Electronic Journal of Differential Equations, Vol. 2005(2005), No. 94, pp. 1-12.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND
THE FUCIK SPECTRUM

PETR TOMICZEK

ABSTRACT. We prove the existence of solutions to the nonlinear problem
u”(2) + Aput(z) = Aou” (@) + g(z, u(x) = f(z), =€ (0,7),
u(0) =u(w) =0

where the point [A, A_] is a point of the Fué¢ik spectrum and the nonlinearity
g(z,u(x)) satisfies a potential Landesman-Lazer type condition. We use a
variational method based on the generalization of the Saddle Point Theorem.

1. INTRODUCTION

We investigate the existence of solutions for the nonlinear boundary-value prob-

lem
W) 4 A (@) < A () gl ) = @), e,
u(0) = u(w) =0. .
Here vt = max{#+wu,0}, A\;,A\_ € R, the nonlinearity g: (0,7) x R — R is a
Caratheodory function and f € L'(0,7). For ¢ = 0 and f = 0 problem (1.1

becomes
u’(z) + Aput () = A_u () =0, z¢€(0,m),

u(0) = u(m) =0.
We define ¥ = {[A\;,\_] € R?: has a nontrivial solution}. This set is called
the Fucik spectrum (see [2]), and can be expressed as 3 = Uj; Y; where
Sr={An AR (AL —1)(A- —1) =0},
1 1
+—=) =1y,
Var o WVAC ) J

Yoit1 = Loig1,1 U102 Wwhere

Soivin = {A, A ] €R: i (

(1.2)

Soi = {\y, A ] € R2: z(

1
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We suppose that

Ay, A_] €3, if m € Nis even
Ay, A_] € B2, if m € Nis odd (1.3)
and \_ < Ay < (m+1)?,

FiGURE 1. Fuéik spectrum

Remark 1.1. Assuming that (m +1)2 > Ay > A_, if [\, \_] € X,,,, m € N, then
A > (m—1)%

We define the potential of the nonlinearity g as

G(z,s) = /Os g(x,t)dt

and
G4 (x) = liminf Glz,s) ,  G_(z)=limsup

s——+400 S S— —00

Glr,s)

We denote by ¢, a nontrivial solution of (1.2]) corresponding to [A;, A_] (see Re-
mark . We assume that for any ,, the following potential Landesman-Lazer
type condition holds:

/0 f(@)om(z) dz </0 [G+(2)(pm (@) = G—(2)(pm(x)) "] da. (1.4)

We suppose that the nonlinearity g is bounded, i.e. there exists p(z) € L(0, )
such that

lg(x,s)| < p(z) forae xe€(0,m),VseR (1.5)
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and we prove the solvability of in Theorem below.

This article is inspired by a result in [3] where the author studies the case when
g(z, s)/s lies (in some sense) between ¥; and X5 and by a result in [I] with the
classical Landesman-Lazer type condition [I, Corollary 2].

Remark 1.2. First we note that if m is even then two different functions 1, Yma
of norm 1 correspond to the point [A;, A_] € ¥,,,. For example for m =2, A, > A_

we have
po1 (2) = {lﬁﬁsm( Ar), z € (0,7//As),
,kl )\+ Sin(\/x(aj—ﬂ'/\/z))’ = <7T/\/K,7T>,

where k1 > 0, and

(2) = —kor/Ay sin(y/A_x), z € (0,m/\/A_),
P2 kA sin(Vg (@ — 1/ A0), @ € (n/ /AT, 7)),
where kg > 0.
For Ay = A_ = 4 we set @o1(z) = kisin2z and @ao(x) = —kosin 2z, where
kl,kg > 0.

P21 ¥22

FIGURE 2. Solutions corresponding to ¥

If m is odd, then %, = ¥,,1 U X,,2 and it corresponds only one function ¢,
od norm 1 to the point [)\’+, M_] € 3,1, one function ¢, of norm 1 to the point
Ay, A_] € 3,2, respectively.

For m =3, N, > X\_, A\; > A_ we have

p31(7)

k1\/AL sin(y/N, ), z e (0,7/\/N.),
A sin W (o — 7/ ), v € (m) X)X 7)),
k1y/A_sin(\/ N (z — 7/ /N, =7 /\/AL)), x € (n/\/N, +7/\/N_,7),

where k1 > 0.
p32()

—kor/Agsin(y/A_x), z € (0,7/y/A2),
= ¢ koy/A_sin(\/ A (xz —7/\/A2)), ERCTRVINNY JRVINEEY RV NN
—ko /AL sin(\/A_(z — 7/ /A_ — /A1), x €{m/\/A- + T/ As,T),

where ko > 0.
For Ay = A_ = m* we set @1 (x) = k1 sinma, and @,,2(x) = —ky sin ma, where
k1,ks > 0 and from the condition we obtain

/W f(z)sinmaz de < /Tr (G4 (z)(sinmaz)T — G_(z)(sinma) | dz
0 0

2
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P31 Y32

/A NRYAN
N A

FIGURE 3. Solutions corresponding to X3

and
/Tr f(z)(—sinmz) dz < /Tr (G4 (z)(—sinma)T — G_(2)(—sinma) ] dz.
0 0
Hence it follows

/7T [G_(z)(sinmz)T — Gy (z)(sinmz)” | do
0 (1.6)

< / f(z)sinmaz dx < / (G (z)(sinma)™ — G_(z)(sinma) ] dx.
0 0
We obtained the potential Landesman-Lazer type condition (see [0]).
Remark 1.3. We have

(v, sin mx) :/ V' (x)(sinmz) dx = m2/ v(z)sinmazdx VveH
0 0

(H is a Sobolev space defined below). Since and from the definition of the functions
©m1,©me (see remark it follows

(pm1,sinmz) >0 and (pma,sinmz) < 0. (1.7

2. PRELIMINARIES

Notation. We shall use the classical spaces C(0,7), LP(0,7) of continuous and
measurable real-valued functions whose p-th power of the absolute value is Lebesgue
integrable, respectively. H is the Sobolev space of absolutely continuous functions
u: (0,7) — R such that v’ € L?(0, 7) and u(0) =u(r) =0. We denote by the symbols
|- |l, and || - || the norm in H, and in L?(0, ), respectively. We denote (-,-) the
pairing in the space H.

By a solution of we mean a function u € C1(0, 7) such that u’ is absolutely
continuous, u satisfies the boundary conditions and the equations holds a.e.
in (0, 7).

Let I: H — R be a functional such that I € C'(H,R) (continuously differen-
tiable). We say that u is a critical point of I, if

(I'(u),v) =0 forallve H.

We say that v is a critical value of I, if there is ug € H such that I(ug) = v and
I'(ug) = 0.

We say that I satisfies Palais-Smale condition (PS) if every sequence (u,,) for
which I(u,,) is bounded in H and I'(u,) — 0 (as n — 00) possesses a convergent
subsequence.
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We study (1.1)) by the use of a variational method. More precisely, we look for
critical points of the functional I : H — R, which is defined by

1

I(u) = 3 /Oﬂ[(u')Q _ )\+(u+)2 _ )\_(u*)z] dx — /O7r [G(x,u) - fu} dz. (2.1)

Every critical point u € H of the functional I satisfies
/ [u'v" — (Aput — A_u" )] do — / [9(z,u)v — fv]de =0 forallve H.
0 0

Then u is also a weak solution of and vice versa.

The usual regularity argument for ODE yields immediately (see Fuéik [2]) that
any weak solution of is also a solution in the sense mentioned above.

We will use the following variant of the Saddle Point Theorem (see [4]) which is
proved in Struwe [5, Theorem 8.4].

Theorem 2.1. Let S be a closed subset in H and Q) a bounded subset in H with
boundary Q. SetT' = {h : h € C(H,H), h(u) = u on dQ}. Suppose I €
Cl(H,R) and

(i) SNoQ =10,

(it) SNh(Q) #0, for every h €T,
(iii) there are constants p,v such that p = inf,eg I(u) > sup,cpq I(u) = v,
(iv) I satisfies Palais-Smale condition.

Then the number

= inf sup I
7= fnf sup (h(w))

defines a critical value v > v of I.

We say that S and 0Q link if they satisfy conditions (i), (ii) of the theorem
above.
We denote the first integral in the functional I by

T(u) = / ()2 = Ap(u™)2 = A_(u™)?] da.
0
Now we present a few results needed later.

Lemma 2.2. Let ¢ be a solution of with A, A_] € 3, Ay > A_. We put
u=ap+w,a>0,we H. Then the following relation holds

/7T [(w')? = Apw?] dz < J(u) < /7T [(w')? = A_w?] dz. (2.2)
0 0

Proof. We prove only the right inequality in (2.2), the proof of the left inequality
is similar. Since ¢ is a solution of (1.2]) we have

/ ' dx = / Arotw—A_p w]de forweH (2.3)
0 0
and

[ @2 = [ e e dr. (2.4)
0 0
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By (2.3) and (2.4), we obtain

50 = [ (o 0 = X l(ap+ ) = A (g w) ] do
_ /OTr [(aso’)2 + 200w + ()2 — (s — A )((ap + w)H)?
— A (ap + w)ﬂ dx
= /Oﬂ [W — A (a2 4+ A_(a9)? 4+ 2a((Ay — AT+ A_p)w  (2:5)
(W)~ (A = A )((ap+ w)*) — A_((a9)® + 2apw +w?)] da
- /OW{(“ = 2)[(ap™)” + 20w — ((app + w) )]

+ (w')? - )\_w2} dx .

For the function (a¢p™)? 4+ 2apTw — ((ap +w)™)? in the last integral in we
have
(ap™)? + 2aptw — ((ap +w)™)?
—((ap+w)*)2 <0 0 <0
= —w?<0 w>0,ap+w>0
apT(apt +w+w) <0 ¢ >0,ap+w<0.
By the assumption Ay > A_, we obtain the assertion of the Lemma [2.2 (I

Remark 2.3. It follows from the previous proof that we obtain the equality

J(u) = /OTF[(w’)z —Aw?] dz

in (2.2)) if ap +w < 0 when ¢ < 0, and w = 0 when ¢ > 0. Consequently, if the
equality holds and if w in span{sinz,...,sinkz}, k € N, then w = 0.

3. MAIN RESULT

Theorem 3.1. Under the assumptions , , and , Problem has

at least one solution in H.

Proof. First we suppose that m is even. We shall prove that the functional I defined

by (2.1)) satisfies the assumptions in Theorem Let @1, ©m2 be the normalized
solutions of (|1.2)) described above (see Remark |1.2)

Let H~ be the subspace of H spanned by functions sinz,...,sin(m — 1)x. We
define V = V] U V5 where

Vi={ueH:u=a19m +w, 0<a;, we H },

Vo={u€ H:u=aspma+w, 0<ay, we H }.

Let K > 0, L > 0 then we define Q = Q1 U Q2 where
Qr={ueV:0<a; <K, ||w| <L}
Q:={ueVy:0<as <K, ||w|]| <L}

Let S be the subspace of H spanned by functions sin(m + 1)z, sin(m + 2)z, .. ..
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Next, we verify the assumptions of Theorem [2.1] We see that S is a closed subset
in H and @ is a bounded subset in H.
(i) Firstly we note that for = € H~ @ S we have (z,sinmx) = 0. We suppose for
contradiction that there is u € 9Q N.S. Then

. 0 . - .
0"E’ (u, sin mx) ueeq (@i omi + w,sinma) wed @i {Pmi, Sin ML)
i = 1,2. From previous equalities and inequalities (1.7]) it follows that a; = 0,
i=1,2and u =w. Foru=w € dQ we have |ju|| = L > 0 and we obtain a

contradiction with w € H~ NS = {o}.
(ii) We prove that H =V @ S. We can write a function h € H in the form

m—1 o)
h = E b; sinix + b, sinmx + E b; sinix
=1 i=m+1

:E—l—bmsinmaz—l—fl, b; € R,

i € N. The inequalities ([1.7)) yield that there are constants b1, b2 > 0 such that

sinmx = b1 (Vm1 — Py — Pm1) and —sinma = by (@me — Ppua — Pme). Hence
we have for b, > 0,

h= E"’_ bmbml(@ml - ¢m1 - &ml) + h

ceH™ >0
——— —— -
= (h - bmbm1¢m1 + bmbml Qaml) + (h - bmbm1¢m1) .
ev es

Similarly for b,, <0,

h=h+ |bm|bma(Pm2 — Pma — Pmz2) + h

cH- >0
— —— ~ _
= (h - |bm‘bm2¢m2 + |bm|bm2 @mQ) + (h - |bm|bm2§0m2) .
(S% €S

We proved that H is spanned by V and S.

The proof of the assumption SNA(Q) # 0 Vh €T is similar to the proof in [5]
example 8.2]. Let m: H — V be the continuous projection of H onto V. We have
to show that 0 € w(h(Q)). For t € [0,1], u € Q we define

he(u) = tr(h(u)) + (1 — t)u.

The function h; defines a homotopy of hg = id with hy = moh. Moreover, h:|0Q =
id for all ¢ € [0,1]. Hence the topological degree deg(hs, @,0) is well-defined and
by homotopy invariance we have

deg(mo h,Q,0) = deg(id, @,0) = 1.

Hence 0 € 7(h(Q)), as needed.
(iii) Firstly, we note that by assumption (1.5)), one has

i / Glaw = fu, . (3.1)
u||—0o0 0

[[ull
First we show that the infimum of functional I on the set S is a real number. We

prove for this that
lim I(u)=o0c foralluesS (3.2)

llu[|—o0
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and I is bounded on bounded sets.
Because of the compact imbedding of H into C(0,7) (||ul/c(o,x) < cillull), and
of H into L2(0,7) (|jull2 < ca|lu||), and the assumption (1.5 one has

I(u) = ;/Ow[(u’)2 — A (wh)? = As(u)?] do — /OTr [G(z,u) — fu] dx

IN

1 _ s
5 (lull® + A [[ut 113 + A flu ||§)+/0 [(pl + I Dlul] da

IN

1 _
5 (lull® + Aeallut | + A-eallu™|%) + llplls + 1 £l) e flul -

Hence I is bounded on bounded subsets of S.
To prove ([3.2)), we argue by contradiction. We suppose that there is a sequence
(un) C S such that |Ju,| — oo and a constant cg satisfying

liminf I'(u,) < c3. (3.3)

n—oo

For u € S the following relation holds
= [ @Pdezn1? [ ddo=ma1Pul @)
0 0

The definition of I, (3.1), (3.3) and (3.4)) yield

2 _ +1|2 2 _ —112
0 timint 18] > gy (1P = A (412 A
n— oo Unp, n—oo Un,

(3.5)
It follows from (3.5) and (1.3)) that ||u,||3/||un||?> — O and from the definition of I
and (3.1]) we have

I(uy, 1
lim inf (u l =
lunll—oo [Jun® 2
a contradiction to (3.5). We proved that there is u € R such that inf,ecgs I(u) = p.
Second we estimate the value I(u) for u € 0Q. We remark that u € Q) can be
either of the form K, +w, with ||w|| < L or of the form a;@.,;, with 0 < a; < K,
|lw|| =L (i =1,2). We prove that
sup I(Kpm+w)= sup I(u)=-c0 for ue€dqQ. (3.6)
(K+L)—o0 lull—o0
For (3.6)), we argue by contradiction. Suppose that (3.6]) is not true then there are
a sequence (u,) C 0Q such that ||u,| — oo and a constant ¢4 satisfying
limsup I(uy,) > c4. (3.7)

n—oo
Hence, it follows

L™ (up)? = A (uh)? = A (u,)? [T Gz, un) = fun
/0 dzr /0 — = dx

limsup[f THE 0.

(3.8)
Set vy, = up/||unl]. Since dim dQ < oo there is vy € Q) such that v, — v strongly
in H (also strongly in L2(0,7)). Then (3.8)) and (3.1)) yield

3 | T =X = A do > 0. (3.9)

Y]

n—oo 2



EJDE-2005/94 POTENTIAL LANDESMAN-LAZER TYPE CONDITION 9

Let vo = agpm + wo, ag € Rar ,wo € H™. Tt follows from Lemma that

L7 =2 2w < [ Aol dr. 310
0 0
For wg € H™ we have

/W[(wé)2 —Awj] dz < /7r [((m—1)* = A_)wj] dz. (3.11)

0 0

Since (m —1)? < A_ (see Remark [L.1)) then (3.9), (3.10) and (3.11) yield
/O [(v6)* = A (v9)? = A= (g )?] dz = ((m = 1)* = A)Jwoll3 = 0.

Hence we obtain wg = 0 and vy = ag@m, ||vo|| = 1. Now we divide (3.7)) by ||u,||
then

™ 1\2 +\2 _ —\2 ™ _
limsup[l/ ()™ = Ay ()" = A () dx—/ Gla,un) = fun d:z:] >0.
(3.12)

By Lemmathe first integral in ([3.12) is less then or equal to 0. Hence it follows

limsup/ —G(@,un) + fun dx = limsup/ [Mvn + f’U'n,:| dr >0.
n—oo Jo [[n | n—oo Jo U, -

Because of the compact imbedding H~ C C(0, ), we have v,, — agpm, in C(0,7)
and we get

+oo  for x € (0,7) such that ¢, (x) >0,
—oo for z € (0,7) such that ¢, (z) <0.

lim w,(x) = {
We note that from (1.5) it follows that —|p(z)| < G4 (z), G_(z) < |p(z)| for a.e.
x € (0,7). We obtain from Fatou’s lemma and (3.13))

/0 f(@)pm(x) de Z/O (G (@) (pm(2))" = G (2)(pm(2)) ] dz,
a contradiction to . We proved that by choosing K, L sufficiently large there
is v € R such that sup,cpq I(u) = v < p. Then Assumption (iii) of Theorem [3.1|is
verified.
(iv) Now we show that I satisfies the Palais-Smale condition. First, we suppose
that the sequence (u,,) is unbounded and there exists a constant ¢s such that

us

5 1002 =t = a2 o = [ (600 = fu] e < 310

0

and

lim |7’ ()| = 0. (3.15)

n— o0
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Let (wy) be an arbitrary sequence bounded in H. It follows from (3.15) and the
Schwarz inequality that

= | lim (I’ (un), wy)| (3.16)
k— o0
< i |77 (un) || - fJwk ] = 0.

k— oo

Put v, = uy,/||u,||. Due to compact imbedding H C L?(0, ) there is vy € H such
that (up to subsequence) v,, — vo weakly in H, v, — vg strongly in L2(0,7). We
divide (3.16)) by ||u,|| and we obtain

™

lim [vhwy, — Ay — A_vy ) wy] dz =0 (3.17)

n,k —oo Jq

and
s

lim [viwy, — (Ao — A_v; ) wy| dz = 0. (3.18)

i,k —o0 Jq

We subtract equalities (3.17) and (3.18)) we have

_llifm [(v], = v)wy, — (A (v —vf) = A_(v,, —v; ) )wy]de=0. (3.19)
n,i,k —oo Jq
Because (wy) is a arbitrary bounded sequence we can set wy, = v, — v; in (3.19)
and we get

lim [, — vy - / [ (o = ) = A (v, = o7)](ww = v)] da| = 0. (3.20)

n,i —oo 0

Since v,, — g strongly in L?(0, ) the integral in (3.20]) converges to 0 and then v,
is a Cauchy sequence in H and v,, — vg strongly in H and |Jvg|| = 1.

It follows from @ and the usual regularity argument for ordinary differential
equations (see Fucik [2]) that v is the solution of the equation

vy + Arvf — Ay =0.

From the assumption [Ay, A_] € 3, it follows that vy = agpm,ao > 0.
We set u,, = a0+, where a, > 0,4, € H-®S. Weremark that u = u™—u~

and using in the first integral in we obtain
I = /O7T [(angom + ) wp, — (Aypu) — /\_u;)wk] dz
= [ il + )= (O = A+ A )]
= /O7r [an(Aso = Ao )wi + (W) wy, — (A4 — A)ut + A_up) wi] da
= /Oﬂ {an[(A = X)o, + Apm]wr + (Un) wy
— (A4 = A2)(@npm + Un) " + A_(anpm + Un)] wi } da

— / (A4 = A (anph, = (anom + Un) wi + (Uy) w), — A_Tpwy] dz.
0
(3.21)
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Similarly we obtain

I = / [ = A) (@95 — (@n@m + ) Ywg + (@) W) — Aspwy] da.
0
(3.22)
Adding (3.21)) and (3.22) and we have
2l = / (At = A)(Jan@m| = lanem + Un))wr + 2(Un) wy, — (A4 + A_)Upwy] dx.
0

(3.23)
We set W, = U, + U, where u, € H ,u, € S and we put in (3.23) wy =
(U, — ﬂn)/||ﬂn|| then we have

I = / Y (lan@onl — lan@m + T + Tnl) (T — )
Tl

+2 (@,)* —2(u,)* — A+ A) (@ —u2)] da.

(3.24)

Hence
1 g _ U -
oI, < Ai(/ [k = A [T + G| [T — 1]
il \Jo

o+ 20T |2 = 20| = (s + A)([Tl3 ~ 1inl3))

1 T _ ~
([ e —a -
o 20Tl? = (A + AT - 2||an||2 + (g A 3)

The inequality |a? — b%| < max{a?,b?}, (3.25) and ([1.3)) yield

(3.25)

_ _ _ _ 1
I < max{[[@||* — M- 13, ~@n* + )\+||un||§} Tl (3.26)

We note that the following relations hold @, ||* < (m — 1)2||[u,|13, ||un]® >

(m + 1)2||u,]|3. Hence from assumption (1.3) and (3.26)) it follows that there is
€ > 0 such that )

L < —€maX{HﬂnH2aHanH2}m~ (3.27)

From (3.16)), (3.27) it follows

max{ |||, |5 *} 7

ﬁn _ﬂn

lim — — - (g(z,un) — f)——= dzx > 0. (3.28)
Sl ] o L) =7 )
Now we suppose that ||un|| — 00. We note that [T, [|? = [|Tn||* + ||@,]|?, we divide
(3:28) by [t and using we have
= 112 |57 |12 ™ - ~
max{ ||, |?, ||u Up) — _
s gy el ﬁ” 2” P} [T g un) S T T (5 9)
2 7 n—oo [[tn | 0 [[n]| [t

a contradiction to € > 0. This implies that the sequence (%) is bounded. We use
(2.2) from Lemma [2.2{ with w = @,, and we obtain

/ T[@)2 = Avi2] do < J(un) < / "[@)? = a2 do.
0 0

Hence T ) )

oo flup " n—oe [[un]|

=0. (3.30)
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We divide by |lu,|| and yield
lim ”[—G(x,un) + fun
n—oc Jo [[n |
and using Fatou’s lemma in we obtain a contradiction to .
This implies that the sequence (uy) is bounded. Then there exists ug € H such
that u, — ug in H, u, — ug in L?(0,7) (up to subsequence). It follows from the

equality (3.16) that

_llicm [(un — ug)'wh, — A () — ) = A (u, —u; )wy] de=0. (3.32)
n,i,k —oo J

We put wy, = u, — u; in (3.32) and the strong convergence u, — ug in L?(0, )
and (3.32) imply the strong convergence u,, — ug in H. This shows that the
functional I satisfies Palais-Smale condition and the proof of Theorem[3.]] for m
even is complete.

|dz=0 (3.31)

Now we suppose that m is odd. We have [Ay,A\_] € ¥,,2 and the nontrivial
solution ¢,,2 of corresponding to [Ay, A_]. Then there is &k > 0 such that
Ay —k,A\_—Fk] € ¥,,,; and solution ¢,,; corresponding to [Ay —k, A\_—k] = [N/, \"_]
(see Remark .

We define the sets @ and S like for m even and the proof of the steps (i), (ii) of
theorem is the same. In the step (iii) we change inequality if vg = agYma
as it follows

TP = A -2 @] da
= [ w2 = 0 =R - 0 - R do =k [ (333)
0 0

< k/ vg dx+/ [(wg)Q—A (wo)?] dz.
Then by , and (| we obtain k'fo 2dr = 0, a contradiction to

[lvo]l = 1. The proof of the step 1v) is similar to the prove for m even. The proof
of the theorem [3.1]is complete. O

REFERENCES

[1] A. K. Ben-Naoum, C. Fabry, & D. Smets; Resonance with respect to the Fudik spectrum,
Electron J. Diff. Eqns., Vol. 2000(2000), No. 37, pp. 1-21.

[2] S. Fucik; Solvability of Nonlinear Equations and Boundary Value problems, D. Reidel Publ.
Company, Holland 1980.

[3] M. Cuesta, J. P. Gossez; A variational approach to nonresonance with respect to the Fucik
spectrum, Nonlinear Analysis 5 (1992), 487-504.

[4] P. Rabinowitz; Minmaz methods in critical point theory with applications to differential
equations, CBMS Reg. Conf. Ser. in Math. no 65, Amer. Math. Soc. Providence, RI., (1986).

[5] M. Struwe; Variational Methods, Springer, Berlin, (1996).

[6] P. Tomiczek; The generalization of the Landesman-Lazer conditon, Electron. J. Diff. Eeqns.,
Vol. 2001(2001), No. 04, pp. 1-11.

PETR TOMICZEK
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WEST BOHEMIA, UNIVERZITN{ 22, 306 14 PLZEN,
CzECH REPUBLIC

E-mail address: tomiczek@kma.zcu.cz



	1. Introduction
	2. Preliminaries
	Notation

	3. Main result
	References

