product that occur in response to
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the realization of the product demands over the lapses of 6 months. Recourse actions
related to energy include daily storage or discharge of energy from the batteries, and
purchases of energy or sales of extra RE.

The reason for selecting the length of the periods elapsed between decision stages
equal to six months in Model 2 is to portrait production systems where the product
demands are unknown and but do not change monthly. It is the case of some thermo-
electric manufacturing industries in Texas and for industries manufacturing products for
two seasons (i.e. winter and summer). As mentioned in Model 1, it is typical for many
industries to consider a time horizon of one year for planning the production of their
products and thus this one of the reasons because the author of this thesis selected one
year for the planning horizon. A second reason for choosing the one-year horizon is
because it is typical to annualize the energy installation and maintenance costs and then
managing production, logistics and energy costs over annual periods is convenient. Note
that in Model 2 the terms production period and decision stage are not the same. It is
assumed that there are 12 production periods (i.e. months) in a year and two-stages (i.e.
two-times) for the production decisions to occur or being revisited, the first occurring in
month 1 and the second one in month 7.

Tables 8 — 10 introduce a few new notations used in Model 2 and the changes in
the meaning of the subscripts for some variables and parameters already used in Model 1.

Model 2 is presented below the tables.
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Table 8. New definition for some sets and indices used in Model 2

Notation | Description

T Set of production periods (i.e. months) in which a new production decision is taken. T
={1,7}

M Set of production periods (i.e. months) in the planning horizon. M = {1, 2, ...,12}

T Index running over decision stages or periods in set T
When t =1 the model refers to the first production decision done in period 1 and when
t=7 the model refers to the second production decision done in period 7

M Index running over production periods in set M

Table 9. New definition for some decision variables used in Model 2

Notation | Description Units
X. Amount of product i decided to be produced for the next 6 periods (i.e. Items
ikts months) at factory k in decision period t under scenario s
X. Amount of adjustment (increase or decrease) on the production of producti | Items
fkrms at factory k to be implemented in period m to correct the production decision
taken in period t under scenario s
y. Amount of inventory of product i to store at warehouse n at the end of Items
Inms period m under scenario s
7 Amount of product i purchased in period m under scenario s to satisfy the Items
tkms product demand at factory k
Table 10. New meaning for some parameters used in Model 2
Notation | Description Units
0 Production cost of product i decided to produce in stage t $litem
it
I Transportation cost of product i decided to produce in stage t $/item
it
6. Adjustment to production cost of product i in period m $litem
Im
Adjustment to transportation cost of product i in period m $/item
:uim
h Holding cost of product i in period m $/item/period
im
0 Purchasing cost of product i produced in period m $/item
Im
W Amount or resource r available in period m at factory k h/period
krm
D Demand for product i in factory k in period m under scenario s item/period
ikms
y/ Number of production periods in each decision stage t. Because one months
year is divided into two decision stages this parameter has the value of
6 months
K Limit to the adjustments (i.e. increases or decreases) to the production | Items
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Mathematical Model 2:

Minimize total expected cost:
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decisions as Model 1: finding the size of the generation technologies at the factories and

warehouses, Pk; and P’fg , respectively, and the battery capacity to install at each factory

and warehouse, B and B; , respectively. The first-stage also has the operational
decision of selecting the amount of finished product to produce in the first decision

period, x, , . After such first decision period there is a lapse of six months and it is

assumed that the production spreads evenly over the days.

The decisions on the remaining decision stages of the model (i.e. from second to

last stage) are operational. The second production decision is to select the amount of

finished product to produce in the second decision period is notated as X, . After the

second decision period there is also a lapse of six months.
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Recourse actions assumed to occur during the lapses of six-months in each

scenario are: a) alterations (i.e. slight increases or decreases) in the planned production

notated as X, b) purchases, Z;, or storages, Yims , Of final product, c) daily storages

of energy in the battery in the factory and warehouse , B]ésand anjs , respectivey, d) daily
sales of energy in the factory and warehouse, Qk_js and Qn_jS , respectively, and e) daily
purchases of energy from main grid in the factory and warehouse, ij-s and an-s ,

respectively . The decisions, Xims , Zims , Yinms » B}, Bis» Qs Qus » Qicand Qy; are
based only on the information known or realized up to the moment.

The stochastic parameters in Model 2 are also the product demand, D, and the
capacity factors, 4, that describe the daily utilization of the generation technologies

given the changes in wind speed and weather conditions at the geographical place the

system will be installed. These capacity factors directly affect the power output of the
WT and PV generation technologies at factories and warehouses, Pk; and Pncg ,

respectively.

The objective function in equation (4.27) is like equation (4.1). It minimizes the
total expected cost incurred to produce in the factory, transport finished goods between
the factory and warehouse, purchase finished product, if needed, hold inventory in the
warehouse, and acquire and maintain RE generation technologies and batteries. However,
this objective function also includes the expected cost of doing slight alterations to the

production decisions taken at the two-predetermined decision times t, the expected profit
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of selling any extra energy generated in the factory and warehouses that ends not being
stored in the batteries and the expected cost of any purchases of energy to the grid.

Constraints (4.28) and (4.29) are the production-demand balance equations for the
production periods comprised in the first decision stage and the ones comprised in the
second decision stage, respectively. They ensure that on-hand product availability plus
any purchased product equal demands plus any leftover inventory. Because a production
decision is done for the lapse of 6 months, it needs to be divided by the number of
production months in the decision stage. Constraints (4.30) and (4.31) are the resource
constraints in the months comprised in each decision stage, respectively. They guarantee
that for a particular resource type, the sum of resources used to produce all the products
does not exceed the total amount of available resource in production period m.

Constraints (4.32) and (4.33) are the non-anticipativity constraints which ensure
that the production (the one originally decided and its alterations), inventory and
purchasing decisions made in a particular decision period t, under a scenario s are
influenced only by previous decisions and outcomes. These constraints guarantee that in
decision period t, all scenarios in the scenario tree (see details about scenario tree in
Section 5.4) branching out from the same decision node will have the same decisions.
Constraints (4.34) and (4.35) are the sign constraints for number of products to produce
in each six-months lapse, amount of inventory and product purchased.

Constraints (4.36) and (4.37) are the energy balance equations for the factory for
the first day in the first decision period and for the remaining days, respectively. They
show that in each day and under a particular scenario, the sum of energy: (a) consumed

by the factory in production and electric vehicle transportation, (b) needed to satisfy a
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base load, (c) stored in the battery and (d) sold , must be equal to the RE generated in
conjunction with the energy stored in the battery from the previous day and any energy
purchased from the grid. Constraints (4.38) and (4.39) are the energy balance equations
for the warehouse for the first day in the first decision time and for the remaining ones,
respectively. They resemble to constraints (4.36) and (4.37) by showing that in each day
and scenario, energy needed to store product in the warehouse, drive empty vehicles
back to the factories and satisfy the warehouse base load, plus energy to be stored in the
battery and to be possibly sold must be equal to the RE generated in conjunction with
the energy stored in the battery from the previous day and any energy purchased from the
grid.

Constraints (4.40) and (4.41) are also non-anticipativity constraints related to
daily energy decisions. They ensure that for those scenarios that look the same up to a
particular decision time t, the daily decisions about energy stored in the battery, to be sold
or purchased to the grid are influenced only by previous decisions and outcomes. Thus,
these constraints ensure that if any two scenarios, s and s’, are identical up to a decision
stage then all the decisions made for all the previous stages and the current one must be
identical.

Constraints (4.42) to (4.45) ensure that the daily energy stored in (or discharged
from) the battery in the factory and the warehouse should not exceed the battery
capacities. The constraints are given for the first day in the first decision stage and for the
remaining days. Constraints (4.46) and (4.47) require that the generation capacity at the
factory and warehouse be non-negative. However, such generation is capped by

parameters representing the maximum power capacity of each generation type.
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Constraints (4.48) and (4.49) state that the initial state of the battery at the warehouse and
factory is fully charged. Constraints (4.50) and (4.51) require that the battery capacity to
be adopted by the factory and warehouse does not exceed a certain pre-defined maximum
capacity. Similarly, constraints (4.52) and (4.53) require that the energy sold at the
factory and warehouse be capped by a pre-defined value. Constraints (4.50) - (4.53) were
added mainly to avoid any unboundedness in the numerical experiments performed.
Constraint 5.54 says that variables representing slight production alterations (i.e.
increases or decreases to the monthly production amount decided in each stage, which
can be done in each production period) have lower and upper limits and are unrestricted

in sign.
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5. ESTIMATION AND REPRESENTATION OF THE UNCERTAIN
PARAMETERS OF THE MODELS
This Chapter is divided into four sections. The first one presents the estimation of
the product demand used in the models. The second describes the procedure used for the
estimation of WT capacity factors. The third one presents the estimation of the PV
capacity factors and the fourth provides further details about the scenario tree used to

represent the uncertainty in the models.

5.1 Estimation of product demands

For the implementation of Model 1 presented in Chapter 4, the size of the set of
different products to produce, I, is assumed equal to 2, the size of the set of production
periods, T, is also assumed equal to 2 and each period, t, corresponds to a month. For
Model 2, 1, is assumed equal to 2, the size of the set of production periods, M, is assumed
equal to 12, and each production period, m, corresponds to a month.

Monthly product demands (in number of items) in Model 1 and Model 2 are
assumed to follow discrete uniform distributions with low (L) and high (H) parameters,
usually notated as a and b in probability books. The values for the low and high
parameters of the uniformly distributed monthly product demands used in Model 1 are
listed in Table 11. These values are synthetic but resemble to the ones found in industry.

The author of this thesis found that it is practical to assume that the monthly
product demand follows a uniformly distribution in settings manufacturing new products
since minimum and maximum parameters of the products are easy to estimate (Wanke,
2008). In these settings, the uniform distribution is appealing to use because managers in

absence of historical data for the demand of the product can subjectively assume with not
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too much difficulty the minimum and maximum values for the demand without having to
wrongly compromise with strong assumptions about a more elaborated probability
distribution and the values for its parameters. Such case relates very well to the ones
portrayed by Model 1 and Model 2 in this thesis since the models represent practical
situations where stakeholders are opening production systems and considering to start by
the first time both the production of their products and the integration of renewable
energy. Besides, in small manufacturing settings with a single or very few customers, like
in some thermo-electrical companies in the Texas area, is also applicable to assume that
the monthly demand is not exactly known but the probability of each outcome occurring
over a given interval is equally likely.

Table 11. Discrete uniform distributions used for the generation of product demands

Product Period 1 Period 2
1 U [800, 1600] U [800, 2000]
2 U [800, 1800] U [1500, 2100]

In Model 2 the same distributions presented in Table 10 were used. For months 1-
6 the distribution used is the one under the column Period 1 and for months 7-12 the

distribution used is the one under the column Period 2.

5.2 Estimation of WT capacity factors

Standard wind speed measurements are typically recorded at heigh hy=10m above
the ground by automated surface observing systems (ASOS) (Weather underground,

n.d.). Since modern WT is typically installed at a height h=80m or above, equation (5.1)
below is used to extrapolate the wind speed at height h, notated as Vj, , based on the near

the ground measured wind speed (v, ). In equation (5.1), the Hellman exponent (K )
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considers seaside location, air stability and terrain shape. The range for this exponent is

between 0.14 (i.e. 1/7) and 0.37-0.203log v,, as presented by Spera and Richards, (1979).

v, =V, (ﬂ)"; for h>h, (5.1)

The power output of a wind turbine (WT) can be determined from its power curve
(Novoa and Jin, 2011). Figure 3 depicts a typical cubic WT power curve. It shows the
relation between the wind speed, v (generally notated as x in the figure) and the WT

power output.

Rated power

|
E]

__________________________ , _ Shut down

Non-linear

Power output

X

0 v, v, v, wind speed

(m/s)
Figure 3. A WT power curve

The WT power curve is developed based on the kinetic theory of the air flow
dynamics (Thiringer and Linders, 1993). The WT power curve has four phases. The first

one is the standby phase. In this phase, power is not generated because the wind speed, v

is below the minimum needed to operate the turbine (V <V,). The next phase is the non-
linear production phase (V, SV<V,). In this phase, power is proportional to the cube of

the wind speed. In the rated power phase, (V, <V <V,), the power output is equal to the
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rated power, Pm. In the cut-off phase, (V> V;), no power is generated since the turbine

needs to be shut down for protection purposes.
The theoretical power captured by the blades of a WT can be computed using

equation (5.2). This equation permits to convert any wind speed v into electrical power
P, (V). In equation (5.2), 7., IS used to describe the conversion rate from wind power to
electrical power, p is the air density, and A is the area covered by the WT blades. The

theoretical value for 77, is 0.5926, but the actual value could be lower between 0.3 and

0.5.
0 V<V,V >V
P,(v) =10.57,, pAV v, <V<v, (5.2)
P, vV, SVV,

In this research, the power is computed by the author of this thesis using: (1) wind
speed data collected from ASOS and reported by Weather Underground (n.d.) for a

couple of cities selected and (2) the cubic model given by equation 5.3 . The values for

V| are computed as in equation (5.1) at heights h = 80 and h = 90m , which are typical

heights of a WT of 1.5-3 MW. The assumed values for the Hellman exponent or k-value
are 0.27 and 0.37, respectively. OnceV}, is computed, its value is plugged in the quadratic

model given by equation (5.3) to estimate P, (v,) in terms of the parameters, v , vr, and

Pm. The assumed values for vr and Pm are 12 m/s and 1MW, respectively.

0 V<V, V>V
P,(v,)={P,(v/v,)’ v, <v<v, (5.3)
P, vV, SVSV,
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The capacity factor (A ) of a WT s the ratio of the actual power generated by the
WT over a period of time and the rated peak power Pm over the same period. Thus A is
a fraction between zero and one. Assuming the wind speed over a period of time is in the
non-linear production phase, v, < v, < v, , A can be estimated using equation (5.4). If
the wind speed is in the standby phase the capacity factor will be zero and if it is in the

rated production phase the capacity factor will be 1.

,,  Power in non-linear production phase _ P G)’ (5.4)
Maximum generation capacity P,

Hourly wind speed data available from Weather Underground (n.d.) in years
2013, 2014 and 2015 for the cities of Amarillo and Phoenix, USA was collected by the
author of this thesis and some other students at Texas State University and used to
compute three different sets of daily WT capacity factors. The 3 sets of daily capacity
factors used in Model 1 were for a lapse of 59 days (i.e. first two months of the year)
while the 3 sets used for Model 2 were for a lapse of 365 days. The sets used in each
model are labeled with the consecutive numbers 1, 2, and 3. Appendix A, Tables A1.7 to
Al1.12 present the sets of 365 daily WT capacity factors after averaging the hourly
capacity factors computed for the cities of Amarillo using equation (5.4). The factors
computed in the city used 26,280 observations (365 daysx24 hours/dayx3 sets) for the
wind speed profile.

Based on the study in Lantz et al. (2019), there are some opportunities to increase
the power output of WT installed in windy cities centrally located in the US if increasing

the turbine tower height from the current 80m to values in the range >80-160m. Because

Amarillo is a windy city centrally located in the U.S., in this study, the values for, V, are
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computed assuming an updated but still conservative turbine tower height, h, of 90m and
a Hellman exponent of 0.37 since the airflow is more dynamic if the turbine is installed at
a higher height. For the city of Phoenix, the assumed values for the turbine tower height,

h, and the Hellman exponent, k-value, were kept as 80m and 0.27, respectively.

5.3 Estimation of PV capacity factors

The photovoltaic effect permits a solar PV to convert the solar radiation into
electricity. Tables 12-13 provide the notation for the relevant solar PV generation
parameters and variables used to estimate the PV capacity factors (i.e. utilizations). The
tables also provide a brief description of the meaning of each parameter or variable. Note
that one radian (rad) equals 180/ z or 57°.

Table 12. Parameter and variables used to compute the solar PV generation

Parameter or variable Notation | Description

Date d Input parameter representing the day of
the year, de{1, 2, ..., 365}

Local time (hour) t Input parameter. te {1, 2, ..., 24}

Declination angle (rad) ) Variable depending on the date. It can be

computed as follows:
& =0.40928sin(27(d + 284) / 365)

Latitude (rad) ¢ Variable that depends on the geographic
location considered
Solar hour angle (rad) W Variable related to local clock hour.

Starting from w = -z/2 at 6am, it increases
15° every hour until reaching w = /2 at
6pm. Knowing t (in hours) w can be
computed by setting aside for w in the

expression: ¢ _qp, @
1

and then converting degrees to rad

Sun zenith angle (rad) ¥ Angle between sun ray and the normal to
the ground. This variable is computed as:
COS y = COS O COS ¢ COS @ +SiN oSin ¢

Direct solar beam incident on la(t) Variable that under clear sky condition it

the ground at time t on day d is computed as in equation (6.5)

(W/m?)

Surface azimuth angle (rad) a Input parameter. If the panel is facing
south, o=0
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Table 13. Continuation of parameter and variables used to compute the solar PV

generation

Parameter or variable Notation | Description

PV tilt angle (rad) B Input parameter describing the angle
between PV and ground surface

PV incident angle (rad) 1] Angle between sun ray and the normal to
PV surface. This variable depends on &,
@, B, aand w and is computed as in
equation (6.6)

Sunrise hour angle (rad) Wrise Variable computed as function of §, ¢,
and g using the following relation:
C0S(—,,) = C0S(-a,, ) =—tan(¢— B)tan &
It is as perceived by the PV. Thus, a PV
system has no power output when the
solar hour w<arise OF > Wxet

Sunset hour angle (rad) et See comment in previous entry

Irradiance incident on the PV Ipv(t) Variable that depends on the PV tilt and

surface at time t on day d incident angles computed as in equation

(W/m?) (6.7). Its value is computed only when the
solar hour @™ mrise OF W< @xet

Weather condition at local Wi Random variable ranging from 0 (Snow)

time (hour) t to 1 (Clear) as shown in Table 13

PV size (m?) A PV module area

PV efficiency n Typically, it is between 15-25%

PV temperature (°C) To Solar PV operating temperature

PV output (W) Pey(t) PV power depending on the weather
condition at time t computed as in
equation (6.8) and only if the solar hour
falls in @>@rise OF W< et

Rated capacity of a PV system | pMax Maximum output power of the PV panel

(W) PV considered

PV Capacity factor y) Depends on the actual output of the PV

PV system in comparison to the maximum

PV rated capacity

Total number of generation T Depends on the sunrise and sunset hour.

hours In the equator, it is 8760/2=4380 h

The steps shown in the flowchart in below, the equations above the flowchart,
and hourly data collected from Weather Underground (n.d.) by the author of this thesis
and other students at Texas State University for the weather conditions (i.e. clear sky, ...,
snow) in the US cities of Amarillo and Phoenix for years 2013, 2014 and 2015 were used

to compute the hourly power and three sets of daily PV capacity factors. The decision of
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using three different years was to agree with the procedure performed for the estimation
of the WT capacity factors in the previous sub-section. Table 14 shows w;, the numerical
value to assign to each of the nine most frequent weather conditions that a geographical

location can be at time t. This value is one of the final inputs (i.e. parameters) needed for

computing the PV output P, (t) as shown in equation (5.8).

Table 14. Numerical values of different weather conditions

Condition No. 1 2 3 4 5 6 7 8 9
Description Clear Sky SC PC MC Overcast Rain Fog Storm Snow
W 1 07 05 03 0.2 0.1 0.1 0.1 0
_ (cosy) "8 27z(d - 4)
1, (t) —1370><(0.7 )(1+ 0.034cos(T (5.5)
cos @ =sinosin(¢- ) +cosocos(¢- ) cosw (5.6)
1, @© =10 [cos¢9+0.1[1—£jj (5.7)
7Tc
P, (t) =W, Al , (t)[1-0.005(T, — 25)] (5.8)
RPN S P
PV Ppr:]/axT “— PV (5,9)
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Collect a large sample of hourly weather conditions from
Weather Underground for the selected cities

Calculate the direct solar beam incident on ground at
time tin day d using eqgn. (5.5)

v

Calculate the PV incident angle as in eqn. (5.6)

Calculate the actual solar irradiance on PV on timetin
day d using eqn. (5.7)

Calculate the actual output of PV system at time t in day
d due to actual weather condition, Wt using eqn. (5.8)

Calculate the capacity factor of the PV asin eqn. (5.9) 1

Figure 4. PV capacity factor calculation flowchart

The steps in the flowchart in Figure 4 resemble the ones in Tao et al. (2010) and
in the 3-step PV generation model reported in the Appendix A of the research paper by

Pham et al. (2019). In the computations of the capacity factors for the cities of Amarillo

and Phoenix, P was assumed 160 W, the efficiency, 7, as 0.2, the PV size A equal to

1m? and the solar PV operating temperature, To, as 45°C. In Appendix A, Tables Al.1 to
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AL.6 present the three sets of 365 daily PV capacity factors resulting after using equation

(5.9) and averaging the hourly PV capacity factors for each day for the city of Amarillo.

5.4 Scenario tree representation used in the MSSP Models

The scenario tree methodology presented in Birge and Louveaux (1997) is used to
build up a particular scenario three for the Model 1 considering 2 products, 2 demand
levels and 3 vectors or sets of daily capacity factors (i.e. averaged over the 24-hours
observed in each day) for 2 different production periods (i.e. months). Thus, there are
(2*2*3)? = 144 scenarios assuming that the demands for the products are independent.
The scenario tree is presented in Figure 5. The first node provides details about the first-
stage decisions. These decisions are the amount of product i to produce in the first period,
the size of the WT and the battery to install. The 12 arrows that emanate from the first
node represent the different scenarios for the first-month demand of each of the two
products and for the daily capacity factors realized. For instance, the label LL1
corresponds to a scenario where both products to be produced have a low monthly
demand and the daily WT and PV capacity factors are those estimated with the first year
(i.e. year 2013) of hourly wind speed and weather conditions collected from Weather
Underground (n.d.) considering only two particular months of the year (i.e. July and
August).

The 12 nodes near the middle of the scenario tree in Figure 5 coincide with: (1)
second-stage recourse actions to take (i.e. amount of each product to store in inventory,
amount of each product to purchase, amount of energy to store daily in the battery,
amount of energy to sell or amount of energy to purchase from the grid) if the given

scenario is realized and (2) the second-stage production decision for how much of each
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product to produce in the second period given the realization of the demand in period 1
and the second-stage recourse actions taken. In the same way explained for the first
node, now 12 arrows emanate from each of the nodes near the middle of the figure. They
represent different scenarios for the second-month demand of each of the two products
and for the daily capacity factors.

The last circles in the scenario tree represent the third-stage recourse actions to
take once the scenarios for product demands and capacity factors for the second period
are realized. The last column in in Figure 5 labels all the 144 scenarios and exemplifies
how each scenario is defined as an ordered pair of the realizations for the random
parameters in first-and second period. Thus, the last scenario labeled as (HH3,HH3)
corresponds to the case in which the demand for both products was high in both
production periods and the daily capacity factors realized correspond to the ones
computed with the hourly wind speed collected in the last year (2015 or data set 3).

The scenario tree for Model 2 also has 144 scenarios and it is very similar to the
one in Figure 5. The major difference is that the number of production periods (i.e.
months) between decision stages is equal to 6 (instead of 1 month). Thus, the presentation

of such tree is omitted for brevity purposes.
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Figure 5. Scenario tree for the multi-stage stochastic model researched
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6. NUMERICAL EXPERIMENTS
This chapter is divided in two main sections. The first one presents the numerical
values used for the input parameters in the model experimentation. The second one
presents and discusses numerical results from experimenting with the models presented

in Chapter 4.

6.1 Values for the input parameters

Tables 15 -17 present the values for the parameters used for solving instances of
the multi-stage stochastic programming (MSSP) models in Chapter 4 and their units. The
numerical experiments assume wind turbines (WT) and solar photovoltaics (PV) as the
renewable energy (RE) generators to adopt. The experiments also assume the industry
adopting the microgrid system has only one factory located in the city of Amarillo, Texas
and one warehouse located in the city of Phoenix, Arizonaand thus those parameters
using the subscripts k and n have those subscripts equal to 1.

Values assumed for costs of production, transportation, purchasing, holding and
for the amount of resources (i.e. labor and machine hours) required per product, total
amount of resources available per period, and energy consumed per product are synthetic
for both models but they resemble the ones for industries where production costs are not
too high but energy costs are high such as the air separation or the sea water desalination
industries. These industries are very energy intensive; an example is cryogenic air
separation which is one of the most effective and efficient ways of separating air
components such as oxygen, nitrogen and more (Misra et al. 2018). For the seawater
desalination sector, which is also energy intensive, unit production cost has significantly

decreased due to technological progress (Gao et al. 2017). Anderson et al. (2017), Pham
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et al. (2019), and data available on-line about renewable energy costs disseminated by
renewable energy research laboratories gave insights for the assumed values for the
capital cost of the battery and its capital recovery factor and for the capital cost, recovery
factor, and maintenance and operational (M&O) costs of WT and PV. Similarly, the
values assumed for the weight of the product and the base energy loads in factory and
warehouse are also a result of consultation on the web.

Table 15. Values for the parameters of the MSSP models

Notation Value Units
O. Period $/item
it Product 1 2
1 5 5
2 5 5
] Period $/item
Hi Product 1 2
1 26 26
2 26 26
P All the 144 scenarios in the scenario tree in Figure 5 are assumed N/A
s equally probable for Model 1 and then ps= 1/144 = 6.94x103 Similarly,
the 144 scenarios in Model 2 are also equally probable.
hit — - Period 5 $/item/period
roduct
1 5 5
2 5 5
0. Period $litem
it Product 1 2
1 1000 1000
2 1000 1000
@, 0.08581 N/A

The factor listed above converts a present sum of money to annuity and

is computed as: r ,where r is the annual interest rate and h is the
1-@+n)™

number of years during which a present cost is paid off. The assumed

values for r and h are 7% and 25, respectively.

a, Generation technology (g) $IMW
WT PV
15M M
0.1424 N/A
Po Formula to compute the factor above is the same used to computey,

However, here the assumed annual interest rate r is 7% and the number
of years h is 10.
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Table 16. Continuation of values for the parameters of the MSSP models (1)

Notation Value Units
a 520,000 $/MWh
b
b WT PV $/MWh
g 12 12
Cy WT PV $/MWh
0 0
r Values vary in each model as shown below: h/year
9 Model 1 Model 2
WT 1,488 744
(i.e. 62 days x 24h/day) | (i.e. 62 x 12h/day)
PV 8,760 4,380
(i.e. 365 days x 24h/day) | (i.e. 365 x 12h/day)
Ty Generation technology h/day
WT PV
24 12
eip Product MWh/item
1 2
0.9 1.2
ef Product MWh/item
[}
1 2
0.01 0.01
q 1.19x107 MWh/kg/km
v See detailed explanation for the computation of the parameter above
in the glossary after the appendix section
d 1210 km
kn A similar value as the one above is assumed for dnk
i 1 trip/day
m, 2630 kg
o) 24 h/day
2 MW
Lks
7 MW
Lns
mi Product kg/item
1 2
10 15
|\] | Model 1 =62 days
Model 2 = 365
J Month days
t July (1) August (2)
31 31

The above information is with respect to Model 1. Model 2 has the

remaining 12 months of the year.
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Table 17. Continuation of values for the parameters of the MSSP models (2)

Notation Value Units
D. Period 1 Period 2 Items/period
ikts Product | Low (L) | High (H) Low (L) | High (H)
1 870 1560 870 1990
2 860 1790 1530 2060
Explanatory paragraph is on first paragraph below Table 18.
W Period h/period
krt Resource 1 2
1 119,040 | 119,040
2 617,520 | 617,520
Same amounts for the 12 production periods in Model 2
V. Resource h/item
ikr Product 1 2
1 16 100
2 24 200
B™ 300 MWh/day
k
B 300 MWh/day
n
Pkr;ax 150 MW
pngax 150 MW
ﬂgjs See the values tabulated for the capacity factors in Appendix A. N/A
9 24 h
o, Factor to compute the amount of product in inventory up to day j in day
t period t requiring energy in the warehouse
QMax 2400 MWh/day
kjs
Max 2400 MWh/day
kns
u 130 $/MWh
u 35 $/MWh

As mentioned in Chapter 5, the scenario trees for the implemented models (i.e.
Model 1 and Model 2) have 144 scenarios (i.e. |S| = 144) to realize the uncertain
parameters. These scenarios result from considering 2 products with 2 demand levels,
low (L) and high (H), and 3 sets of daily WT capacity factors over 2 production periods.
Thus, 144= (2x2x3)2. If ignoring the capacity factors, there are 16= (2x2)? different

demand scenarios that result from realizing demand values for the two products in the
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two periods for Model 1 and in the two decision periods for Model 2 even if they are of
length 6 months each. For instance, in Model 1 the scenario (HL, LH) means that for the
first period the demand for product 1 is high and the demand for product 2 is low while
for the second period these demands are low and high, respectively. Similarly, in Model 2
the scenario (HL, LH) means that for the first 6 production periods the demand for

product 1 is high and the demand for product 2 is low while for the next 6 production

periods these demands are low and high, respectively. The entries for D, in Table 16

correspond to 4 values chosen to represent the low demand (L) and 4 values selected for
the high demand (H) of the two products in the two periods. These 8 realized values serve
as the input to construct the 16 demand scenarios. The particular (L) and (H) values
presented in Table 16 resulted from generating large random samples for the discrete

uniform distributions in Table 11 using Python 3.7 and choosing the lowest and highest

generated values. Following the same procedure, the values for D,,, were obtained.
To simplify the numerical experiments, the values for &, , f, hit and O in the
models are assumed not to vary by product or by period. The numerical values for 0,
and 6, in Model 2 are assumed equal and they are the same as the one for 6., in Model
1. Similarly, the values for t;and 4, in Model 2 are assumed equal and the same as the

one for 4 in Model 1. However, the demand Dikts and the energy consumed per product

in the factory, e , vary by product. To avoid any arbitrage, the cost of purchasing

product to other vendor Oy is assumed very high in comparison to the cost of

manufacturing, transporting and holding the product. The selling price of the products,
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which is not part of the model, need to be higher than those costs to make the business
competitive. Given that the production system is not in place, it seemed reasonable to

assume a scarce knowledge about the future and to keep assuming equal probabilities for

the scenarios, Ps. The incentives of the PV were assumed as zero to take a conservative

approach. As in practice, the current incentives for WT are considered nonexistent.

The mass of the electric vehicles and the distances between factory and
warehouse and warehouse to factory were collected on the Internet. It is assumed that the
company has large trucks to transport the products in such a way that only one trip per
day is necessary between the factory and the warehouse.

Note that the value for the cost of purchasing energy, u”, is necessarily assumed
greater than the energy selling price, u. One hypothesis is that if the actual cost of the
battery per MWh of energy generated ends not too high, this would incentive prosumers
to store energy to avoid purchasing it and to get some revenue from selling any extra
energy. However, if the actual cost of the battery per MWh of energy generated is too
high, the option of purchasing energy to the grid would be preferred even if keepingu™ >
u. Another hypothesis is that to balance the cost of the battery per MWh of energy
generated the prosumer may need to significantly increase the installed WT and PV
capacity, sell the extra energy generated and avoid any purchasing. These hypotheses will

be validated in the experiments in the remaining of this chapter and in Chapter 7.

6.2 Computational results

The MSSP models presented in Chapter 4 correspond to the extensive forms (EF)
of multi-stage stochastic programs and are linear as it can be appreciated from observing

that the objective function and all the constraints are linear on the decision variables.
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Besides, the number of decision variables and constraints were counted by the author of
this thesis. Model 1 has 52,424 decision variables and 86,816 constraints. Model 2 has
326,024 decision variables and 653,206 constraints. Both Models were coded using the
AMPL mathematical programming language (Fourer et al., 2003) and solved through
AMPL 3.6.1 using the Cplex 12.10 solver. The input data file for Model 1 was generated
in two ways: by inputting the values directly in a text file and by writing code in Python
3.7 to generate such data file. The first way was used to solve the problem in AMPL and
the second one was fun and useful, even if itis not entirely necessary, to solve the
problem using the AMPL Python API, the AMPL Application Programming Interface to
Python. Model 2 was solved only in AMPL.

The numerical experiments were conducted using a Dell Optiplex 990 desktop
(3.4 GHz intel i7 2600 processor, 16GB RAM, 500GB hard drive with a 64-bit windows
10 operating system) and a HP pavilion x360 convertible (2.20GHZ Intel® Core™ i3-
8130U processor, 8GB RAM with a 64-bit windows 10 operating system). Following
some statistics regarding computational times of the models which were collected using
AMPL build-in functions.

Experiment in Model 1 had an average AMPL user time of 0.203 CPU seconds
and a total solve time (solve system time plus solve user time) of 1.6092 CPU seconds on
the HP pavilion x360. Experiments in Model 1 had, an average AMPL user time of 0.203
CPU seconds and a total solve time of 4.438 CPU seconds on the Dell Optiplex.
Experiments in Model 2 had an average AMPL user time of 1.406 seconds and a total
solve time of 27.6562 CPU seconds on the HP pavilion x360 while they had an average

user time of 1.391 CPU seconds and a total solve time of 55.031 CPU seconds on the
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Dell Optiplex. All these times seem very appealing for the current and future users of the
models. The AMPL user time is defined as the user CPU seconds used by the AMPL
process itself (Fourer et al., 2003). The solve system time is defined as the operating
system CPU seconds used by the latest solve command, including reading and writing
files. The solve user is the time spend by the latest process outside the operating system.
The total solve time (solve system time plus solve user time) seems a comprehensive way
to appraise the models computational time as seen from the definitions. However, it
seemed interesting to also access the GAP between the AMPL user time and the total
solve time. This is the reason for collecting these two types of built-in timing functions.

Even if the objective function of both models is to minimize the total expected
annual cost (denoted as expected annual cost in the reminder of this document), the
results in this chapter also show the levelized cost of electricity (LCOE). It is defined as
the needed constant price of electricity that permits the project to reach a break-even
point over the lifetime of the power plant (i.e. or the power generation technology)
(Walraven et al. 2015). LCOE can be seen also as the cost of producing one MWh of
energy and its units are $/MWh. LCOE is used in industry as a main indicator to decide if
a renewable energy project is attractive because it permits to compare the electricity costs
for a system vs. the one from using traditional sources of energy. The goal is to obtain
LCOE values in the range of $50-$200 per MWh because the actual cost of traditional
sources of energy falls in such range.

The remainder of this section is divided into 7 subsections. Subsection 6.2.1
presents a formula to compute the LCOE for the case in which the system behaves as a

non-prosumer of energy and an updated LCOE formula for the case in which the system
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behaves as prosumer. Subsections 6.2.2 — 6.2.7 present the results from solving several

cases for the two MSSP models. For all the cases solved, the recourse action of

purchasing product (i.e. vendor supply) in cases of product shortage was dropped from

the Models. Table 18 describes the cases solved with Model 1 and Table 19 the cases

solved with Model 2

Table 18. Cases solved for Model 1 (two-months planning horizon)

Subsection | Case

6.2.2 Production planning (PP) system allowing production and storage in the factory without
considering any energy aspects

6.2.3 PP system allowing production and storage in the factory considering energy is purchased
from the grid

6.2.4 PP system allowing production and inventory storage in the factory, considering power is
generated from WT and PV, battery can be installed, extra renewable energy is sold, and
energy needed can be purchased (energy prosumer)

6.2.5 PP system having production in the factory and inventory storage in a separate warehouse,
considering power is generated from WT and PV, battery can be installed, extra renewable
energy is sold and energy needed can be purchased (energy prosumer)

Table 19. Cases solved for Model 2 (one-year planning horizon)
Section | Case
6.2.6 PP system allowing production in the factory and inventory storage in a separate warehouse,

considering power is generated from WT and PV, and battery can be installed but any extra
energy is spilled (island system).

6.2.7

PP system having production in the factory and inventory storage in a separate warehouse,
considering power is generated from WT and PV, battery can be installed, and extra
renewable energy is sold and energy needed can be purchased (energy prosumer)

6.2.1 Levelized cost of electricity (LCOE) Computation

The levelized cost of electricity (LCOE) for the island systems can be calculated

using equation 6.1, which resembles the one given by Shea and Ramgolam. (2019)

LCOE =

Total cost of energy production ($)

Total energy produced (MWh) (6.1)
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In (6.1), the total cost of energy production is the sum of RE equipment and
battery installation costs, RE operation and maintenance costs, and RE carbon credits
over the entire production period considered. The total energy production is the total
energy generated in the same period by the RE technologies.

The LCOE for the prosumer cases can be computed as shown in equation (6.2)
below. In (6.2), the numerator is the sum of the cost of RE production and the cost of
energy purchased. The denominator of (6.2) is the sum of the total energy produced and
energy purchased. In equation (6.2), the total energy sold is already part of the total
energy produced, hence no extra term in the denominator of this equation needs to be
considered.

Total cost of energy production ($) + Total cost of energy purchased ($)
Totalenergy produced (MWh) + Total energy purchased (MWh)

LCOE =

(6.2)

6.2.2 Production planning model without energy aspects and no product purchase

The first numerical experiment was performed on a very simplified instance of the
MSSP Model 1 presented in Chapter 4 in which: (1) production and inventory storage
happen in the factory (i.e. there is no warehouse), (2) final product cannot be purchased
from vendors and (3) energy aspects are not considered. Note that this model is still a
stochastic one since final product demands and weather conditions remain random. Table
19 summarizes the results from running this instance, which served as a benchmark to

check the production results generated by the other cases researched for Model 1.
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Table 20. Results production planning Model 1 with no energy adopted

Expected annual cost ($) 41,109
Period 1 Period 2

Production (items): 3,350 3,240
Product 1 1,560 1,645
Product 2 1,790 1,595
Inventory (items): 810 825
Product 1 345 560
Product 2 465 265

Production of product 2 period 1

Production of product 2 period 2
= Inventory of product 2 period 1
m Inventory of product 2 period 2

m Production of product 1 period 1
Production of product 1 period 2

= Inventory of product 1 period 1

m Inventory of product 1 period 2

2,000
1,500

1,000

500
1 1 ™=

Decision varaible

No. of products

Figure 6. Production and inventory levels for the model without energy

From the input parameters for the product demand given in Table 17, it can be
assumed that the large variation in the demand for product 2 in period 1 explains why in
Figure 6 the amount of product 2 produced in period 1 (orange bar) is larger than the
amount for product 1 for the same period (first blue bar). The large demand variation for
product 2 in period 1 also led to a greater amount of inventory for product 2 (green bar) if
compared to the inventory for product 1 in period 1 (light blue bar). Besides, for both
products the inventory levels in the second period (dark blue and marron bars) do not
equal zero as it is the case for a deterministic model. It occurs because for each product,
the MSSP model must consider all the variation on the demands for the different

scenarios when planning for the optimal production amount to satisfy the expected
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demands and such optimal amount will lead to inventory accumulation after demands are
realized. Table 20 also reports that the minimum expected annual cost of the system

without considering energy aspects is $41,1009.

6.2.3 Model with main-grid energy purchase without product purchase

Table 21 presents the expected annual cost and LCOE results from running a
simplified case of the MSSP Model 1 which considers: (1) production and inventory
storage happen in the factory, (2) final product cannot be purchased from vendors and
(3) energy is purchased from a main grid source.

The expected annual cost of this case is $2,385,238 as shown in the first row. This
cost is significantly larger than the one in Table 20 because it considers the cost of
purchasing the energy from a main grid source at a cost of $130/MWh for production,
storage of products in inventory and satisfaction of a base load. Thus, for this model the
production and inventory costs are $41,109 and the cost of purchasing energy to the main
grid is $2,344,130.

Table 21. LCOE of Model 1 with main grid energy purchase in single factory

Expected annual cost $2,385,238
Period 1 Period 2
Product demand (items): Low | High | Average | Low High | Average
Product 1 870 1,560 | 1,215 870 1,990 | 1,430
Product 2 860 1,790 | 1,325 1,530 | 2,060 | 1,795
Production (items): Total: | 3,350 3,240
Product 1 3,205 | 1,560 1,645
Product 2 3,385 | 1,790 1,595
Inventory (items): 810 825
Product 1 905 345 560
Product 2 730 465 265
Total energy consumed by factory 18,032
(MWh/period)
Total energy cost ($ over a 59-days period) | 2,344,130
Total energy purchased from the grid 18,032
(MWh)
LCOE ($/MWh) $ 130 (i.e. 2,344,130/18,032)
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6.2.4 Model 1 without product purchase and with renewables in single factory (energy

prosumer)

Table 22 presents the objective function costs coefficients used in the models for
the energy related decision variables. The values for these parameters were given
previously in Tables 15-17. Since they apply for all the cases presented in the remainder
of this chapter, they are displayed in a succinct way again in Table 22.

Table 22. Costs coefficients for energy related decision variables

Item Notation in Value
Tables 14-16
Selling price ($Mwh) | U 35
Buying cost ($MWh) | y* 130
WT cost ($/MW - 1.5M
($MW) a, (9=1)
PV cost (/MW - M
( ) a, (9=2)
Battery cost ($/MWh) a, 0.52M

Table 23 presents the expected annual cost and LCOE results from running a
simplified case of the MSSP Model 1 which considers: (1) production and storage
happen in the factory, (2) final product cannot be purchased, (3) renewable power from
WT and PV, and energy storage system (i.e. battery) can be adopted and (4) energy can
be sold and purchased from the main grid and thus the industry performs as an energy
prosumer.

In Table 23, the expected annual cost of the model (first line) results from adding
the following costs: production and transportation, inventory, equipment installation,
maintenance and operation, carbon credits, and cost from purchasing energy. The revenue
from selling energy is also subtracted from the sum. The total annualized energy cost

(fourth line from bottom to top) only includes equipment installation, maintenance and
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operation, and carbon credits. The third line of the table from bottom to top, named total
energy cost for the factory over a horizon of two months, computes the energy cost
prorated for two months as follows:
Energy cost over two months = Total annual energy cost*(h in two months)/(h/year)

The energy cost is prorated for two months to compute the LCOE as fair as
possible by considering only the energy cost of two months vs. the energy production of
two months (i.e. it is the same as considering the energy cost for 12 months and
assuming the energy produced will be 6 times the one for two months). However, notice
that if the factory opens for production for only two months of the year, as it was really
the situation represented by Model 1, the fair computation of LCOE would be a ratio of
the annual energy cost divided by the energy production of two months.

Since the wind speed in Amarillo is high, the model opted to install WT capacity
of only 12MW. An explanation for this result is that the higher the wind speed in a
particular geographical location the less WT technology required. Besides, there was no
PV installation in Amarillo, due to the low PV capacity factor in comparison to the WT
capacity factor. Also, due to the option of selling the excess renewable energy generated
and the high cost of battery the model did not install a battery storage system. To
optimize the expected annual cost, the model chose to sell the excess energy generated at
any point in time and buy energy from the grid when the energy from the WT was not
able to satisfy the load. This model has an expected total annual cost of $2,015,120 and

an LCOE of $32/MWh.
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Table 23. LCOE of Model 1 with WT, PV, and battery in factory (energy prosumer)

Expected annual cost ($) 2,015,120
Revenue from selling renewable energy ($) 4,222
Cost of purchasing energy to the grid in (3$) 264,182
Total energy purchased from grid over time 2,032
horizon (MWh)
Total energy sold to grid over time horizon 121
(MWh)
WT capacity (MW) 12
PV capacity (MW) 0
Battery capacity (MWh) 0
Period 1 Period 2
Product demand (items) Low | High | Average | Low | High | Average
Product 1 870 | 1,560 | 1,215 870 1,990 | 1,430
Product 2 860 | 1,790 | 1,325 1,530 | 2,060 | 1,795
Production (items):
Product 1 1,560 1,645
Product 2 1,790 1595
Inventory:
Product 1 345 560
Product 2 465 265
Total annualized energy cost factory ($) 1,714,050
Total energy cost for the factory over a horizon | 291,154
of two months ($)
Total energy produced by the factory over a 15,506

horizon of two months (MWh)

LCOE ($/MWh)

32 (i.e. (291,154+264,182)/(15,506+2,032))

6.2.5 Model 1 without product purchase with renewables in factory and warehouse

(energy prosumer)

Table 24 presents the results from running a simplified version of the MSSP

Model 1 which considers: (1) production occurs in the factory and inventory storage

happen in the warehouse, (2) final product cannot be purchased , (3) renewable power

from WT and PV, and energy from energy storage system (i.e. battery) can be adopted in

both factory and warehouse and (4) energy can be sold and purchased from the main grid
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and therefore the system performs as an energy prosumer. Demands, production and
inventory are not reported in Table 24 because they are the same as in Table 23.
Because the wind speed in Amarillo (factory location) is higher than the one in
Phoenix (warehouse location), the model installed a WT at the Amarillo factory which
has a capacity of 7 MW. No WT was installed in Phoenix. For the warehouse, it ended
cheaper to purchase energy at a cost of $130/MWh than installing a WT at a capital cost
of $1.5M/MW. There was no solar PV system installed at any of the two locations. It is
because solar power at Amarillo was low and in Phoenix the PV system at a cost of
1M/MW ended being not cost efficient either. Besides, no battery was installed in the
factory or the warehouse because it resulted more cost efficient to buy energy from the
grid and sell the excess energy generated than installing a battery with a cost of
0.52M/MWh. This model has an expected annual cost of $2,712,550 and an LCOE of
$82/MWh, which is higher than the one computed in the previous subsection (i.e.
$32/MWh). The increase in total expected costs vs. the one in the case in the previous
subsection is explained by the amount of energy purchased and the additional energy

required due to the factory and warehouse being in different locations.
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Table 24. LCOE of Model 1 with renewables and battery in factory and warehouse

(energy prosumer)

Expected annual cost ($) 2,712,550
Factory Warehouse

Revenue from selling energy ($) 5,306 0

Cost of purchasing energy ($) 159,059 1,364,820

Total energy purchased from over time 1,224 10,499

horizon (MWh)

Total energy sold over time horizon 152 0

(MWh)

WT capacity (MW) 7 0

PV capacity (MW) 0 0

Battery capacity (MWh) 0 0

Total annual energy cost ($) 981,584 0

Energy cost incurred over a horizon of 166,735

two months ($)

Total energy produced over a horizon of 8,880 0

two months (MWh)

LCOE ($/MWh) 82
(i.e.(166,735+159,059+1,364,820)/(8,880+1,224+10,499))

6.2.6 One-year model (Model 2) without product purchase with renewables in factory and

warehouse (island)

Table 25 presents the results from running the MSSP Model 2 considering: (1)
production occurs in the factory and inventory storage happen in the warehouse, (2) final
product cannot be purchased, (3) renewable power from WT and PV, and energy from
energy storage system (i.e. battery) can be adopted in both factory and warehouse and (4)
energy cannot be sold and purchased from the main grid, in other words, extra energy

generated is either stored in the battery or spilled.
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Table 25. LCOE of one-year island model with renewables and battery in factory and

warehouse

Expected annual cost ($) 15,150,000
Factory Warehouse

Total energy spilled over time horizon (MWh) 34,083 42,909
WT capacity (MW) 8 0
PV capacity (MW) 32 59
Battery capacity (MWh) 16 17
Total energy cost ($) 6,105,030 7,657,260
Energy cost incurred over a horizon of one year ($) 13.762.290
Total energy produced over a horizon of one year (MWh) 91 780 ‘ 104 483
LCOE ($/MWh) 70 (i.e. 13,762,290/(91,780+104,483))

In this case, because the wind speed in Phoenix (warehouse location) is lower
than the one in Amarillo (factory location) the model installs a WT at the Amarillo
factory, which has a capacity of 8MW, and no WT at the Phoenix warehouse. For the
Amarillo factory, the model also ends needing to install PV of 32MW to meet the
production and the base load. For the Phoenix warehouse, the model prefers to install a
PV of 59MW and no WT. It is because in Phoenix it is more profitable to install a PV
over WT due to the stronger sunlight in comparison to wind speed. Since there is no
option of purchasing or selling energy, the model installed a battery size of 16MWh and
17MWh in the factory and the warehouse, respectively. These batteries permit to store
energy when the factory and warehouse generate more energy than required and to use
that stored energy when energy is in short supply from the generation technologies (WT
and PV). This model has an expected annual cost of $15,150,000 and an LCOE of

$70/MWh, which is cheaper than purchasing energy at a cost of $130.
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6.2.7 One-year (Model 2) without product purchase with renewables in factory and

warehouse (energy prosumer)

Table 26 presents the results from running the MSSP Model 2 after considering:
(1) production occurs in the factory and inventory storage happen in the warehouse, (2)
final product cannot be purchased , (3) renewable power from WT and PV and energy
from energy storage system (i.e. battery) can be adopted in both factory and warehouse
and (4) energy can be sold and purchased from an electricity company and therefore the
system performs as an energy prosumer.

Table 26. LCOE of one-year prosumer model with renewables and battery in factory and

warehouse

Expected annual cost ($) 7,052,410

Factory Warehouse
Revenue from selling energy ($) 21,350,700 466,571
Cost of purchasing energy ($) 17,210 807,942
Total energy purchased over time 132 6,215
horizon (MWh)
Total energy sold over time horizon 610,020 13,331
(MWh)
WT capacity (MW) 105 0
PV capacity (MW) 0 39
Battery capacity (MWh) 0 2
Total annual energy cost (%) 22,276,940 4,383,692
Energy cost incurred over a horizon of 26,660,632
one year ($)
Total energy produced over the horizon | 667,934 68,875
period (MWh)
LCOE ($/MWh) 37 (i.e.

(17,210+807,942+26,660,632)/(132+6215+667,934+68,875)

In this case, because the wind speed in Phoenix (warehouse location) is lower
than the one in Amarillo (factory location) and Phoenix generates more sunlight than

wind speed , the model installed only WT at the Amarillo factory and only PV in the
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warehouse at Phoenix. The model adopted a very large WT in Amarillo because it ended
very profitable to generate energy and sell to an electricity company while keeping the
energy purchased from the company low over the one-year period. In the warehouse in
Phoenix, some profit was also generated from selling energy to the electricity company to
absorb near 10% of the PV annualized purchasing and maintenance cost. Such percentage
is the ratio of $466,571 revenue from selling energy in the warehouse and $4,383,692
annualized cost of PV and battery. Battery capacity in both locations was close to zero
because with a battery cost of $0.52M/MWh, it ended better to sell energy at a price of
$35 when the factory or warehouse generated excesses instead of storing them in a
battery. Also, it ended more advantageous to purchase energy at a cost of $130 when the
factory or warehouse could not meet the load with their onsite generation. This model has
an expected annual cost of $ 7,052,410 and an LCOE of $37 which is cheaper than
considering only purchasing energy at a cost of $130.

In conclusion, from comparing the results for the annual models presented in
subsection 6.2.6 and 6.2.7, the prosumer model is more cost-efficient (LCOE $37) than
the island one (LCOE $70) because even if the prosumer model installs a lot more WT
capacity, it can sell most of the generated energy and it earns revenue to compensate
especially for the large WT installation costs at the factory. The island model is forced to

satisfy its energy load without an option of generating revenue with energy sales.
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7. RESULTS DISCUSSION AND COMPARISONS

Sections 7.1, 7.3 and 7.5.1 compare the results from solving instances of the
multi-stage stochastic programming (MSSP) Model 1 (two-month model presented in
Section 4.1) assuming no final product purchase option to the ones resulting from doing
other relevant modifications, such as dropping from the system the energy prosumers
behavior (Section 7.1), decreasing the capacity factors of the generation technologies
(Section 7.3) and removing the assumption of stochastic parameters when solving the
model (Section 7.5.1).

Sections 7.2, 7.5.2 and 7.6 present also relevant results arising from further
experimenting with Model 2 (one-year model presented in Section 4.2) assuming no
product purchase option. Section 7.2 compares the results of considering the system as
an energy prosumer vs considering it as an island one. Section 7.5.2 presents the results
from dropping the assumption of stochastic parameters for the model. Section 7.6
presents a design of experiments (DOE) to identify about the most critical factors
affecting the model expected total cost. The cost of purchasing energy from the main grid
is assumed to be $130/MWh and the price of selling energy to the grid is assumed to be
$35/MWh as in Chapter 6. The columns of Tables 27 and 28 below describe the model

instances studied in each section of this chapter.
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Table 27. Description of model instances studied

Model instance

Section 1 2 3 4 5

Section 7.1 Model 1 Model 1 Model 1 factory | Model 1 factory | Model 1 factory
factory with factory with | with renewable | and warehouse and warehouse
main grid renewable energy and no (F&W) with (F&W) with
energy energy and product renewable renewable
purchase and | no product purchase energy and no energy and no
no product purchase (island) product product
purchase (energy purchase purchase
(presented in | prosumer; (energy (island)
Subsection presented in prosumer;

6.2.3) Subsection presented in
6.2.4) Subsection
6.2.5)

Section 7.2 Model 2 Model 2 Model 2 factory | Model 2 factory | Model 2 factory
factory and factory with | with renewable | and warehouse and warehouse
warehouse renewable energy and no (F&W) with (F&W) with
(F&W) with energy and product renewable renewable
main grid no product purchase energy and no energy and no
energy purchase (island) product product
purchase and | (energy purchase purchase
no product prosumer) (energy (island)
purchase prosumer)

Section 7.3 Model 1 Model 1

Sensitivity Sensitivity
analysis to analysis to
changes on changes on
capacity capacity factors
factors for for factory and
factory with warehouse with
renewable renewable
energy and energy and no
no product product
purchase purchase
(energy (energy
prosumer) prosumer)

Section 7.4 Model 1 Model 1

Factory with Factory and
renewable warehouse
energy and (F&W) with
no product renewable
purchase energy and no
(Energy product
prosumer; purchase
presented in (Energy
Subsection prosumer;
6.2.4) presented in
Subsection
6.2.5)
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Table 28. Continuation of description of model instances studied

Section Description

Section 7.5 | 7.5.1 MSSP Model 1 (i.e. two-months) factory and warehouse with renewable energy
and no product purchase and energy prosumer (presented in section 6.2.4) vs. its
deterministic counterpart

7.5.2 MSSP Model 2 (i.e. one-year) factory and warehouse with renewable energy, no
product purchase and energy prosumer (presented in section 6.2.6) vs. its deterministic
counterpart

Section 7.6 | Design of experiments (DOE) for MSSP Model 2 (i.e. one year) with battery, PV, energy
selling price and energy purchasing costs as factors and expected total annual cost as
response variable

7.1 Comparison of production planning model instances without considering

product purchase

Table 29 describes again the instances of Model 1 (two-months model) contrasted
in this section. Tables 30 compares the production and inventory results among the
instances. Table 31 presents the relevant renewable energy (RE) related results.

Table 29. Description of the Model 1 instances compared without product purchase

Model Instance
1 2 3 4 5
Model 1factory with | Model 1 factory | Model 1 factory | Model 1 factory | Model 1 factory
main grid energy with renewable with renewable and warehouse | and warehouse
purchase and no energy and no energy and no (F&W) with (F&W) with
product purchase product purchase | product purchase | renewable renewable
(presented in (Energy (Island) energy and no energy and no
subsection 6.2.3) prosumer; product product
presented in Sub- purchase purchase
section 6.2.4) (Energy (Island)
prosumer;
presented in
Subsection
6.2.5)

Table 30 shows the total production and inventory of the different instances
analyzed. As presented in Section 6.1, Tables 15-17 with values for the parameters of the

MSSP models, the demands for product 2 are higher than for product 1 in both periods.
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Besides, the assumed value for the energy required to manufacture the product 2 is higher

than the energy requirements for product 1 while the value for the energy required to
store both products is the same. The values for e and e for product 2 are 1.2 and 0.01

MWh/item, respectively while these values are 0.9 and 0.01 for product 1. The results in
Table 30 show that the higher product demands and energy requirements for product 2,
caused that the island instances (3 and 5) took different production decisions than the
prosumer instances and purchasing from the main grid instances (1, 2 and 4). The island
instances produce more of product 2 in the first period and less of product 2 in second
period if compared to the other instances. This result can be explained because the island
models must prepare better (i.e. take more conservative decisions) to satisfy high final
product demands and high energy requirements since energy cannot be purchased from
the grid. The island models carried more inventory in period 1 but produced less in period
2 and ended with the same inventory level than the prosumer models at the end of period
2. They took advantage of the low energy load requirements for the product in the
warehouse, the battery installed and the favorable wind and weather conditions to

produce some of the period 2 demand for product 2 in period 1 and storing it inventory.
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Table 30. Production and inventory comparison among Model 1 instances without

production purchase option

Model instance | 1 2 3 4 5
Factory Factory Factory F&W F&W
Main Grid Prosumer Island Prosumer Island
Production
(items): 6,590 6,589 6,588 6,588 6,585
Period 1 3,350 3,350 3,832 3,350 3,759
Product 1 1,560 1,560 1,560 1,560 1,560
Product 2 1,790 1,790 2,272 1,790 2,200
Period 2 3,240 3,239 2,757 3,238 2,826
Product 1 1,644 1,644 1644 1,644 1,644
Product 2 1,595 1,595 1,113 1,594 1,182
Inventory
(items): 1,635 1,635 2,116 1,635 2,046
Period 1 810 810 1,291 810 1,222
Product 1 345 345 345 345 345
Product 2 465 465 946 465 877
Period 2 825 825 825 825 824
Product 1 560 560 560 560 560
Product 2 265 265 265 265 265

The expected annual cost entry in Table 31 (i.e. first line) shows that Instance 2 in
which the production and inventory storage operations are consolidated in the factory,
and the system is an energy prosumer is the one with the lowest cost ($2,015,120). It is
because Instance 2 has the options of selling energy and purchasing energy from the main
grid installing a WT capacity of 12MW in the factory at Amarillo. Due to the size of the
WT installed and the consolidated operations without incurring in energy expenses due to
transportation, Instance 2 purchases the lowest amount of energy from the main grid and

it also gains a good revenue from selling the excess energy generated.
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Table 31. Costs and energy comparisons among Model 1 instances without product

purchase option

Model instance 1 2 3 4 5
Factory Factory Factory F&W F&W
Main Grid | Prosumer | Island Prosumer Island
Expected annual cost ($) 2,385,238 | 2,015,120 | 2,762,250 | 2,712,550 6,722,650
Revenue from selling 0 4,222 - 5,306 -
energy ($)
Cost of purchasing to the | 2,344,130 | 264,182 - 1,523,879 -
grid ($)
Total energy purchased 18,032 2,032 - 11,723 -
from the grid over the
time horizon (MWh)
Total energy spilled over - - 3,884 - 3,807
the time horizon (MWh)
Total energy sold to grid 0 121 - 152 -
over the time horizon
(MWh)
WT capacity (MW) 0 12 16 7 22
PV capacity (MW) 0 0 0 0 31
Battery capacity (MWh) 0 0 5 0 10
Total energy cost ($) - 1,714,050 | 2,718,730 | 981,584 6,508,180
Energy cost incurred over | 2,344,130 | 291,154 461,812 166,735 1,105,499
a horizon of two months
$)
Total energy produced - 15,506 21,281 8,880 24,507
over a horizon of two
months (MWh)
LCOE ($/MWh) 130 32 (i.e. 22 (i.e. 82 (i.e. 45 (i.e.
(291,154+ | (461,812/ | (166,735+ | (1,105,499/
264,182)/ | 21,281)) 1,523,879)/ | 24,507))
(15,506+ (8,880+
2,032)) 11,723))

In Instance 4, the factory and warehouse are in different places. Because of

variations in wind speed and solar power in the locations, the relatively high cost of the
PV, along with differences in the base load requirements (i.e. factory has a lower base
load than the warehouse), the model opts for installing only 7 MW of WT in Amarillo.
Thus, this model instance needs to purchase more energy, especially in the warehouse

where no renewables are adopted, and hence its cost goes up to $2,712,250 (i.e. 34.60%
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higher than instance 2). The comparison of the costs for Instances 2 and 4 vs. the cost of
Instance 1, which is a single factory with purchased energy from the main grid shows that
Instance 1 is more expensive than Instance 2 because it only purchases energy at a flat
rate of $130/MWh without any other option leading to a cost of $2,385,238 (i.e. an
increase in cost of 18.36% vs. Instance 2).

Instances 3 and 5 correspond to island cases, where all the energy used in the
company is generated on-site. These instances are the most expensive ones when
compared to the rest because they are forced to install a larger capacity of RE and to
adopt some battery capacity to satisfy their energy loads. The expected annual costs of
Instances 3 and 5 are $2,762,250 and $6,722,650, respectively. Those costs are 37.08%
and 233.61% higher than Instance 2.

The expected annual cost comparison presented in Table 31 shows that it is more
cost efficient to install a model with RE, energy sales and purchase option (Instance 2)
than a model with just conventional energy purchase option (Instance 1).

On a closer look, the analysis of the levelized cost of energy (LCOE) for these 5
instances shows that at a purchasing cost of energy of $130/MWh the single factory
instances, (Instances 2 and 3), have the cheapest LCOE’s , $32/MWh and $22/MWh,
respectively. The factory and warehouse, (Instances 4 and 5), have LCOE’s of $82/MWh
and $45/MWh, respectively.

An explanation for the higher LCOE results for Instance 2 (factory prosumers,
$32/MWh) vs Instance 3 (factory island, $22.MWHh) is that even if the island instances
adopted RE incurring in higher installation costs, they did not incur in the high extra costs

of purchasing energy. For example, Instance 3 (island) had a cost of producing energy of
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$461,812 because installed a WT of 20 MW while Instance 2 (prosumer) had a cost of
$291,154 because it installed a WT of 12 MW. However, Instance 2 incurred in an
additional cost of purchasing energy from the grid at a cost of $264,182 and then had a
total energy related cost of $555,336. Besides, the total energy generated by Instance 3,
even if some was spilled, was 21,281 MWh while Instance 2 generated only 15,506
MWh and purchased 2,032 MWh. Thus, the LCOE computation for Instance 3 has a
smaller total cost value in the numerator and a larger total energy value in the
denominator and both facts contribute to get a lower LCOE for Instance 3.

Due to the short-term horizon of Model 1, it would be more reliable to compute
the LCOE’s for Model 2 which considers a one-year horizon. Those results are in the

next subsection.

7.2 Comparison of Model 2 instances without product purchase option

Table 32 describes the 5 instances of Model 2 (i.e. one-year model) contrasted in
this section. Table 33 provides the results of running these three cases.

Table 32. Description of the Model 2 instances compared without product purchase

Model instance
1 2 3 4 5

Model 2 factory
and warehouse

Model 2 factory
with renewable

Model 2 factory
with renewable

Model 2 factory
and warehouse

Model 2 factory
and warehouse

(F&W) with main energy and no energy and no (F&W) with (F&W) with
grid energy product purchase | product renewable renewable
purchase and no (energy prosumer) | purchase energy and no energy and no
product purchase (island) product purchase | product
(energy purchase
prosumer) (island)
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Table 33. Costs and energy comparisons among Model 2 instances without product

purchase
Model instance 1 2 3 4 5
F&W Factory Factory F&W F&W
Main Grid | Prosumer Island Prosumer Island
Expected annual cost | 27,212,347 | 2,091,033 10,782,100 | 7,052,410 15,150,000
$)
Revenue from selling | O 21,052,500 - 21,817.271 -
energy ($)
Cost of purchasing 25,810,930 | 93,305 825,152 -
from the grid ($)
Total energy 198,546 718 - 6,347 -
purchased from the
grid over the time
horizon (MWh)
Total energy spilled - - 57,239 - 6,992
over the time horizon
(MWh)
Total energy sold to 0 601,500 - 623,351 -
grid over the time
horizon (MWh)
WT capacity (MW) 111 14 105 8
PV capacity (MW) 0 55 39 91
Battery capacity 0 27 2 33
(MWh)
Energy cost incurred - 22,662,620 10,396,630 | 26,660,632 13,762,290
over a horizon of one
year ($)
Total energy produced | - 702,976 158,959 736,809 196,263
over a horizon of two
months (MWh)
LCOE ($/MWh) 130 32 65 37 70
(i.e. (i.e. (i.e. (i.e.
(22,662,620 | (10,396,630 | (26,660,632 | (13,762,29/
+93,305)/ /158,959)) +825,152)/ 196,263))
(702,976 + (86,347 +
718)) 736,809))

The expected annual cost entry in Table 33 (i.e. first line) shows that again

Instance 2 in which the production and inventory storage operations are consolidated in
the factory, and the system is an energy prosumer is the one with the lowest cost
($2,091,033). It is because Instance 2 has the options of selling energy and purchasing

energy from the main grid installing a WT capacity of 111 MW in the factory at
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Amarillo. Due to the size of the WT installed and the consolidated operations without
incurring in energy expenses due to transportation, Instance 2 purchases the lowest
amount of energy from the main grid and it also gains a good revenue from selling the
excess energy generated.

In Instance 4, the factory and warehouse are in different places. Because of
variations in wind speed and solar power in the locations, the relatively high cost of the
PV, along with differences in the base load requirements (i.e. factory has a lower base
load than the warehouse), the model opted for installing 105 MW of WT in Amarillo and
PV of 39 MW in Phoenix. Thus, this model instance sold majority of the energy
produced for revenue generation. It in turn reduced the total cost of the system when the
revenue generated is subtracted from the installation cost, production cost, energy
generation cost, energy purchase cost, and hence bringing its cost to $7,052,410 (i.e.
237% higher than model instance 2). The comparison of the costs for Instances 2 and 4
vs. the cost of Instance 1, which is a single factory and single warehouse with purchased
energy from the main grid shows that Instance 1 is more expensive than Instance 4
because it only purchases energy at a flat rate of $130/MWh without any other option
leading to a cost of $27,212,347 (i.e. an increase in cost of 285% vs. Instance 4).

Instances 3 and 5 correspond to island cases, where all the energy used in the
company is generated on-site. These instances are the most expensive ones when
compared to prosumers because they are forced to install a larger capacity of RE and to
adopt some battery capacity to satisfy their energy loads. The expected annual costs of
Instances 3 and 5 are $10,782,100 and $15,150,000, respectively. Those costs are 415%

and 625% higher than Instance 2.
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The expected annual cost comparison presented in Table 33 shows that it is more
cost efficient to install a model with RE, energy sales and purchase option (Instance 4)
than a model with just conventional energy purchase option (Instance 1).

On a closer look, the analysis of the levelized cost of energy (LCOE) for these 5
instances shows that at a purchasing cost of energy of $130/MWh the prosumer
instances, (Instances 2 and 4), have the cheapest LCOE’s, $32/MWh and $37MWh,
respectively. The islanded instances, (Instances 3 and 5), have LCOE’s of $65/MWh
and $70/MWh, respectively.

There are two encouraging results to highlight from the experiments with the one-
year model, Model 2, in this subsection. First, even if the island instances adopted an
assortment of RE technologies and battery incurring in high installation costs, they ended
with LCOE’s lower than $130/MWh and thus being more cost efficient than the option of
just purchasing energy from the grid. Second, both prosumer instances got lower LCOE’s
than the island counterparts, a result that may motivate manufacturing companies to

adopt RE under the prosumer approach.

7.3 Sensitivity analysis on capacity factors input to the models

This section performs sensitivity analysis to the capacity factors in model
Instances 2 and 4, compared in Section 7.1 (i.e. factory and factory and warehouse under
energy prosumer option). To perform this sensitivity analysis, the 3 sets of daily capacity
factors are multiplied by the following set of fixed and increasing multiplier factors
(MF): 0.2,0.4, 0.6, 0.8, and 1.0 (base) and Model 1 is solved in each case. As it has been

mentioned in Chapter 5, the reason for including several vectors or sets of daily capacity
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factors simultaneously in the MSSP model is to account for the yearly variations (i.e.
variations among years) that occur on the daily wind speeds and climate conditions.
Figure 7. presents the sets of daily WT capacity factors computed for Phoenix.
Figure 8. presents the sets of daily WT capacity factors computed for Amarillo, Figure 9
presents the sets of daily PV capacity factors computed for Phoenix. Figure 10 presents

the sets of daily PV capacity factors computed for Amarillo.

........ 2013 ~——2014 — —2015

o

rrrxx

o
S s s aansl

- _wwwwws

FETLILEn

ol

-,
CLTTT LI LYY
0088 Salaleled
-
ES TR
— ey o
337 =
e 0 o -
e

T
i
‘i
{:k

99

RN R PR PP PP PP PP PP PSSP
-~

= x
ceccccsses T Y raagpoacegy———ma——————

MO~ A MULMN~NDAMUONODAMOMNMNDAMOMNO ML o
ANNMTON~NO0OODO NN OOOODO AN OO N < ©
A A A A A A TN NNNNNNNMMOM™M [apMNep}

Day

Figure 7. WT capacity factor computed for Amarillo
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Figure 8. WT capacity factor computed for Phoenix
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Figure 9. PV capacity factor computed for Amarillo
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Figure 10. PV capacity factor computed for Phoenix

Table 34 presents statistics for the daily capacity factors computed for WT and
PV, respectively. The values in the tables indicate that the average WT capacity factors in
Amarillo are about four times higher than the ones in Phoenix. The table also shows that
the average PV capacity factors in Phoenix are 34.9%, 41.2% and 32.9% higher than the
ones in Amarillo for the years 2013, 2014, and 2015, respectively. Tables 35 and 36
abbreviate battery as (BT). The tables show similar behaviors. They show that if the
capacity factors are reduced by a multiplier factor (MF) of 20%, the warehouse and
factory will prefer to purchase energy from a main grid because the energy that will be
generated by the WT and PV will be too little to satisfy the demand of the factory and
warehouse.

Also the results show that if such reduction in renewable power generated occurs,
it will be cheaper to purchase energy at a cost of $130/MWh than installing a WT and PV

at a cost of 1.5M/MW and $1M/MW, respectively. In Case 5, where the capacity factors
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are in the highest (i.e. real) values, WT is installed in the factory due to the high wind
speed generation in Amarillo but WT is not installed in the warehouse at Phoenix due to
lower wind speed generation. Also, comparing the cost of WT and the cost of purchasing

energy, it is preferable to install a WT.

Table 34. Statistical analysis of Amarillo and Phoenix daily capacity factors

Amarillo Phoenix
Year Mean St.dev | Median | Mean St. dev Median | Sample
2013 | WT 0.737 0.312 0.957 0.162 0.134 0.122 365
PV 0.309 0.134 0.309 0.417 0.178 0.386 365
2014 | WT 0.745 0.310 0.979 0.159 0.135 0.114 365
PV 0.291 0.122 0.302 0.411 0.173 0.386 365
2015 | WT 0.685 0.324 0.755 0.169 0.122 0.137 365
PV 0.298 0.125 0.307 0.396 0.169 0.388 365

Table 35. Comparison of WT, PV, and battery size adopted in Model 1 instance with

single factory if increasing the capacity factor multiplier

Case number 1 2 3 4 5
Capacity factor multiplier 0.2 0.4 0.6 0.8 Base
Expected annual cost ($) 2,385,238 | 2,385,238 | 2,385,238 | 2,385,238 | 2,015,120
WT in factory (MW) 0 0 0 0 12

PV in factory (MW) 0 0 0 0 0

Battery in factory (MWh) 0 0 0 0 0
Revenue from selling energy ($) 0 0 0 0 4,222
Cost of purchasing to the grid ($) | 2,344,130 | 2,344,130 | 2,344,130 | 2,344,130 | 264,182
Total energy purchased from grid | 18,032 18,032 18,032 18,032 2,032
over the time horizon (MWh)

Total energy sold to grid over the | 0 0 0 0 121

time horizon (MWh)

Total energy cost ($) 2,344,130 | 2,344,130 | 2,344,130 | 2,344,130 | 1,714,050
Energy cost incurred over a 2,344,130 | 2,344,130 | 2,344,130 | 2,344,130 | 291,154
horizon of two months ($)

Total energy produced over a 0 0 0 0 15,506
horizon of two months (MWh)

LCOE ($/MWh) 130 130 130 130 32
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Table 36. Comparison of size of WT, PV and battery adopted in Model 1 instance with

single factory and warehouse if increasing the capacity factor multiplier

Case number 1 2 3 4 5
Capacity factor multiplier | 0.2 0.4 0.6 0.8 Base
Expected annual cost ($) | 2,870,913 | 2,870,913 2,870,913 2,870,913 2,712,550
WT in factory (MW) 0 0 0 0 7

WT in warehouse (MW) 0 0 0 0 0

PV in factory (MW) 0 0 0 0 0

PV in warehouse (MW) 0 0 0 0 0

BT in factory (MWh) 0 0 0 0 0

BT in warehouse (MWh) | O 0 0 0 0
Revenue from selling 0 0 0 0 5,306

energy ($)
Cost of purchasing to the | 2,658,520 | 2,658,520 2,658,520 2,658,520 1,523,879
grid (%)
Total energy purchased 20,451 20,451 20,451 20,451 11,723
from grid over time
horizon (MWh)

Total energy sold to grid 0 0 0 0 152
over time horizon (MWh)

Total energy cost ($) 0 0 0 0 981,584
Energy cost incurred 0 0 0 0 166,735
over a horizon of two

months ($)

Total energy produced 0 0 0 0 8,880
over a horizon of two

months (MWh)

LCOE ($/MWh) 130 130 130 130 82

The option for adopting battery in these cases studied is not selected due to the
high cost of battery at $0.52M/MWh and the option of selling extra energy at a cost of
$35/MWh. Thus, this study concludes that installed WT capacity is highly sensitive to
changes in capacity factors and that increases in battery capacity are not cost-effective
options to respond to those changes. It may be explained due to the relatively lower cost
of the WT vs battery. The results also suggest that if the system needs to add more
generation due to winds lower than usual, it is cheaper and more impactful first to

increase WT capacity.
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7.4 Effect of consolidating vs splitting the factory and the warehouse

This subsection further compares Model 1 Instances 2 and 4 presented in Section
7.1. Table 37 describes again the model instances.

Table 37 provides the extra WT capacity installed for Instance 2, where the
factory does both production and inventory storage, compared to Instance 4 which does
production and storage in two different locations. In the warehouse, the capacity factor of
WT (Phoenix) is almost four times less than in the factory (Amarillo) hence Phoenix
would have required more WT technology to satisfy its energy load. However, it would
be costlier than purchasing energy from the grid. Also, because the PV capacity factors
for both the factory and warehouse locations are not very high, Instance 4 did not install
PV system and opted for energy purchase from the main grid. Also, in both instances
there was no battery installed due to high cost of the battery ($0.52M/MWh) but the
instances sold the excess energy at a price of $35/MWh. In this comparison, Instance 2
was the cheapest due to the power generation from wind considered for only the city of
Amarillo. Instance 2 also had to satisfy only the factory base load while Instance 4 had to

satisfy both factory and warehouse base load with less wind speed in the city of Phoenix.

Table 37. Description of the model instances compared without product purchase

Model instance
2 4
Model 1. Factory with renewable Model 1. Factory and warehouse
energy no product purchase (energy | (F&W) with renewable energy and no
prosumer; presented in Subsection product purchase (energy prosumer;
6.2.4) presented in Subsection 6.2.5)
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Table 38. Comparison of the size of WT and battery for model single factory vs. model

with factory and warehouse without product purchase

2 4
Model instance Factory F&W

Prosumer Prosumer
Expected annual cost ($) 2,015,120 2,712,550
WT in factory (MW) 12 7
WT in warehouse (MW) - 0
PV in factory (MW) 0 0
PV in warehouse (MW) - 0
BT in factory (MWh) 0 0
BT in warehouse (MWh) - 0
Revenue from selling energy (3$) 4,222 5,306
Cost of purchasing to the grid ($) 264,182 1,523,879
Total energy purchased from grid over 2,032 11,723
the time horizon (MWh)
Total energy sold to grid over the time 121 152
horizon (MWh)
Total energy cost ($) 1,714,050 981,584
Energy cost incurred over a horizon of | 291,154 166,735
two months ($)
Total energy produced over a horizon of | 15,506 8,880
two months (MWh)
LCOE ($/MWh) 32 82

7.5 Comparison of stochastic and deterministic approaches factory and warehouse

model without product purchase (energy prosumer)

This section compares the expected annual costs and energy results from solving
the two MSSP models presented in Chapter 4 (Model 1 and Model 2) to the ones from
solving their deterministic counterparts in which product demands are fixed to the mean
values and only one set or vector of daily capacity factors is input to the model. The
compared models consider that: (1) production happens in the factory, (2) inventory
storage happens in the warehouse, (3) final product cannot be purchased , (4) energy is
sold to a main grid with its locations in Amarillo and Phoenix, and (5) energy is

purchased from a main grid source with its locations in Amarillo and Phoenix.
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The inputted cost of the deterministic model results from completing the
following 3 steps:

Step 1. Solve the deterministic model with product demands fixed to the mean

values and only one set or vector of daily capacity factors and find the optimal

amount of PV, WT, and battery to adopt,

Step 2. Plug only the PV and WT generation and battery capacity solution from

Step 1 into the stochastic model,

Step 3. Solve the modified version of the stochastic model in which PV, WT

generation and battery capacity are input parameters coming from the solution

gotten in Step 1 to find the optimal value for the other decision variables (i.e.

production, inventory, product purchasing, energy sold and energy purchased) and

collect the expected total cost of such model instance.

The model instance solved with the 3-step procedure above will be called
Deterministic into Stochastic (DiS) in the reminder of this document. Table 39 shows
again the cost coefficients used for the energy related terms in the objective functions of
the models. Note that they are the same provided in Table 17 and Table 22. Subsection
8.5.1 provides the comparisons between the MSSP Model 1 (two-months model) and the
DiS version. Subsection 8.5.2 provides the comparison for the MSSP Model 2 (i.e. one-

year model) and the DiS version.
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Table 39. Cost coefficients for the energy related terms in the objective function of the

stochastic and deterministic models

Item Notation in Value
Table 11

Selling price ($/MWh) | U 35

Buying cost ($/MWh) | y* 130

WT cost ($/MW - 1.5M
(FMw) a, (9=1)

PV cost (/MW - 1M
(FMW) a, (g=2)

Battery cost ($/MWh) a, 0.52M

7.5.1 Model 1

Table 40 presents the production and inventory results from running the two-
months MSSP, Model 1, and the DiS model generated and assessed with the 3-steps
procedure given in Sub-section 7.5. Both models have a production, inventory, and
transportation cost of $212,395. Table 41 presents the expected annual costs, and the
energy cost differences between the models.

Table 41 below shows that for the two-months model case, both the total cost and
the LCOE of the stochastic model are lower than the ones for the deterministic into
stochastic (DiS) model. The LCOE’s are $82/MWh and $86/MWh for the stochastic and
DiS models, respectively. The table also allows to calculate the expected total cost
saving from solving the stochastic version instead of the deterministic one by subtracting
the costs in the first row of the table. Such cost saving is $4,910 which is still relevant
considering that the time horizon of the model is only two months and that the economy
is currently tight.

Table 41 explains the $4,910 cost saving by showing that to satisfy the energy

loads, the stochastic model incurred in a higher energy cost in the factory (about 10%
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higher) by installing a 1MW more WT capacity than the deterministic model. Hence, the
stochastic model reduced the energy purchasing cost by acquiring less energy from the
main grid than the deterministic model and counterbalanced the extra cost incurred in RE
technology. Also, because of a higher installed WT in the factory, the stochastic model
got a little more revenue from selling energy to the grid than the deterministic model. All
these decisions brought the total cost of the stochastic programming model below the one
for the stochastic programming model.
Table 40. Production and inventory results for the two-months stochastic and

deterministic models

Month

1 2
Production: Total 3,350 3,240
Product 1 3,205 1,560 1,645
Product 2 3,385 1,790 1,595
Inventory: 1,635 810 825
Product 1 905 345 560
Product 2 730 465 265
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Table 41. Comparison of stochastic and deterministic into stochastic (DiS) models

without product purchase (Model 1 - Two-months model)

Stochastic Deterministic into
Stochastic (DiS)
Expected annual cost ($) $2,712,550 $2,717,460
Factory Warehouse Factory Warehouse
Revenue from selling energy ($) $5,306 $0 $2,144 $0
Cost of purchasing to the grid ($) $159,059 $1,364,820 $237,466 | $1,364,820
Total energy purchased from grid over 1,224 10,499 1,827 10,499
time horizon (MWh)
Total energy sold to grid over time 152 0 61 0
horizon (MWh)
WT capacity (MW) 7 0 6 0
PV capacity 0 0 0 0
Battery capacity (MW) 0 0 0 0
Total energy cost factory ($) $981,584 $0 $904,925 | $0
Energy cost incurred over a horizon of $166,735 $153,713
two months ($)
Total energy produced over a horizon of | 8,880 0 8,186 0
two months (MWh)
LCOE ($/MWh) $82 $86
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7.5.2 Model 2

Tables 42 and 43 present the resulting expected optimal production and
inventories from solving the one-year model (Model 2) under the stochastic and the DiS
approaches, respectively.

Table 43 presents the expected annual cost and the energy cost differences from
solving the one-year MSSP, Model 2, and the DiS model obtained with the 3-steps
procedure given in Subsection 7.5.

Table 44 above shows that the expected annual cost of the stochastic model ends
lower than the deterministic model. The one-year stochastic model has a favorable cost
saving of $10,990 when compared to the deterministic model. It is the subtraction of the
costs reported in the first row of the table. Table 44 shows that the stochastic model ends
purchasing a little more energy in the factory but a little less energy in the warehouse
because of slightly reducing the WT in the factory and increasing the PV capacity in the
warehouse if compared to the deterministic model. When compared to the deterministic
model, the stochastic model has a cost saving from less energy cost and less energy
purchased from the grid which is $3,922 higher than the decrease in revenue from selling
energy. The remaining $6,967 cost saving in the stochastic model is explained because
of the lower production, inventory and transportation cost this model gets. This last result
indicates that the stochastic one-year model ended with a better production plan for all
the months by incorporating the scenarios and deciding on the optimal RE capacity
simultaneously. On the other hand, the deterministic model had to respond with an
optimal production plan to a less than optimal RE capacity portfolio gotten from using

the mean demands and a single set of capacity factors. Because the deterministic model
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did not consider scenarios for product demand, wind, and weather conditions, it found
appropriate to produced less of both products in period 1 that the stochastic model. But
then the deterministic model had to react with higher production of both products in
period 2 than the stochastic model.

Table 42. Expected production and inventory results for the one-year stochastic model

Production decisions for each | Production including Inventory
stage the recourse
production
adjustment
*P1 *P2 Total *P1 *P2
Month 18,600 19,695 39,611 20,715 | 18,896
1 > X, =19,260 1,525 1,755 740 310 | 430
2 o 1,525 1,755 1,480 620 860
3 (*P1=8,940 for six months or | 1:525 1,755 2,220 930 1,290
4 1,490 per month, 1,525 1,755 2,960 1,240 | 1,720
5 *p2= 10,320 for six months 1,525 1,755 3,700 1,550 2,150
6 or 1,720 per month) 1,525 1,755 4,440 1,860 | 2,580
7 — 1,575 1,529 4,319 2,005 | 2,314
8 ;SZS: P a5 =18,600 1,575 1,529 4,198 2,150 | 2,048
9 (*P1=9,450 for six months or | 1,575 1,525 4,073 2,295 | 1,778
10 1,575 per month, 1,575 1,529 3,952 2,440 [ 1,512
11 *P2=9 150 for six months or | 1,575 1,529 3,827 2,585 | 1,242
12 1,525 per month) 1,575 1,525 3,703 2,730 | 973

*P1= Product 1, *P2 = Product 2

Table 43. Expected production and inventory results for the one-year DiS model

Production decisions for Production including Inventory
each stage recourse production
adjustment

*P1 *P2 Total *P1 *P2
Month Total 18,710 19,845 39,254 20,460 | 18,794
1 — 1,508 1,738 705 293 413
2 ; Xi = 19,260 1,508 1,738 1,410 585 | 825
3 (*P1=8,940 for six months 1,508 1,738 2,115 878 1,238
4 or 1,490 per month, 1,508 1,738 2,820 1,170 | 1,650
5 *P2:10,320 for six months 1,508 1,738 3,525 1,463 2,063
6 or 1,720 per month ) 1,508 1,738 4,230 1,755 | 2,475
7 - 1,609 1,572 4,186 1,934 | 2,252
8 ;SZS: P:Xios =19,064 1,611 1573 4,146 2,116 | 2,030
9 (*P1=9,667 for six months | £.609 1,560 4,090 2,295 [ 1,795
10 or 1,611 per month, 1,611 1,577 4,053 2,476 | 1,577
11 *p2=9 397 for six months | 1,611 1,568 4,008 2,657 | 1,351
12 or 1,566 per month) 1,611 1,570 3,964 2,838 | 1,125
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*P1= Product 1, *P2 = Product 2

Table 44. Comparison of stochastic and deterministic into stochastic (DiS) models

without product purchase (Model 2 — One-Year Model)

Stochastic Deterministic
Expected annual cost (3$) $7,052,410 $7,063,400

Factory Warehouse Factory Warehouse
Total production, inventory and 1,383,951 1,390,918
transportation cost ($)
Revenue from selling energy ($) 21,350,700 466,571 21,488,700 | 465,357
Cost of purchasing to the grid ($) 17,210 807,942 16,599 860,919
Total energy purchased from grid over 132 6,215 128 6,622
time horizon (MWh)
Total energy sold to grid over time 610,020 13,331 613,963 13,296
horizon (MWh)
WT capacity (MW) 105 0 106 0
PV capacity 0 39 0 38
Battery capacity (MW) 0 2 0 2
Total energy cost ($) 22,276,940 4,383,692 22,418,380 | 4,330,594
Total energy produced 667,934 68,875 672,177 68,438
LCOE ($/MWh) 37 37

However, The LCOE’s are $37/MWh for both the stochastic and deterministic
models. Since the LCOE does not consider the advantages in production, transportation
and inventory costs the stochastic model gets, this result basically indicates that the
renewable energy portfolio selected by both models ended very similar in $/MWh. This
result is explained is because the numerator of the LCOE formula, which is the sum of
the costs of energy produced and purchased ended larger for the deterministic than for the
stochastic model ($27,626,492 vs $27,485,784, respectively), However, the deterministic
model compensated it with a higher sum of the energy produced and purchased than the

stochastic model (747,365 vs 743,156, respectively). In other words, the option of selling
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energy that both models had helped the deterministic model to counterbalance the non-
optimal decision taken regarding the RE portfolio.
7.6 Experimentation with one-year model (Model 2) factory and warehouse in

different locations

This section presents the results of performing a Design of Experiments (DOE)
with the one-year MSSP model, Model 2, presented in Chapter 4, Modeling and
Methodology for the case in which the single factory and the single warehouse are in
different locations. The aim of the DOE is learning which parameters in the MSSP
model, which will be named as factors in the DOE, significantly affect its objective
function value using a significance level of 5% (confidence level 95%).

A four factors and two experimental levels (2*) DOE was carried to find out
which one of four pre-selected factors are more significantly affecting the total expected
cost of the MSSP model and what would be the optimal levels of those factors to reduce
the cost of the model. Thus, in this DOE the total expected annual cost is the response
variable and in this section of the document it will be denoted as total cost. The four
factors selected of interest are: battery cost, PV cost, energy selling energy price and
energy purchasing cost. All these factors are continuous in practice. The two levels (i.e.
low and high) selected for the factors are displayed in Table 45. Also, 2 replications of
this experiment were carried out for a total number of 16 experimental conditions and 32
experimental runs. The replications result from running the MSSP Model 1 with
perturbed values for the demands of the products in the scenarios.

Montgomery (2017) suggests that if the purpose of the DOE is screening which

factors are significant it is usually best to keep the number of factor levels low. Following
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this suggestion, the number of factor levels in this DOE was set to 2. Also, Montgomery
(2017) mentions that because resources are usually limited, the number of replications
that the experimenter can perform may be small and, in some cases, restricted to a sample
size equal to one. The risk of conducting an experiment with only one replication or run
at each test combination (i.e. experimental condition) is that misleading conclusions can
be taken if the variability in the response variable is high because it will be ignored.
Montgomery (2017) suggests that increasing the distance between the low and high level
of a factor makes the probability of incorrect conclusions smaller. In this research, the
values for the low and high levels of the factors were selected according to this
recommendation and relevant practical considerations.

Table 45. Levels of the factors in the DOE for the one-year model

Level | Battery cost ($) PV cost ($) | Energy selling price ($) | Energy purchasing cost ($)
Low 250,000 500,000 7 130

High 520,000 1,500,000 35 250

Minitab statistical software (Minitab, n.d.) version 18 was used to generate and analyze
the DOE. The 24 experiment with 2 replications runs in random order generated by
Minitab is listed is in Table 46. The table provides information concerning the levels of
the factors in each experimental run using a coded format, and the value of the
experimental response is listed in the last column, such value was collected after running
MSSP Model 2 using the experimental settings prescribed by each run. A value of -1 ina
cell in Table 46 indicates that the factor in the column is at low level and value of 1

indicates that the factor is at high level.
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Table 46. Minitab DOE

Run Run Battery | PV Selling Buying Total
Order | cost cost price cost cost

19 1 -1 1 -1 -1 10,264,500
21 2 -1 -1 1 -1 4,352,060
20 3 1 1 -1 -1 10,461,900
26 4 1 -1 -1 1 8,309,080
12 5 1 1 -1 1 1,1951,800
23 6 -1 1 1 -1 7,978,150
14 7 1 -1 1 1 4,408,630
15 8 -1 1 1 1 8,588,990
7 9 -1 1 1 -1 7,859,000
6 10 1 -1 1 -1 4,352,060
30 11 1 -1 1 1 4,289,710
25 12 -1 -1 -1 1 7,935,860
13 13 -1 -1 1 1 4,407,300
22 14 1 -1 1 -1 4,235,110
24 15 1 1 1 -1 8,090,440
28 16 1 1 -1 1 11,793,900
8 17 1 1 1 -1 7,971,230
4 18 1 1 -1 -1 10,318,100
27 19 -1 1 -1 1 11,487,600
32 20 1 1 1 1 8,843,930
9 21 -1 -1 -1 1 7,781,920
2 22 1 -1 -1 -1 7,563,950
16 23 1 1 1 1 8,722,400
11 24 -1 1 -1 1 11,332,400
10 25 1 -1 -1 1 8,152,650
17 26 -1 -1 -1 -1 7,318,350
1 27 -1 -1 -1 -1 7,178,840
3 28 -1 1 -1 -1 10,123,200
18 29 1 -1 -1 -1 7,421,830
29 30 -1 -1 1 1 4,288,390
31 31 -1 1 1 1 8,467,610
5 32 -1 -1 1 -1 4,235,110

Minitab has two statistical methodologies useful to analyze an experiment with
guantitative or continuous factors. They are known as Analysis of Variance (ANOVA)

and regression analysis (Montgomery, 2017). The observations for the response variable
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of a four-factor ANOVA model can be written in an effects model and using general

notation as in equation (8.1).

Yim = L+ + B + 7+ 6, +(a8); + (77)y

+(20)y +(Br) i +(BO) j + (76)

"‘(Tﬂ?/)ijk +(Tﬂ5)ij| + (ﬂ75)jkl +(7p0)yy + (Tﬂ75)ijk| * Eijam (7.1)
i=12,..,aj=12..,bk=12,...¢c

1=12,..,d;m=12,..,n

In equation (8.1), Yy, IS the observed response variable, 4 is the overall mean, z,
is the effect of the i-th level of the first factor, f; is the effect of the j-th level of the

second factor, y, is the effect of the k-th level of the third factor, ¢, is the effect of the I-
th level of the fourth factor, a, b, ¢, and d are the number of levels of the first, second,
third and fourth factor, respectively, and &, is a random error with m representing the
index running over the n replicates of each experimental condition.

For a four-factorial experiment with quantitative continuous factors, a regression

model representation can be given by equation 8.2.

y= ,Bo +ﬂ1X1 +132X2 +ﬂ3X3 +ﬂAX4 +155X1X2 +IBGX1X3 +:37X1X4 +

(7.2)
PeXoXs + PoXoXy + ProXeXy + FoXXoXs +. 4 €

In equation (8.2) y is the response, S ’s are coefficients to be determined, x1

represents the value on the coded scale (+1, -1) of the first factor, x> the value of the

second factor, etc. The term & is the random error and x,X, represents the interaction
between the first and second factor and so on. Since equation 8.2 is linear on the

unknown coefficients, £, the model is linear and the coefficients ,Bare estimated
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through the least squares method. The adequacy of the model is checked by analyzing

the residuals of the model e, = Yy — Yi Which are assumed to be normally distributed

and with constant variance.

The equation for the regression model fitted to the data collected in the DOE
performed in this thesis, information concerning the statistical significance of the
regression coefficients at a 5% significance level (Table 47), the summary of the
regression model reporting about the significance of the regression (Table 48), and a
brief report regarding the only observation that was classified as unusual because its
standardized residual was out of the plus or minus two standard deviations range (Table
49) are shown below.

Regression Equation: Total cost = 7,827,688+ 102,733 Battery Cost
+ 1,813,259 PV Cost — 1,509,555 Selling Price + 344,948 Buying Cost
+ 25,533 Battery Cost * PV Cost — 56,676 Battery Cost * Selling Price
+ 33,644 Battery Cost*Buying Cost + 183,827 PV Cost*Selling Price
+ 162,684 PV Cost *Buying Cost — 160,961 Selling Price * Buying Cost
+ 20,192 Battery Cost*PV Cost * Selling Price

+ 17,519 Battery Cost*PV Cost*Buying Cost
— 15,653 Battery Cost * Selling Price * Buying Cost

(7.3)
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Table 47. Coefficients of the regression model

Term *MN | Effect Coef SE Coef | T-value | P-value | *S
Constant 7,827,688 16,859 | 464.31 | 0.000
Battery Cost A 205,465 102,733 16,859 | 6.09 0.000 Y
PV Cost B 3,626,519 1,813,259 16,859 | 107.56 | 0.000 Y
Selling Price C -3,019,110 | -1,509,555 | 16,859 | -89.54 0.000 Y
Buying_ Cost D 689,896 344,948 16,859 | 20.46 0.000 Y
Battery Cost*PV AB 51,066 25,533 16,859 | 1.51 0.149 N
Cost

Battery Cost*Selling | AC -113,352 -56,676 16,859 | -3.36 0.004 Y
Price

Battery Cost*Buying | AD 67,289 33,644 16,859 | 2.00 0.063 N
Cost

PV Cost*Selling BC 367,654 183,827 16,859 | 10.90 0.000 Y
Price

PV Cost*Buying BD 325,367 162,684 16,859 | 9.65 0.000 Y
Cost

Selling Price*Buying | CD -321,921 -160,961 16,859 | -9.55 0.000 Y
Cost

Battery Cost*PV ABC | 40,384 20,192 16,859 | 1.20 0.248 N
Cost*Selling Price

Battery Cost*PV ABD | 35,038 17,519 16,859 | 1.04 0.314 N
Cost*Buying Cost

Battery Cost*Selling | ACD | -31,306 -15,653 16,859 | -0.93 0.367 N
Price*Buying Cost

PV Cost*Selling BCD | -12,315 -6,157 16,859 | -0.37 0.720 N
Price*Buying Cost

Battery Cost*PV ABC | 283 141 16,859 | 0.01 0.933 N
Cost*Selling D

Price*Buying Cost

* MN = Minitab abbreviated notation for the term, S = Significant, Y = Yes, N = No

Table 48. Regression model summary

S R-sq

R-sq(adj)

R-sq(pred)

338,551 | 98.33%

98.08%

97.66%
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Table 49. Fits and diagnostics for unusual observations in the regression model

Observation | Total cost | Fit Residuals | Std Residuals
11 4,289,710 | 4,952,554 -662,844 -2.13R

Table 47 shows that the p-values of all the four factors studied, (i.e. Battery Cost,
PV Cost, Selling Price, Buying Price) and of the following two-factors interactions:
Battery Cost*Selling Price, PV Cost*Selling Price, PV Cost*Buying Cost and Selling
Price*Buying Cost are less than 0.05. Hence, these factors and interactions are the only
ones significantly affecting the expected total cost of the model (i.e. MSSP Model 2
presented in Chapter 4). All these regression terms contribute to the explanation of the
system cost. Additionally, Table 48 shows that 98.08% of the variance in the response

variable (i.e. expected total cost) is explained by the regression model.

Pareto Chart of the Standardized Effects
(response is Total_Cost, o = 0.05)
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Figure 11. Pareto chart of standardized effects

Minitab also notates the four factors in an experimental design as A, B,

C, and D. The Pareto chart of standardized effects provided by the ANOVA
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method in Minitab is shown in Figure 11 above. It is useful to corroborate in a
visual way that the absolute values of the standardized effects of PV cost (B),
energy selling price (C), energy buying cost (D) , PV cost*Selling price (BC),
PV cost*Buying cost (BD) , Selling price*Buying cost (CD), battery cost (A),
and Battery cost *Selling price (AC) lie above the critical t-value, t=2.1 (i.e.
have p-values less than 0.05), and thus these factors and interactions are
statistically significant, but the effect of their significance is based on their level
above the red line. Then, Factor B, PV cost, has the highest impact on the

expected annual cost followed by Factor C, Selling Price.

Data Means
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Figure 12. Main effects for total cost

The ANOVA methodology provides a way to visualize the effect of each of the
experimental factors known as the Main Effects Plot. The plot is useful to identify the
differences on the average response due to changes in the level for one or more factors
(Minitab, n.d.). Figure 12 is the Main Effects plot for the DOE performed. Since the
resulting lines are not horizontal, the figure indicates that the battery cost, PV cost and

buying energy price factors have a positive slope and from these slopes the larger is the
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one for PV cost. Energy selling price has a negative slope, which is also of a large
magnitude. It means that if battery cost, PV cost or buying energy cost increases the cost
of the model increases. On the other hand, if the energy selling price decreases, the cost
of the model increases. However, it could be concluded that the model is more sensitive
to changes in the levels of PV cost (B) and energy selling price (C) but it is needed also
to check the effect of the interaction between these factors (see next paragraph). Ifitis
possible to negotiate the PV cost to the low level and the energy selling price to the high
level, it will produce the most cost-effective model. This result seems very intuitive;
however, the magnitude of the effect of these changes was not known. Thus, the DOE is
very useful to learn about the magnitude of the effects in an experiment that is changing

several factors at a time.
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Figure 13. Interaction plot for total cost

The interaction plots in Figure 13 above serve to visualize the effects on the total

cost of the MSSP Model 2 to two-factors interactions in the ANOVA model. Note that
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the y-axis scale given towards the right of the plot represents the MSSP Model 2 cost.
Those interaction plots in which the two lines displayed for the behavior of the response
variable (y-axis) at two different levels of one of the factors (i.e. blue and red lines) are
obviously non-parallel show that the total cost of the model changes in a different
magnitude when there are modifications to the levels of the other factor (i.e. the one
changing over the x-axis) and thus the interaction is significant. Consequently, in the
DOE performed, significant interactions are PV Cost vs Selling Price (BC), PV cost vs.
buying cost (BD), and selling price vs. buying cost (CD), which is a negative two factor
interaction (notice red line is below blue line in this case). For the other 3 interactions in
which the lines are almost parallel, the interaction plot is more difficult to use since it
could be that: (1) there is no significant interaction, such as in the case of battery cost and
PV cost (AB) and battery cost and buying price (AD) or (2) if the interaction ends
significant, its magnitude is very small, such as in the case of battery cost and selling
price (AC), which ended statistically significant in Table 47 and Figure 10.

Joining the information provided by Figures 12 and 13 regarding the positive
effect of PV cost, negative effect of selling price, and positive effect on the interaction
between PV cost and selling price in the total cost of the MSSP model, if it is possible to
negotiate the PV cost to the low level and the energy selling price to the high level, the
net effect in total cost is a reduction but not as drastic as if the interaction of the factors
was inexistent.

The four graphs shown in Figure 14 below are the residual plots of the regression
model. The graphs are provided by Minitab and useful to validate the assumptions of

normality and constant variance of the residuals of the fitted regression model. The
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normal probability plot (top left) in Figure 14 implies that the distribution of the residuals

is not entirely normally distributed because some points do not fall closely to or along the

straight line. The histogram (bottom left) shows that the mode of the residuals is not zero

as in a normal distribution. The mode is $150,000 and the residuals are more skewed

towards the left than the ones coming from a normal distribution. In the same Figure 14,

the residuals versus fits plot (top right) shows that the variance of the residuals is

relatively constant without showing any obvious trends as the magnitude of the fitted

value increases. The residuals versus order chart (bottom right) shows that the residuals

are randomly distributed because they fall unsystematically above and below zero and

they do not show any trend or pattern. Thus, from this chart it can be concluded that the

residuals are independent of each other.
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Figure 14. Residual plots for the regression model

The total expected cost of the MSSP Model 2 can be finally predicted by the new

regression model given below this paragraph. It considers only factor and interactions

that ended significant in the DOE performed. The Pareto chart of standardized effects
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and the residual plots for this new regression model are in Figures 15 and 16. The Pareto
chart, as expected, shows that all factors are significant. The residual plots for this new
regression model permit to conclude that the assumptions of normality and constant
variance of the residuals are not violated.

Final Regression Equation: Total cost = 7,827,688+ 102,733 Battery Cost
+ 1,813,259 PV Cost — 1,509,555 Selling Price + 344,948 Buying Cost
— 56,676 Battery Cost * Selling Price + 183,827 PV Cost * Selling Price
+ 162,684 PV Cost * Buying Cost — 160,961 Selling Price* Buying Cost

(7.4)

{response is Total Cest, o = 0.05)
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Figure 15. Pareto chart of standardized effects from final regression for one-year MSSP

Figure 16. Residual plots from final regression model for one-year MSSP model
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7.7 Comparison of energy load (i.e. energy demand) and power generation at the

factory for the case with factory and warehouse in different locations

This section highlights the importance of adopting battery, purchasing energy and
selling energy in the MSSP Model 1 (instance 4) whose results have been presented in
Sections 6.2.5, 7.1 and 7.4. In the mathematical model, the first three terms in the left
hand sides of the energy constraints (4.9) and (4.10) are useful to calculate the factory
daily energy load while the first term in the right hand side is useful to calculate the
energy generation based on the adopted WT and PV capacity and the daily capacity
factors. Figure 17 provides a comparison of the daily load and the total energy generated
in the factory considering the model optimal solution and a single scenario for the

capacity factors and consequently, for the power generation.
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Figure 17. Daily energy load and generation at the factory for scenario 144

In Figure 17, the variability of the total daily energy generated, and the total daily
energy load (i.e. demand) is shown for the scenario 144 which has high demand of

Product 1 and high demand of Product 2 (HH). This scenario is one of the most
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challenging ones in terms of meeting load with just RE produced. On some days, such as
day 5, the energy generated is insufficient to carry the factory’s load for that day. On day
13, the energy generated is sufficient to fulfil the energy load of the factory. The figure
above shows that there are more days when the energy load is greater than the energy
generated. Hence the figure let to visualize the reasons for implementing the options of
buying a battery storage system (BSS) or purchasing energy. For this instance, the model
opted to not adopt battery and bypass these cases by purchasing energy from the grid.
The figure shows also that in this high product demand scenario there are still some days
were the energy load (blue line) is low and the system can store extra energy in the BSS
or sell it to generate revenue. For this instance, since the model did not adopt battery the

option was to sell all extra energy generated in each of those days.

7.8 Limitations of the Models

MSSP Model 1 has some limitations which can be further improved upon. For
example, the assumption that the production and inventory related activities are done for
only two production periods spanning two months. Model 1 can be extended using a
rolling horizon approach like the ones practiced by several previous authors such as
Meibom, (2007).

The rolling horizon procedure the author of this thesis implemented is described
as the following list of steps.

e Step 1. A variable named month_solved is set to the value of 1
e Step 2. The first-stage optimal decisions for RE capacity and production of

the first month are determined by solving the MSSP Model 1 considering
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the product demands and capacity factors of the first two months of the
year.

Step 2. The cost of implementing the optimal decisions found for the first
of the two months considered in the model is computed. Such cost is a
portion of the expected annual cost of the model solved.

Step 3 The RE related decisions are turned into parameters in the model
and removed from the list of decision variables if it has not done in a
previous iteration. This new model is named as MSSP model with RE as
parameters,

Step 4. The variable month_solved is increased by 1

Step 5. The MSSP model with RE as parameters is solved now with the
set of product demands and capacity factors for the month numbers
represented by the values of the variables month_solved and month_solved
plus one.

Step 5. Steps 2, 3, 4 and 5 are repeated until the operational decisions
(monthly production, monthly inventory, daily energy stored in battery,
daily energy purchased from the grid, and daily energy sold to the grid )

are found for the all the months of the year.

The rolling horizon method described in the previous paragraph provides the

optimal decisions and the annual cost for one year by repeatedly solving the MSSP

Model 1 and carrying out the decision(s) of a single month in the year (i.e.

month_solved) in each iteration. Table 49 provides the results of performing such rolling

horizon procedure on Instances 2 and 4. These instances are the ones that consider
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factory and warehouse in the same location and factory and warehouse in different

locations, respectively. Also, the instances consider that there is no final product

purchase, and that the company is an energy prosumer.

Table 50 shows that the cost of the one-year model found with the rolling horizon

approach is about 2.5 times that of the two-months model. This result is explained

because the largest costs, which are the installation costs for PV, WT and battery occur

only at the beginning of the first month. Also, note that the LCOE’s provided by the

rolling horizon approach seem more real since both energy produced and energy cost

were computed considering the product demands and capacity factors of the entire year

since the factory is producing in all months.

Table 50. Comparison of two- month model (Model 1) and a one-year model found with

the rolling horizon

Model instances Two-month | Two- One-Year Factory | One-Year F&W
Factory month model from rolling | model from
F&W horizon approach rolling horizon
approach
Expected annual cost ($) 2,015,120 2,712,550 | 5,856,695 11,542,682
Revenue from selling energy ($) | 4,222 5,306 85,652 988
Cost of purchasing to the grid ($) | 264,182 1,523,879 | 4,112,480 9,158,148
Total energy purchased from grid | 2,032 11,723 31,634 70,447
over time horizon (MWh)
Total energy sold to grid over 121 152 2,447 28
time horizon (MWh)
WT capacity (MW) 12 7 12 7
PV capacity 0 0 0 0
Battery capacity (MW) 0 0 0 0
Total annualized energy cost ($) 1,714,050 981,584 1,642,690 960,108
Total energy cost over a horizon 291,154 166,735 279,032 163,087
of two months ($)
Total energy produced over the 15,506 8,880 69,968 46,040
time horizon of each model
(MWh)
LCOE ($/MWh) 32 82 57 87
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Another limitation of the stochastic models presented is not considering that the
decision maker may confront practical space or budget restrictions. Finally, the models
presented in this thesis have implemented WT, PV, and battery as DER units in the

microgrid. Other sources of energy, such as small hydro energy can be considered.
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8. CONCLUSIONS AND FUTURE WORK

The main contribution of this thesis is to solve two multi-stage stochastic
programming models to determine cost effective production plans considering on-site
renewable energy generation and battery system while the industry is also acting as an
energy prosumer. The goal of the models is to determine the optimal production
quantities and the sizes of WT, PV, and battery. As in Escudero (1993), inventory storage
and purchase of final product (i.e. vendor supply) are considered in the models as full-
recourse actions to cope with the uncertainty in product demand. In addition, novel
recourses, such as sales and purchase of energy and use of energy storage systems (i.e.
battery), let to hedge from the uncertainty in the wind and solar power.

The models are fed with large realistic sets of climate data collected from
different cities in the word. The data sets are statistically analyzed and used to calculate
WT and PV capacity factors that reflect the variability of climate conditions over the
hours, days, and years. The numerical experiments show the feasibility of implementing
WT and PV renewable energy technologies in a factory and a warehouse in the cities of
Phoenix and Amarillo, respectively. WT is being preferred over PV in the city of
Amarillo due to its higher windspeed profile all year. Purchasing from the grid is
preferred over PV in Phoenix because even if Phoenix is sunny almost all year the PV
cost used for solving the model is high and the efficiency of the PV generation is not as
high as the one for a WT installed in a windy place.

In the experiments performed to learn about the benefits of using a stochastic
model vs. a deterministic one, the stochastic models perform best when compared to the

deterministic models. For the model considering a planning horizon of twelve months
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(i.e. one-year), the total expected cost of the stochastic model is $7,052,410 and its
LCOE is $37/MWh while the deterministic model had a cost $7,063,400 and an LCOE of
$37/MWh This result is because the stochastic model considers the variability in the
product demands and on the windspeed and sunlight generated, as opposed to the
deterministic model which only considers average product demands and a single set of
WT and PV capacity factors.

From analyzing the LCOE of the different case studies performed with Model 2,
the one-year prosumer models are the ones with the lowest LCOE values due to its large
energy generation and sales to the main grid. Comparison of the one-year prosumer
model to and island model shows that the prosumer model has a lower expected cost and
a lower LCOE than the island model even though it implemented a higher renewable
energy technology than the island model. This is because the prosumer model, generated
a lot of energy which is sold to make profit contributing to reduce the total expected cost
of the model.

This study contributes to reducing the use and emission of fossil fuels and other
harmful gases into the atmosphere since manufacturing industries consume one third of
the energy generated in the United states. It is well known that a stochastic model
performs better than a deterministic one as it considers the variability of wind and the
uncertainty of product demand but it is important for a decision maker to know the
magnitude of the cost difference in a particular production setting. The main research
guestions answered in this thesis were: (1) what is the cost impact of considering energy
requirements in the production systems studied? , (2) what is the LCOE difference if

running the production systems with wind and solar energy and implementing battery
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instead of purchasing energy to the main grid?, (3) is it feasible and cost-effective to run
the production system studied using only the microgrid energy generated and battery
storage? (4) what is the benefit of solving the proposed stochastic models instead of using
deterministic models?, (5) what are good approaches to solve the MSSP models over
short-term and long-term time horizons without growing the scenario trees excessively
and how tractable are those approaches?, and (6) what are the energy costs elements in
the model (i.e. renewable energy equipment costs, price from purchasing energy from
the grid, revenues from selling energy to the grid) that affect the most its total expected
cost and are there any significant interactions in these cost elements?

The future research will consider implementing this model in a particular industry
and extend the model to include other practical constraints. Another interesting future
work to be considered is implementing mirrors in the microgrid system (Budiyanto and
Fadliondi, 2017) to help turn solar energy into extreme heat and generate more energy

since the PV only generates energy for only half of the day.
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APPENDIX SECTION

Appendix A: Capacity Factors

Table Al.1: Solar PV daily capacity factors for the city of Amarillo (Day 1-68)

Day 2013 2014 2015 Day 2013 2014 2015
1 0.201 0.170 0.170 35 0.355 0.178 0.178
2 0.442 0.210 0.210 36 0.247 0.157 0.157
3 0.272 0.264 0.264 37 0.194 0.527 0.527
4 0.279 0.206 0.206 38 0.301 0.252 0.252
5 0.093 0.316 0.316 39 0.283 0.053 0.053
6 0.071 0.337 0.337 40 0.209 0.122 0.122
7 0.154 0.115 0.115 41 0.341 0.062 0.062
8 0.145 0.220 0.220 42 0.363 0.055 0.055
9 0.239 0.124 0.124 43 0.402 0.088 0.088

10 0.066 0.095 0.095 44 0.459 0.097 0.097
11 0.259 0.223 0.223 45 0.332 0.084 0.084
12 0.164 0.329 0.329 46 0.178 0.159 0.159
13 0.246 0.136 0.136 47 0.310 0.137 0.137
14 0.257 0.346 0.346 48 0.565 0.152 0.152
15 0.257 0.274 0.274 49 0.352 0.206 0.206
16 0.164 0.442 0.442 50 0.301 0.092 0.092
17 0.476 0.338 0.338 51 0.276 0.124 0.124
18 0.271 0.478 0.478 52 0.134 0.270 0.270
19 0.287 0.480 0.480 53 0.333 0.173 0.173
20 0.295 0.446 0.446 54 0.369 0.267 0.267
21 0.344 0.264 0.264 55 0.309 0.242 0.242
22 0.281 0.277 0.277 56 0.202 0.177 0.177
23 0.151 0.174 0.174 57 0.368 0.316 0.316
24 0.070 0.355 0.355 58 0.391 0.179 0.179
25 0.099 0.495 0.495 59 0.401 0.300 0.300
26 0.236 0.107 0.107 60 0.306 0.341 0.341
27 0.135 0.317 0.317 61 0.249 0.187 0.187
28 0.325 0.319 0.319 62 0.296 0.479 0.479
29 0.189 0.147 0.147 63 0.102 0.196 0.196
30 0.196 0.108 0.108 64 0.413 0.135 0.135
31 0.429 0.102 0.102 65 0.132 0.149 0.149
32 0.405 0.089 0.089 66 0.129 0.080 0.080
33 0.516 0.226 0.226 67 0.320 0.137 0.137
34 0.264 0.519 0.519 68 0.151 0.306 0.306
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Table Al.2: Solar PV daily capacity factors for the city of Amarillo (Day 69-136)

Day 2013 2014 2015 Day 2013 2014 2015
69 0.193 0.235 0.235 103 0.166 0.391 0.391
70 0.122 0.099 0.099 104 0.163 0.201 0.201
71 0.195 0.132 0.132 105 0.122 0.243 0.243
72 0.337 0.140 0.140 106 0.569 0.472 0.472
73 0.423 0.137 0.137 107 0.569 0.472 0.472
74 0.355 0.446 0.446 108 0.321 0.470 0.470
75 0.215 0.513 0.513 109 0.348 0.250 0.250
76 0.328 0.193 0.193 110 0.295 0.372 0.372
77 0.346 0.193 0.193 111 0.264 0.316 0.316
78 0.202 0.411 0.411 112 0.456 0.201 0.201
79 0.191 0.323 0.323 113 0.334 0.332 0.332
80 0.274 0.351 0.351 114 0.354 0.257 0.257
81 0.230 0.369 0.369 115 0.606 0.219 0.219
82 0.143 0.261 0.261 116 0.647 0.212 0.212
83 0.126 0.626 0.626 117 0.425 0.496 0.496
84 0.134 0.315 0.315 118 0.546 0.358 0.358
85 0.339 0.241 0.241 119 0.635 0.407 0.407
86 0.627 0.583 0.583 120 0.666 0.316 0.316
87 0.424 0.439 0.439 121 0.363 0.286 0.286
88 0.452 0.295 0.295 122 0.332 0.537 0.537
89 0.232 0.356 0.356 123 0.254 0.187 0.187
90 0.168 0.429 0.429 124 0.219 0.342 0.342
91 0.182 0.384 0.384 125 0.139 0.429 0.429
92 0.167 0.579 0.579 126 0.347 0.190 0.190
93 0.341 0.343 0.343 127 0.517 0.088 0.088
94 0.152 0.196 0.196 128 0.430 0.361 0.361
95 0.216 0.183 0.183 129 0.622 0.138 0.138
96 0.166 0.165 0.165 130 0.660 0.408 0.408
97 0.216 0.215 0.215 131 0.659 0.610 0.610
98 0.200 0.088 0.088 132 0.585 0.516 0.516
99 0.139 0.286 0.286 133 0.242 0.563 0.563

100 0.105 0.418 0.418 134 0.252 0.389 0.389
101 0.158 0.290 0.290 135 0.165 0.193 0.193
102 0.224 0.214 0.214 136 0.215 0.285 0.285
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Table A1.3: Solar PV daily capacity factors for the city of Amarillo (Day 137-204)

Day 2013 2014 2015 Day 2013 2014 2015
137 0.151 0.197 0.197 171 0.343 0.332 0.332
138 0.211 0.209 0.209 172 0.240 0.492 0.492
139 0.274 0.385 0.385 173 0.184 0.303 0.303
140 0.314 0.350 0.350 174 0.142 0.457 0.457
141 0.457 0.184 0.184 175 0.334 0.517 0.517
142 0.402 0.090 0.090 176 0.457 0.461 0.461
143 0.308 0.301 0.301 177 0.372 0.319 0.319
144 0.376 0.474 0.474 178 0.357 0.319 0.319
145 0.143 0.399 0.399 179 0.362 0.323 0.323
146 0.225 0.407 0.407 180 0.347 0.517 0.517
147 0.400 0.335 0.335 181 0.157 0.260 0.260
148 0.340 0.424 0.424 182 0.330 0.292 0.292
149 0.597 0.194 0.194 183 0.362 0.364 0.364
150 0.477 0.296 0.296 184 0.361 0.354 0.354
151 0.413 0.194 0.194 185 0.549 0.508 0.508
152 0.342 0.216 0.216 186 0.599 0.332 0.332
153 0.391 0.316 0.316 187 0.128 0.352 0.352
154 0.349 0.261 0.261 188 0.190 0.192 0.192
155 0.264 0.148 0.148 189 0.158 0.347 0.347
156 0.157 0.235 0.235 190 0.173 0.199 0.199
157 0.225 0.415 0.415 191 0.261 0.424 0.424
158 0.126 0.261 0.261 192 0.292 0.189 0.189
159 0.177 0.324 0.324 193 0.408 0.169 0.169
160 0.147 0.338 0.338 194 0.642 0.352 0.352
161 0.414 0.321 0.321 195 0.606 0.349 0.349
162 0.641 0.320 0.320 196 0.396 0.217 0.217
163 0.537 0.640 0.640 197 0.201 0.461 0.461
164 0.342 0.320 0.320 198 0.426 0.439 0.439
165 0.436 0.306 0.306 199 0.461 0.378 0.378
166 0.320 0.308 0.308 200 0.560 0.238 0.238
167 0.324 0.295 0.295 201 0.366 0.400 0.400
168 0.419 0.284 0.284 202 0.323 0.450 0.450
169 0.408 0.271 0.271 203 0.323 0.346 0.346
170 0.375 0.264 0.264 204 0.323 0.335 0.335
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Table Al.4: Solar PV daily capacity factors for the city of Amarillo (Day 205-272)

Day 2013 2014 2015 Day 2013 2014 2015
205 0.308 0.324 0.324 239 0.170 0.353 0.353
206 0.288 0.256 0.256 240 0.132 0.370 0.370
207 0.222 0.328 0.328 241 0.144 0.211 0.211
208 0.356 0.329 0.329 242 0.461 0.144 0.144
209 0.392 0.332 0.332 243 0.333 0.225 0.225
210 0.333 0.364 0.364 244 0.358 0.451 0.451
211 0.296 0.211 0.211 245 0.337 0.253 0.253
212 0.213 0.142 0.142 246 0.288 0.341 0.341
213 0.302 0.417 0.417 247 0.244 0.317 0.317
214 0.370 0.196 0.196 248 0.271 0.314 0.314
215 0.351 0.196 0.196 249 0.424 0.327 0.327
216 0.457 0.288 0.288 250 0.484 0.317 0.317
217 0.327 0.386 0.386 251 0.345 0.290 0.290
218 0.345 0.355 0.355 252 0.326 0.342 0.342
219 0.196 0.327 0.327 253 0.396 0.305 0.305
220 0.195 0.197 0.197 254 0.279 0.327 0.327
221 0.367 0.365 0.365 255 0.404 0.325 0.325
222 0.373 0.207 0.207 256 0.344 0.385 0.385
223 0.298 0.205 0.205 257 0.341 0.295 0.295
224 0.175 0.310 0.310 258 0.173 0.157 0.157
225 0.344 0.596 0.596 259 0.335 0.284 0.284
226 0.372 0.559 0.559 260 0.184 0.349 0.349
227 0.262 0.319 0.319 261 0.178 0.250 0.250
228 0.329 0.337 0.337 262 0.254 0.214 0.214
229 0.329 0.321 0.321 263 0.395 0.250 0.250
230 0.311 0.353 0.353 264 0.388 0.434 0.434
231 0.380 0.350 0.350 265 0.404 0.544 0.544
232 0.274 0.335 0.335 266 0.179 0.351 0.351
233 0.142 0.378 0.378 267 0.389 0.345 0.345
234 0.132 0.318 0.318 268 0.288 0.319 0.319
235 0.168 0.198 0.198 269 0.245 0.356 0.356
236 0.299 0.198 0.198 270 0.314 0.314 0.314
237 0.429 0.192 0.192 271 0.626 0.310 0.310
238 0.342 0.215 0.215 272 0.359 0.315 0.315
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Table A1.5: Solar PV daily capacity factors for the city of Amarillo (Day 273-340)

Day 2013 2014 2015 Day 2013 2014 2015
273 0.426 0.284 0.284 307 0.433 0.315 0.315
274 0.310 0.213 0.213 308 0.319 0.228 0.228
275 0.316 0.189 0.189 309 0.280 0.332 0.332
276 0.185 0.436 0.436 310 0.375 0.514 0.514
277 0.265 0.307 0.307 311 0.512 0.299 0.299
278 0.188 0.319 0.319 312 0.509 0.145 0.145
279 0.122 0.398 0.398 313 0.253 0.152 0.152
280 0.122 0.336 0.336 314 0.504 0.161 0.161
281 0.129 0.333 0.333 315 0.251 0.186 0.186
282 0.187 0.198 0.198 316 0.394 0.253 0.253
283 0.427 0.230 0.230 317 0.264 0.263 0.263
284 0.576 0.383 0.383 318 0.261 0.296 0.296
285 0.483 0.371 0.371 319 0.246 0.353 0.353
286 0.170 0.277 0.277 320 0.073 0.310 0.310
287 0.073 0.117 0.117 321 0.134 0.146 0.146
288 0.325 0.173 0.173 322 0.097 0.409 0.409
289 0.497 0.278 0.278 323 0.250 0.252 0.252
290 0.405 0.102 0.102 324 0.301 0.144 0.144
291 0.410 0.102 0.102 325 0.275 0.302 0.302
292 0.572 0.396 0.396 326 0.103 0.306 0.306
293 0.332 0.393 0.393 327 0.331 0.358 0.358
294 0.445 0.344 0.344 328 0.171 0.333 0.333
295 0.367 0.171 0.171 329 0.292 0.278 0.278
296 0.190 0.132 0.132 330 0.468 0.140 0.140
297 0.475 0.186 0.186 331 0.466 0.134 0.134
298 0.493 0.461 0.461 332 0.215 0.406 0.406
299 0.506 0.549 0.549 333 0.401 0.399 0.399
300 0.546 0.546 0.546 334 0.460 0.315 0.315
301 0.542 0.542 0.542 335 0.363 0.459 0.459
302 0.539 0.524 0.524 336 0.232 0.329 0.329
303 0.252 0.325 0.325 337 0.206 0.287 0.287
304 0.344 0.314 0.314 338 0.151 0.204 0.204
305 0.448 0.309 0.309 339 0.342 0.203 0.203
306 0.526 0.263 0.263 340 0.332 0.301 0.301
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Table A1.6: Solar PV daily capacity factors for the city of Amarillo (Day 341-365)

Day 2013 2014 2015 Day 2013 2014 2015
341 0.292 0.328 0.328 354 0.273 0.121 0.121
342 0.110 0.226 0.226 355 0.389 0.107 0.107
343 0.273 0.203 0.203 356 0.443 0.044 0.044
344 0.181 0.133 0.133 357 0.435 0.389 0.389
345 0.154 0.085 0.085 358 0.270 0.386 0.386
346 0.343 0.278 0.278 359 0.161 0.416 0.416
347 0.237 0.153 0.153 360 0.169 0.424 0.424
348 0.214 0.293 0.293 361 0.399 0.246 0.246
349 0.151 0.118 0.118 362 0.381 0.375 0.375
350 0.133 0.133 0.133 363 0.075 0.309 0.309
351 0.054 0.094 0.094 364 0.381 0.089 0.089
352 0.081 0.080 0.080 365 0.156 0.080 0.080
353 0.094 0.192 0.192

Table A1.7: WT daily capacity factors for the city of Amarillo (Day 1-40)

Day 2013 2014 2015 Day 2013 2014 2015
1 0.465 1.000 0.083 21 0.226 0.648 1.000
2 0.290 0.426 0.039 22 0.310 0.631 1.000
3 0.112 1.000 0.271 23 0.101 1.000 0.202
4 0.852 1.000 0.852 24 0.194 0.700 0.631
5 0.980 1.000 1.000 25 0.300 0.354 0.507
6 0.439 0.377 0.122 26 1.000 0.980 0.567
7 1.000 1.000 1.000 27 1.000 1.000 0.235
8 0.426 1.000 1.000 28 1.000 0.140 0.536
9 1.000 0.598 0.552 29 1.000 1.000 0.957

10 0.552 0.812 1.000 30 1.000 1.000 0.389
11 1.000 0.439 0.235 31 0.598 0.439 0.332
12 0.936 1.000 1.000 32 1.000 0.631 1.000
13 0.218 0.465 0.235 33 0.166 0.754 0.893
14 0.332 1.000 0.122 34 1.000 1.000 0.452
15 0.067 0.914 0.310 35 0.736 0.567 1.000
16 0.439 0.522 1.000 36 0.426 1.000 0.343
17 0.244 0.507 1.000 37 1.000 0.631 0.793
18 1.000 0.754 1.000 38 1.000 1.000 0.401
19 0.754 1.000 0.134 39 1.000 0.252 0.507
20 0.536 1.000 0.615 40 1.000 0.552 0.736
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Table A1.8: WT daily capacity factors for the city of Amarillo (Day 41-108)

Day 2013 2014 2015 Day 2013 2014 2015
41 1.000 0.271 0.567 75 1.000 1.000 1.000
42 0.615 0.173 1.000 76 0.522 1.000 1.000
43 0.665 0.648 0.413 77 0.893 1.000 0.134
44 0.079 0.648 0.262 78 0.665 0.377 0.872
45 0.493 0.936 1.000 79 0.872 1.000 0.101
46 0.252 0.893 1.000 80 1.000 1.000 0.166
47 0.365 0.957 0.852 81 1.000 1.000 0.235
48 0.598 1.000 0.582 82 1.000 0.736 0.310
49 1.000 1.000 0.146 83 1.000 1.000 0.754
50 1.000 0.773 1.000 84 0.112 1.000 1.000
51 0.793 1.000 1.000 85 1.000 1.000 0.598
52 1.000 0.582 0.615 86 1.000 1.000 0.202
53 0.117 0.128 1.000 87 0.218 0.321 0.290
54 0.682 0.936 0.507 88 0.290 1.000 1.000
55 1.000 0.598 0.507 89 0.280 1.000 0.754
56 1.000 0.812 1.000 90 0.914 1.000 0.271
57 0.252 0.736 1.000 91 1.000 1.000 1.000
58 1.000 0.980 0.957 92 1.000 1.000 0.936
59 0.235 1.000 0.452 93 1.000 1.000 1.000
60 0.354 1.000 0.117 94 0.226 0.343 1.000
61 0.271 1.000 0.736 95 1.000 1.000 1.000
62 1.000 0.389 1.000 96 1.000 0.300 1.000
63 1.000 0.700 1.000 97 0.271 1.000 0.700
64 0.479 1.000 0.389 98 0.852 0.872 1.000
65 1.000 0.754 0.552 99 1.000 1.000 1.000
66 1.000 1.000 0.426 100 1.000 1.000 0.365
67 1.000 1.000 0.218 101 0.465 0.377 1.000
68 1.000 0.465 0.202 102 0.936 1.000 1.000
69 1.000 0.872 0.056 103 1.000 1.000 1.000
70 0.343 1.000 0.180 104 1.000 1.000 0.041
71 0.872 1.000 0.479 105 1.000 1.000 1.000
72 1.000 1.000 0.812 106 1.000 1.000 0.536
73 0.290 1.000 0.682 107 1.000 1.000 0.226
74 0.202 1.000 0.226 108 1.000 1.000 0.507
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Table A1.9: WT daily capacity factors for the city of Amarillo (Day 109-176)

Day 2013 2014 2015 Day 2013 2014 2015
109 0.354 1.000 1.000 143 1.000 0.332 1.000
110 1.000 1.000 0.262 144 1.000 0.648 1.000
111 0.507 0.465 0.377 145 1.000 0.682 0.832
112 1.000 1.000 1.000 146 1.000 0.793 0.166
113 1.000 1.000 1.000 147 1.000 0.465 1.000
114 0.226 1.000 1.000 148 1.000 0.146 1.000
115 1.000 1.000 1.000 149 1.000 0.202 0.552
116 1.000 1.000 1.000 150 1.000 0.343 0.812
117 0.226 1.000 1.000 151 0.262 0.773 0.665
118 0.665 0.893 0.832 152 1.000 1.000 1.000
119 1.000 1.000 0.112 153 1.000 0.522 1.000
120 1.000 1.000 1.000 154 1.000 1.000 1.000
121 1.000 0.893 1.000 155 0.754 1.000 1.000
122 1.000 0.354 1.000 156 1.000 1.000 1.000
123 0.682 1.000 1.000 157 0.280 1.000 1.000
124 0.465 1.000 0.793 158 1.000 1.000 1.000
125 0.166 1.000 0.754 159 1.000 1.000 0.087
126 1.000 1.000 1.000 160 0.413 1.000 0.343
127 1.000 1.000 0.936 161 1.000 0.493 1.000
128 1.000 1.000 0.718 162 1.000 1.000 1.000
129 1.000 0.718 1.000 163 1.000 1.000 1.000
130 0.552 0.852 0.507 164 1.000 1.000 0.210
131 0.479 1.000 0.426 165 1.000 1.000 0.832
132 1.000 1.000 1.000 166 1.000 1.000 0.321
133 1.000 1.000 0.648 167 1.000 1.000 0.140
134 1.000 0.700 0.754 168 0.567 1.000 0.128
135 1.000 0.321 1.000 169 0.321 1.000 0.389
136 0.426 1.000 0.479 170 1.000 1.000 0.682
137 0.914 0.736 0.452 171 1.000 1.000 1.000
138 1.000 1.000 0.773 172 1.000 1.000 1.000
139 0.665 1.000 1.000 173 1.000 1.000 1.000
140 1.000 1.000 1.000 174 1.000 1.000 1.000
141 0.936 1.000 0.582 175 1.000 1.000 1.000
142 1.000 1.000 0.754 176 1.000 1.000 1.000
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Table A1.10: WT daily capacity factors for the city of Amarillo (Day 177-244)

Day 2013 2014 2015 Day 2013 2014 2015
177 0.832 1.000 0.567 211 0.567 0.718 0.332
178 1.000 1.000 0.079 212 0.310 0.413 0.648
179 1.000 1.000 0.536 213 0.957 0.262 0.465
180 0.631 1.000 0.377 214 1.000 0.101 0.598
181 0.389 1.000 0.365 215 0.893 0.194 0.700
182 0.180 1.000 1.000 216 0.536 0.936 0.493
183 0.053 0.507 0.194 217 1.000 1.000 0.262
184 0.812 0.665 0.631 218 1.000 0.365 0.631
185 1.000 1.000 0.365 219 0.682 0.493 0.754
186 1.000 1.000 1.000 220 0.452 0.615 0.852
187 1.000 1.000 1.000 221 0.507 0.893 0.567
188 1.000 0.567 1.000 222 0.173 0.128 0.354
189 0.718 0.401 0.354 223 0.507 0.262 0.522
190 1.000 1.000 1.000 224 0.413 0.146 0.736
191 0.465 1.000 1.000 225 0.252 0.872 0.567
192 0.536 1.000 1.000 226 0.754 1.000 0.290
193 0.980 1.000 0.582 227 0.166 1.000 0.665
194 0.832 0.452 0.479 228 0.793 0.665 0.980
195 1.000 0.507 0.493 229 1.000 0.087 0.793
196 0.426 0.812 1.000 230 1.000 0.389 0.598
197 0.290 1.000 0.522 231 1.000 0.493 1.000
198 0.682 0.389 1.000 232 1.000 1.000 0.936
199 0.615 0.226 1.000 233 1.000 1.000 1.000
200 1.000 1.000 0.957 234 0.754 1.000 0.754
201 0.914 1.000 0.615 235 0.439 1.000 1.000
202 1.000 1.000 0.280 236 0.567 1.000 0.202
203 1.000 0.210 1.000 237 0.536 1.000 0.389
204 0.980 0.117 0.832 238 1.000 0.507 0.343
205 1.000 0.700 0.893 239 0.700 0.832 1.000
206 1.000 1.000 0.872 240 1.000 0.413 0.280
207 0.980 1.000 0.773 241 1.000 0.166 0.187
208 1.000 0.648 1.000 242 0.493 0.439 0.083
209 1.000 1.000 1.000 243 0.682 1.000 1.000
210 1.000 0.700 0.343 244 0.401 0.582 1.000
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Table A1.11: WT daily capacity factors for the city of Amarillo (Day 245-312)

Day 2013 2014 2015 Day 2013 2014 2015
245 0.377 0.736 1.000 279 0.187 0.218 0.957
246 0.567 1.000 1.000 280 0.321 0.134 0.166
247 0.413 1.000 1.000 281 1.000 0.321 0.000
248 0.401 1.000 0.872 282 1.000 0.479 0.439
249 0.452 0.773 0.700 283 1.000 1.000 1.000
250 0.377 0.000 0.582 284 1.000 0.321 0.452
251 0.567 1.000 0.310 285 0.493 1.000 0.413
252 1.000 1.000 0.280 286 1.000 1.000 0.235
253 1.000 1.000 0.536 287 1.000 0.365 0.377
254 1.000 0.452 0.893 288 1.000 0.465 0.536
255 0.321 1.000 0.793 289 0.152 0.682 1.000
256 1.000 0.439 1.000 290 0.244 0.290 1.000
257 1.000 1.000 1.000 291 1.000 0.202 1.000
258 0.389 1.000 1.000 292 0.401 0.852 1.000
259 0.413 0.087 1.000 293 0.682 0.075 1.000
260 0.773 0.354 1.000 294 0.493 0.465 0.389
261 1.000 0.401 1.000 295 0.377 1.000 0.700
262 1.000 0.262 0.914 296 0.793 0.536 1.000
263 0.700 0.079 1.000 297 1.000 0.210 0.290
264 0.522 0.682 0.832 298 0.812 0.914 0.039
265 1.000 0.957 1.000 299 0.648 1.000 0.754
266 0.852 1.000 1.000 300 0.452 0.736 0.426
267 0.134 1.000 0.047 301 1.000 0.117 1.000
268 1.000 0.413 0.071 302 0.507 0.718 0.682
269 1.000 0.479 0.112 303 1.000 0.736 1.000
270 1.000 1.000 0.465 304 1.000 0.321 0.310
271 0.957 0.736 0.615 305 0.598 1.000 0.210
272 0.793 1.000 0.134 306 0.522 1.000 0.665
273 0.252 1.000 0.493 307 1.000 1.000 1.000
274 0.401 0.218 1.000 308 0.957 0.413 1.000
275 0.852 1.000 1.000 309 1.000 0.047 0.936
276 1.000 0.812 1.000 310 0.244 0.235 0.582
277 1.000 0.452 0.252 311 0.773 1.000 0.244
278 1.000 0.210 0.552 312 1.000 0.479 1.000
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Table A1.12: WT daily capacity factors for the city of Amarillo (Day 313-365)

Day 2013 2014 2015 Day 2013 2014 2015
313 0.452 1.000 1.000 340 0.354 0.202 0.244
314 0.117 1.000 1.000 341 0.493 0.536 0.389
315 1.000 1.000 1.000 342 1.000 0.354 0.235
316 1.000 1.000 0.262 343 0.187 0.479 0.682
317 1.000 0.310 0.980 344 1.000 0.044 0.507
318 0.736 1.000 1.000 345 0.439 0.079 0.552
319 0.980 1.000 1.000 346 1.000 1.000 1.000
320 1.000 1.000 1.000 347 1.000 1.000 1.000
321 1.000 0.343 1.000 348 1.000 1.000 0.465
322 0.365 0.536 0.718 349 0.152 0.957 1.000
323 1.000 0.354 0.536 350 0.041 0.343 0.134
324 0.290 0.180 1.000 351 0.262 1.000 0.615
325 1.000 0.146 1.000 352 1.000 0.262 0.682
326 1.000 0.832 0.202 353 1.000 0.117 1.000
327 0.631 1.000 1.000 354 0.980 0.631 1.000
328 0.202 0.140 1.000 355 0.280 0.493 0.465
329 1.000 0.754 1.000 356 0.310 1.000 1.000
330 0.343 0.452 1.000 357 0.452 1.000 0.754
331 0.377 1.000 1.000 358 1.000 1.000 0.452
332 0.365 1.000 0.439 359 0.567 1.000 1.000
333 1.000 1.000 0.041 360 0.465 0.872 1.000
334 0.134 1.000 0.262 361 0.152 0.280 1.000
335 0.097 0.852 0.226 362 0.936 0.218 1.000
336 0.226 0.552 0.194 363 1.000 0.465 0.493
337 1.000 0.452 0.280 364 0.718 1.000 0.300
338 1.000 0.332 1.000 365 1.000 0.159 0.159
339 0.700 0.479 1.000
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Appendix B: Glossary

Electric vehicle energy intensity rate:

Amount of battery energy consumed to move 1kg object across 1 km at a specific
speed (Pham et al, 2019). The electric vehicle energy intensity rate is notated as

EEV

md

max
is the driving range at speed v measured in km and m is the vehicle gross weight
including the payload.

g, and computed as q, = where Eg, is the battery capacity in MWh, dmax

For example, the battery capacity of a Condor e-truck is 0.05 MWh (or 50
kwh), the driving range of a fully charged Condor can reach up to 160 km at
100km/h and the gross weight of this vehicle is approximately 2630 kg. At v=100
km/h, g1o0 is computed as follows:

0.05

—_ 29 =1.19x107 MWh/kg/km
Choo 2630*160 g
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